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Abstract Placental mammals occupy a larger morphospace
and are taxonomically more diverse than marsupials by an
order of magnitude, as shown by quantitative and phyloge-
netic studies of several character complexes and clades. Many
have suggested that life history acts as a constraint on the
evolution of marsupial morphology. However, the frequent
circumvention of constraints suggests that the pattern of mor-
phospace occupation in marsupials is more a reflection of lack
of ecological opportunity than one of biases in the production
of variants during development. Features of marsupial phys-
iology are a potential source of biases in the evolution of the
group; these could be coupled with past macroevolutionary
patterns that followed conditions imposed by global tempera-
ture changes. This is evident at the K/Pg boundary and at the
Eocene/Oligocene boundary. The geographic pattern of taxo-
nomic and morphological diversity in placental clades mirrors
that of extant placentals as a whole versus marsupials: placen-
tals of northern origin are more diverse those of southern one
and include the clades that are outliers in taxonomic (rodents
and bats) and ecomorphological (whales and bats) richness.
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…the interpretation that life-history changes are cor-
related with certain early embryogenic events is, al-
though appealing, very problematic. It should be

considered that selection can act at any point during
ontogenesis, and also that the degrees of freedom in
evolutionary changes to development are very high.
Mitgutsch et al. (2009: 255)

…universal (and local) constraints need not to be
inevitable. They may be accidents of evolutionary
history…
A. Wagner (2011: 158)

In a world of chance, is there a better and worse?
Foe, by J. M. Coetzee (1986: 30)

Introduction

Mammals are a well-known major group of organisms, with
much documented about their fossil record, developmental
biology and ecology, and as such a good subject to explore
the fundamental question of biology of why the number of
species varies among groups (Wiens 2011). Marsupials and
placentals constitute the two major groups of living mam-
mals and present a natural experiment in evolution. We can
learn much by examining and comparing the course of
evolutionary change in the two lineages in the last 160
million years (Luo et al. 2011), integrating information on
external and internal factors that affected both. Marsupials,
of which there are about 340 species, are largely confined
geographically to Australia and South America, besides
a few opossum species (didelphids) distributed in Cen-
tral and North America. Placentals have a worldwide
distribution on land and in the seas and are much more
diverse, with 5138 species (Wilson and Reeder 2005;
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Dickman 2007; Ceballos and Ehrlich 2009; Voss and
Jansa 2009). The evolutionary success of placentals
seems tremendous when compared with their sister
group the marsupials or with egg-lying mammals, the
monotremes (Lillegraven et al. 1987; Sears 2004; Cooper and
Steppan 2010).

There is a nomenclatural distinction between stem and
crown groups that is informative and relevant when treating
mammals. Metatherians are all mammals phylogenetically
closer to an extant opossum or kangaroo than to a mouse or
elephant, and marsupials, which form the crown group, are
all the descendants of the last common ancestor of extant
marsupials. Similarly, the more inclusive Eutheria contain
the crown group Placentalia (Rougier et al. 1998).

Concerning ecomorphological diversity, the convergen-
ces of marsupials with placentals are textbook knowledge
(Pough et al. 2008) and include the marsupial mole, anteater
(numbat), wolf, among other forms (Jones 2003; Wroe and
Milne 2007). The fossil record in spite of its incompleteness
does document a substantial addition in our understanding
of metatherian ecomorphological diversity, with for exam-
ple a 2.7 ton marsupial “rhino” Diprotodon (Wroe et al.
2004b), the frugivorous Paleogene polydolopimorphians
with multi-cuspid molars (Goin et al. 2012), and the distant-
ly related diprotodontian (thylacoleoinid) and borhyaenid
hypercarnivores of Australia and South America, respec-
tively (Wroe et al. 2003; Forasiepi and Carlini 2010). The
recently extinct bandicoot Chaeropus had feet similar to
those of a pig, with hoof-like structures (Gordon and
Hulbert 1989). But these examples pale in comparison with
the figures and disparity reached by placentals. Limb spe-
cializations such as wings and flippers never evolved among
marsupials. Even excluding whales, the range of body sizes
of placentals is also more extensive; the fossil rhinocerontid
Paraceratherium reached a maximal body mass of about
15-20 tons (Fortelius and Kappelmann 1993). In the lowest
extremes (few grams) the figures for metatherians and
eutherians are similar, although the record of the smallest
mammal known is that of a eutherian (Bloch et al. 1998).

In the late 1970s and the 1980s a series of papers dis-
cussed the marsupial/placental dichotomy, emphasizing
their contrasting reproductive and developmental biology
(Lillegraven 1975; Kirsch 1977; Lillegraven et al. 1987).
Gestation length in marsupials is quite variable, ranging
from about 11 to 38 days, but this is barely reflected in the
degree of development at birth, as all marsupial neonates are
generally altricial, but some aspects of their anatomy are
much more differentiated than others (Hughes and Hall
1988). In marsupials the newborn needs to be able to feed
at an early stage of morphogenesis when compared with
placentals, and in most species, presumably the primitive
condition, the newborn needs to use its forelimbs to climb
and reach the mother’s teats (Gemmel et al. 2002; Sears

2004). A lack of “feto-maternal intimacy” (Lillegraven
1975:714) and the needs imposed by the newborn’s loco-
motion and subsequent suckling during a period of fixation
are unique and most likely derived features of marsupials
among living mammals (Smith 2001a; Weisbecker 2011).
Although marsupials do develop with protection and assis-
tance of a placenta, the mechanisms involved in marsupials
are fundamentally different from the those of members of
Placentalia, and do not provide a comparable level of pro-
tection from the mother’s immune system (Renfree 1993;
Tyndale-Biscoe 2005).

As the subject of constraints in evolution gained center-
stage (Gould 1977), the differential evolutionary paths of
marsupials and placentals began to be discussed in the
context of how marsupials’ developmental features must
have played a role in their lower taxic and morphological
diversification (Werdelin 1987). Others raised voices and
presented data on the seemingly underappreciated marsupial
diversity in taxonomy and morphological disparity (Kirsch
1977), but discussions remained anecdotal and data quanti-
fication missing.

During the last three decades, major advances have been
made in our knowledge of mammalian biology and evolu-
tion. This has involved quantification of ontogenetic and
adult morphospace data (Sears 2004) and a much more solid
knowledge about phylogeny, the fossil record, and macro-
evolutionary patterns of marsupials (Rougier et al. 1998;
Luo et al. 2003; Goin et al. 2010; Beck 2012) and placentals
(Rose 2006; Meredith et al. 2011). We also now have an
unprecedented understanding of the metabolic, physiologi-
cal, and reproductive differences between marsupials and
placentals (Renfree 1993; Tyndale-Biscoe 2005; McNab
2008). In addition, conceptual advances have been made,
such as the study of modularity and sequence heterochrony,
relevant to understanding the developmental and evolution-
ary differences between the two groups (Smith 2001a;
Goswami et al. 2009). Reconsidering the marsupial dichoto-
my is thus timely. For that, some of the major discoveries are
summarized and a discussion of the potential geographical and
physiological factors that may have played a role in the differ-
ing fates of the two major groups of mammals is presented.

Adult Morphospace and Quantitative Comparative
Ontogeny

In the scapula (Sears 2004), limbs (Cooper and Steppan
2010; Kelly and Sears 2011a), and axial skeleton
(Sánchez-Villagra et al. 2007), placentals show more dis-
parity than marsupials. For example, all marsupials, inde-
pendent of the locomotory type and phylogenetic position,
possess 19 thoracolumbar vertebrae (and low intraspecific
variability), a number which ranges from 15 to 32 in
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placentals (Asher et al. 2011). With the exception of the
marsupial mole Notoryctes, marsupials have less specialized
forelimbs than placentals (Kelly and Sears 2011a) and tend to
specialize their hind limbs more than their forelimbs, as seen
very clearly in kangaroos. Several limb features associated
with cursoriality found in terrestrial placentals, such as those
of ungulates and some South American rodents, are not found
among the marsupials (Cooper and Steppan 2010). The dif-
ferent pattern of adult limb morphospace occupation in mar-
supials versus placentals was related by all the above-cited
authors to the contrasting pattern of development and the
hypothesized associated constraints in marsupials. In contrast,
a recent study concentrating on the skull came to a different
conclusion. Goswami et al. (2011) quantified three measures
of cranial disparity, using geometric morphometric methods,
in a comprehensive sample of eutherian and metatherian
carnivoran species. They concluded that “contrary to previous
studies, metatherian carnivores consistently exhibited dispar-
ity which exceeded that of the much more speciose eutherian
carnivore radiations, refuting the hypothesis that developmen-
tal constraints have limited the morphological evolution of the
marsupial cranium” (p. 1831).

Differences in timing of ontogenetic events between
marsupials and placentals exist in early embryogenesis.
These involve somitogenesis, neural tube closure, cranial
neural crest migration, and forelimb specification and pat-
terning (Vaglia and Smith 2003; Sears 2009; Keyte and
Smith 2010, 2012). In Monodelphis domestica neural tube
closure takes place after development of somites, whereas it
precedes it in Mus and Rattus (Vaglia and Smith 2003).
Another difference is that cranial neural crest among marsu-
pials develops relatively early compared to event sequences
among placentals (Smith 2001b).

In comparing marsupials and placentals, the contrast
between forelimbs and hind limbs has been central. The
primitive and common condition of vertebrates is earlier
development of the forelimb/pectoral fin than of the hind
limb/pelvic fin (Richardson et al. 2009). This is taken to
a unique extreme in marsupials, as quantified in different
aspects of chondrogenesis (Bininda-Emonds et al. 2007).
Not all aspects of skeletogenesis (pre-chondrification,
chondrification, onset of ossification, growth) occur at
similar relative timings. A decoupling of the timing of
these processes has been shown (Hamrick 1999; Sears
2009). Marsupials exhibit an acceleration of the forelimb
appearance and a subsequent retardation of the hind limb
development.

In both the postcranium (Weisbecker et al. 2008) and
skull (Sánchez-Villagra et al. 2008; Hautier et al. 2010),
marsupials and placentals differ in the sequence of bone
ossifications. For example, marsupials show a clear
antero-posterior gradient of ossification throughout the
skeleton and their oral region ossifies first. Placentals,

in contrast, exhibit a less marked antero-posterior tempo-
ral gradient of ossification sequence, for example with
the parietal bone of the skull roof ossifying relatively
early (Sánchez-Villagra et al. 2008).

The diversity of dental features in placentals seems to
be larger (Ungar 2010), also at the microstructural level
(Koenigswald and Goin 2000), but the fossil record pro-
vides excellent examples of unsuspected dental disparity
across Metatheria (Arena et al. 2012). The pattern of dental
replacement is also contrasting. Many marsupial clades
retain two developmental generations of teeth, but always
one of them is reduced and vestigial, so a single functional
generation exists except for the replacement in the last
premolar locus (Luckett 1993), even in the basal lineages
of extinct metatherians (Cifelli and Muizon 1998; see
Archer 1978 and references therein for an alternative iden-
tity interpretation of marsupial teeth). In contrast, placen-
tals have a much broader range of dental replacement
patterns, including the primitive condition of replacement
of most non-molars, the loss of functional replacement in
different loci in different combinations, and even the mar-
supial condition (van Nievelt and Smith 2005). It has been
argued that the reduced tooth replacement has resulted in a
negative bias in dental morphospace (restricted generation
of variation) among carnivorous marsupials (Werdelin
1987; Prevosti et al. 2012). However, circumventions of
such a constraint are known: the “marsupial lions” (Thyla-
coleonidae; late Oligocene-Pleistocene, Australia; Archer et
al. 2001) reduced their molars and used their premolars as
carnassials (Werdelin 1988); the Mio-Pliocene saber tooth
marsupials (Thylacosmilidae) had ever growing upper can-
ines and blade-like molars (e.g., Forasiepi and Carlini 2010);
and adult “giant rat-kangaroos” (Propleopinae) from the
Oligocene-Miocene of Australia (Wroe et al. 1998; Goswami
et al. 2011) used the only tooth which is replaced, the last
premolar, as the principal vertical shearing blade. In juvenile
propleopines the principle carnassial tooth is the P2/2, which
worked in conjunction with the adjunct blade of the trigonid of
the dP/3 in the lower dentition (Wroe and Archer 1995).

Brain Size and Physiology

Weisbecker and Goswami (2010) discussed and analyzed
comprehensive data that serve to reject the idea that marsu-
pials are smaller-brained than placentals (e.g., Lillegraven
2003; Burghardt 2005). These authors also presented quan-
titative evidence that there is a lack of correlation between
metabolic turnover and marsupial brain size. These two
variables had been hypothesized to be tightly coupled based
on the study of placental mammals alone (Isler and van
Schaik 2009). This difference may be related to the fact that
marsupial life history involves a long period of lactation
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instead of intrauterine life. The maternal care provides an
environment in which seemingly extended brain growth is
possible under relatively small metabolic budgets.

There are fundamental physiological differences between
placentals and marsupials. Among placentals, a higher met-
abolic rate is correlated with higher rate of reproduction. In
marsupials, such correlation does not exist given their small
investment in prenatal development (McNab 2005). The
extreme aerobic/metabolic features of kangaroos (Dawson
et al. 2004) and the hibernation capabilities of the pygmy
possum Burramys parvus (Geiser 1994) are among the best
examples of the evolvability of marsupials in physiological
terms. Comprehensive studies of physiological patterns and
their potential effects on placentals versus marsupial macro-
evolution would be important.

Placentals can generate heat using Brown Adipose Tissue
(BAT) (Cannon and Nedergaard 2004), either lacking in mar-
supials (Hayward and Lisson 1992; Geiser 1994) or not used
for heat generation as it is in placentals (Hope et al. 1997;
Jastroch et al. 2008). Placentals are thus better suited to avoid
hypothermia, and have higher metabolic rates relative to mar-
supials of similar weight (Tyndale-Biscoe 2005). This helps
placentals to survive cold temperatures (McNab 2008). Mar-
supial heat generation derives from metabolism and muscular
activity (Holloway and Geiser 2001). Given the physiological
features of marsupials, food availability plays a particular
major influence on the fate of their populations, and marsupial
distribution in high latitudes is restricted in extent and number
of species (Formoso et al. 2011). The highest latitude/south-
ernmost record for marsupials is 47°S, for Lestodelphys halli
(Formoso et al. 2011), and only four marsupial species are
known to occur south of 42°S (Martin et al. 2008). As food
availability is largely determined by temperature and rainfall,
these variables are likely to then be ultimately coupled with
marsupial evolution, more so than in placentals. This is in fact
the case found when examiningmacroevolutionary patterns of
metatherian evolution (Goin et al. 2010).

Time of Divergence and Diversity Patterns in Geological
Time and Space

The evolutionary lines of metatherians and eutherians are,
by definition, equally old, with a divergence in the Jurassic
(Luo et al. 2011; dos Reis et al. 2012). But within these two
lineages, the age of the living clades are not. The origin of
the crown marsupials occurred later than that of crown
placentals by at least around 20 million years (Nilsson et
al. 2004; Bininda-Emonds et al. 2007; Beck 2008; Meredith
et al. 2008, 2011), as did on average the radiation of mar-
supial in comparison to placental “orders” (Meredith et al.
2011). It was previously thought that the clade of living
Marsupialia originated in the Cretaceous (Novacek 1992),

and that somemodern lineages (e.g., Didelphidae) represented
“living fossils” (Simpson 1980). However, new fossils and
comprehensive phylogenetic analyses of the relevant fossil
forms (Rougier et al. 1998; Luo et al. 2003; Sánchez-Villagra
et al. 2007; Horovitz et al. 2009; Vullo et al. 2009; but see
Beck 2012) have shown that the Cretaceous forms are stem-
metatherians and that crown marsupials are exclusively from
the Cenozoic. In other words, stem metatherians have a long
history within the Mesozoic. Marsupials, in contrast, are
much younger.

In the Late Cretaceous, metatherians were very important
components of North American mammalian faunas in both
diversity and abundance, surpassing their contemporaneous
and sympatric eutherians (Wilson et al. 2010; Archibald
2011). The ecomorphological diversity of metatherians in-
cluded a large animal by Mesozoic standards (Nanocuris) of
about 0.5 Kg of body mass, and a semi-aquatic eater of
hard-shelled organisms (but see Fox and Naylor 2006 for an
alternative habitat reconstruction), Didelphodon vorax with
about 1.7 Kg (Luo 2007; Wilson et al. 2010; G. P. Wilson
pers. comm.). The Cretaceous/Paleogene boundary (K/Pg)
was a critical time for marsupial biogeography and evolu-
tion. The catastrophic event at the end of the Cretaceous,
possibly related to an asteroid impact in southern North
America (Yucatán Peninsula; Schulte et al. 2010, but see
Archibald 2011), had a strong effect on metatherians, which
experienced a precipitous decline in diversity (J. Alroy, in
Archibald 2011:65). In North America the K/Pg changes
were much more dramatic in metatherians than in eutherians
or multituberculates: one of 11 metatherians survived,
whereas five out of ten multituberculates did, and the ma-
jority of eutherians also survived, as documented at the Hell
Creek Formation in northeastern Montana (Wilson 2005;
Archibald 2011). Factors such as sleep- or hide behavior,
which allows mammals to buffer from changing physical
elements and makes them less prone to extinction (Liow et
al. 2009), may have varied between mammalian clades at
the end of the Cretaceous period. Another potential factor
for differential survivorship might have been differential
ability to thermoregulate (for example, the lack in metather-
ians of brown adipose tissue).

After the critical extinction event at the end of the Creta-
ceous, metatherians were almost entirely restricted to the
southern hemisphere, except for a few dentally plesiomor-
phic tribosphenic metatherians that inhabited northern con-
tinents and Africa until mid-Cenozoic times (Hooker et al.
2008). In addition, and much later, some didelphids migrat-
ed to North America during the Great American Biotic
Interchange at about 3 Ma, following the formation of the
Panamanian land bridge (Woodburne 2010).

There are no uncontested reports of Mesozoic metatherians
in either South America or Australia (Rougier et al. 2011).
Thus it is likely that in the Late Cretaceous or Paleocene
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metatherians dispersed fromNorth to South America and then
Australasia (Case et al. 2004; Beck 2012; Black et al. 2012).
Supporting this idea are metatherians known from the middle
Eocene of Antarctica (Woodburne and Zinsmeister 1982;
Goin et al. 1999; Chornogubsky et al. 2009). By latest
Paleocene-early Eocene times, the diversity of metatherians
in South America was large, as extensively documented by
one the world’s most diverse assemblages of this group (be-
sides Riversleigh, see Archer et al. 2001), surpassing living
ones (Muizon 1991; Oliveira and Goin 2006; Goin et al.
2012). This diversity included forms without extant counter-
parts such as the frugivorous polydolopids and the herbivo-
rous groeberiids. In one of the best studied Paleocene
localities of South America, Tiupampa in Bolivia, more than
half of the mammalian species are metatherians (Muizon and
Céspedes 2012). This percentage ranges between 60 and 70%
and approaches the proportion suggested for other well-
studied localities between the late Paleocene and the middle
Eocene: Itaboraí in Brazil and Las Flores and Paso del Sapo in
Argentina (Bergqvist et al. 2006; Tejedor et al. 2009).

The Earth experienced greenhouse conditions from the Late
Cretaceous until the Eocene-Oligocene boundary (Zachos et
al. 2001). The “Terminal Eocene Event” of major changes in
global temperatures also affected South America, and signifi-
cant faunal changes are well documented at the Eocene-
Oligocene boundary in Patagonia, the “Bisagra Patagónica”
or “Patagonian Hinge” (Goin et al. 2010). Around middle
Eocene times, hystricognath rodents arrived in South America
(41 Ma; Antoine et al. 2012). Primates did so in the late
Oligocene if not before, around 26-28 Ma (Kay et al. 1998).
Goin et al. (2010) argued that the most dramatic change in the
diversity of marsupials relative to placentals in South America
occurred not as result of the arrival of these new clades, but due
to climate change. The immigrant groups (hystricognaths and
primates) are absent from the early Oligocene sites in which
the metatherians represented only 30% of the mammals (Goin
et al. 2010). This decline in the proportion of marsupials in
mammalian faunas becomes even more marked towards the
second half of the Cenozoic.

No Competitive Replacement of Marsupials
by Placentals

Replacement of marsupials by placentals has been suggested
for several times and places, implying a role for competition in
mammalian macroevolutionary patterns. According to this
view (Patterson and Pascual 1972; Simpson 1980; Lillegraven
et al. 1987; Werdelin 1987), marsupials are diverse in Aus-
tralia because non-volant placentals (probably) never fully
established themselves there, and whenever the two groups
have been in contact, placentals have prevailed. In this con-
text, it would be fortunate if consensus would be reached on

the affinities of Tingamarra, a purported “condylarth”
(eutherian) from the early Eocene of Australia (Godthelp et
al. 1992; but seeWoodburne and Case 1996, for an alternative
interpretation). From the same locality from which Tinga-
marra has been described, one of the oldest bats, Australo-
nycteris clarkae, is known (Hand et al. 1994). Future work
may demonstrate that in Australia the marsupials had the
upper hand over placentals since Paleogene times.

Proving competition in recent species, let alone fossils, is
a challenging task (Benton 2009). In the case of marsupials
and placentals, only one study made a systematic and quan-
titative examination of potential competitive replacement
and concerned the carnivore guild in South America around
the time of the great American biotic interchange (Prevosti
et al. 2011).

The Sparassodonta was a diverse group of carnivorous
metatherian forms (≈ 1– 50 kg) that together with “terror”
birds (Phorusrhacidae), terrestrial crocodiles (Sebecidae),
and large snakes (Madtsoiidae) occupied the carnivore adap-
tive zone during most of the Cenozoic in South America
(Marshall 2004). The diversity of Sparassodonta decreased
towards the late Miocene and the group became extinct in
the Pliocene about 3 Ma. The first appearance of (placental)
carnivorans to South America (about 6–7 Ma) has been
suggested as the cause of this decline and extinction (e.g.,
Patterson and Pascual 1972; Simpson 1980; Werdelin
1987). A recent analysis summarizing diversity, estimations
of size and diet, and first and last appearances contradicts
this view, as there was apparently no temporal coexistence
between the assumed carnivorous ecological counterparts
(Prevosti et al. 2011). The Carnivora occupied new adaptive
space by opportunistically replacing, rather than outcompet-
ing, the sparassodonts.

Placental Ordinal Diversity and Biogeographic Patterns
Mirrors the Placental/Marsupial Pattern

The phylogeny of living placentals shows a pattern of geo-
graphic distribution that correlates to taxonomic and mor-
phological diversity in a manner similar to the pattern of the
marsupial/placental dichotomy (Fig. 1). The most diverse
placental groups are northern ones, building the Boreoeu-
theria (5,010 spp.), not the southern ones, which may build a
monophyletic Atlantogenata (128 spp.). The geographic
division of the placental clades is not simple when we
consider the fossil record (Zack et al. 2005), and the current
distributions of living clades does not correspond exactly to
the places of origin. But the correlation of geographic area
to speciation is evident.

The northern continents occupy much more terrestrial
surface than southern continents (excluding Antarctica),
78.5 million km2 and 57.2 million km2, respectively, and it
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is in the northern continents where current fossil evidence
suggests the most diverse placental “orders” originated and
are primarily distributed. Whatever conditions prevailed that
facilitated or “made possible” the evolution of bats, this
happened in the northern continents among the Boreoeuthe-
ria, not in the southern ones among the Atlantogenata. For
all the convergences demonstrated between atlantogenatans
and boreoeutherians (Springer et al. 2004), there are no
atlantogenatans that have converged on bats. The same is
true for cetaceans, although the marine realm is a special
case as stem whales are originally recorded from the South-
ern portion of the globe, which has a greater cover by water.
The greatest radiation of rodents, the taxonomically most
diverse group, also occurred predominantly in the northern

continents. The almost complete restriction of marsupials to
South America and Australia in the Cenozoic is well estab-
lished. Africa, a continent in which living marsupials are
absent, has been a stage of much of the diversification of
boreoeutherian clades. The few and poorly known fossil
metatherians from the Paleogene of the northern part of
Africa are most likely related to European forms (Hooker
et al. 2008). The large area of Asia may be the basic reason
why this continent has been the place of origin of many
groups of mammals (Beard 2002).

The relation of area to speciation is not simple, given the
many factors involved (Parent and Crespi 2006). But in
general, the larger the geographic area, the higher the rate
of speciation, as shown by both models and empirical data

Fig. 1 Summary of main
patterns and events discussed in
the text. Sketches and
representation of taxonomic
diversity not to scale. Times of
divergence are averages taken
from the ranges reported in dos
Reis et al. (2012) and in the
case of ordinal divergences
within Marsupialia, from
Meredith et al. (2011). Number
of extant species in the four
major clades of placental
mammals and marsupials based
on Wilson and Reeder (2005),
with additions from Ceballos
and Ehrlich (2009) and Voss
and Jansa (2009)
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(Gavrilets and Losos 2009). This relation has played a major
role in mammalian evolution (Wroe et al. 2004a).

Circumvention of Constraints and Plasticity
of Development

Decades of studies at the molecular and organismal level
have revealed not only the pervasive role of developmental
biases in the generation of variation upon which natural
selection operates (Arthur 2011), but also the circumventing
of such biases under special ecological opportunities (Losos
2010). Giraffes and talpid moles, two groups of boreoeu-
therian placentals, provide examples of this.

The elongation of the giraffe neck is a good example of the
circumvention of a “constraint” given functional demands. If
the genetic programme of development is “fixed” at seven
cervicals, notwithstanding the deviations in sloths, manatees,
and dugongs (Hautier et al. 2010), and if selection operates in
favor of a longer neck, then elongation of the individual
elements is the option. Similarly, the pentadactyl constraint
is universal in crown tetrapods, but talpid moles have found a
way around it, as have panda bears (Gould 1980). In moles
this occurred with the migration of a carpal element into the
digital area with minimal modifications in the expression
pattern and timing of important molecules involved in limb
development so far investigated (Mitgutsch et al. 2012). Dif-
ferent but also relevant examples of plasticity in development
are known within species (Moczek et al. 2011), as in the case
of limb length changes in Anolis sagrei raised on different
kinds of surfaces (Losos 2010).

If the perinatal biology of marsupials has not actually been
the key factor preventing members of this group from evolving
wings, how would we know it? While the observation that
there are nowingedmarsupials is compelling, it is not sufficient
to demonstrate this negative conclusion. In fact, empirical data
show that compared to placentals, forelimbs in marsupials are
actually less integrated as a module with hind limbs (Bennett
and Goswami 2011; Kelly and Sears 2011b). This would
seemingly make a functionally volant or aquatic transformation
more likely, not less. In any event, the relation of modularity to
morphological evolution is far from established. Furthermore,
the typically marsupial climb to reach mother’s teats at birth
might be possible with an early stage of a developing wing.
Even well-developed forelimb-wings are terrestrially compe-
tent, as demonstrated by Mystacina tuberculata, (New Zea-
land’s lesser short-tailed bat), and occasionally by the vampire
bat Desmodus rotundus (Hand et al. 2009).

Other fundamental insights have been gained when consid-
ering the modularity among different aspects of development or
time windows of ontogeny. An example is the independence of
chondrogenesis from ossification timing (Fröbisch 2008). An-
other example is the timing of development of the cranial neural

crest, neural tube differentiation, and somite formation in dis-
coglossid frogs by Mitgutsch et al. (2009:255). According to
these authors, they “…could not identify any obvious relation
of our embryonic data with peculiarities of post-embryonic
stages. Cell populations contributing to head mesenchyme
interplay in a highly integrated yet developmentally plastic
manner.”

In the case of limb evolution, bat wings provide an example
of how the developmental penetrance (Richardson 1999) of an
adult character can be limited even in the case of a derived
morphology. Digits in bats are initially close in size to those of
mice, and subsequent lengthening results in the wing propor-
tions (Sears et al. 2006). Changes in the differentiation of digit
elements and in the regulation of their longitudinal growth are
accomplished via an increase in Bmp2 expression and Bmp
signalling in bat forelimbs in relation to hind limbs. Morpho-
logical innovations can result from just a few key developmen-
tal genetic changes. These discoveries further support the
biological possibility of wings in marsupials speculated above,
because of the “simplicity” of the mechanism of wing develop-
ment and its limited impact on early aspects of skeletogenesis.

Conclusions and Outlook

In comparison with marsupials, placentals occupy more
morphospace and have higher species diversity. This pattern
is predominant when we consider the fossil record, but there
are exceptions, such as the comparable, if not larger, eco-
morphological and taxonomic diversity of metatherians ver-
sus eutherians in the Late Cretaceous of North America and
in the Paleogene of South America.

The marsupials’ limited diversification and disparity
seems consistent with a constraint hypothesis, in which their
reproductive biology involving early birth and extra-uterine
organogenesis places requirements that negatively bias the
morphological diversification of the group. However, there
are no simple correlates between morphological features of
marsupials (or lack thereof) and reproductive biology. For
example, the suppression of dental replacement cannot be
explained as a direct result of nipple attachment after birth,
as this suppression is not a unique feature of marsupials
(Van Nievelt and Smith 2005). Marsupial heterochronies in
early organogenesis have been tied to the different repro-
ductive and later ontogenetic differences around birth time
between marsupials and placentals (Vaglia and Smith 2003).
These coupling of events exist, but case studies point out the
potential flexibility of such timings and processes.

The great plasticity in development and the importance of
modularity suggest that (1) under proper suitable conditions, if
developmental biases exist, they can be circumvented, and (2)
events in early organogenesis do not necessarily determine the
fate of adult morphological structures. Some events have a
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deep developmental penetrance; others do not (Bickelmann et
al. 2012).

A key aspect of the marsupial-placental dichotomy to
address is the distribution in time and space of the two
groups throughout their entire evolutionary histories. Meta-
therians were acutely affected at the K/Pg boundary (Wilson
et al. 2012), after which they were restricted geographically,
largely to the southern hemisphere. Crown marsupials are a
younger clade than crown placentals (Meredith et al. 2011;
dos Reis et al. 2012), and the radiation of living marsupials
orders occurred about 20 my later than that of living pla-
centals (Meredith et al. 2011). Crown marsupials radiated
exclusively in South America, Antarctica, and Australia.
South American metatherians radiated widely in the pres-
ence of eutherians, which included “condylarths” and “mer-
idiungulates” during the early Cenozoic.

There were metatherians on northern continents during the
Cenozoic -herpetotheriids and peradectids - and they were far
less diverse than those on southern continents. But this does not
contradict the geographic argument presented in this paper.
After the differential extinction at the end of the Cretaceous
discussed above, the evolutionary race of the two therian clades
in the northern continents did not start equal. In the early
Paleogene the metatherians were already decimated. Why
didn’t herpetotheriids and peradectids ever become as diverse
as their southern relatives, despite being on larger landmasses?
There have been no studies of potential competitive exclusion
of these metatherians by Cenozoic eutherians. Even if compet-
itive exclusion happened, this fact would not contradict the
major tenant of this paper. Relict, once flourishing groups have
persisted in some land masses until becoming extinct. Exam-
ples are the remnants of non-therian lineages (Peligrotherium,
gondwanatherians, Monotrematum, Necrolestes; Phillips et al.
2009; Rougier et al. 2012) that persisted into the early Cenozoic
of South America (Pascual et al. 1992). Paleogenemetatherians
in North America are an example of such a pattern.

Most importantly, the overall pattern of diversity and
disparity between “northern” and “southern” placental
clades mirrors that between marsupials and placentals. This
further supports the decisive role that geography must have
played in mammalian evolution.

To understand the dynamics of the marsupial-placental
dichotomy, the following question becomes paramount: what
demographic, ecological, or physiological factors propelled
the differential survival or diversifications of marsupials and
placentals at critical times of earth history, such as the K/Pg or
the Eocene/Oligocene boundaries? The investigation of faunal
dynamics and life history evolution (Maridet and Costeur
2010) at these critical times is important. Also relevant are
quantitative studies of morphospace occupation bymarsupials
versus placentals across geological time.

Rates of speciation and extinction and the amount of time
in a region are responsible for species richness. All these

factors could be studied quantitatively to compare mammalian
clades. Analytical approaches that incorporate stratigraphical
information into molecular data analyses are being developed
(Rabosky and Alfaro 2010), and some models incorporate
geographic parameters (Pigot et al. 2010).

The last 30 years have seen great advances in our under-
standing of the placental-marsupial dichotomy. At this pace,
the solutions to the questions that seem unanswerable today
will be in much better footing in years to come. For example,
studies of the genome and of early embryogenesis and pla-
centation should be able to provide a better understanding of
the reproductive physiology and the origin of viviparity in
therians (Lynch et al. 2008; Frankenberg et al. 2011; Meslin et
al. 2012; Sumiyama et al. 2012). Studies of the genome may
reveal information on evolvability and on the timing and
mode of developmental innovations (Wagner 2011).

The quantification of ontogeny in a phylogenetic frame-
work (Smith 2001a; Sears 2004; Weisbecker et al. 2008;
Wilson and Sánchez-Villagra 2010; Bennett and Goswami
2011; Koyabu et al. 2011; Goswami et al. 2012) has brought
rigor to the studies of developmental biases (Arthur 2011) in
mammalian evolution, and the increased knowledge of phy-
logeny and timing of origin of groups (Meredith et al. 2011;
Goswami 2012; dos Reis et al. 2012) provides a solid frame-
work in which to study them. “Constraint” should refer to a
specific trait, not to a whole organism. The relation of a
constraint for a particular character complex and the evolution-
ary dynamics of the organisms are probably far from simple.
Many factors are involved in ecological opportunity and the
resulting niches occupied by marsupial and placental mam-
mals. Geography and its associated biotic components, might
simultaneously be the most important and least appreciated.
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