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Abstract We consider a gauge symmetric version of the p-spin glass model on a complete
graph. The gauge symmetry guarantees the absence of replica symmetry breaking and allows
to fully use the interpolation scheme of Guerra (Fields Inst. Commun. 30:161, 2001) to
rigorously compute the free energy. In the case of pairwise interactions (p = 2), where
we have a gauge symmetric version of the Sherrington-Kirkpatrick model, we get the free
energy and magnetization for all values of external parameters. Our analysis also works
for even p > 4 except in a range of parameters surrounding the phase transition line, and
for odd p > 3 in a more restricted region. We also obtain concentration estimates for the
magnetization and overlap parameter that play a crucial role in the proofs for odd p and
justify the absence of replica symmetry breaking. Our initial motivation for considering this
model came from problems related to communication over a noisy channel, and is briefly
explained.

Keywords Replica symmetry - Gauge symmetry - Complete graph - Spin glass - Channel
communication - Error correcting code

1 Introduction and Main Results
1.1 Motivation

During the last decade substantial mathematical progress has been accomplished towards
solutions of mean field spin-glass models (see [19] and references therein). These fall in
two main categories: models on sparse graphs of Erdos-Renyi type and models on complete
graphs. The general Hamiltonians on complete graphs (or more precisely hypergraphs) are
of the form

N N
H(s)=— Z Jiy iy SiySiy + - Si, — Zhisi- (1)
i—1

I=ij<--<ip
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The standard p-spin model (p > 2) introduced by Derrida [1], Gross and Mézard [3] has
random i.i.d. coupling constants J;, _; ~ N(O, %) and h; ~ N (0, h). The variance is
normalized by N?~! to yield a non trivial free energy in the thermodynamic limit, while the
p!/2 is important if one wants to take the p — oo limit where it reduces to the Random
Energy Model [1]. The special case p = 2 is the Sherrington-Kirkpatrick model [17] for
which the Parisi formula [15] for the free energy has been proven (for the whole parameter
range) in a remarkable series of papers that developed the interpolation methods in various
directions [4-6, 21]. These results have been extended also to even p, p > 4 [20].
Here we study a gauge symmetric version of model (1) where the random couplings

< Jp! Jp!

Jiy. iy

T T ) hi ~ N(h, ), @)

have equal mean and variance. The average free energy is defined at inverse temperature

=1

1
Sy = _N]E[]n Zyl, Zy= 2;67[1@

where E[—] is the expectation with respect to (2). In this setting the local transformations

Sj = Tisi, hi — tih;, Jiv iy = Ty T iy 3)
where 7; = %1, are a gauge transformation first studied by Nishimori [14]. This symmetry
holds only for § = 1 which is referred to as the Nishimori line of the phase diagram (8, J, h).
Along this line one does not expect any replica symmetry breaking to occur.

We show that, as a consequence of the gauge symmetry, the simplest version of the
interpolation method [4], when suitably applied, suffices to compute rigorously the average
free energy in the limit N — +o00. Our results confirm that the replica symmetric solution
is indeed exact on the Nishimori line of the phase diagram (the full replica solution for
B # 1 can be found in [14]). Our analysis applies to both even and odd p. The latter is more
complicated and requires concentration results of the Edwards-Anderson overlap parameter,
which seem to be new. Proofs of concentration of the free energy for the standard model [7]
can be adapted to the present case and will therefore be omitted here. The appropriately
defined limit p — oo for the model results in a variant of the Random Energy Model and
has been studied in [2] (for 2 = 0 but any §) and will therefore not be discussed further here.

Our initial motivation for studying the present model comes from problems in communi-
cation through noisy channels. Loosely speaking, Shannon’s theorem assures that for trans-
mission rates below the channel capacity there exist error correcting codes allowing error
free communication. In fact as first shown by Sourlas [18] error correcting codes can be
viewed as spin glass models where, the spins correspond to transmitted bits, the couplings
are determined by the received values, and the geometry of the underlying graph is fixed
by the error correcting code. The couplings are quenched random variables (due to channel
noise), and the geometry of the underlying graph is defined by the random code drawn from
an ensemble (following Shannon). Remarkably, it turns out that for a large class of relevant
channels the spin glass models have a gauge symmetry' of the type (3). Because the Hamil-
tonian (1) is defined on a complete hypergraph it does not represent a sensible code in the

'In fact this depends on the decoder that is used. It is true for optimal bit-decoding, but not for optimal
block-decoding which corresponds to f = 4-o00.
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thermodynamic limit, but does so only for N (large) finite, because the rate of transmission
scales as Nﬁ—il (this code is sometimes referred to as Sourlas code in the literature). However
models of dilute spin glasses on random Erdods-Renyi type hypergraphs do represent sensible
codes which have positive transmission rates even in the thermodynamic limit. These are the
so-called Low Density Parity Check and/or Low Density Generator Matrix codes that have
attracted a lot of attention in communication theory in recent times due to their excellent
properties (see [16] for the state of the art, history and references). The analysis developed
in the present work is useful in that (more complicated) context also where bounds on the
capacity (and/or free energy) have been derived [8, 9, 11-13] but a general solution is still
missing.
A summary of the present results has appeared in [10].

1.2 Main Results
The formal replica trick applied to the present model leads to the expression

min,,epo,17 frs(m) for the infinite volume free energy, with a “replica symmetric” variational
free energy

J +0o0
fRS(m)z——(l—pm‘”_1 —(p—1Dm?) — DzIn(2cosh(z+/v +v) “)
4
where
2 J
-7
Dz=a’ze—, v=—pmp71+h.

V2 2

Our first result is an upper bound on the free energy.
Theorem 1 For Lebesgue almost every h > 0 we have

limsup fy < min frs(m).
Nooo mel0,1]

For even p the inequality is true for all h > 0.

The proof (see Sect. 3) proceeds by an interpolation between the true and a mean field
Hamiltonian which preserves the gauge symmetry. For odd p the interpolation argument is
not quite sufficient and one has to combine it with a self-averaging result for the magnetiza-
tion or the overlap parameter

1 o 1 <
_ 2: _ 2:(1) )
ml_N.lS“ Q12—N.1Si s .
i= i=

We can prove various forms of self averaging for these quantities, namely that E[(|A —
(AYD], E[[{A) —E[{A)]]] and E[{]A —E[(A)]|)] all tend to zero as N — +o00 where A = m;
or g, (of course if two of these quantities tend to zero then the third one also tends to zero).
This issue is discussed in detail in Sect. 6.

The next result is a converse bound. Let /7 be a minimizer of (4) and define the function

+o00

Fm) = %(p — Dm? —/ DzIn(2cosh(z+/7 + v)) 5)

—00
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where (note the difference between the integral terms in (5) and (4))
= % PP 4 b,
Theorem 2 For p an even integer and all (J, h) € R% we have
liminf fy > —1(1 — pi?™ 4 (p — DA?) + min_ f(m).
N—-+00 4 me(0,1]
For p odd this inequality is satisfied for all (J, h) € C. , where
Cop={(J.h) €RL [ (p — D" + pim"~! — 1= 0}. 6)

Note that for even p, C , = Ri. The proof (see Sect. 4) proceeds by a naive interpo-
lation which does not preserve the gauge symmetry. Theorems 1 and 2 have an immediate
corollary which forms our main result. Let m denote the minimizer of f(m) and set

Cp={UJ,m) eR} |m=m}NCy .

In Appendix A, we show that for pairwise interactions C, is equal to the whole two dimen-
sional quadrant. However, for p > 3, C), is not equal to the whole plane. For even p > 4 the
region C,, does not include some parameter close to the phase transition. For odd p > 3 the
region is even smaller due to the restriction (6). A graphical illustration for p =4 is shown
in Fig. 1 in Appendix A.

Theorem 3 For (J, h) € C, the free energy is given by

lim = min m).
N—>+OOfN mE[O.l]fRS( )

The minimizer m equals O or is one of the fixed points of

+o00
ﬁ:/ Dztanh(zv/2+7), 7=

o0

JmP~t 4+ h. )

(SRR

1.3 Notation and Organization of the Paper

The interpolating Hamiltonian that will be introduced in Sect. 3 depends on a parameter
t € [0, 1] and is denoted H, (s). The corresponding partition function and free energy are

1
Zy@y =) MOyt = —Ellog Zy ()] (8)

where E[—] is the expectation with respect to all quenched couplings involved in the inter-
polation. We will use the interpolating Gibbs brackets

1

@@=z D als)e W

@ Springer



Exact Solution of the Gauge Symmetric p-Spin Glass Model 209

and
1

@1 @ —
(a5 = s

- &) @)
3 a(s, s@)e eI,
s 5@

The replica indices will be omitted in Gibbs brackets (—), themselves, but always appear
as a superscript, s @ o =1,2,in the spin variables, so that there in no confusion (we will
never need more than two replicas). In Sect. 4 we use another interpolating Hamiltonian
ﬁ,(g) with the same corresponding definitions for Zv ®), ﬁv(t) and (—);. We define the
polynomial

R,(a,b)=(p—Da” — pa” 'b+b" =" —a’) — pa” ' (b—a)

which plays an important role. We will make use of the following important property: con-
vexity of x” for even p implies R,(a, b) > 0 if p is even. Also, convexity of x? for all p if
x > 0implies R,(a, b) > 0 for all p if a and b are non-negative.

The proof of the main theorem is given in the next section together with a few useful
identities. We prove Theorems 1 and 2 in Sects. 3 and 4 respectively. In order to prove
Theorem 2 we solve an intermediate model by saddle point calculations in Sect. 5. Section 6
is devoted to various extra results on the self-averaging of the magnetization and overlap
parameters. The appendices contain more technical details.

2 Preliminary Calculations
In this section we gather a few useful facts and in the process prove Theorem 3.

Minimizers of frs(m) and f (m) Differentiating (4) with respect to m we obtain

+00
p(p— 1)£mp’2<1 +m— 2[@ Dz(% + 1) tanh(z4/v + v)).

Since zDz = — :T Dz, the term involving can be integrated by parts. One then finds

_Z_
2/v
+o00

%p(p — Dm?? (m + / Dz(tanh*(z4/v + v) — 2 tanh(z4/v + v))>.

One can prove the remarkable identity

+00

+o00
/ Dztanh?(z+/v + v) = / Dztanh(z+/v + v). )

oo —00

Instead of giving a direct proof we give an indirect one below which shows that it is a special
case of a larger set of Nishimori identities (11) related to gauge symmetry. Thus

+00

2 fustm = T p(p 1>mp—2(m - f Dztanh(zv/5 + v)) (10)

and therefore m = 0 or it satisfies (7)_(for p = 2 the first possibility is excluded except
possibly when /& = 0). Differentiating f(m) we find

+o00

Dz tanh(zv/? + v)>.

—00

)~ J
= fm) =Zp(p— l)m"‘2<m —/
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We therefore conclude that, since 7 is a minimizer of fzgs(m) (by definition), it must nec-
essarily be a critical point of f(m).

Nishimori identities The gauge symmetry of the model implies a set of remarkable iden-
tities, called Nishimori identities. In this work we will use special cases of the formula (see
Appendix B)

E[]:[w} =E[<1;[ m>1;[<sA>] (11)

where A denotes a set of spins and s, = [ [, 5;. The simplest of these is E[(s;)] = E[(s;:)?].
Note that in the special case of non-interacting spins, J = 0, this becomes precisely (9).
Below we make use of the four special cases

E[(sis;)] = E[(s:s;)*] (choose A ={i, j}),

E[{s:)(s;)] =E[{sis;){s:)(s;)] (choose A ={i}; {j}),

E[{sis;)(s;)]1 =E[{sis;) (s:)(s;)]  (choose A ={i, j}; {j}),

El(si)(s;)’1 =E[(s:)*(s;)*] (choose A ={i}; {j}; {j}).

Another consequence is

E[(m})1=El(g},)], keN. (12)

This is easily seen by expanding both moments and applying E[(s4)] = E[(s4)*] =
]E[(s/(;)sf) )]. Thus the magnetization and the overlap parameter both have the same induced
distribution under E[(—)].

Magnetization and susceptibility We show that the derivatives of the free energy with re-
spect to & (which is the mean and variance of the random magnetic field) have simple ex-
pressions in terms of magnetization and correlation function.
9 1 32 1 o s
Spfv=—s B, o fy=—50 D Elsis) — (b)) (13)

ij=1
To prove these formulas we use the identity

_ (hi —11)2

d e 7 _( a+132> 2
dh V2xh  \ Ok,  20h*) 2mh

Then integrating by parts one finds contributions E[(s;)] coming from 3;- and E[1 — (s;)?]

2
from el
1

9 N N
o fv=- Z( (si)]+ E[l (si) ) Z +El(s;)] (14)
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The second equality is a consequence of the Nishimori identity (see after (11)). This proves
the first equality in (13). Proceeding similarly one more time

32 al 19
/N =T Z [( 28h2>( q
E[(sis;) — (s:)(s;) — {s:5;)(5;) + (5:)(57)°]

(s:) (s, )71, (15)

To get the last equality we have used the four Nishimori identities stated after (11). This
formula shows that fy is concave as a function of #. We will show that for (J,h) € C,
the limit N — oo exists and therefore it is concave and continuous as a function of A.
Proceeding similarly (for m fixed)

o fuston) = = [ D21+ (e 5+ ),
(16)

1 -
3h2 fRs( m) = szZ(COSh(zﬁ—i- )~

The proof is left to the reader. An important consequence of the second formula is that
miny, 0,17 frs(m) is a concave and continuous function of 4.

Proof of Theorem 3 Note that

J i P
—gU-r P~ 4 (p — D) + f() = frs(m).

Therefore Theorem 1 and Theorem 2 immediately imply that for (J, ) € C,, and almost
all i, limy_, 4o exists and

lim = min m).
N—>+<>ofN me[O,l]fRS( )

Above we have shown that both members of this equality are continuous functions of /.
Thus we can remove the restriction to Lebesgue almost every #. ]

3 Upper Bound: Theorem 1

The integral term in the replica symmetric variational expression (4) suggests that we intro-
duce the mean field random Hamiltonian

Hy(s) =— Z Jisi — Z/’lisi

where J; ~ N(%pmp‘l, %pm”‘l) and 0 <m <1 is a free parameter. Its free energy is

400
fn(0) = —f DzIn(2cosh(z+/v + v)) (17

o0
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and misses the term — 3 (1 — pmP~! — (p — 1)mP). We choose a Hamiltonian that interpo-
lates between Hy(s) and H (s) and also preserves the gauge symmetry

H (s)=— Z JitosipSiy " S, — Zfisi - Zhisi (18)

i1 <-<ip
where now

Ipl  Jp! oo o
Jiy iy N<I2Nl’*"tW)’ Ji N((l—t)ipm ,(1—0517’”

and h; ~ N'(h, h) remains unchanged. Note that all Nishimori identities and formulas of
Sect. 2, as well as their proofs, remain identical for the interpolated system. Of course the
Hamiltonian of the original system is equal to H|(s). By the fundamental theorem of calcu-
lus the free energy can be computed as

1 d
szfN<1):fN(0>+/ i Fu @), (19)
0

In this equation the free energies are defined with the appropriate expectations on all the
Gaussian random variables involved. In particular, the ¢-derivative has two contributions:
one coming from J;, _;, and one from J;. It is best computed by using the identity

_ (r—u@y? _ r—u@)?
d e~ 2 Wt )( 3 1 92 > e~ b
dt 2mu() e V2ru(t)
For the contribution coming from Jiy. .ip» WE have u/(t) = 2;[’,’ rand Y = J;, ;. For the
one coming from J; we have u'(t) = —% pmP~ ! and Y = J;. Integration by parts w1th respect

to the Y variable then leads to
d n@&)=A+B
ar’V

where A is produced by iy

Jp! N jpmpl
A= _2N,n . Z I]E[(sil .. '511, ZE[ Sl
i1 < <ip=
J J _ 1
= —EE[W),] + 5 pm? "E[(m1),]+ 0(ﬁ> (20)
and B is produced by -2 9Y2 s
Jp' N Nl mep 1 Bl
B:_4NP Z 1 [ _(Sl‘l- S'lp) ]+ Z [ — S'l> ]
iy <e<ip=
N N
=22 (D@ 5Dy Jpm?”! Oe)
= 4NI7 Z IE[l <Sll i S’I’ Sz,, 1+ T Z]E[l — (s[. s; Vel
i|<-<ip= —

J J 1
— S(L=Elgl)D + Tpm"™ (1 =Elgi2)) + (5 )-
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These results can be cast in the form

dfn(t) J _ J
:lvt =—Z(1—pm1’ '—(p—Dm?) — EE[(Rp(m,ml))r]
IR oL 21
t7 [(R,(m, q12))/] + (ﬁ) @1

From (12) for the interpolated system,

E[(R,(m,m1)) ] =E[(R,(m, q12))].

Thus (17), (19) and (21), imply the simple sum rule

J ! 1
fv = frs(m) — —/ E[(R,(m, 1) ]di + 0 — ).
4 Jo N
Now we derive the bound of Theorem 1 from this sum rule.

The case of even p  The positivity of R,(m, gi») immediately implies fy (1) < frs(m) +
O(%). The theorem then follows by taking the limsup, _, , ., and optimizing over m.

The case of odd p  We cannot use the positivity of R,(m, g;») but we note that
N

N
1
(q12): E (]) (2) =NE (s:)7
i=1

is non-negative. Thus from the convexity of x” for x > 0 we have
R,(m, {q12):) = 0. (22)

Therefore it is sufficient to prove that

Lemma 1 For Lebesgue almost every h we have

1
lim / dt(E[(R,(m, q12)):] = E[R, (m, {q12))]) =

N—+oo Jq
Thanks to this lemma we get

limsup fy (1) < mm fRs(m)
N—+o00

for almost every h.

Proof of Lemma 1 Using the identity b” — a” = (b — a) Zf:ol ab? " land 0<m <1,
—1=<gpn =<1,

IR, (m, q12) — R, (m, (q2))] = (a1 — (q12)) — pm” ™" (q12 — (q12):)
<2plgiz — {qi2):l.
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214 S.B. Korada, N. Macris

Thus Schwarz inequality applied to fol dtE[(—),] yields

1 1
/ dUEL(R, (m. 412)): — Ry(m. (i)l < 2p / drEL{Iq12 — (@) D)]
0 0
1 12
§2p</ th[(‘I122>t_<5112),2]> . (23)
0

From the definition of ¢, Schwarz and (15)

N
El{(g12 — (g12)1)*):] Z (5i5))7 = (5)7 ()71

i |

N

Z I(sisj)e = {si)i {511
N

D

1/2
E[(( N >r<5j>r)2])

) 92 12
=<_NWfN(t)> .

Let ¢ (h) be a sufficiently smooth positive test function. We have

/\ 2|N

1 2 1
f dh¢<h){ / dzE[<(q12—<qn>,>2>,]} < f dhg(h) f dIE[((q12 — () D]
0

<~ [ dno / az L

2 , 9
:N/‘”“” <h>/0 i fulo)

1 1
=N/dh<p/(h)/ dr (1 +E[(m)),]).
0

The right hand side above is smaller than % f dh|¢’'(h)|. Dominated convergence then im-
plies that for any convergent subsequence N, — +00,

1
lim dtE[{(g12 — {g12))*) 1 =0

Ny—>+00 Jo

for Lebesgue almost every 4. Taking the intersection of the two measure one h-sets cor-
responding to the convergent subsequences attaining the liminf and limsup (which both

vanish) implies that the limy_, ;~, exists and vanishes. Combining with (23) ends the proof
of the lemma. O
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4 Lower Bound: Theorem 2

The lower bound will follow from an interpolation scheme which uses a Hamiltonian for-
mally identical to (18)

N N N
Hi(s) =— E JitsosipSiy =" Si,, — E Jisi — E hisi
i=1 i=1

i1 <ip<-<ip=l

but with

~ Jp! Jp! -~ J o
Jirosip N(W’IW)’ Ji /\/(0, (1—1‘)517”1 .

For t = 1 we find the initial gauge symmetric model, while for # = 0 we have an Ising model
on a complete hypergraph with a random external magnetic field.

~ J ~ ~ J
Ho(ﬁ) = —Elel) - ZJ,'S,‘ — Zhis,- + E(Q), J,’ NN(O, Epm/’*1> .

i=1 i=1

Here E(s) denotes an “error term” that does not contribute to the free energy be-
cause max; E(s) = O(1). One can show that the free energy of this model is fN(O) =
miny, o, 1] f (m) This follows from a saddle point calculation outlined in Sect. 5. There this
calculation is made rigorous only for the lower bound

Jw(©= min fm) (24)

since this is all we really need.

At this point we wish to make a few remarks on the interpolation schemes that are used
here. In the scheme of Sect. 3 in order to preserve the Nishimori symmetry we varied the
mean and the variance: this lead to an upper bound on the free energy. Here we do not vary
the mean but only the variance (hence the Nishimori symmetry is broken) and this leads to
a lower bound. From this point of view, such an interpolation is identical to the Guerra’s
“first interpolation” [4] for the SK model. However one can also take the point of view that
it is similar to the Guerra-Toninelli interpolation [6] (with coupled replica’s) because of the
identity

~ J ~ _~
Hi(9) = H(9) = = 5 (1 = ON Ry (i, m1) + (1 = pym?).

We can in fact proceed as in [6] and prove that the fluctuations of the remainder vanish in
the limit N — +o00.

Here however we proceed in a simpler way that is similar to Sect. 3. Let us calculate the
derivative of fN (#) with respect to t. First we make the change of variable

~ Jp! ~ Jp! ~ [ Jp! ~
Jiy, . i,,_>\/; WJI'I ,,,,, i,,‘f'm, Ji—>N1—t W-’i (25)

where the new random couplings are distributed as

- Ip! - I o
Jiy. iy NN(Q 2NP—1)’ Ji NN(O, Epmp )
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216 S.B. Korada, N. Macris

For simplicity the Gibbs measure and the expectation with respect to the coupling con-
stants pertaining to the transformed Hamiltonian are still denoted (—), and E. We have

d ~
I = Nzw/zm1 > [ RO -s,-,,>,}

i <-<ip

1 1 J ~
— —pmpr-! E J,’ i .
TNV 2P Z [ <S>’]

Integratlon by parts for standard Gaussmn variables shows that we can make the replace-

ments J,1 — 57— and Ji - a_f in the last formula. Performing these derivatives
isenip
yields
Jp! mep !
—fN(t) ==y 2 Ell=tsis,)7] ZE [1 = ()7 (26)
ip<-<ip

At this point one can revert back to the original Gibbs measure and couplings by undoing
the change of variables (25). Next we introduce replicas to write

1 1 1 2
)7 = (55D i s )i =50 s Vs D),

1 ip “lp

Replacing in (26) we find
~p—1 J P ~p—1
—fzv(t) = —(p -D+ Z((%z)t — pi?Hqua))
p—l =P J p p—1 =P
=Z(pm —1—(p—Dm )+Z(<q12>f—pm (g12): + (p — Din?).
Applying the fundamental theorem of calculus we find
= J A) 1 J : o
fN(l):_Z(l_ m' +(p—1)m”)+f/v(0)+ dt(Rp(m’q12)>t~
As long as the integral term is non-negative, using (24) we find
Lo~ J oyl ~ .o
fU, )= lim fy(1)=—=—(—=pm" + (p—Dm”)+ min f(m).
N—o0 4 mel0,1]

Clearly the integral term is positive for even p. For odd p we have to show that R, (711, g12) >
0 as long as (p — 1)in? 4+ pmP~' —1 > 0 (see condition (6)). This is easily done by studying
the graph of the polynomial x” — pin?~'x + (p — 1)in? for —1 < x < +1. This concludes
the proof of Theorem 2.

5 Complete Graph Ising Model in a Random Field

The goal of this section is to prove (24). We have to study a model of the form

N
J
H) == Jisi = 5Nm{, mi==3 s 27)
i=1
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Exact Solution of the Gauge Symmetric p-Spin Glass Model 217

where J; ~ N'(u, o%). Saddle point calculations lead to the following expression for the free
energy

+o00

Flu.o)= min |2 (p— m?
o= e 2T

—00

J
Dzln2(:0sh<oz—|—5pm”_1 +u)i|. (28)

In our application we take J; = J; + h; so that =/ and 02 = 2 pmP~' +h.

The rigorous proof of (28) is complicated by two facts: first we have p > 2 so the problem
is not easily “linearized” (for p > 2) and second the magnetic field is random so one has to
control fluctuations of the saddle point. Here we prove the following.

Theorem 4 Let Z be the partition function of the model (27). Then

) 1
A}glgo—ﬁIE[an] > F(u,0). (29)

The derivation of a converse bound is more difficult except for p even for which we can
use a simple trick. Although the converse bound is not needed in the present work we briefly

explain its derivation for p even at the end of the section.
In the following let f(N) = (<)g(N) denote

.1 .1
A}gnwﬁlogf(l\’) = (E)A}gnooﬁlogg(Nl

The first step is to reduce oneself to a Gaussian model. This is accomplished by the following
lemma which is proven in Appendix C. Of course for p = 2 we can proceed more simply by
a standard direct linearization of the Gaussian term. The present treatment unifies the cases
p=2and p > 3.

Lemma 2 Fix 0 <« < 1. The following equality holds,
lim ~E(lnZ]= lim —E[InZ 30
Ngnoo N n=l= Ngr;o N [ n ] (30)
where

1
§= § / duefN1+“(u7m1)2+§Nup+Z,N:1J,-s,-'
s -1

Using the Gaussian identity ffooo e*(y“')zdy = /7 for any c € C, we get

+00
e—NH”‘(u—ml)z = —1 / dye—yz—zz‘zv
NE

Now we can perform the sum over s and obtain (integrals over u and y are exchangeable by
Fubini’s theorem and the statistical sum is finite)

I4a
2 (u—my)y

1 o]
5&/ dueN%"p/ alyl'l(y)e_Nl_01}72_2”\/”'V 3D
71 —_

o0
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with
N
I(y) = 1_[2COSh(Jj + 2iy)
j=1

y
1—a

where we have made the substitution — y. We evaluate both integrals by two con-

N 2
trolled saddle point calculations. Let us first deal with the y integral. Set

R —y2N1=®_2iNuy
Ir(u) = dyIl(y)e™
—R

and let y* be a solution of the formal stationary phase equation

N .
1 P
U= v jEZl tanh(J; + 2iy™) + Th (32)

It is easy to see that we must have y* = iyy(u) purely imaginary with |yo(u)| < 2N*. We
deform the y integral over [—R, 4+R] to the contour —R — —R + iyo(«) (along a vertical
line), —R + iyo(u) — +R + iyp(u) (along an horizontal line), and +R + iyo(u) — +R
(along a vertical line). It is easily seen that the two contributions along the vertical parts of
the contour tend to zero as R — oo, thus by Cauchy’s theorem
+oo ; 2 a7 1—a ; ;
Rl_i,Too Ir(u) = / dtTI(r + iyo(u))ef(”r’yo(”)) N T4 =2iNu(t+iyo )

—00

Using | cosh(J; + 2it — 2yy(u))| < cosh(J; —2yy(u)) we find

4

N
eyo(u)2N17a+2N“y0(“) l_[ 2 COSh(Jj — 2yo(u))
=1

RLITOO Ir(u) < N1

and replacing in (31) we have

+1
55/ duexp(NL(u, {J;}))
-1

where

|
L(u,{J;})= %ul’ + N*ayo(u)Z + 2uyo(u) + v Zancosh(]j —2yo(u)). (33)
Jj=1

It remains to evaluate the u integral on the right hand side. In Appendix D we prove that
for almost every realization of {J;} the maximum of L(u, {J;}) cannot be attained at the
boundary points +1. Therefore in what follows we do not take this possibility in to account.
Let us first find the stationary points of L(u, {J;}). Differentiating with respect to u we find
that they must satisfy

1< J
yd(u)(y ?V(Z) -5 ;tanhuj — 2y0()) + u) +yol)=—Tput™t (34
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which, using (32), implies yo(u) = —% pu”~!. Hence the stationary points of (33) are solu-
tions of the equation

1 & J J
_ X e —1 v —1
Uy, = I jEZl tanh<]l + 2pu*P ) + N pu L 35)

For these points we have L(u,, {J;}) = G(u., {J;}) where

I, IV BN S I o
G (1) =Sul (L= p)+ N~ T pu +N;1n200sh Ji+Spurt).

At this point, note for further use that we necessarily have max,e—1 1) L(u, {J;}) <
max,e—1,+1) G(u, {J;}). Consider now the equation (the thermodynamic limit of (35))

J
u=/thanh<az+§pup7]+u>, uel[—1,+1] (36)
and let S = {u,} be the set of its solutions for u € (—1, +1). Let £y be the event that the
maximum of L(u, {J;}) over u € [—1, 41] is attained in the set Gy = U, (u; — CN~% u, +
CN~4) (C a numerical constant independent of N). In particular, this set does not contain
the points 1 for N large enough. In Appendix D we prove the following.
Lemma 3 There exists € > 0 (small) such that for N large enough we have P(£5,) < e N,
We have

1 ~

—E[InZ] <E[ max L(u,{J;}]

N ue(—1,+1)

< E[Egii L, {J;D) I ENIPEN) + ]E[ueﬁ?)in L(u, {J;}) | ENIPER)

VA £ g . .
SE[ggiG(u,{Jj})]‘f'(E‘f‘N T +ﬁ;E[IJ,-II5N] P(EY).

The second term on the right hand side of the last inequality can easily be shown to vanish
in the limit N — +o00 thanks to Lemma 3. Thus from (30) we conclude

1 R
lim “EnZ]= lim —EnZ]< lim E[maxG(u,{Jj})].

N—+o0 — 400 uegy

Foru € (us — CN~4, u; + CN~9), the variation in the value of G (u, {J;}) from G (uy, {J;})
can be bounded by,

2CN™ max |G'(u,{J;})|=O(N™%)
ue(—1,1)
uniformly in J; because tanh(J; + % pu”*') < 1. Therefore,
. 1 . .
lim ~ElinZ] < lim E[max G, (/)] = lim E[max G, ;)]

N—+o0

@ Springer



220 S.B. Korada, N. Macris

The set S is not random, so the maximum on the right hand side is taken for some u;
independent of {J;}, say uq,. Thus

.1 .
Jim N]E[ln 2] = lim B[G (tmax, {J;})]

J 1< J
= Eu,"’m(l —-p)+ 5 Z;Ehﬂcosh(Jj + Epu,’;gxl)
=

J J
= E(l —pub + / Dzln2003h<oz + Epu;',’m’; + u)

J J
< max |:§(1 —p)m”—}—/Dzln2005h<om—|—5pmp_1 +M>:|

T me[—1,+1]
We conclude that
1
— — >
1\}2%0 NE[an] >F(u,o0)

which proves Theorem 4.
For even p we can prove a converse bound by the following trick. Consider the interpo-
lating Hamiltonian

J J
o) = = 3 i — 1l — (= ) N,

The fundamental theorem of calculus applied to the corresponding free energies reads

1 1 J (!
_NE““Z’=1] = —NE[an,ﬂ)] - 5[ E[(m{ — pm?~'m,),]dt
0

J J
= —5(1 —p)m? — / Dzln2cosh<az + Epmp*1 +,u)

J 1
- 5/ EL(R, (m, 1)) 1dt.
0

Since the remainder is positive for even p we get
1 . J » J o
_1\}513,0 NE[IHZ[:I] Smrél[gll] —5(1 — p)ym? — | DzIln2cosh| oz + Epm +u

which is exactly the converse of Theorem 4.

6 Concentration of Magnetization

In this section we show the various forms of concentration of the magnetization. The main
statement of this section is the following theorem.
Theorem 5 For any two constants 0 < a < b < 0o, we have the three identities

b

lim [ dhE(m, —E{m,)|) =0, (37)

N—oo J,
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b

Nlim dhE(|m; — (m1)|) =0, (38)
b
Jim | dhE|(m) = E(m)| =0. (39)

a

Similar identities are true for qi,.

The identity (38) is proved by using similar arguments as in Lemma 1 and we do not
reproduce them here. Identity (39) follows from (37), (38) using the triangle inequality. It
remains to prove (37). It is sufficient to prove this identity for the case of m, because gauge
symmetry implies m; and g, are identically distributed under E[(—)].

The proof of (37) is based on the idea used in [9] which involves proving Ghirlanda-
Guerra type identities for our model. For a brief review of these identities for the SK model
and their applications please refer to [20, Sect. 2.12].

Consider the following Hamiltonian

N
H'(s)=H(s)+ Y |h —hl. (40)
i=1

The additional term is independent of the configuration s. Therefore, Gibbs average with
respect to H'(s) is same as that of H (s). Let Zy (h), fy(h) denote the partition function and
free energy with respect to this new Hamiltonian.

The proof is organized in a succession of lemmas. By using a similar interpolation
method as in [7] we can prove the following concentration of the free energy.

Lemma 4 There exists a strictly positive constant o (which remains positive for all h) such
that

*0(62
P[| fy (k) —ELfy (]| = €] = O(e™*").
The perturbation term (40) has been chosen carefully so that the following holds,
Lemma 5 When considered as a function of h, — fy(h) is convex in h.

Proof First write the Hamiltonian (40) as

N N N N
H©== Y iy s, —VhY hisi—h Y si+~n Y |hi|
i=1 i=1 i=1

l=ij<-<ip

where h; ~ N (0, 1). We simply evaluate the second derivative and show it is positive.

d h
f”() <<)——Z|k| (41)

where we have defined
L(s) L 1 dh +IZ
§)=——— Sk + — Sk
V=NoTh 8 Skt g k
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Differentiating again,

dsz(h) 1 —1 1
LI _ N<4h3/2 ijhksk>+ SR Zk]hkl

+ N((L(s)*) — (L())*) > 0. (42)

a

The quantity L(s) turns out to be very useful and satisfies the following concentration
properties.

Lemma 6 For any two constants 0 <a < b < 00,

/ahdhlE(\L@ — (L)) = 0(%)

Proof From (42), we have

2

/ hdhE((L@ (L) )=~ / bdh%%E[fN(hn

a a

1/d d 1
= N(EE[fN(h)]‘“ - EE[fN(h)Hb) = 0<N)

The very last equality follows from the boundedness of the first derivative of E[ fy (k)] for
h > a > 0 (see (41)). Using Cauchy-Schwarz inequality for [ E(—) we obtain the lemma. (]

Lemma 7 For any two constants 0 <a < b < 00,

b 1
/a dhE|(L(s)) — E(L(5))s| = 0<f/—ﬁ>'

Proof From convexity of — fy (h) with respect to 2 (Lemma 5) we have for any § > 0,

v — fn(h+68) d
s + EE[.fN(h)]

v —Elfv] - fxh+8) —Elfv(h +8)]
- 8 )

d

d
d—hE[fN(h)] - %.fN(h) =

d d
+ EE[fN(h)] - EE[fN(h + 8.

A similar lower bound holds with § replaced by —§. Now from Lemma 4 we know that the
fluctuations of the first two terms are O (N~ 3 ). Thus from the formula for the first derivative
(41) and the fact that the fluctuations of % 2,12/:1 |hy| are O(N~ %) we get

1 1 1 1
E|(L(s)) — E(L(s))| < go(W) + §0<ﬁ>

d d
+ %E[fzv(h)] - %E[fzv(h + 1.
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We will choose § = N~%. Note that we cannot assume that the difference of the two deriv-
atives is small because the first derivative of the free energy is not uniformly continuous in
N (as N — oo it may develop jumps at the phase transition points). The free energy itself is
uniformly continuous. Using |h;x; + hx; + |h;|| <2|h;| + h, we get

[ELfx ()] — ELfy (0] < 2VAE[hi]] + h.

Therefore, if we integrate with respect to &, we get

[ anelizisn e < o o). .

Proof of Theorem 5 Combining Lemmas 6 and 7 we get

b
/a dhE(L(s) — E(L(5))]) < o(ﬁ)

For any function g(s) such that |g(s)| < 1, we have

b b
/thJE<L(§)g(£))—E(L(Q))E(g(i)ﬂ)5/ dhE(|L(s) = E(L(s))).

More generally the same inequality holds if one takes a function depending on many replicas
such as g(s", s?) = g». Using integration by parts formula with respect to 4,

1

E(L( =E ——
(L(s)q12) <2N«/ﬁ

thskq12> + E(m1q12)
X

1 1
= EE((l +q12)q12) — EE((QIS + q14)q12) + E(m1q12)
1
= EE((l +q12)q12)
1 2
= SE(m +m). @3)

We used a Gaussian integration by parts formula for the second equality, gauge transforma-
tion for the third and Nishimori identities for the fourth equality. Moreover using similar
tricks we get,

1
E(L(s))E(q12) = EEH —qi2 +2m)E(q2)

1
= 3 Efm) + (E(my))?). (44)

From (43) and (44), we get

b 1
/a dh|E(m}) — (B(m))*| < 0<W>'

By Cauchy-Schwarz this implies (37). ]
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Appendix A: Region C,
Al p=2

The minima of (4) and (5) are attained at one of their stationary points. For p = 2 these
points are given by the solutions of the following fixed point equations respectively.

m:/thanh(z»\/Jm—l—h—l—Jm—i—h), (45)
m=/thanh(zx/Jﬁ+h+Jm+h). (46)

Here we show C, = R? by arguing that m = m for all (J, h) € R%.

Case h > 0 and any J Both (45) and (46) have a unique positive solution which is the
minimizer of both (4) and (5). Hence m = mi.

Case h=0and J <1 Both (45) and (46) have a unique solution 7 = i = 0 which is the
minimizer of both (4) and (5). Hence i = .

Case h=0and J > 1 Both (45) and (46) have two solutions {0, 7}, and 7 is the mini-
mizer of both (4) and (5). Hence im = m.

A2 p>3

For p > 3 the fixed point equations

[J J
m=/DZtanh<Z Epmp71+h+§pm"_1+h>,
R I
m= | Dztanh|z Epml’*l-l-h—l-zpmp +h

have 3 solutions with 2 of them being local minima. The minimizers /7 and 71 are not always
equal and this results in C, C R%. For even p the equality for the free energy is not valid
in some region close to the phase transition line (jump in magnetization). The region Cy is
shown in Fig. 1.

Appendix B: Nishimori Identities

The gauge symmetry leads to remarkable identities first discussed by Nishimori. For the
ease of the reader we give a brief streamlined proof of the necessary facts that are used in
the present work. The following arguments are also valid for the interpolating Hamiltonian
of Sect. 3 for any .

Let s, = ]_[i caSi>» AC{l,...,N}. Under a gauge transformation the Hamiltonian re-
mains invariant, thus (s4) — 74(s4). On the other hand the Gaussian distribution of the
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Fig.1 Cy4isequal to A. The line 12
in region B is the phase transition
line. As mentioned before, close 10
to this phase transition line
(region B), we cannot show the
equality for the free energy 8
~ 6
A
4
B
2
0 2 4 6 8

couplings transforms as E[(—)] — E[(—)e~7@+H D]

uated for 7; = 1, all i. Therefore

E[H(M)] = E[H Ta H(SA)e*H(EHH(D]'
A A

A

where H (1) is the Hamiltonian eval-

Summing both sides over z,

ZNE[]_[(W} = IE[Z<1_[ rA> ]‘[(sA)ef“D]

A A A

ZERH TA> l_[<sA>e—H<£>+H<D]. (47
P A A

The last step is to perform an extra gauge transformation for each term in the p sum: s; —
PiSis T = PiTis Ji = pidis Jiy iy = Piy e Pip iy iy The terms in the last exponent of
the right hand side transform as H(p) — H (1), H(1) — H(p). Then each term of the right
hand side becomes

E[l_[ pi<1_[ TA> l_[(SA>e*H(l)+H(£)e*H(g)+H(l)j|
A A

A

which is independent of p. Thus (47) implies the general identity

E[]Z[m} =E[<]:[m>]:[<s/4>]-

Appendix C: Proof of Lemma 2

We have to study the integral

1
I=/ due=N"Fw
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with F(u) = (u —my)? — LN=u? and p > 2. For |u —my| < N-% we have |F(u) +

%N “m| <CN JT“, C a positive constant depending only upon p and J. The following
simple lower bound will suffice,

+1
I=€§Nmf/ dueN"TCEFE@+ENm])
N 4
L NmP e NS Fu)+ LNl
>e? 1 due 2 1
m

> N~ H e CN 2 gaNm (48)

For an upper bound we separate the integral over [—1, 4+1] into two contributions Z; over
3 3
Ar={u:lu—m| <N %}and T, over Ay ={u:|u—m| > N4 }. We have

I NP 1+ J N—a,, P 3 -4 jaop
T :eijl/ duefN “(Fu)+5N~"%my) §2N7%€CN 2€7Nm1~
Ay

To estimate Z, we first note

d F( )+ JNfa p _2( ) ‘INfo( p—1
dn u 5 my ) =z2(U—m 3 pu .

3o . . . . . ..
Now foru —m; > N~ 4 and N large enough this derivative is necessarily positive, therefore
. .. 3 .. 3a
F(u)+ 4 N~“m{ takes its minimal value at u = m; + N~% . Similarly foru —m; < —N~%

. . .. 3a
the same function takes its minimal value at u =m; — N~ 4 . Thus

-2
=3y dNm

-

J P _Nlta J -, P
IZ — esz] f due N (F(M)+2N my) < 260(1\’ e
Az

Finally for N large enough,

- p

esNml, (49)

%)

I=T+1I, <3e°"
The two bounds (48) and (49) immediately imply
L ein 21— LEm 21| = oov%)

N n N n =

and this completes the proof.

Appendix D: Bound on P (£5)

In the following lemma we show that the largest stationary point less than 1 is a local max-
imum almost surely over {J;}. Similarly we can show that the smallest stationary point
larger than —1 is also a local maximum. This implies that the maximum of L(u, {J;}) is not
attained at the boundary points £1.

Lemma 8 Let u be the largest stationary point of L(u,{J;}). Then L(1,{J;}) < L(u,{J;})
for almost all realizations of {J;}.
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Proof The above statement is true if % is a local maximum, i.e, L" (i1, {J;}) < 0. Let t(u, y)
denote

N
1 y
t(u,y) = N E tanh(J; —2y) — ve u
j=1

and recall that yo(u«) is defined as 7 (u, yo(u)) = 0.
From (33), we can write

LG 1) = 2501 @, @) + 5 ™ + 23w,
Differentiating once more
L' 1) = 5 p(p = Dl 4235
where y; (1) can be computed from the equation ¢ (i, yo(u)) =0 as

) 1 2 g -
you) = _(W +5 > " sech?(J; — 2y0(u))> .

j=1

Now at u = u we have yy(u) = —% pit?~!. So, the condition that i is a local maximum is
oo - i LJFEXN:seclﬁ 5+ Lpart)) —1<0 (50)
4 N« N T2 '

To prove this let us define

qu) = t(u, —%pu”fl).

From (36), we have () = 0 and note that for N large enough, we have ¢ (1) < 0. Since i
is the largest solution of L'(u, {J;}) = 0 we must have

qu) <0 foru<u<l1.

Therefore %q(u)lu:,; < 0. Computing the derivative gives

J 1 2 & J
—p(p— l)ﬁ”_2<—a + — Zsechz(l,- + —pﬁ”_l>) —1=<0.
4 Ne TN & 2

We see that we have obtained (50) except for the possible equality. However, the {J;}s have
to satisfy both the equalities in (50) and (36), which happens with only an exponentially
small probability. Therefore (50) is a strict inequality for almost all {J;}. O

To prove Lemma 3, we need the following result on the concentration of bounded
monotonic functions.
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Lemma9 Letr f: R — R be a bounded monotonic function and {X 1, X», ...} be a sequence
ofi.i.d. real random variables. Then for any 0 < d < 1/2 there exist constants A and B such
that

1 N
B sup| D FXi+u) —ELF(X +u)]
ue i=1

Proof w.l.o.g. assume that | f(x)| < 1 and f(x) is an increasing function. Since, f(x) is
bounded, its expectation exists. Using the concentration inequality for random variables
with bounded difference, we get for any u,

< 1 )
Pl | —
N =

< N“‘) >1— AN9e BN

D FXi+u) —E[f(X +w)]

i=1

> 8) <2~ N2,

Consider any € > 0 and let M = 1/¢. Let us define a sequence of numbers {u_y, ..., up,
., upy} such that [E[ £(X 4+ ug)] — E[ f (X 4 ug+1)]| = €. From union bound we get,

N

1
P(Vj e{—M,...,M}: ‘N Zf(Xi—l—uj)—E[f(X—i-uj)]

i=1

< 5) > 1— QM +1)2e N2,

(51)
Now consider any v ¢ {u_p, ..., up}. Let uy < v < ugyg, for all the realizations of {X;}
which satisfy (51), if % ZINZI fXi+v)—E[f(X+v)]>0
1 N
‘ﬁ > FXi+v) —E[f(XJrv)]’
i=1
1
SN Zf(Xi +upr) —E[f(X +uk)]‘
i=1
1
=N ;f(xi +upr) —E[f(X +uk+l)]’
+|EfX +u) —E[f(X +us)]| <8 +e (52)

and if % ZlN=1 f(Xi+v) —E[f(X +v)] <0, we have similarly

1 N
’ﬁZf(X,-Jrv)—E[f(XJrv)]’

i=1

2 |

N
Z (X; +up) — [f<X+uk+1)]‘

L&
NZf(Xi'i'uk)_E[f(X'i'uk)]’
+

i=1

[Ef(X +u0) —E[f(X +ur)]| <8 +e
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Then using (51) and (52), we get

1 N
P{ sup NZf(X, +u) —E[f(X —I—Lt)] <8+e|l>1-02M+ 1)267N32/2'
uelR i—1

Taking § =€ = 1/(2N9),

N
1 +u)— _
sup Zf(Xi u) Ef[(X-i—u)] <N >1—(8Nd+2)€7N1 2‘1/8.
uelRk N i1

Proof of Lemma 3 Applying the above lemma to f(x) = tanh(x), we get

N
1 J _ J _ _
P izﬂg Njgzltanh (Jj+§pup 1>_Etanh (Jl—f-Epul’ 1) <N7¢

>1—9Nde N,

Therefore, with probability at least 1 — 9N~V =2y 8, the solutions of (35) belong to

(ui — KyN™4 u; + KyN~9) where u; denote the solutions of (36). Therefore, L(u,{J;})
attains its maximum in |, u; — KyN~, u; + KiN~%). O
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