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Abstract We perform sensitivity analyses on a mathematical model of malaria transmis-
sion to determine the relative importance of model parameters to disease transmission and
prevalence. We compile two sets of baseline parameter values: one for areas of high trans-
mission and one for low transmission. We compute sensitivity indices of the reproductive
number (which measures initial disease transmission) and the endemic equilibrium point
(which measures disease prevalence) to the parameters at the baseline values. We find that
in areas of low transmission, the reproductive number and the equilibrium proportion of
infectious humans are most sensitive to the mosquito biting rate. In areas of high trans-
mission, the reproductive number is again most sensitive to the mosquito biting rate, but
the equilibrium proportion of infectious humans is most sensitive to the human recov-
ery rate. This suggests strategies that target the mosquito biting rate (such as the use of
insecticide-treated bed nets and indoor residual spraying) and those that target the human
recovery rate (such as the prompt diagnosis and treatment of infectious individuals) can
be successful in controlling malaria.

Keywords Malaria - Epidemic model - Sensitivity analysis - Reproductive number -
Endemic equilibria

1. Introduction

Malaria is an infectious disease caused by the Plasmodium parasite and transmitted be-

tween humans through bites of female Anopheles mosquitoes. There are about 300-500
million annual cases of malaria worldwide with 1-3 million deaths (Roll Back Malaria
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Partnership, 2005). About 40% of the world’s population live in malaria endemic areas.
Although the incidence of malaria had been rising in the last few decades due to in-
creasing parasite drug-resistance and mosquito insecticide-resistance, recently significant
resources have been made available to malaria control programs worldwide to reduce
malaria incidence and prevalence. Comparative knowledge of the effectiveness and effi-
cacy of different control strategies is necessary to design useful and cost-effective malaria
control programs. Mathematical modeling of malaria can play a unique role in comparing
the effects of control strategies, used individually or in packages. We begin such a compar-
ison by determining the relative importance of model parameters in malaria transmission
and prevalence levels.

The mathematical modeling of malaria transmission has a long history, beginning with
Ross (1911) and MacDonald (1957), and continuing through Anderson and May (1991).
In a Ph.D. dissertation, Chitnis (2005) described a compartmental model for malaria trans-
mission, based on a model by Ngwa and Shu (2000); defined a reproductive number, Ry,
for the expected number of secondary cases that one infected individual would cause
through the duration of the infectious period; and showed the existence and stability of
disease-free equilibrium points, xg4s, and endemic equilibrium points, x... He also com-
puted the sensitivity indices for Ry and x.. to the parameters in the model. Chitnis et al.
(2006) presented a similar bifurcation analysis of an extension to the model in Chitnis
(2005), defining R, and showing the existence and stability of x4z and xee.

Here we extend the model in Chitnis et al. (2006) and evaluate the sensitivity indices
of Ry and x... This model is different from previous models in that it generalizes the mos-
quito biting rate, and includes immigration in a logistic model for the human population
with disease-induced mortality. Previous models assumed that mosquitoes have a fixed
number of bites per unit time. This model allows the number of mosquito bites on hu-
mans to depend on both, the mosquito and human, population sizes. This allows a more
realistic modeling of situations where there is a high ratio of mosquitoes to humans, and
where human availability to mosquitoes is reduced through vector control interventions.
Human migration is common in most parts of the malaria-endemic world and plays an
important role in malaria epidemiology. As in Ngwa and Shu (2000), this model also al-
lows humans to be temporarily immune to the disease, while still transmitting malaria to
mosquitoes.

We compile two reasonable sets of baseline values for the parameters in the model: one
for areas of high transmission, and one for areas of low transmission. For some parame-
ters, we use values published in available literature, while for others, we use realistically
feasible values. We then compute the sensitivity indices of Ry and x. to both sets of
baseline parameter values. As Ry is related to initial disease transmission and x.. repre-
sents equilibrium disease prevalence, an evaluation of these sensitivity indices allows us
to determine the relative importance of different parameters in malaria transmission and
prevalence. We thus look at the relative importance of the parameters in four different
situations:

e The initial rate of disease transmission in areas of low transmission
e The equilibrium disease prevalence in areas of low transmission
e The initial rate of disease transmission in areas of high transmission
e The equilibrium disease prevalence in areas of high transmission
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A knowledge of the relative importance of parameters can help guide in developing effi-
cient intervention strategies in malaria-endemic areas where resources are scarce.

We first summarize the model and analysis from Chitnis et al. (2006). We then present
the baseline parameter values, the sensitivity indices of Ry and x.. for these baseline val-
ues, and their interpretation. Appendix A contains data from literature and our reasons for
choosing the baseline parameter values. The second Appendix describes the methodology
of the sensitivity analysis.

2. Mathematical model and analysis

The malaria model (Fig. 1) (Chitnis et al., 2006) and the state variables (Table 1) with
parameters in Table 2 satisfy,
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All parameters are strictly positive with the exception of the disease-induced death rate,
81, which is nonnegative. The mosquito birth rate is greater than the density-independent
mosquito death rate: v, > ,, ensuring that there is a stable positive mosquito popula-
tion.

We scale the population sizes in each class by the total population sizes to derive,
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Fig. 1 Susceptible humans, Sy, can be infected when they are bitten by infectious mosquitoes. They
then progress through the exposed, Ej,, infectious, I, and recovered, Ry, classes, before reentering the
susceptible class. Susceptible mosquitoes, Sy, can become infected when they bite infectious or recov-
ered humans. The infected mosquitoes then move through the exposed, Ey, and infectious, Iy, classes.
Both species follow a logistic population model, with humans having additional immigration and dis-
ease-induced death. Birth, death, and migration into and out of the population are not shown in the figure.

Table 1 The state variables for the original malaria model (1) and for the malaria model with scaled
population sizes (2)

Sp:
Ey:

Number of susceptible humans

Number of exposed humans

Number of infectious humans

Number of recovered (immune and asymptomatic, but slightly infectious) humans
Number of susceptible mosquitoes

Number of exposed mosquitoes

Number of infectious mosquitoes

Proportion of exposed humans

Proportion of infectious humans

Proportion of recovered (immune and asymptomatic, but slightly infectious) humans
Total human population

Proportion of exposed mosquitoes

Number of infectious mosquitoes

Total mosquito population
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Table 2 The parameters for the malaria model (2) and their dimensions (Chitnis et al., 2006)

1

Ap: Immigration rate of humans. Humans x Time™

Yp: Per capita birth rate of humans. Time ™!

Yyt Per capita birth rate of mosquitoes. Time ™!

oyt Number of times one mosquito would want to bite humans per unit time, if humans were freely

available. This is a function of the mosquito’s gonotrophic cycle (the amount of time a mos-
quito requires to produce eggs) and its anthropophilic rate (its preference for human blood).
Time ™!

oyt The maximum number of mosquito bites a human can have per unit time. This is a function of
the human’s exposed surface area and any vector control interventions used by the human to
reduce exposure to mosquitoes. Time ™!

Bry:  Probability of transmission of infection from an infectious mosquito to a susceptible human given
that a contact between the two occurs. Dimensionless

Buin:  Probability of transmission of infection from an infectious human to a susceptible mosquito given
that a contact between the two occurs. Dimensionless

Bon: Probability of transmission of infection from a recovered (asymptomatic carrier) human to a sus-
ceptible mosquito given that a contact between the two occurs. Dimensionless

v Per capita rate of progression of humans from the exposed state to the infectious state. 1/vy, is the
average duration of the latent period. Time ™!

Vy! Per capita rate of progression of mosquitoes from the exposed state to the infectious state. 1/vy is
the average duration of the latent period. Time ™!

Yh: Per capita recovery rate for humans from the infectious state to the recovered state. 1/yy, is the
average duration of the infectious period. Time ™!

Sp: Per capita disease-induced death rate for humans. Time ™!

Ph: Per capita rate of loss of immunity for humans. 1/py, is the average duration of the immune period.
Time ™!

nin:  Density independent part of the death (and emigration) rate for humans. Time ™!

non: Density dependent part of the death (and emigration) rate for humans. Humans~! x Time™!

M1y:  Density independent part of the death rate for mosquitoes. Time ™!

M2y Density dependent part of the death rate for mosquitoes. Mosquitoes_1 x Time™!

di,

L =vie, = Vi, @)
dN,

7=WUNU_(I’LIU+I’L2UNU)NU’ (2g)

where the new state variables are also described in Table 1.

In this model, o, is the rate at which a mosquito would like to bite a human, and o}, is
the maximum number of bites that a human can have per unit time. Then o, N, is the total
number of bites that the mosquitoes would like to achieve in unit time and o}, N, is the
availability of humans. The total number of mosquito-human contacts is half the harmonic
mean of o, N, and o, Nj,. The exposed classes, e, and e,, model the delay before infected
humans and mosquitoes become infectious. While in humans, this period is short and its
effect on transmission may be ignored, in mosquitoes, this delay is important because it is
on the same order as their expected life span. Thus, many infected mosquitoes die before
they become infectious.

The model also includes an immigration term into the susceptible class (that is, inde-
pendent of the total population size). This ignores the immigration of exposed, infectious,
and recovered humans. While the exposed period is short and there would, therefore, be
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few exposed humans, and sick infectious humans are less likely to travel; the exclusion of
immigrating recovered humans is a simplifying assumption.

The recovered class captures the difference between infection and disease in malaria.
In hyperendemic areas, most adults are immune in the sense that while they have the
malaria parasite in their blood stream and are infectious to mosquitoes, they do not suffer
from clinical malaria. In the model, infectious humans move to the recovered class at a
constant per capita rate, where they are still infective to mosquitoes (but less infective
than infectious humans) and do not suffer from additional disease-induced mortality. The
model assumes that the recovered humans move back to the susceptible class at a constant
per capita rate. This is a simplifying assumption because immunity in malaria is depen-
dent on the inoculation rate. However, in the case where transmission levels are relatively
stable, the inoculation rate would approach a constant value and, therefore, the rate of
loss of immunity would also approach a constant value. As we conduct our sensitivity
analyses around equilibrium points, this assumption is reasonable.

The model (2) is epidemiologically and mathematically well posed in the domain,

€p 207
€p ih 207
iy >0,
T ep+ip+ry <1,
D=3| N, | eR’ N;, >0, ) (3)
€y e, >0,
Iy i, >0,
N, e, +i, <1,
N, >0

We denote points in D by x = (ep, in, 'y, Ni, €y, iy, Ny). This domain is valid epidemio-
logically as the scaled populations, ey, iy, 11, €y, and i,, are all nonnegative and have sums
over their species type that are less than or equal to 1. The human and mosquito popu-
lations, N, and N,, are positive. For initial conditions in D, the model (2) has a unique
solution that exists and remains in D for all time ¢ > 0 (Chitnis et al., 2006, Theorem 2.1).

Disease-free equilibrium points are steady state solutions where there is no disease.
We define the “diseased” classes as the human or mosquito populations that are either
exposed, infectious or recovered; that is, ey, iy, 1, €y, and i,. The positive equilibrium
human and mosquito population sizes, in the absence of disease, for (2) are

*_
Nh_

- - 2 4 A v v
Wi — tan) + v/ (U — an)® + 4o Ay and N::lﬁ Hiv @

2op M2y

The model (2) has exactly one equilibrium point, x4 = (0, 0,0, N;, 0,0, N;), with no
disease in the population (in the intersection of D and the boundary of the positive orthant
in R7) (Chitnis et al., 2006, Theorem 3.1).

The reproductive number, Ry, is the expected number of secondary infections that one
infectious individual (human or mosquito) would create over the duration of the infectious
period provided that all other members of both populations are susceptible,

Ry =V Ky, Kpy, &)
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with,
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The disease-free equilibrium point, xgs., is locally asymptotically stable if Ry < 1 and
unstable if Ry > 1 (Chitnis et al., 2006), Theorem 3.3. Note that the number of new in-
fections in humans that one human causes through his/her infectious period is Ré, not Ry.
Because this definition of Ry (5) is based on the next generation operator approach (Diek-
mann et al., 1990), it counts the number of new infections from one generation to the next.
That is, the number of new infections in mosquitoes counts as one generation.

Endemic equilibrium points are steady state solutions where the disease persists in
the population (all state variables are positive). Theorems 4.1 and 4.2 in Chitnis et al.
(20006) state that there is a transcritical bifurcation at Ry = 1, and there exists at least one
endemic equilibrium point for all values of Ry > 1. Typically in epidemiological models,
bifurcations at Ry = 1 tend to be supercritical (i.e., positive endemic equilibria exist for
Ro > 1 near the bifurcation point). Theorem 4.3 in Chitnis et al. (2006) states that in
the absence of disease-induced death (8, = 0), the transcritical bifurcation at Ry = 1 is
supercritical (forward). However, this model (2) can exhibit a subcritical bifurcation (i.e.,
positive endemic equilibria exist for Ry < 1 near the bifurcation point) for some positive
values of §j,.

3. Baseline parameter values

We show baseline values and ranges in Table 3 for the parameters described in Table 2.
We include two sets of baseline values: one for areas of high transmission and one for
low transmission (as measured by Ry). In Appendix A, we describe our reasons for us-
ing these values and give references where available. We estimate some parameter values
from published studies and country-wide data. For location specific parameters, such as
migration rates, we pick realistically feasible values. For parameters concerning human
populations, we pick values representing villages, small towns, or small regions. We as-
sume high transmission occurs in parts of Africa and low transmission occurs in Asia and
the Americas. We use two significant figure accuracy for all the parameters.

3.1. Low transmission

For the baseline parameters at low malaria transmission in Table 3, Ry = 1.1 (correspond-
ing to 1.3 new infections in humans from one infected human through the duration of
the infectious (and recovered) period). There is only one locally asymptotically stable
endemic equilibrium point in D,

Xee = (0.0029, 0.080, 0.10, 578, 0.024, 0.016, 2425). @)

Figure 2 shows graphs of a typical solution of the model (1) in the original variables.
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Table 3 Baseline values and ranges for parameters for the malaria model (2). Descriptions of the para-
meters are in Table 2 and explanations for the values are in Appendix A

Dimension Baseline high Baseline low Range
Ap Humans x Days_1 0.033 0.041 0.0027-0.27
W Days™! 1.1x 1074 55%x 107 27x1072-1.4x 1074
Yy Days ! 0.13 0.13 0.020-0.27
oy Days ! 0.50 0.33 0.10-1.0
o Days ! 19 43 0.10-50
Brv 1 0.022 0.022 0.010-0.27
Buh 1 0.48 0.24 0.072-0.64
Bon 1 0.048 0.024 0.0072-0.64
v Days ™! 0.10 0.10 0.067-0.20
vy Days™ 0.091 0.083 0.029-0.33
Vi Days~! 0.0035 0.0035 0.0014-0.017
8 Days ! 9.0 x 1072 1.8x 1073 0-4.1x 1074
oh Days ™! 55x%x 1074 2.7% 1073 1.1 x 1072-5.5 x 1075
Win Days ! 1.6 x 1073 8.8 x 1070 1.0 x 1076-1.0 x 1073
Uap Humans ! x Days ™! 3.0 x 1077 2.0 x 1077 1.0x1078-1.0x 1076
Uiy Days ! 0.033 0.033 0.0010-0.10
U2y Mosquitoesfl X Days*1 2.0 x 1073 4.0x 1073 1.0 x 1076-1.0 x 1073

3.2. High transmission

For the baseline parameters at high malaria transmission in Table 3, Ry = 4.4 (corre-
sponding to 20 new infections in humans from one infected human through the duration
of the infectious (and recovered) period). There is only one locally asymptotically stable
endemic equilibrium point in D,

Xee = (0.0059, 0.16,0.77, 490, 0.15, 0.11, 4850). ®)

Figure 3 shows graphs of a typical solution of the model (1) in the original variables.

4. Sensitivity analysis

In determining how best to reduce human mortality and morbidity due to malaria, it is
necessary to know the relative importance of the different factors responsible for its trans-
mission and prevalence. Initial disease transmission is directly related to Ry, and disease
prevalence is directly related to the endemic equilibrium point, specifically to the magni-
tudes of e, iy, 1, ¢,, and i,. These variables are relevant to the individuals (humans and
mosquitoes) who have some life stage of Plasmodium in their bodies. The proportion of
infectious humans, i,, is especially important because it represents the people who may
be clinically ill, and is directly related to the total number of malarial deaths. We calculate
the sensitivity indices of the reproductive number, Ry, and the endemic equilibrium point,
Xee, to the parameters in the model. These indices tell us how crucial each parameter is to
disease transmission and prevalence. Sensitivity analysis is commonly used to determine
the robustness of model predictions to parameter values (since there are usually errors in
data collection and presumed parameter values). Here we use it to discover parameters
that have a high impact on Ry and x.., and should be targeted by intervention strategies.
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Fig. 2 Solution of the malaria model (1) with baseline parameter values defined in Table 3 for areas of
low transmission. These parameters correspond to Ry = 1.1. The initial condition is Sj, = 600, Ej = 20,
I, =3, R, =0, Sy =2400, E, =30, and I, = 5. The system approaches the endemic equilibrium
point (7).

4.1. Description of sensitivity analysis

Sensitivity indices allow us to measure the relative change in a state variable when a
parameter changes. The normalized forward sensitivity index of a variable to a parameter
is the ratio of the relative change in the variable to the relative change in the parameter.
When the variable is a differentiable function of the parameter, the sensitivity index may
be alternatively defined using partial derivatives.

Definition. The normalized forward sensitivity index of a variable, u, that depends dif-
ferentiably on a parameter, p, is defined as:
_du _p

T! :=— x —. 9
» apxu &)
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Fig. 3 Solution of the malaria model (1) with baseline parameter values defined in Table 3 for areas of
high transmission. These parameters correspond to Ry = 4.4. The initial condition is S;, = 500, Ej, = 10,
I, =30, R, =0, Sy =4000, Ey = 100, and I, = 50. The system approaches the endemic equilibrium
point (8).

We show a detailed example of evaluating these sensitivity indices in Appendix B.1.
4.2. Sensitivity indices of Ry

As we have an explicit formula for Ry (5), we derive an analytical expression for the
sensitivity of Ry, TpRO = 0dRy/9p x p/Ro, to each of the seventeen different parameters
described in Table 2. For example, the sensitivity index of R, with respect to Sy,

Ry _ R0 Bun _ 1

= X = -,
P 9B~ Ry 2
does not depend on any parameter values. Two important indices that also have an obvious
structure are:

o, Nf o,N*
Ro — k and TJ0= L

o = T — (10)
v oyN} +o,N, oyN} + o, N,
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Table 4 Sensitivity indices of Ry (5) to parameters for the malaria model, evaluated at the baseline pa-
rameter values given in Table 3. The parameters are ordered from most sensitive to least. In both cases,
of high and low transmission, the most sensitive parameter is the mosquito biting rate, oy, and the least
sensitive parameter is the human rate of progression from the latent period, vy,

Low transmission High transmission
Parameter Sensitivity index Parameter Sensitivity index
1 oy +0.76 1 oy +0.80
2 Bhv +0.50 2 B +0.50
3 Yo —0.46 3 Yo —0.39
4 Bon +0.44 4 Bun +0.34
5 Yh —0.43 5 M2y —0.30
6 vy +0.31 6 Yh —0.30
7 M2y —0.26 7 vy +0.29
8 op +0.24 8 M2h +0.20
9 M2h +0.15 9 op +0.20
10 Ap —0.10 10 2 —0.18
11 U1y —0.088 11 Bon +0.16
12 ¥ —0.081 12 Oh —0.12
13 Bon +0.055 13 Ap ~0.10
14 Ph —0.053 14 M1y —0.10
15 H1h +0.012 15 K1k +0.020
16 Sp —0.0025 16 Sp —0.012
17 v +0.00063 17 v —+0.00086

However, most of the expressions for the sensitivity indices are complex with little ob-
vious structure. We, therefore, evaluate the sensitivity indices at the baseline parameter
values given in Table 3. The resulting sensitivity indices of Ry to the seventeen different
parameters in the model for areas of high and low transmission are shown in Table 4.
We replace o, and o}, by the parameters,
0,0 Ohn

=———— and 0=—. (11
oyN} +o,N, oy

¢

The parameter ¢ is an intrinsic measure of the number of mosquito bites on humans. By
definition, it is the number of mosquito bites on humans, per human, per mosquito, at the
disease-free equilibrium population sizes, per unit time. We can measure the sensitivity
of Ry with respect to ¢, keeping 6 fixed, that is, allowing both o, and ¢}, to vary while
keeping the ratio between them fixed. We find

Ro _ ~~R Ry _
=T +rf=1. (12)

In both cases of high and low transmission, the most sensitive parameter is the mos-
quito biting rate, o,,. Other important parameters include the probability of disease trans-
mission from infectious mosquitoes to susceptible humans, fj,,, the mosquito birth rate,
V¥, and the human to mosquito disease transmission probability, B,,. Since T;jo =+0.76
in areas of low transmission, decreasing (or increasing) o, by 10% decreases (or in-
creases) Ry by 7.6%. Similarly, in either high or low transmission, as Tﬁi‘z =40.5, in-
creasing (or decreasing) B, by 10% increases (or decreases) Ry by 5%.

We see from (10) that both, TJISO and TUI;O depend on the human and mosquito de-
mographic parameters. Changing the equilibrium population size of either humans or
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mosquitoes would affect the sensitivity indices for the human and mosquito biting rates.
Thus, to estimate the importance of the human or mosquito biting rates, we would need
good knowledge of the population demographic parameters. However, TZR" does not de-
pend on the equilibrium population sizes and provides a good estimate of the impact of
the mosquito-human biting rates. When ¢ is considered as a parameter (with 6 constant),
T{R" is the largest sensitivity index. Thus, reducing the number of contacts between hu-
mans and mosquitoes, through a reduction in either or both, the frequency of mosquito
blood meals, and the number of bites that a human will tolerate would have the largest
effect on disease transmission. !

For almost all parameters, the sign of the sensitivity indices of Ry (i.e., whether Ry
increases or decreases when a parameter increases) agrees with an intuitive expectation.
The only possible exception is the mosquito birth rate, y,,. For both, high and low trans-
mission, the reproductive number decreases substantially as the mosquito birth rate in-
creases. We would expect R, to increase because increasing v, increases the number of
mosquitoes. Our explanation for this counterintuitive result is as follows. The mosquito
death rate is assumed to be density dependent. As the birth rate increases and the number
of mosquitoes increases, the death rate also increases because the environment can only
support a certain number of mosquitoes (given food restrictions and so on). Therefore, the
average lifespan of the mosquito also decreases. Mathematically, at equilibrium popula-
tion size, the per capita birth rate, v, is equal to the per capita death rate, 1, + (o, Ny .
Thus, at equilibrium, ¥, is also the per capita death rate, and with an exponential distri-
bution for the death rate, 1/, is the expected lifespan of the mosquitoes. As the latent
period of Plasmodium in mosquitoes is about the same as the lifespan of the mosquitoes,
shortening the lifespan of the mosquito reduces the reproductive number because more
infected mosquitoes die before they become infectious.

In summary, we see that any changes in 1, have two opposite effects. On the one hand,
increasing v, increases the number of mosquitoes which tends to increase Ry. On the
other hand, increasing v, also decreases the mosquito lifespan which tends to reduce Ry.
The values of the other parameters help determine which of these two effects is stronger.
In both lists of baseline parameters that we use, the effect of the reduction of the mosquito
lifespan is stronger and R, decreases for an increase in v, .

Also, as the equilibrium mosquito population size changes, the total number of mos-
quito bites on humans changes. Whether this change increases or decreases R, depends
on the values of the mosquito and human equilibrium population sizes, and o, and o,.

We should expect, however, that for other parameter values, it is possible for R, to
increase when v, increases. For one such example, we evaluate the sensitivity indices
for R,y with parameter values exactly as in Table 3 for low transmission, except for (11, =
0.123 (instead of w1, = 0.033). The equilibrium mosquito population for these parameters
is N} = 175 and the most sensitive parameters are: Tfﬁ =—-8.4, Tfu‘) =+8.1,and ’Y},’jo =
40.98. Thus, when there are few mosquitoes, Ry increases when v, increases. Note that
in models where the mosquito death rate is assumed to be constant, any decrease in the
emergence of mosquitoes would tend to reduce Ry.

1Although it is not feasible to directly impact the mosquito’s gonotrophic cycle, control strategies that re-
duce the human-biting rate, o, would also reduce the mosquito’s chances of feeding successfully, forcing
it to search for another blood meal, thereby reducing the mosquito-biting rate, oy .
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4.3. Sensitivity indices of Xee

Since we do not have an explicit expression for the endemic equilibrium, x.., we cannot
derive analytical expressions for the sensitivity indices. However, we numerically calcu-
late the sensitivity indices at the parameter values given in Table 3 as shown in Appen-
dix B. In a similar manner, we also calculate the sensitivity indices of x.. with respect
to ¢ (11) while keeping 6 constant. We show the resulting sensitivity indices of the state
variables at the endemic equilibrium point, x.., to the parameters for areas of low and
high transmission in Tables 5 and 6, respectively. All sensitivity indices, except for some
for N, are shown to two significant figures because that was the accuracy of the parame-
ters. The sensitivity indices for N, can be calculated analytically as we have an explicit
expression for the equilibrium value of the number of mosquitoes. We show an example
in Appendix B.1.

In interpreting the sensitivity indices, we first note that keeping all other factors fixed,
increasing disease prevalence will lead to a decrease in the equilibrium human population
size. This is because of disease-induced death in infectious humans. Similarly, reducing
the disease prevalence will lead to an increase in the equilibrium human population size.

In areas of low transmission, the order of the relative sensitivity of the different para-
meters for the equilibrium value of i, is largely similar to that for R,. As the reproductive
number is based on a linearization around the disease-free equilibrium, x4, and the en-
demic equilibrium in areas of low transmission is close to xge (because Ry is close to
1), the sensitivity indices are similar to those for Ry. The most sensitive parameter is
the mosquito biting rate, o, followed by the mosquito to human disease transmission
probability, B, and the human recovery rate, y;,. Other important parameters include the

Table 5 The sensitivity indices, T;; = (dx;/9pj) x (pj/x;), of the state variables at the endemic equi-

librium, x;, to the parameters, p;, for baseline parameter values for areas of low transmission given in
Table 3, measure the relative change in the solution to changes in the parameters

ep ip T Njp ey iy Ny
Ap —0.80 —0.81 —0.83 +0.39 —0.69 —0.69 0
vp —0.62 —0.63 —0.64 +0.30 —0.54 —0.54 0
Yy —-3.4 3.4 —-3.4 +0.026 —4.1 =5.1 +1.3
oy +5.7 +5.7 +5.7 —0.044 +6.2 +6.2 0
oy +1.8 +1.8 +1.8 -0.014 +2.0 +2.0 0
Bhv +3.9 +3.9 +3.9 —0.030 +3.7 +3.7 0
Bun +3.3 +3.3 +3.3 —0.026 +4.0 +4.0 0
Bun +0.41 +0.41 +0.41 —0.0032 +0.50 +0.50 0
v —0.98 +0.019 +0.019 —0.00014 +0.018 +0.018 0
Vy +2.4 +2.4 +2.4 —0.018 +1.9 +2.9 0
Yh -2.8 -3.8 -2.8 +0.029 -3.5 -3.5 0
Sp +0.0022 —0.0025 —0.0022 —0.0077 —0.0042 —0.0042 0
Ph +0.059 +0.059 —-0.90 —0.00046 —0.045 —0.045 0
HL1h +0.092 +0.091 +0.090 —0.048 +0.076 +0.076 0
H2n +1.2 +1.2 +1.2 —0.63 +1.0 +1.0 0
M1y —0.69 —0.69 —0.69 +0.0053 —0.58 —0.58 —0.34
M2y -2.0 -2.0 -2.0 +0.016 —-1.7 —-1.7 -1
¢ +7.6 +7.6 +7.6 —0.059 +8.2 +8.2 0
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Table 6 The sensitivity indices, T;,C; = (dx;/9pj) x (pj/x;), of the state variables at the endemic equi-
librium, x;, to the parameters, p I for baseline parameter values for areas of high transmission given in
Table 3, measure the relative change in the solution to changes in the parameters

en in h Np ey iy Ny
Ap +0.049 +0.036 —0.028 +0.31 +0.059 +0.059 0
Yy +0.080 +0.060 —0.045 +0.51 +0.097 +0.097 0
Yy —0.032 —0.032 —0.033 +0.0021 —0.56 —1.6 +1.3
oy +0.094 +0.094 +0.095 —0.0062 +0.66 +0.66 0
oy +0.024 +0.024 +0.025 —0.0016 +0.17 +0.17 0
Bhv +0.068 +0.068 +0.069 —0.0045 +0.050 +0.050 0
Bon +0.034  +0.034 +0.034 —0.0022 +0.52 +0.52 0
Bon +0.017 +0.017 +0.017 —0.0011 +0.26 +0.26 0
vy —0.99 +0.0063 +0.0064 —0.00041 +0.0046 +0.0046 0
Vy +0.040 +0.040 +0.040 —0.0026 —0.38 +0.62 0
Yh +0.078 —0.86 +0.13 +0.057 —0.39 —0.39 0
Sn +0.012 —0.0094 +0.0040 —0.065 —0.014 —-0.014 0
Ph +0.61 +0.61 —-0.16 —0.040 +0.26 +0.26 0
H1n +0.010 +0.0087 +0.0018 —0.075 —0.0068 —0.0068 0
MHon +0.092 +0.080 +0.016 —0.69 —0.062 —0.062 0
M1y —0.015 —0.015 —0.015 +0.00098 +0.041 +0.041 —0.34
U2y —0.043 —0.043 —0.044 +0.0029 +0.12 +0.12 —1
¢ +0.12 +0.12 +0.12 —0.0078 +0.83 +0.83 0

mosquito birth rate, v, the human to mosquito disease transmission probability, §,;, and
the mosquito rate of progression from the latent state, v,.

Similar to the case for Ry, the magnitude of the sensitivity index of x. to ¢, T;‘ee,
is larger than that for all other parameters. Thus, reducing the mosquito-human contacts
would have a large effect on disease prevalence at low transmission. Reducing ¢ by 1%
would approximately reduce i), by 7.6%.

The sign of the sensitivity indices of the endemic equilibrium with respect to most of
the parameters, for areas of low transmission, agrees with an intuitive expectation. The re-
sults that perhaps require some explanation are those for the mosquito birth rate, v,, and
the rate of loss of immunity, p,. As explained in the section on the reproductive number,
increasing the mosquito birth rate, given a density-dependent mosquito death rate, short-
ens the lifespan of the mosquito and results in a net decrease in the equilibrium proportion
of infectious humans, i;. Increasing 1, also affects the total number of mosquito bites on
humans, which could further reduce i;,. As p, increases, r;, decreases, which would tend
to reduce disease prevalence. However, as a substantial fraction of people are in the re-
covered class, reducing the number of recovered people results in a redistribution of the
population that increases the proportion of people in the exposed and infectious classes.

In areas of high transmission, the sensitivity of the endemic equilibrium to the parame-
ters is different from the sensitivity of Ry to the parameters. Since R is large, the endemic
equilibrium is far from the disease-free equilibrium. The magnitude of the sensitivity in-
dices for the endemic equilibrium in high transmission is also much lower than in low
transmission, because as R, increases, disease prevalence moves closer to 100% and even
for large changes in the parameter values, there are only small changes in the endemic
equilibrium.
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The most sensitive parameter for ij, is y;, followed by p,. As the infectious and re-
covered periods are long and about 94% of the people are in the diseased classes, any
changes in the recovery rate or rate of loss of immunity will have a relatively large effect
on the fraction of infectious humans. The rate of loss of immunity has a large effect on i),
because as 77% of the people are in the recovered class, any increase will remove a large
number of people from the recovered class. Since infection rates are high, most of these
people will be absorbed into the other classes, especially the infectious class. (This effect
is similar to and more pronounced than that seen in areas of low transmission. In areas of
high transmission, the increase in ij is also strong enough to increase disease prevalence
in mosquitoes.)

Increases in the human demographic parameters, ¥, Ay, p1,, and po,, change the
equilibrium human population size which in turn changes the total number of mosquito
bites on humans, resulting in substantial changes in ;. Increasing the death rates, 11, and
Won, decreases the human population, which leads to an increase in the number of mos-
quito bites per human, which increases ij,. Similarly, increasing A, and v, increases the
equilibrium human population which would tend to decrease i;,. However, as the incoming
population is in the susceptible class and the inoculation rate is high, most of these people
will get infected and move through the exposed and infectious classes to the recovered
class. The net result of increasing the number of humans entering the population is the re-
duction of the fraction of recovered humans and an increase in the proportion of humans
in the other classes. Increasing i;, also increases disease prevalence in mosquitoes. This
effect is stronger than the decrease in mosquito disease prevalence due to a reduction in
r, and an increase in Nj,.

Other important parameters for ij, in high transmission, are the mosquito biting rate,
o0,, followed by the mosquito to human disease transmission probability, S, the rate of
progression from the exposed state for mosquitoes, v,, and the density-dependent mos-
quito death rate, u,,. These are also most important parameters for R, and for the endemic
equilibrium in areas of low transmission. Again, when ¢ is considered as a parameter, it
has a large effect on the equilibrium value of ij,.

For both sets of parameter values, we find that T;EE = T(j‘fc + T;;“, although we cannot
prove this relationship in general.

5. Discussion and conclusion

We analyzed a malaria model (Chitnis et al., 2006) by evaluating the sensitivity indices
of the reproductive number, Ry, and the endemic equilibrium, x.., to model parameters.
We did this for two sets of baseline values: one representing areas of high transmission
and one representing areas of low transmission. Since Ry is a measure of initial disease
transmission, and x.. represents disease prevalence, these sensitivity indices allow us to
determine the relative importance of different parameters in malaria transmission and
prevalence.

In areas of low transmission, the most important parameter for initial disease trans-
mission is the mosquito biting rate, o,,. Other important parameters are the mosquito-to-
human disease transmission probability, S;,, the mosquito birth rate, v, the human-to-
mosquito disease transmission probability, 8,,, and the human rate of recovery, y;,. These
five parameters are also the most important parameters for equilibrium disease prevalence,
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although y;, is in this case more important than ¥, and B,;. If we consider ¢ as a para-
meter (with 6 fixed), it would be the most important parameter for both initial disease
transmission and equilibrium disease prevalence.

In areas of high transmission, the most important parameter for initial disease trans-
mission is the mosquito biting rate, o,. Other important parameters are the mosquito-
to-human disease transmission probability, 8;,, the mosquito birth rate, v,, the human-
to-mosquito disease transmission probability, 8,,, the density-dependent mosquito death
rate, [Lo,, and the human rate of recovery, y,. The most important parameter for equilib-
rium disease prevalence is the human rate of recovery, y;,. Other important parameters are
the human rate of loss of immunity, p,, the mosquito biting rate, o,, the human density-
dependent death and emigration rate, (5, and the mosquito-to-human disease transmis-
sion probability, B,,. If we consider ¢ as a parameter, it is the most important parameter in
initial disease transmission and the third most important parameter in equilibrium disease
prevalence.

Although intervention strategies cannot target o, directly, they can target ¢ through
lowering mosquito-human contacts. According to our model, for the set of parameters
representing areas of low transmission, strategies that affect { would be the most effective
at reducing initial malaria transmission and equilibrium disease prevalence. Strategies that
reduce mosquito-human contacts, such as the use of insecticide-treated bed nets (ITN’s)
and indoor residual spraying (IRS) have been shown to be effective in field studies (Haw-
ley et al., 2003; Sharma et al., 2005). These strategies would also be the most effective in
reducing initial transmission in areas of high transmission.

Our analysis also shows that intervention strategies that affect the human recovery rate,
v, would be the most effective in reducing equilibrium disease prevalence for the set of
parameters representing areas of high transmission. The parameter y;, can be reduced
through prompt and effective case management (PECM) which emphasizes quick and
accurate diagnosis and consequent treatment of malaria. Our model shows these strategies
to also be effective in reducing equilibrium disease prevalence in areas of low transmission
and initial disease transmission in both low and high transmission areas.

The second most important parameter for initial disease transmission and equilibrium
disease prevalence in areas of low transmission and initial disease transmission in areas of
high transmission is the probability of disease transmission from infectious mosquitoes
to susceptible humans, B;,,. This parameter can be reduced through strategies such as
intermittent preventive treatment (IPT) which has been shown to be effective in Tanzania
(Massaga et al., 2003; Schellenberg et al., 2001).

The second most important parameter for equilibrium disease prevalence in areas of
high transmission is the human rate of loss of immunity, p,,. This parameter cannot easily
be targeted by current intervention strategies and represents a simplification of our model.
The rate of loss of immunity is not well understood (Anderson and May, 1991) and is
generally thought of as dependent on the prevailing incidence rate. However, where the
incidence rate is constant over time (as it is in our model at equilibrium), the rate of loss of
immunity may be assumed to be constant and we use reasonable estimates of this constant
rate in high and low transmission. However, pj,, representing a nonlinear process, remains
difficult to directly control through an intervention strategy.

The mosquito birth rate, i, has a substantial effect on initial disease transmission
in both high and low transmission areas and on equilibrium disease prevalence in low
transmission areas. However, for the parameter values used in the model, this effect is
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detrimental and contrary to common practice, such as the destruction of breeding sites.
This detrimental effect depends on the assumption that the mosquito death rate is density-
dependent, as decreasing the birth rate then leads to a longer life span for each mosquito.

Another important parameter in initial disease transmission in high and low transmis-
sion areas and equilibrium disease prevalence in low transmission areas is the probability
of disease transmission from infectious humans to susceptible mosquitoes, 8,,. This pa-
rameter can be reduced through current intervention strategies such as the use of gameto-
cytocidal drugs, or possible future strategies, such as the use of a transmission-blocking
vaccine or the release of transgenetically modified mosquitoes.

The particular values of the sensitivity indices of the endemic equilibrium point, X,
and the reproductive number, Ry, to the different parameters depend on the parameter
values that we have chosen, and on the assumptions upon which this model is based. To
effectively guide public policy and public health decision making, the model and para-
meter values would need to be tested against data from malaria-endemic field sites. The
current analysis, however, remains an important first step toward comparing the effective-
ness of different control strategies.

To compare control strategies with more certainty, there are numerous additions that
we would like to make to our model. We want to include the effects of the incidence rate
on the period of immunity, and age and spatial structure, both of which are important
in the spread of malaria. We would also like to improve our entomological submodel by
the addition of juvenile mosquito stages. We could then include the effects of seasonality
and the environment on the number and life span of mosquitoes, and on the development
of the parasite in the mosquito. An increase in ambient temperature, with high relative
humidity and rainfall, increases the emergence rate of mosquitoes, lengthens the life span
of adult mosquitoes, and reduces the latency period in mosquitoes; resulting in a multi-
faceted increase in malaria transmission levels. Environmental effects and changes play
an important role in malaria transmission (Zhou et al., 2004) and need to be taken into
account.

Finally, we would like to quantify the relationship between the parameters in our model
and the intervention strategies used to control malaria. A quantitative relationship would
then allow us to directly relate the cost of each strategy to the reduction in disease burden
and allow for the definite comparison of the efficiency and cost-effectiveness of different
intervention strategies on reducing malaria morbidity and mortality.
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Appendix A: Data for baseline parameter value

This Appendix shows the tables of data and explanations for the baseline parameter values
of the model (2) including references.
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Table A.1 Demographic data for countries with areas of high levels of malaria transmission. The unit for
life expectancy is years and the unit for the birth rate is total births per 1,000 people per year. This table is
current as of December 7, 2007

Country Life expectancy Birth rate

Botswana 50.58 23.17 Central Intelligence Agency (2007)
Congo, DR 57.20 42.96 Central Intelligence Agency (2007)
Kenya 55.31 38.94 Central Intelligence Agency (2007)
Malawi 42.98 42.09 Central Intelligence Agency (2007)
Zambia 38.44 40.78 Central Intelligence Agency (2007)

Table A.2 Demographic data for countries with areas of low levels of malaria transmission. The unit for
life expectancy is years and the unit for the birth rate is total births per 1,000 people per year. This table is
current as of December 7, 2007

Country Life expectancy Birth rate

Brazil 72.24 16.30 Central Intelligence Agency (2007)
India 68.59 22.69 Central Intelligence Agency (2007)
Indonesia 70.16 19.65 Central Intelligence Agency (2007)
Mexico 75.63 20.36 Central Intelligence Agency (2007)
Saudi Arabia 75.88 29.10 Central Intelligence Agency (2007)

Population data for humans: Table A.1 shows the life expectancy and birth rate esti-
mates for the year 2007 for some African countries with areas of high malaria transmis-
sion. Using this data, we assume a birth rate of 40 births per year per 1,000 people so
Y, =40/365.25/1, 000. We also assume an immigration rate of 12 people per year. We
set values of i1, = 1.6 x 107> and o, = 3.0 x 1077 These correspond to, in the absence
of malaria, a life expectancy of 48 years and 4.2% of the population emigrating every
year. The stable population size for these parameter values, in the absence of malaria is
523.

Table A.2 shows the life expectancy and birth rate estimates for the year 2007 for some
Asian and American countries with areas of low malaria transmission. Using this data, we
assume a birth rate of 20 births per year per 1,000 people so ¥, = 20/365.25/1, 000. We
also assume an immigration rate of 15 people per year. We set values of 11, = 8.8 x 107°
and gy, =2.0 x 1077 These correspond to, in the absence of malaria, a life expectancy
of 70 years and 3.2% of the population emigrating every year. The stable population size
for these parameter values, in the absence of malaria is 583.

To determine the range of these parameters, we allow the immigration rate, Ay, to vary
from 1 migrant per year to 100 migrants per year. This is a location specific parameter so
it has a large range of values. We allow the birth rate to vary from 10 births per 1,000
people per year to 50 births per 1,000 people per year. We allow wy;, and w,, to vary
so that the minimum removal rate corresponds to a life expectancy of 80 years and no
emigration, and the maximum removal rate corresponds to a life expectancy of 30 years
and 33% annual emigration. The exact values of wy;, and p,, for a given life expectancy
and emigration rate, would depend on the values of the immigration rate and the birth
rate.

Population data for mosquitoes: We use the results for the mosquito birth rate calcu-
lated by Briét (2002, Fig. 2) for An. gambiae to give us a rate of 130 new adult female
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Table A.3 Mosquito life expectancy data

Lifespan (days) Mosquito
20 An. balabacensis Slooff and Verdrager (1972)
8.5 An. coustani Garrett-Jones and Grab (1964)
5.6 An. funestus Krafsur and Garrett-Jones (1977)
5.89 An. funestus Gillies and Wilkes (1963)
10.2 An. funestus Garrett-Jones and Grab (1964)
11.26 An. gambiae Gillies and Wilkes (1965)
154 An. gambiae Garrett-Jones and Shidrawi (1969)
8.0 An. gambiae Garrett-Jones and Grab (1964)
9 An. gambiae Molineaux et al. (1979)
3.6 An. gambiae Zahar (1974)
9 An. minimus Khan and Talibi (1972)
5.8 An. nili Garrett-Jones and Grab (1964)
7.1 An. punctulatus Peters and Standfast (1960)

mosquitoes per day per 1,000 female mosquitoes. The stable equilibrium value of the mos-
quito population, N,, varies depending on the location. For areas of high transmission, we
use estimates derived from quarterly data for the average number of An. gambiae and An.
funestus mosquitoes in a region of Western Kenya (Asembo) from Gimnig et al. (2003b).
From this data, we use an estimate of 2 An. gambiae and 0.8 An. funestus mosquitoes per
house. We also assume that there are 1.5 people per house (Gimnig et al. (2003a) state
that in Asembo there are 17,000 people living in approximately 2,500 family compounds
with about 3-5 houses per compound) and there are a total of about 5 times as many mos-
quitoes as are found in the houses. Given the size of the human population in the model
and the mosquito birth rate, we set 117, = 0.033 and 1,5, = 2.0 x 1073 so that there is a
stable equilibrium value of 4,850 mosquitoes.

For areas with low transmission, we use the same mosquito birth rate and mosquito
(density independent) death rate, as that for areas of high transmission, but a higher den-
sity dependent death rate, 15, = 4.0 x 107>, to provide a stable equilibrium value of about
2,425 mosquitoes (half as many as in areas of high transmission).

Table A.3 shows different estimates for mosquito life expectancy.

Data for mosquito-human biting rates: The number of times a mosquito bites a human
per day depends on the relative sizes of the mosquito and human populations, the mos-
quito’s gonotrophic cycle (the number of days a mosquito requires to produce eggs before
it searches for a blood meal again), the mosquito’s anthropophilic rate (the mosquito’s
innate preference for human blood), and the number of bites that a human will tolerate
per day (depending on the human’s exposed surface area and any preventive measures the
human takes to avoid being bitten).

The parameter, o,, models the mosquito’s gonotrophic cycle and its anthropophilic
rate. As we do not have data to differentiate between the effects of the anthropophilic
rate and the relative sizes of the human and mosquito populations, we assign values to
o, based on only the gonotrophic cycle. From Bloland et al. (2002), we use estimates
of a gonotrophic cycle length of 3 days in areas of low transmission and 2 days in areas
of high transmission (with the assumption that areas of high transmission have higher
temperatures and humidity).

From Table A.4, which shows estimates from field studies for the average number of
bites on humans per mosquito per day, we use an estimate of 0.40 bites on humans per



Determining Important Parameters in the Spread of Malaria 1291

Table A.4 Mosquito daily biting rate data.

Human bites Mosquito Year(s) Location
per mosquito

0.25 An. balabacensis 1964 Khmer Slooff and Verdrager (1972)

0.25 An. gambiae 1967 Kankiya, Nigeria Garrett-Jones and Shidrawi
(1969)

0.13 An. gambiae 1967 Khashm El Girba, Sudan Zahar (1974)

0.44 An. gambiae 1972 Garki, Nigeria Molineaux et al. (1979)

0.47 An. minimus 1966-1967 Bangladesh Khan and Talibi (1972)

0.40 An. punctulatus ~ 1957-1958  Maprik, New Guinea Peters and Standfast (1960)

Table A.5 Data for probability of transmission of infection from mosquitoes to humans

Probability of Comments
transmission

0.022340.0028 Calculations from data from (Pull and Grab, 1974) Nedelman (1985)

0.01 - Davidson and Draper (1953)
0.015-0.026 - Pull and Grab (1974)
0.06-0.27 Children Krafsur and Armstrong (1978)
0.05-0.13 Adults Krafsur and Armstrong (1978)
0.012 Village with relative highest mosquito density Nedelman (1984)

0.086 Village with relative lowest mosquito density Nedelman (1984)

mosquito per day in areas of high transmission and 0.25 bites on humans per mosquito per
day in areas of low transmission, at the disease-free equilibrium population sizes. Based
on these estimates and the values of o,, N, and N, we calculate oy, to be 19 in areas of
high transmission and 4.3 in areas of low transmission. These values are reasonable given
the assumption that in areas of low transmission people suffer from fewer mosquito bites.

Data for By,: Table A.5 shows the probability of transmission of infection from an
infectious mosquito to a susceptible human given that a contact between the two occurs.
We use an estimate of fj,, = 0.022 for both, areas of high and low transmission.

Data for B, and ,31,,1 : Table A.6 shows the probability of transmission of infection from
infectious humans to susceptible mosquitoes given that a contact between the two occurs.
We use an estimate of 8,, = 0.48 for areas of high transmission and B,, = 0.24 for ar-
eas of low transmission. We assume that the probability of transmission from recovered
humans to susceptible mosquitoes is one tenth the probability of transmission from infec-
tious humans (Ngwa and Shu, 2000), so th = 0.048 for areas of high transmission and
/§vh = 0.024 for areas of low transmission.

Data for v,:  We assume a latent period in humans of 10 days, for both baseline cases,
from the data shown in Table A.7.

Data for v,: We assume the latent period in mosquitoes to be 11 days in areas of high
transmission and 12 days in areas of low transmission. Table A.8 shows some estimates
for the latent period in mosquitoes.
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Table A.6 Data for probability of transmission of infection from humans to mosquitoes

Probability of Comments

transmission

0.24 P. falciparum to An. gambiae Muirhead-Thomson (1957)
0.48 P. falciparum Boyd (1949)

0.51 P. falciparum Draper (1953)

0.47 P. falciparum Draper (1953)

0.09 P. falciparum Draper (1953)

0.64 P. falciparum after 1-4 days of gametocytemia Smalley and Sinden (1977)
0.072 P. falciparum after 11-12 days of gametocytemia Smalley and Sinden (1977)
0.48 From a differential equation model Nedelman (1984)

0.38 From a vectorial capacity approximation Nedelman (1984)

Table A.7 Data for the latent period in humans measured in days

Latent period Plasmodium

10-14 P. ovale Molineaux and Gramiccia (1980)
15-16 P. malariae Molineaux and Gramiccia (1980)
9-10 P. falciparum Molineaux and Gramiccia (1980)
5-15 - Oaks et al. (1991)

Table A.8 Data for the latent period in mosquitoes measured in days

Latent period Plasmodium Mosquito Temperature (°C)

9 P. vivax - 25-27 Anderson and May (1991)
12 P. falciparum - 25-27 Anderson and May (1991)
11 P. falciparum An. gambiae 24 Baker (1966)

3-35 P. vivax - 17-31 Macdonald (1957)

5-35 P. falciparum - 20-33 Macdonald (1957)

Table A.9 Data for the duration of the infectious period for humans in months

Infectious period Plasmodium Comments

2 P. ovale - Molineaux and Gramiccia (1980)
4 P. malariae - Molineaux and Gramiccia (1980)
9.5 P. falciparum - Molineaux and Gramiccia (1980)
12-24 P. falciparum No treatment Bloland and Williams (2002)
18-60 Pvivax No treatment Bloland and Williams (2002)
18-60 P. ovale No treatment Bloland and Williams (2002)
36-600 P. malariae No treatment Bloland and Williams (2002)

Data for y,:  We use an estimated recovery period of 9.5 months in both areas of high
and low transmission. Table A.9 shows some estimates of the duration of the infectious
period in humans.

Data for §,:  The value of the disease-induced death rate varies across different regions,
depending on the availability and quality of treatment facilities. Arudo et al. (2003) give
the malaria mortality rate for all children under 5 years old in Asembo (a region in western



Determining Important Parameters in the Spread of Malaria 1293

Kenya) as 32.9 deaths per year per 1,000 children. Although the data in Arudo et al. (2003)
is sampled only from children under the age of five (as opposed to the general population)
and includes all children (as opposed to only those that are infectious), we use it as an
estimate for the per capita disease-induced death rate of infectious humans in the entire
population. This assumption is reasonable because in areas of high malaria transmission
like Asembo, almost all children are infectious (/) and most adults are immune (R},).
For areas of low transmission, we assume improved availability and quality of treatment
facilities, so that the per capita disease-induced death rate is a fifth that of Asembo. We
assume that the range of &, can vary from no disease-induced deaths to 150 deaths per
year per 1,000 infectious humans.

Data for p,: Immunity to malaria in humans is a complicated mechanism that is not
completely understood. While it is generally believed that immunity is short-lived and re-
quires repeated reinfection to sustain itself (Aron, 1988; Dietz et al., 1974), in an epidemic
in Madagascar, after two malaria-free decades, older adults still had some protection to
malaria when compared to younger adults with no previous malaria exposure (Deloron
and Chougnet, 1992). The model (1) is based on the assumption that infected humans
eventually lose their immunity to malaria and return to the susceptible class. This rate of
loss of immunity is a nonlinear process that depends on the transmission rate. However,
for ease of analysis, we make the simplifying assumption that immunity is lost at a con-
stant rate. We allow the rate to be higher in areas of low transmission so that humans with
less exposure are immune for shorter periods of time. The assumption of a constant rate
of loss of immunity is reasonable if the level of malaria does not change significantly over
time in the modeled area.

For areas of high transmission, we assume that the period of immunity lasts for 5
years, while in areas of low transmission, we assume that the period lasts for 1 year. We
also assume that the range can vary from 3 months to 50 years.

Appendix B: Calculation of sensitivity indices
In this Appendix, we describe the methods used to determine the sensitivity indices of the

endemic equilibrium to the parameters. To calculate the indices, we first need to evaluate
the partial derivatives of the state variables at the endemic equilibrium with respect to the

parameters.

For ease of notation, we label the seven state variables at the endemic equilibrium
point (e, ip, ..., Ny) by x1,x2, ..., x7; the seventeen parameters (Ay, ¥y, ..., [U2y) by
D1, P2, - - -» P17; and the seven equilibrium equations of (2) by

g1(x1, ..., X7; p1, ..., p17) =0,
(B.1)
g71(x1, ..., X7; p1, ..., p17) =0.

We want to evaluate dx;/dp; for 1 <i <7 and 1 < j <17 for both sets of parameter val-
ues in Table 3 (with the corresponding endemic equilibrium points given by (7) and (8)).



1294 Chitnis, Hyman, and Cushing

Taking full derivatives of the seven equilibrium equations (B.1) with respect to the seven-
teen parameters, p;, gives us 119 equations of the form,

dgi  ~( gk 9x; T (dgi opi
_ 98k OPLY _ ), B.2

dp; 4 '\ 9p; 9p;

for 1 <k <7and 1< j <17. However, dp;/dp; = 0if [ # j so each equation in (B.2)
reduces to

iagk%:_% (B.3)
im1 8)6,‘ apj 8pj ’

These equations are decoupled in terms of the parameters, p;, but are coupled in terms
of the function, g;. Equations (B.3) are thus seventeen linear systems of seven coupled
equations. They may be written as

AzWD =b(j), (B.4)

where A is the (7 x 7) Jacobian of the malaria model (2) with A, = dg;/dx;; 7/ is the
unknown (7 x 1) vector with the i term of ) given by dx;/dp;; and b is a (7 x 1)
vector with the k™ term given by —dg;/ dp;. The matrix A is known because we can
evaluate the Jacobian of (2) for the given parameter values and the corresponding endemic
equilibrium point. Similarly, we can directly evaluate ) by calculating the derivative,
—0gk/dp;j, at the given parameter values.

Solving these seventeen linear systems of (B.4) for z\) gives us what we want: dx; /dp i
for1 <i <7and1 < j <17. Finally, we multiply dx; /0p; by p;/x;, as in the definition
of the sensitivity index (9), to find the sensitivity of each state variable in the endemic
equilibrium point, x;, to the parameter, p;.

B.1 Sensitivity analysis of the equilibrium mosquito population

As we have an explicit expression for the equilibrium value of N,, we can analytically
evaluate the sensitivity of N, to the parameters. At equilibrium,

')[fv o
M2v

N, = (B.5)

As N, depends on only three parameters, the sensitivity indices of N, to all other para-
meters is 0. For example, the sensitivity index for N, to ¥, is

TNU_aNU‘ﬂ_ 1/’11

o 31% Nu Ilfv_ﬂlv.

For the baseline parameter values given in Table 3, for areas of high and low transmission,
) =413
Vv
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