
Vis Comput (2011) 27: 519–529
DOI 10.1007/s00371-011-0561-3

O R I G I NA L A RT I C L E

Robust interactive cutting based on an adaptive octree simulation
mesh

Martin Seiler · Denis Steinemann · Jonas Spillmann ·
Matthias Harders

Published online: 15 April 2011
© Springer-Verlag 2011

Abstract We present an adaptive octree based approach for
interactive cutting of deformable objects. Our technique re-
lies on efficient refine- and node split-operations. These are
sufficient to robustly represent cuts in the mechanical sim-
ulation mesh. A high-resolution surface embedded into the
octree is employed to represent a cut visually. Model modi-
fication is performed in the rest state of the object, which is
accomplished by back-transformation of the blade geome-
try. This results in an improved robustness of our approach.
Further, an efficient update of the correspondences between
simulation elements and surface vertices is proposed. The
robustness and efficiency of our approach is underlined in
test examples as well as by integrating it into a prototype
surgical simulator.

Keywords Physically-based modeling · Cutting · Adaptive
simulation · Octree

1 Introduction

The ability to modify objects in virtual environments by cut-
ting or fracturing their geometric representation is an im-
portant field of research in computer graphics. Applications

M. Seiler (�) · J. Spillmann · M. Harders
ETH Zürich, Sternwartstrasse 7, 8092, Zürich, Switzerland
e-mail: seiler@vision.ee.ethz.ch

J. Spillmann
e-mail: jonas.spillmann@vision.ee.ethz.ch

M. Harders
e-mail: mharders@vision.ee.ethz.ch

D. Steinemann
VirtaMed AG, Technoparkstrasse 1, 8005 Zürich, Switzerland
e-mail: steinemann@virtamed.com

rank from mechanical simulations to medical simulators or
video games.

Cutting is notorious for its algorithmic and computational
complexity. The process is akin to a localized adaptive re-
finement of the simulation mesh. In fact, all the pitfalls that
come with adaptive simulations also occur in cutting simula-
tions: Ill-shaped simulation elements hampering the solving
of the underlying mechanical model, element count explo-
sion after multiple cuts in the same place, or incompatible
elements in the cut region, just to name a few.

In the past, techniques have been established that circum-
vent or at least partially solve these challenges. However, re-
searchers agree that no approach exists that entirely solves
the aforementioned problems while still being efficient. This
is particularly true if interactive cutting in surgical training
simulators is considered, where a failure of the simulation is
not tolerable.

In this paper, we propose a novel approach for handling
interactive cutting in cases where pieces of material are com-
pletely excised from an object. Various real-world proce-
dures are of this type, e.g., punching out material or drilling
holes. The focus of our development is on maximum stabil-
ity and controllability of the simulation mesh. At the current
stage, we limit ourselves to non-progressive cuts where the
blade is represented by a closed manifold surface defining a
cut volume in space. We show that this restriction allows for
a simple, but elegant solution.

The main contribution of our work is the extension of
an adaptive octree simulation mesh with a local refine- and
node split-operation in order to realize cutting that is both
robust and efficient. The former operation allows refining
the simulation mesh in the cut region, while the latter in-
troduces new degrees-of-freedom to model the material dis-
continuity.

mailto:seiler@vision.ee.ethz.ch
mailto:jonas.spillmann@vision.ee.ethz.ch
mailto:mharders@vision.ee.ethz.ch
mailto:steinemann@virtamed.com

520 M. Seiler et al.

In addition, we propose a strategy to update the corre-
spondences between the simulation mesh elements and the
vertices of the embedded surface geometry by employing
an optimized data structure. Moreover, we discuss a novel
approach to transform the blade geometry into the material
space, i.e., into the resting state of the deformed object. This
is beneficial since in doing so cuts of heavily deformed ob-
jects are not hampered by ill-shaped geometries.

The main benefit of our approach, compared to previous
techniques, is its high stability and efficiency which make
it particularly appealing for interactive simulation systems.
We illustrate this by integrating the approach into a proto-
type endoscopic surgery simulator.

The remainder of the paper is organized as follows: In
Sect. 2, we review related work. Thereafter, we give an
overview on our approach in Sect. 3. In Sect. 4, we propose
our novel octree data structure equipped with the two key
operations, refine and node split. Examples in Sect. 5 illus-
trate the characteristics of our method and evaluate overall
performance.

2 Related work

The simulation of cutting and fracture of deformable objects
is a subtopic of physically-based simulation. When an object
is being cut, its underlying mesh is topologically changed.
Consequently, cutting can be regarded as an adaptive simu-
lation method.

2.1 Cutting conforming meshes

In computer graphics, conforming tetrahedral meshes are
commonly used to simulate deformable objects. However, in
the context of cutting, the employment of tetrahedral meshes
reveals some problems, especially since tetrahedrons cannot
easily be subdivided without generating ill-shaped elements
that cause numerical problems. Many cutting approaches are
a combination of the following four key concepts: element
removal, face-splits, node snapping, and element splits.

The element removal technique basically removes the
tetrahedrons that are intersected by the blade. An early ap-
proach has been presented by Terzopoulos and Fleisher [33]
where the springs intersecting the blade are removed. Simi-
lar in spirit is the work of Delingette et al. [3]. Later, Forest
et al. [7] proposed a strategy to solve the topological sin-
gularities that lead to non-manifoldness of the mesh when
elements are blindly removed. However, by solely removing
elements, the mesh becomes non-conforming, and the cut
surfaces look unnaturally jagged.

This problem can be circumvented by node snapping,
i.e., aligning the vertices with the cut surface. In doing so,

the shape of the elements is changed, and ill-shaped el-
ements could have been created. This issue has been ad-
dressed by Steinemann et al. [30] that handle arbitrary trian-
gular blade surfaces and present a node snapping algorithm
to avoid slivers.

Face split-approaches take a different way in that they
handle the material discontinuity introduced by the cut by
duplicating the degrees-of-freedom along the faces in the cut
region. Nienhuys et al. [23] report that selecting appropriate
split faces is difficult and often ambiguous. In addition, this
technique does not prevent jagged cut surfaces.

Approaches that split elements along the cut surface are
able to reproduce the cut surface exactly, as described in
Bielser et al. [1]. Still, their approach suffers from ele-
ment count explosion when multiple cuts are performed.
This issue has been addressed by Mor and Kanade [19]
who present an algorithm that minimizes the amount of
newly generated elements. However, these approaches can-
not completely prevent ill-shaped elements.

One solution of the problem is that instead of splitting
existing simulation elements along the cut surface, the mesh
can also be regenerated locally, thereby avoiding ill-shaped
elements. Wojtan et al. [35, 36] remesh the material as soon
as the element quality falls below a certain threshold. How-
ever, remeshing is inherently expensive, despite recent ad-
vantages in efficient mesh generation [15]. This is particu-
larly true in our context where cuts are placed interactively.

The extended finite element method (XFEM) is related to
element splitting since conceptually, the elements are split
according to the intersection with the blade. Still, instead of
topologically splitting the element, the basis functions are
enriched to model the material discontinuities. Jeřábková
and Kuhlen [12] showed that XFEM can be employed in
the context of interactive surgery simulation. Kaufmann
et al. [13] proposed to model the discontinuities on a texture-
basis.

Recently, a different line of research has been opened
by approaches that allow polyhedral simulation elements. In
doing so, the elements along the cut surface are intrinsically
conforming, as shown by Martin et al. [17]. Their approach
is based on the earlier work by Wicke et al. [34] who only
support convex element shapes. However, these approaches
have the drawback that the update of the elemental stiffness
matrices becomes very expensive.

2.2 Cutting non-conforming meshes

Non-conforming meshes are based on the observation that
the visual representation of an object can easily be separated
from the mechanical representation. The non-conforming
mechanical representation can then keep well-shaped ele-
ments, while an embedded surface mesh is employed for
rendering.

Robust interactive cutting based on an adaptive octree simulation mesh 521

The virtual node technique that duplicates the elements
along the cut is probably the most popular approach in this
context. Introduced by Molino et al. [18], this approach has
later been improved by Sifakis et al. [28] to handle arbitrar-
ily many cuts within one single element. For each material
component, one instance of the element is created. However,
the required per-element connectivity analysis is quadratic
in the number of cuts.

In contrast to the previously cited works that employ
tetrahedral meshes, we opt for a non-conforming adaptive
hexahedral simulation mesh. This is because the topological
changes that come with the cutting are intrinsically simpler
to realize if a regular mesh is employed.

Adaptive hexahedral simulation meshes based on octree-
refinement have been widely employed in the past, for exam-
ple, by Capell et al. [2], Dequidt et al. [4], Nesme et al. [21],
and Seiler et al. [27]. Based on these works, Steinemann
et al. [31] have proposed an adaptive geometric deforma-
tion model that includes topological changes. They employ
the centers of the cubic simulation elements as simulation
nodes, which requires a costly extrapolation of the surface
vertices. Since we use the corners of the elements as sim-
ulation points, we are left with a relatively cheap surface
interpolation. In addition to their work, we show how the
correspondences between the surface vertices and the simu-
lation elements can be updated efficiently.

Dick et al. [5] recently presented a cutting approach
where the surface is interpolated into an adaptive simula-
tion mesh. They intersect the dual graph of the octree mesh
with the blade in order to generate the cut surface. As a
consequence, the visual representation of the cut surface de-
pends on the resolution of the octree mesh. In contrast, we
strictly separate the visual representation from the mechan-
ical representation. That is, by employing our approach, the
cut surface can be arbitrarily detailed, while the underlying
simulation mesh is automatically refined and split in order
to represent the cut mechanically. In addition, we show that
by employing unrestricted octree refinement, the adaptation
can be realized locally. This is particularly favorable in the
interactive context where the number of simulation elements
has to be controlled.

The work of Kaufmann et al. [14] bases on adaptive rect-
angular simulation elements that allow for a more flexible
refinement, which is in contrast to octrees. Further, instead
of using tetrahedral or hexahedral background meshes, there
exist a couple of approaches that do not require any mesh
structure to compute the dynamics. Pauly et al. [25] present
a complete point-based simulation framework that can han-
dle cutting and fracturing. Subsequently, the approaches of
Steinemann et al. [32] and Pietroni et al. [26] improved the
performance of topology changing operations significantly.
Summarizing, although these approaches perform very well
for challenging scenarios, they are less appropriate in the
user-interactive context.

3 Overview

When an object is being cut or fractured, the topology of the
underlying simulation mesh is changed. Instead of equip-
ping a non-adaptive simulation mesh with element split-
ting operations, we propose employing an inherently adap-
tive but non-conforming octree simulation mesh T . Then,
a high-resolution surface geometry S is embedded into the
simulation mesh. While the surface geometry is only em-
ployed for the rendering, the mechanical behavior is gov-
erned by the simulation mesh [22]. As preprocessing, the
adaptive simulation mesh is refined up to a user-defined
base resolution in order to reproduce the deformations faith-
fully. Following the cited work, we employ the finite ele-
ment method to compute the deformation forces, and an im-
plicit Euler scheme to obtain the dynamic evolution of the
simulation nodes. The deformation of the surface geometry
is then obtained by barycentrically interpolating the surface
vertices from the cubic simulation elements. At this point,
it is important to notice that this requires an explicit corre-
spondence between the simulation elements and the embed-
ded surface vertices. This correspondence must be updated
upon cutting the surface geometry, as described later.

In addition, we employ a material graph M, which can
be understood as a spatial approximation of the domain oc-
cupied by the high-resolution surface. We rely on a stan-
dard tetrahedral mesh generation approach [15] along with
quadric surface simplification [8] to obtain M from S . The
material graph allows quickly determining which cells of the
octree are covered by material, and which cells are empty.
This threefold representation is similar in spirit to the previ-
ous work of Seiler et al. [27] that did, however, not consider
topological changes. As discussed later, M is non-adaptive,
and cutting is accomplished by removing elements. Conse-
quently, the resolution of M must be large enough to repre-
sent the blade geometry.

In this work, we limit ourselves to volumetric non-
progressive cuts. That is, we assume a triangulated volumet-
ric manifold blade geometry B which is intersected with S .
The goal is then to represent the cut both visually and me-
chanically, i.e., to compute water-tight cut surfaces of S
along the blade, and to re-arrange the degrees-of-freedom
(DOFs) of T in order to model the resulting material discon-
tinuities. The cutting procedure consists of five basic steps:

1. The blade geometry B is transformed into the mate-
rial space in order to perform the cutting on the unde-
formed object geometries. In doing so, the problems re-
lated to heavily distorted surface geometries are avoided.
We propose a novel approach to compute this back-
transformation such that the transformed blade geometry
B′ retains a minimum quality, and cuts of strongly de-
formed objects are enabled.

522 M. Seiler et al.

2. The surface geometry S in the material space is inter-
sected with the blade geometry B′ in order to obtain the
intersection contours, and to fill the resulting cut sur-
faces. The result is an updated surface geometry S ′. We
employ a standard surface cutting approach to perform
this task.

3. To represent the cut mechanically, the material graph M
is intersected with B in order to reflect the material con-
nectivity M′ after the cut.

4. To re-arrange the degrees-of-freedom (DOFs) of T after
the cut, a series of octree refinement operations is applied
until sufficient accuracy is obtained to model the material
discontinuities. Based on M′, the faces of the octree sim-
ulation mesh are split, and new DOFs are created. The
corresponding connected component analysis is detailed
in Sect. 4.4.

5. As a last step, the correspondence between the vertices of
S ′, and the elements of T ′ has to be re-computed. This
can be accomplished efficiently by employing a Z-curve,
as shown in Sect. 4.5.

4 Method

In this section, we describe the distinct steps of the cutting
procedure in detail. The focus is on the mechanical repre-
sentation of the cut, i.e., the adaptation of the simulation
mesh, which is a main contribution of our work. In addi-
tion, we show how to efficiently re-compute the correspon-
dences between S ′ and T ′. We start by describing the back-
transformation of the blade geometry.

4.1 Robust back-transformation

It is a common strategy to perform the cutting in the material
space where the cut object is in its resting-state. The reason
is that the object geometry might be heavily deformed im-
mediately before the cutting, with elements being inverted
or compressed to zero. As a consequence, the triangles of
S might have degenerated, making the computation of in-
tersection contours and the subsequent Delaunay triangula-
tion extremely unstable. By cutting in the material space,
these problems can be circumvented elegantly, given that the
back-transformation of B into the object’s material space is
robust. An additional reason is that a bounding volume hier-
archy employed to detect the interference between B′ and S
does not need to be updated in the material space.

We propose an approximative, yet robust back-
transformation approach that is able to reproduce cuts of
distorted and even folded object geometries, as depicted in
Fig. 7. As a first step, we intersect T in the physical space
with B in order to obtain a set of intersecting simulation
elements. Since the intersection is performed on a coarse

base resolution of the simulation mesh, this can be done ef-
ficiently. This process is done to determine which elements
are intersected; consequently, degenerated elements do not
cause problems at this stage. We then group the elements
into connected components Si , i.e., we group all elements
that are connected by a face. For each Si , we approximate
its deformation tensor Ai ∈ R

3×3 in its centroid by employ-
ing the shape matching technique [20]. By considering a
group Si of elements instead of single elements in isolation,
the approach becomes insensitive to degenerated elements.
Then, we back-transform B into the material space of the
connected component by multiplying the vertex positions of
B by A−1

i , resulting in an affinely transformed blade geom-
etry B′

i per connected component Si . Since Ai only captures
linear deformations, B′

i will never be self-intersecting, mak-
ing the cutting in the material space robust. In addition, Ai

is always invertible, since we blend in the purely rotational
part if the condition number increases [11]. The cutting is
now performed for each Si , as described subsequently. Fig-
ure 1 illustrates the process. For clarity, we drop the index
i in the following text and assume that we have only one
connected component for each object.

4.2 Surface mesh cutting

Having obtained the blade geometry B′ in the material
space, the next step is to compute the visual representation
of the cut, i.e., to intersect the surface mesh S with B′ to
obtain a new water-tight cut surface geometry S ′.

Since we employ a standard approach to fulfill this task,
we keep it short here and refer the reader to [30]. The surface
cutting algorithm starts by computing a set of intersection
contours. A constrained Delaunay triangulation fills each
contour to form new surface patches. Some bookkeeping is
necessary to guarantee compactness of the index space.

4.3 Material graph cutting

Since the material graph is exclusively employed to deter-
mine which elements of the simulation mesh are covered by

Fig. 1 To enable cutting of folded objects, we intersect the blade B
with the deformed simulation mesh to determine the connected com-
ponents S1 and S2 (left). Then, for each component, we compute the
deformation tensor A1 and A2 and the corresponding deformed blades
B′

1 and B′
2. Cutting is then performed in the material space (middle).

This process results in the correctly cut deformed object (right)

Robust interactive cutting based on an adaptive octree simulation mesh 523

material, it is sufficient to simply remove the tetrahedral ele-
ments in M that intersect with B′. Since M is non-adaptive,
the resolution of M directly relates to the level of detail
that can be represented mechanically. The updated material
graph that excludes the cut elements is denoted as M′, and
subsequently used to determine the connectivity of the sim-
ulation mesh.

4.4 Simulation mesh cutting

In this section, we describe the core of our approach, which
is the cutting, i.e., the re-arrangement of the DOFs, of the
simulation mesh T . Here, the key benefits of employing an
adaptive non-conforming octree mesh are revealed.

We employ the octree data structure earlier presented
in [27]. This data structure has the advantage that it does
not impose a maximum difference between different levels
of resolution, i.e., the refinement operation is strictly local.
This is particularly beneficial in our case since it allows re-
fining the mesh in the cut region on the fly in order to rep-
resent the cut faithfully. This property makes our approach
particularly well-suited for interactive applications without
a priori knowledge of the cut region. The resulting inter-
face nodes (also denoted as T-junctions) are handled with
the hard binding concept [29].

The cutting of T consists of two sub-steps: First, the res-
olution of T is adjusted such that the material discontinuities
can be represented. Second, a series of node splits introduces
new DOFs and models the material discontinuities.

4.4.1 Mesh refinement

The goal of the first phase is to refine T such that the re-
quired level of detail imposed by the blade geometry B′ can
be represented mechanically. Following Grinspun et al.’s
terminology, we are looking for an oracle [9] indicating
which region of the simulation domain requires which reso-
lution. As a rule of thumb, we found that enforcing a simula-
tion element edge length of le = r√

3
, with r being the radius

of the inscribed sphere of B, results in sufficient accuracy
(see Fig. 2). That is, an octree simulation mesh element is
split into eight sub-elements if its length is larger than le and
if it is intersected by B′. The result is an octree mesh with
additional DOFs in the cut region in order to represent the
cut mechanically.

4.4.2 Material analysis

In the second phase, we analyze the updated material graph
M′ in order to determine which simulation elements are
empty. In addition, we determine whether a pair of face-
adjacent elements is connected; this criterion is given if and

Fig. 2 Left: the back-transformed blade surface intersects the red sur-
face embedded into the octree grid. Right: the elements are refined to
meet the criterion le < r√

2
. Then the surface and the material graph are

cut

Fig. 3 Illustration of the node splitting approach. As a first step, we
determine the intersection of the material graph with the faces of the
octree elements, thereby considering the 1 : n relation between faces
in the adaptive case. The red bars in the left figure indicate faces inter-
sected by material. Based on this information, we compute the actual
DOFs of the simulation mesh (dots, bars, and angles in the right fig-
ure). The bars and angles indicate which octants share the same DOF.
Red DOFs are constrained (i.e., T-junctions), while black DOFs indi-
cate real DOFs

only if their common face is intersected by a tetrahedral el-
ement of M′. The unrestricted adaptivity of our octree im-
plies that there is a 1 : n relation between faces of adjacent
elements. This has to be considered when processing the
faces of the octree.

4.4.3 Node splitting

In the third phase of the simulation mesh cutting, the mate-
rial discontinuities are introduced. This is accomplished by
splitting topological nodes of the octree into multiple DOFs
with associated physical properties (see Fig. 3). The result-
ing algorithm is a variant of the one presented in [23]. In
contrast to them, we can draw on the regular structure of the
octree, making the algorithm more efficient.

Conceptually, a node i has eight adjacent octants that are
eventually shared by the same physical element in the adap-
tive case. We now think of an adjacency graph Gi per node i

linking two octants if they share the same physical element,
or if their common face is intersected by material. An edge
(j, k) ∈ E(Gi) indicates that the octants j and k belong to

524 M. Seiler et al.

Fig. 4 2D-examples of different material configurations, resulting in
different arrangements of the actual DOFs. The blue regions indicate
the material distribution, and the black dots, bars and angles corre-
spond to the resulting DOFs

the same material component, and thus share the same DOF.
The goal of the subsequent connected component analysis
is now to determine the number of material components per
node, which corresponds to the required number of physical
DOFs per node (see Fig. 4).

We represent Gi by its symmetric adjacency matrix B,
where an entry [B]jk is 1 if j = k or (j, k) ∈ E(Gi), other-
wise 0. By recursively computing B8 = ((B2)2)2, we obtain
the transitive closure of each octant of i. In turn, this al-
lows finally determining which octants belong to the same
material component, and thus share a physical DOF. The
connected component analysis is performed for each logical
node i, resulting in the updated octree simulation mesh T ′.

4.4.4 Discussion

We have shown that mechanical cutting can be surprisingly
simply realized by employing an octree mesh equipped with
a refinement and a node splitting operation. Notice that in
theory the refinement operation alone is sufficient to achieve
the same result, since a node split can be emulated by per-
forming an additional refinement-step around the node, and
marking the node-adjacent elements as empty. However, this
approach usually results in more simulation elements and
thus it is less efficient than our solution that includes node
splitting.

A further benefit is that an octree allows for a structured
refinement. By storing the material intersection information
on all levels, the cut octree elements can therefore easily
be re-merged when the deformation of the object reaches
zero. This allows saving computation resources, and makes
the method particularly well-suited for time-critical simula-
tions.

At this point, we underline that our approach currently
only considers volumetric blade geometries that excise
pieces of material. Non-volumetric cuts would require to
either extrapolate parts of the embedded surface geometry,
or to employ a virtual node technique in the spirit of [18,
28]. We will examine an extension to general cuts in future
work.

Fig. 5 2D-illustration of the Z-curve employed to encode surface ver-
tex positions. Left: Conceptionally, the Z-curve covers the whole do-
main of the octree, while preserving spatial coherence. Middle: A sur-
face triangle embedded in the octree. Right: Each vertex of the triangle
maps to a unique location within the sorted list of 1D hash values ob-
tained from the Z-curve. All vertices within an octree element can be
quickly queried by determining the 1D hash values of its lower left and
upper right corner

4.5 Surface embedding

In order to cut the object, we have proposed first processing
the surface geometry S , and then adapting the underlying
simulation mesh T . Consequently, both the number of ver-
tices of S ′ and the number of simulation elements of T ′ will
have changed, requiring to recompute the correspondences
between the vertices of S ′, and the cubic elements of T ′.
Since this recomputation has to be done after each cut, and
since the surface geometry has in general a high-resolution,
it is crucial that this task can be realized efficiently. In this
section, we propose to use a Z-curve to store the vertex cor-
respondences per simulation element.

4.5.1 Z-curves

A Z-curve (or space-filling curve) f : R
n → N is a mapping

from a multi-dimensional data domain to a one-dimensional
hash value. Its main advantage is that spatial locality is
well preserved, resulting in reduced cache misses and thus
a more efficient access. Z-curves are widely used in com-
puter graphics, e.g., to visualize scalar fields [24], to speed-
up fluid dynamics [10], or to detect collisions [16].

We employ the Z-curve to map the undeformed vertex
positions xi of S into the octree simulation mesh elements
(see Fig. 5). More precisely, we keep a sorted list of 1D hash
values f (xi) of the vertices xi . For a given octree element,
we can easily obtain the range of vertices inside the cubic
element by computing the hash values of its lower left and
upper right corner. Then, the range of vertices inside the cell
is obtained from two O(logn) look-ups, where n is the num-
ber of surface vertices.

4.5.2 Correspondence construction

In order to initially obtain the sorted list of vertices, we com-
pute for each vertex xi ∈ S its 1D hash value f (xi). This
is accomplished by a coordinate-wise bit interleaving of xi

Robust interactive cutting based on an adaptive octree simulation mesh 525

into a single bit-string. We omit the details here and refer the
reader to [24]. By employing a fixed-point representation of
the coordinates, this process can be realized very efficiently.
Finally, the list of hash values is sorted in O(n logn) in order
to enable the subsequent range queries.

4.5.3 Correspondence update

Once the sorted list of initial surface vertices has been
computed, the insertion of new surface vertices into the
list can be done efficiently. If the number n′ of newly in-
serted vertices is smaller than n

logn−1 , we directly insert
the new vertices into the sorted list, resulting in a cost of
O(n′(logn+ logn′)). Otherwise, we generate a sorted list of
the newly inserted vertices, which is in O(n′ logn′). Then,
merging with the sorted list of the vertices of S is at most
O(n). The benefit of employing a Z-curve reveals if we con-
sider a traditional octree embedding approach where the cor-
respondences are stored in each level of the tree. In that case,
updating the correspondences would take O(n logn).

5 Evaluation and application

The evaluation of our method is done with a set of illustra-
tive synthetic scenes that convey the characteristics of our
method. In addition, we integrate our method into a pro-
totype endoscopic surgery simulator in order to show its
benefits in an interactive setting. All experiments have been
staged on an Intel Core i7 with 2.66 GHz.

5.1 Evaluation

In this section, we evaluate the performance of our approach
under various challenging settings.

5.1.1 Embedding update performance

Our Z-curve based range queries allow for an efficient re-
computation of the correspondences between the surface
vertices and the simulation elements. To illustrate this, we
perform an experiment where material is punched out of a
meniscus geometry (see Fig. 10). The surface of the menis-
cus is discretized into n = 10k vertices, and the deforma-
tion is governed by 100 simulation elements. In each cut,
100 vertices are generated on average to fill the cut surfaces.
The correspondences are efficiently updated by inserting the
newly generated surface vertices into the sorted Z-curve list.
As a consequence, the performance of the update does not
depend on the size of the octree. To show the benefits of
our approach, we compare it to a naive method where the
correspondences are explicitly stored in each element of the
octree. Consequently, the naive method must update all el-
ements, whose number grows exponentially with the tree

Fig. 6 Diagram of the performance of the vertex-element correspon-
dence update. The performance of the naive approach (blue curve)
which embeds the surface vertices on all levels of the octree grows with
the size of the tree. In contrast, the performance of our approach (red
curve) stays constant. This is because the Z-curve enables fast query-
ing of the embedded vertices per simulation element without explicitly
storing the correspondence per element

size. Figure 6 reveals that the performance of our method
stays constant, while the performance of the naive approach
grows with the number of octree refinements.

5.1.2 Adaptive cutting

We have proposed employing an adaptive octree simulation
mesh to deform the object, and representing the cut mechan-
ically. In contrast to a non-adaptive mesh, this has the ad-
vantage that the mesh can be refined on-the-fly in order to
represent the cut, while large parts of the mesh have a lower
resolution. This is even possible in a setting where the cut
region is not known a priori. To illustrate the benefits, we
perform an experiment where a deformed object is cut into
two pieces (see Fig. 7(a)). We simulate the deformable ob-
ject with our adaptive octree mesh, and with a non-adaptive
hexahedron mesh. The blade is discretized into 30 vertices.
In Fig. 7(b), the resolution of the adaptive mesh is not suffi-
cient to represent the cut mechanically. In Fig. 7(c), a larger
adaptive resolution of 54 elements has been chosen in order
to represent the cut mechanically. The time to compute one
time step is 5 ms. In contrast, the non-adaptive method has
a uniform high resolution, resulting in 144 elements. This
leads to a total time of 15 ms to compute one time step.

5.1.3 Cutting deformed geometries

We have proposed to cut in the material space in order to cir-
cumvent the challenges that come with ill-shaped geometric
primitives [6]. In turn, this requires to back-transform the
blade geometry. To illustrate this, we perform an experiment
where a strongly deformed object is cut by a complex blade
geometry (see Fig. 8(a)). The shape of the punched out ma-
terial fits the resulting hole of the undeformed object sur-
prisingly well, as highlighted in Fig. 8(b)), although the pro-
posed back-transformation reduces the richness of the blade
deformations.

526 M. Seiler et al.

Fig. 7 The red object (a) is deformed and cut by a cylindrical blade
surface (in orange). However, the coarse simulation mesh resolution
in (b) is not able to resolve the cut. A uniform high-resolution mesh (c)
is able to resolve the cut, but takes a total of 15 ms to compute one

time step. In contrast, our method (d) is adaptive and only spends
simulation elements where they are needed to resolve cuts, i.e., mate-
rial that is in close proximity. Computing one time step takes only 5 ms

Fig. 8 A strongly deformed object is cut by a complex blade geom-
etry. The punched out material fits well with the resulting hole in the
material space of the deformed object

5.1.4 Cutting folded objects

Our method allows for robust cutting even in challenging
scenarios that include folded and heavily compressed ob-
jects. This is because we extract the back-transformation op-
erator per connected material component. Figure 9 shows
an object with a side length of 10 cm which is strongly de-
formed. Four refinements lead to 256 simulation volumes
and some of them are compressed to zero volume by the
heavy glass cylinder. A cylindrical blade with a radius of 2

cm driving through an incision of the glass cylinder punches
material out of the deformed object (Fig. 9, top). In the rest-
ing state of the object (Fig. 9, bottom), it becomes evident
that two holes have been punched out, as expected. This is
because we have determined two independent material com-
ponents, each having a different back-transformation opera-
tor. The total time for the cut is 172 ms.

5.2 Application

In order to illustrate the applicability of our approach, we
integrate it into a prototype of an endoscopic surgery simu-
lator. In this intervention, the surgeon punches material out
of a damaged meniscus in order to reduce the pain in the
knee joint. The diameter of the punch is 2 mm. Screen-shots
of a simulated intervention are depicted in Fig. 10. Cutting
the surface geometry of the meniscus takes 60 ms, cutting
the material graph takes 22 ms, and cutting the simulation
mesh takes 4 ms, resulting in 86 ms to cut the meniscus.
Consequently, our method is well-suited for interactive sce-
narios.

Robust interactive cutting based on an adaptive octree simulation mesh 527

Fig. 9 The deformable object is being compressed by a glass cylinder.
A cylindrical blade punches material out of the deformed object. The
resulting resting state of the object reveals that two holes have been
punched out, as expected. This has been enabled by extracting a back–
transformation operator per connected material component

6 Conclusion

We have presented an approach for interactively cutting de-
formable objects. We have illustrated that an octree sim-
ulation mesh, equipped with a refine- and a node split-
operation, is well suited for representing the cut mechani-
cally. A high-resolution surface geometry that is embedded
into the simulation elements is used to represent the cut visu-
ally. By back-transforming the blade geometry into the ma-
terial space, both the simulation mesh and the surface geom-
etry of the object are cut in the resting state, which improves
the robustness of the approach. We have further highlighted
that an efficient update of the correspondences between the
simulation elements and the vertices of the embedded sur-
face geometry is crucial. To accomplish this, we have pro-
posed employing Z-curves to store and update these corre-
spondences. Various examples have underlined the benefits
of our approach.

6.1 Limitations and future work

Currently, our approach only considers non-progressive cut-
ting with volumetric blade geometries. Although many real-
life procedures are of this type, we will investigate into over-
coming these limitations. In addition, we plan to combine

Fig. 10 Screen-shots of a prototype of an endoscopic surgery simula-
tor. We employ our method to simulate the cutting of the meniscus. On
average, one cut takes 86 ms, which highlights that our method can be
employed in interactive scenarios

the cutting approach with a scheme to handle collisions and
self-collisions.

Acknowledgement This work has been supported by the Swiss CTI
project 10534.1 PFLS-LS.

References

1. Bielser, D., Gross, M.H.: Interactive simulation of surgical cuts.
In: Proc. of the 8th Pacific Conference on Computer Graphics and
Applications, p. 116 (2000)

2. Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.:
A multiresolution framework for dynamic deformations. In: Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, pp. 41–47 (2002)

3. Delingette, H., Cotin, S., Ayache, N.: A hybrid elastic model
allowing real-time cutting, deformations and force-feedback for
surgery training and simulation. In: Proceedings of the Computer
Animation, CA ’99, p. 70 (1999)

4. Dequidt, J., Marchal, D., Grisoni, L.: Time-critical animation of
deformable solids: Collision detection and deformable objects.
Comput. Animat. Virtual Worlds 16(3-4), 177–187 (2005)

5. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid ap-
proach for simulating cuts in deformable objects. IEEE Trans. Vis.
Comput. Graph. 99, 1077–2626 (2011)

6. Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of
deformable objects by filtering high modal frequencies. J. WSCG
18, 81–88 (2010)

7. Forest, C., Delingette, H., Ayache, N.: Removing tetrahedra from
a manifold mesh. In: CA ’02: Proceedings of the Computer Ani-
mation, p. 225 (2002)

8. Garland, M., Heckbert, P.S.: Surface simplification using quadric
error metrics. In: Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’97,
pp. 209–216 (1997)

528 M. Seiler et al.

9. Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple frame-
work for adaptive simulation. ACM Trans. Graph. (Proc. SIG-
GRAPH) 21(3), 281–290 (2002)

10. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH
implementation on multi-core CPUs. Comput. Graph. Forum 30,
99–112 (2010)

11. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for
robust simulation of large deformation. In: Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp.
131–140 (2004)

12. Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects
in virtual environments using xfem. IEEE Comput. Graph. Appl.
29(2), 61–71 (2009)

13. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.:
Enrichment textures for detailed cutting of shells. In: ACM SIG-
GRAPH 2009 papers, SIGGRAPH ’09, pp. 50:1–50:10 (2009)

14. Kaufmann, P., Martin, S., Botsch, M., Gross, M.H.: Flexible sim-
ulation of deformable models using discontinuous Galerkin fem.
Graph. Models 71(4), 153–167 (2009)

15. Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral
meshes with good dihedral angles. ACM Trans. Graph. (Proc.
SIGGRAPH) 26(3), 57 (2007)

16. Gissler, M.T.M., Ihmsen, M.: Efficient uniform grids for collision
handling in medical simulators. In: International Conference on
Computer Graphics Theory and Applications (GRAPP) (2011)

17. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.H.:
Polyhedral finite elements using harmonic basis functions. Com-
put. Graph. Forum 27(5), 1521–1529 (2008)

18. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for
changing mesh topology during simulation. ACM Trans. Graph.
23(3), 385–392 (2004)

19. Mor, A.B., Kanade, T.: Modifying soft tissue models: Progres-
sive cutting with minimal new element creation. In: MICCAI ’00:
Proceedings of the Third International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pp. 598–607
(2000)

20. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless
deformations based on shape matching. ACM Trans. Graph. (Proc.
SIGGRAPH) 24(3), 471–478 (2005)

21. Nesme, M., Faure, F., Payan, Y.: Hierarchical multi-resolution fi-
nite element model for soft body simulation. In: 2nd Workshop on
Computer Assisted Diagnosis and Surgery, March, p. 2006 (2006)

22. Nesme, M., Kry, P.G., Jerábková, L., Faure, F.: Preserving topol-
ogy and elasticity for embedded deformable models. In: SIG-
GRAPH ’09: ACM SIGGRAPH 2009 papers (2009)

23. Nienhuys, H.-W., van der Stappen, A.F.: A surgery simulation
supporting cuts and finite element deformation. In: Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI).
Lectures Notes in Computer Science, vol. 2208, pp. 145–152.
Springer, Berlin (2001)

24. Pascucci, V., Frank, R.J.: Global static indexing for real-time ex-
ploration of very large regular grids. In: Proceedings of the 2001
ACM/IEEE conference on Supercomputing, Supercomputing ’01,
p. 2-2 (2001)

25. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas,
L.J.: Meshless animation of fracturing solids. In: ACM SIG-
GRAPH 2005 Papers, SIGGRAPH ’05, pp. 957–964 (2005)

26. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting
cubes: a fast and robust technique for virtual cutting. Vis. Com-
put. 25, 227–239 (2009)

27. Seiler, M., Spillmann, J., Harders, M.: A threefold representation
for the adaptive simulation of embedded deformable objects in
contact. J. WSCG 18(1–3), 89–96 (2010)

28. Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable
tetrahedralized objects. In: SCA ’07: Proceedings of the 2007
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, pp. 73–80 (2007)

29. Sifakis, E., Shinar, T., Irving, G., Fedkiw, R.: Hybrid simulation
of deformable solids. In: Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 81–90 (2007)

30. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cut-
ting of deformable solids. In: VR ’06: Proceedings of the IEEE
Conference on Virtual Reality, pp. 35–42. IEEE Computer Soci-
ety, Los Alamitos (2006)

31. Steinemann, D., Otaduy, M., Gross, M.: Fast adaptive shape
matching deformations. In: Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2008)

32. Steinemann, D., Otaduy, M.A., Gross, M.: Fast arbitrary splitting
of deforming objects. In: SCA ’06: Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 63–72 (2006)

33. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation:
viscolelasticity, plasticity, fracture. In: SIGGRAPH ’88: Proceed-
ings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 269–278 (1988)

34. Wicke, M., Botsch, M., Gross, M.: A finite element method on
convex polyhedra. Comput. Graph. Forum (Proc. Eurographics)
26(3), 355–364 (2007)

35. Wojtan, C., Thürey, N., Gross, M., Turk, G.: Deforming meshes
that split and merge. ACM Trans. Graph. 28(3), 1–10 (2009)

36. Wojtan, C., Turk, G.: Fast viscoelastic behavior with thin features.
ACM Trans. Graph. (Proc. SIGGRAPH) (2008)

Martin Seiler received his M.Sc.
degree in computer science from
ETH Zürich in 2009. He is now a
Ph.D. candidate at the Computer Vi-
sion Laboratory at ETH Zürich. His
research interests include computer
graphics with an emphasis on phys-
ically based modeling and simula-
tion.

Denis Steinemann received his
Ph.D. degree in Computer Science
from ETH Zurich in 2008. He was a
member of the Computer Graphics
Laboratory headed by Prof. Markus
Gross, where his research focused
on interactive physically-based sim-
ulation. Dr. Steinemann currently
works for the ETH spin-off Vir-
tamed. As Chief Scientific Officer,
he is in charge of software devel-
opment and research, working to-
gether with the co-authors to push
Virtamed’s current and future surgi-
cal simulators to the highest possi-
ble level.

Robust interactive cutting based on an adaptive octree simulation mesh 529

Jonas Spillmann received his Ph.D.
degree in Computer Science from
University of Freiburg in 2008,
where he was a member of Pro-
fessor Matthias Teschner’s research
group. Dr. Spillmann is currently
a Postdoctoral fellow at Computer
Vision Laboratory at the Swiss Fed-
eral Institute of Technology, where
he is working with Dr. Harders on
interactive surgical simulation.

Matthias Harders studied Com-
puter Science with focus on Med-
ical Informatics at the University
of Hildesheim, Technical Univer-
sity of Braunschweig, and Univer-
sity of Houston. He completed his
doctoral thesis in 2002 and his ha-
bilitation in 2007 at ETH Zurich.
Currently, he is lecturer and se-
nior researcher at the Computer Vi-
sion Lab of ETH, and leader of the
Virtual Reality in Medicine Group.
His current research concerns sur-
gical simulation and computer hap-
tics. He is a founder of the IEEE

RAS/CS Haptics Technical Committee, the IEEE Transactions on Hap-
tics, the EuroHaptics conference and society. He is also the co-founder
of the ETH spin-off company VirtaMed.

	Robust interactive cutting based on an adaptive octree simulation mesh
	Abstract
	Introduction
	Related work
	Cutting conforming meshes
	Cutting non-conforming meshes

	Overview
	Method
	Robust back-transformation
	Surface mesh cutting
	Material graph cutting
	Simulation mesh cutting
	Mesh refinement
	Material analysis
	Node splitting
	Discussion

	Surface embedding
	Z-curves
	Correspondence construction
	Correspondence update

	Evaluation and application
	Evaluation
	Embedding update performance
	Adaptive cutting
	Cutting deformed geometries
	Cutting folded objects

	Application

	Conclusion
	Limitations and future work

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

