
Softw Syst Model (2008) 7:383–398
DOI 10.1007/s10270-008-0086-z

SPECIAL SECTION PAPER

Correctly defined concrete syntax

Thomas Baar

Received: 19 March 2007 / Revised: 8 September 2007 / Accepted: 19 September 2007 / Published online: 1 July 2008
© Springer-Verlag 2008

Abstract Due to their complexity, the syntax of modern
modeling languages is preferably defined in two steps. The
abstract syntax identifies all modeling concepts whereas the
concrete syntax should clarify how these concepts are ren-
dered by graphical and/or textual elements. While the abstract
syntax is often defined in form of a metamodel, there does not
exist such standard format yet for concrete syntax definitions.
The diversity of definition formats—ranging from EBNF
grammars to informal text—is becoming a major obstacle
for advances in modeling language engineering, including
the automatic generation of editors. In this paper, we pro-
pose a uniform format for concrete syntax definitions. Our
approach captures both textual and graphical model repre-
sentations and even allows to assign more than one rendering
to the same modeling concept. Consequently, following our
approach, a model can have multiple, fully equivalent repre-
sentations, but—in order to avoid ambiguities when reading
a model representation—two different models should always
have distinguishable representations. We call a syntax defin-
ition correct, if all well-formed models are represented in a
non-ambiguous way. As the main contribution of this paper,
we present a rigorous analysis technique to check the cor-
rectness of concrete syntax definitions.

Keywords Visual languages · Concrete syntax ·
Metamodeling · OCL · Triple-Graph-Grammars (TGGs)

Communicated by Prof. O. Nierstrasz.

T. Baar (B)
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
e-mail: thomas.baar@acm.org

1 Introduction

The trend to model-driven development is facing the question
how modeling languages can be defined precisely in a stan-
dardized format. Metamodeling became in the last decade
the prevailing technique for describing the abstract syntax
of modeling languages: metaclasses represent all modeling
concepts, metaattributes their variations, and metaassocia-
tions their relationships. In addition, well-formedness rules
written as OCL invariants impose restrictions, which have
to be satisfied in each well-formed instance of the abstract
syntax metamodel. In the literature, well-formed instances of
the abstract syntax metamodel are also known as models and
we will stick to this established terminology also thorough
this paper.

Though the metamodel capturing the abstract syntax
describes precisely the structure of all possible models, the
metamodel is not yet a complete definition of a modeling lan-
guage. In order to be complete, a language definition needs
two additional parts describing (1) how a model is rendered
by textual and/or graphical elements (concrete syntax) and
(2) what the intended meaning of each modeling concept
is (semantics). Unfortunately, there is no commonly agreed
format for these two parts, yet. This paper is only concerned
about the first missing part (concrete syntax definitions) and
will ignore entirely the problem of how the semantics of mod-
eling concepts can be formally defined (interested readers
are referred to [1] for a complementary approach on defining
semantics).

When defining the concrete syntax, one has to prescribe—
as a first step—which graphical and/or textual elements are
available for the representation of model elements (e.g.,
boxes, lines, stickmen, text). Moreover, possible relation-
ships between representation elements need to be specified,
e.g., that a line always connects two boxes, that text can

123

384 T. Baar

appear either in the first compartment of a box or as a label
of a line, etc. This selection of possible representation ele-
ments is realized in our approach by the definition of a rep-
resentation language in form of a formal metamodel (cmp.
Sect. 2). Fortunately, there are many modeling languages that
share the same representation language what allows to reuse
representation metamodels in multiple concrete syntax defi-
nitions.

Once the representation language is fixed, one can com-
plete the concrete syntax definition by describing the relation-
ship between model elements and representation elements. In
our approach, this is done by bridging the two metamodels for
abstract syntax and representation language with some addi-
tional metaclasses, metaassociations and OCL constraints
(Sect. 3).

As an example, let us consider the official language def-
inition for UML (cmp. [2]). The metamodel for the abstract
syntax identifies many modeling concepts, such as
Classifier, State, Actor, etc. A UML model is just
an instance of this metamodel; otherwise stated, a set of clas-
sifiers, states, actors, etc. together with values for metaat-
tributes and metaassociations. The UML language reference,
however, describes only informally how to render the mod-
eling concepts identified in the abstract syntax metamodel.
While such an informal concrete syntax definition might have
some advantages with respect to readability, there are also
many compelling reasons to adopt a more formal approach
when defining a modeling language including its concrete
syntax:

– The metamodel capturing the abstract syntax is most often
developed having a particular graphical or textual repre-
sentation of the model in mind. Developing an explicit
metamodel of the representation language enforces the
language designer to strictly separate modeling concepts
from representation concepts.

– Formal definitions are amenable to formal analysis. In
Sect. 4, we present an analysis algorithm that is able
to check, whether modeling and representation language
are bridged correctly. Surprisingly—as our examples will
illustrate—problems found by this analysis are often not
due to an incorrect specification of the bridge but due to
some imprecision in the definition of the modeling lan-
guage itself. Consequently, defining the concrete syntax
formally and conducting a correctness analysis can also
be seen as a technique to validate a given abstract syntax
metamodel and to detect its inconsistencies.

– Finally, a formal definition is less prone to ambiguities
and misinterpretations.

This paper is an extended version of [3] and is composed of
two main parts. In the first part, Sects. 2 and 3, we explain how

the metamodeling approach can be adopted for the precise
definition of presentation languages and, finally, for the for-
mal definition of the concrete syntax of modeling languages.
This part of the paper goes back to ideas first described in [4].
The paper’s second part, Sect. 4, is a much enhanced version
of the corresponding section in [3] and describes how the cor-
rectness of concrete syntax definitions can be rigorously ana-
lyzed and, in addition, how modern deduction tools can assist
this analysis process effectively. A concrete syntax definition
is called correct, iff it disallows two different models to be
rendered by the same representation. Otherwise stated, the
relationship model-representation is, in mathematical terms,
a function from (the set of) all possible representations to
(the set of) all possible models. Note, however, that for the
opposite direction the rendering relationship does not need to
be functional. Our syntax definitions allow the same model
to be represented by more than one representation. This is
sometimes called presentation option in the literature. For
example, in UML, one can mark a class to be abstract either
by adding a stereotype abstract to the class representation or
by setting the class name into an italic font [2].

At the end of the paper, Sect. 5 gives an overview on
related work while Sect. 6 summarizes the most important
achievements of our approach.

2 Representation languages

In this section, we give some background information on the
definition of graphical and textual representation languages
in form of a metamodel.

2.1 Graphical languages

Some modeling languages use for the representation of mod-
els graphical elements, such as boxes, circles, lines, stickmen,
etc. Graphical elements are also called visual objects in the
literature [5], since they can be easily described as objects
whose state is determined by values for certain attributes,
such as shape, lineColor, backgroundColor, attachRegion,
etc. An ensemble of visual objects is a syntactically correct
sentence of a graphical language L iff all well-formedness
rules of language L are met. A typical example for a well-
formedness rule is the restriction that visual objects of type
Edge must always connect two other visual objects. More
technically, that the start- and endpoint of an edge is placed
inside the attach regions of the connected visual objects. A
syntactically correct sentence of a graphical language is also
called diagram.

For all non-trivial graphical languages, it has advantages
to identify different classes of visual objects because not all
attributes are relevant for each object. For example, a visual
object of type Edge does not need a value for the attribute

123

Correctly defined concrete syntax 385

UI

User UI

User

User

UI

Fig. 1 Three diagrams—when read as representations of class dia-
grams, the first two diagrams should not be distinguishable

backgroundColor. Once the classes of visual objects together
with their attributes are identified, many well-formedness
rules of the graphical language can be straightforwardly
expressed using the associations between these classes. The
above given restriction for objects of type Edge to connect
exactly two other visual objects is, for instance, best exp-
ressed by two associations from class Edge to a class, say,
LabeledNode (which represents the connected visual
objects) with multiplicity 1 at the latter class (cmp. upper
part of Fig. 2).

Note that the formalization of graphical elements as visual
objects, which are grouped in classes sharing the same
attributes, is nothing but a metamodel of a graphical lan-
guage. In this case, a diagram can be seen just as an instance
of the graphical language metamodel.

The three diagrams given in Fig. 1 illustrate the sketched
metamodeling approach for defining representation
languages. At a first glance, the three diagrams consist of
labeled rectangles and a stickmen, which are connected by
a direct line or, in case of the middle diagram, by a poly-
line. The rectangles have different size and positions within
the diagrams and also their labels differ in terms of font style
and font size. To summarize, the three diagrams look all quite
different.

If the diagrams, however, are interpreted as UML class
diagrams, then the first two diagrams coincide. It is worth to
investigate the process how humans interpret an ensemble
of graphical objects as a UML class diagram a little bit fur-
ther. Humans learned by reading the informal concrete syntax
definition of UML given in [2] that the size of a class box
does not matter for UML class diagrams, that the font style
and font size of a label does not matter (except for abstract
classes), that the position of rectangles in the diagram does
not matter (as long as one does not contain the other), that
the usage of direct line versus polyline does not matter, etc.
The concrete syntax definition is the place to specify which
of all possible attributes of visual objects are relevant for the
rendered modeling language.

Figure 2 shows one possible metamodel for the graphical
representation language used in Fig. 1. The chosen meta-
model consists of only such attributes that are considered to
be relevant when interpreting the three diagrams from Fig. 1

LabeledNode
shape:String
label:String

:LabeledNode

shape='box'
label='User'

Edge

1 source

1 target

:LabeledNode

shape='box'
label='UI'

:Edge

 target

 source

:LabeledNode

shape='box'
label='User'

:LabeledNode

shape='box'
label='UI'

:Edge

 target

 source

:LabeledNode

shape='stickmen'
label='User'

:LabeledNode

shape='box'
label='UI'

:Edge

 target

 source

*

*

Fig. 2 A graphical language definition and corresponding representa-
tion of diagrams given in Fig. 1

as UML class diagrams. In the lower part of Fig. 2, the three
diagrams are given as instances of the representation lan-
guage metamodel. The first two diagrams coincide, indeed,
but they differ from the third diagram.

The formalization of diagrams as instances of a meta-
model is not a new technique and actually every graphi-
cal editor has internal data structures, which resemble such
a metamodel in one way or the other. A warmly recom-
mended introduction to graphical languages is given in [5].
Here, Costagliola et al. propose a classification of graphi-
cal languages (geometric-based, connection-based, hybrid)
and derive from this classification a format for their concise
and precise definition (see also [6] for an implementation
strategy). A core technique is to substitute absolute layout
information (such as position, dimension) by relative ones,
called spatial relationships. When defining a metamodel for
a graphical language, one has to identify—in a first step—
besides relevant attributes of visual objects also all relevant
spatial relationships. For example, UML diagrams take two
spatial relationships into account: graphical nesting (class
diagrams, state diagrams) and the NORTH-TO relationship
(sequence diagrams).

The OMG standard for Diagram Interchange (DI) [7]
proposes a metamodel for a graphical representation lan-
guage, which is expressive enough for any kind of UML dia-
grams (and for many domain-specific languages as well). We
could have taken DI as a basis for all our examples and each
of the results obtained in this paper would also apply in such a
setting. Nevertheless, we decided to use a home-brewed ver-
sion of a graphical representation language instead of DI in
order to illustrate the independence of our approach from the
chosen representation language and, also, because we did not
want to bother the reader with the technical complexity of DI.

2.2 Textual languages

A sentence of a textual language is a sequence of strings,
which are separated by whitespace symbols, such as newline,

123

386 T. Baar

AtomicString

val:String

StringRegion

<<query>>
lt(StringRegion):Boolean
<<query>>
dlt(StringRegion):Boolean

ComposedString

1..* child

Fig. 3 Simple metamodel of a textual representation language

tabulator, and space. A sequence of strings can be equiva-
lently described by (1) saying which strings occur in the
sequence and how often they occur, and by (2) determining
the ordering of string occurrences using the LEFT-TO spatial
relationship.

Based on these observations, a minimal metamodel for
a textual language could consist of just one class Atomic
String, which has an attribute val for the represented text
and a query lt(AtomicString):Boolean for encod-
ing the LEFT-TO relationship. Furthermore, one had to
axiomatize the LEFT-TO relationship as a total order on
AtomicString.

For our purpose—the definition of a concrete syntax—it
is however useful to add to this minimal metamodel a meta-
class for the composition of consecutive strings (Composed
String) and to declare a spatial relationship DIRECT-
LEFT-TO (dlt), which is derived from LEFT-TO. The result-
ing metamodel is shown in Fig. 3 and augmented by a number
of OCL invariants shown in Listing 1, which axiomatize the
spatial relationships LEFT-TO and DIRECT-LEFT-TO.

Listing 1 Axiomatization of LEFT-TO and DIRECT-LEFT-TO

context StringRegion
inv i r r e f l_ l t : not self . l t (self)
inv trans_lt : StringRegion . allInstances()−>forAll

(y, z | (self . l t (y) and y. l t (z)) implies self . l t (z))
inv antisymm_lt : StringRegion . allInstances()−>

forAll (y | self . l t (y) implies not y. l t (self))
−− dlt is a derived relationship from l t
inv definition_dlt : StringRegion . allInstances()−>forAll (y |

self . dlt (y) =
not StringRegion . allInstances()−>exists (z |

self . l t (z) and z . l t (y)))

Figure 4 shows three different instantiations of the textual
language metamodel, which all represent the same text Be
patient. Note that the same text can be represented in many
different ways. The question, how these representations can
be created or derived from a given text, is, however, out of
scope of this paper.

as1:AtomicString

val='Be'

cs1:ComposedString

'Be patient'

as2:AtomicString

val='patient'

Facts: as1.lt(as2)
as1.dlt(as2)

as1:AtomicString

val='Be'

as2:AtomicString

val='patient'

Facts: as1.lt(as2)
as1.dlt(as2)

child

child

cs11:ComposedString

as1:AtomicString

val='Be'

as2:AtomicString

val='patient'

Facts: cs11.lt(as2)
cs11.dlt(as2)

child

child

cs1:ComposedString

child

Fig. 4 Some possible representations of text ‘Be patient’

3 Concrete syntax definition

In the previous section, we have outlined how graphical/tex-
tual representation languages can be formalized in form of a
metamodel; we will now answer the question how instances
of an abstract syntax metamodel can be rendered in such rep-
resentation languages. The missing part is, informally speak-
ing, the bridge from the metamodel of the abstract syntax to
the metamodel of the representation language. We will illus-
trate our approach using a simplified version of UML class
diagrams that features three kinds of model elements: classes
(classifiers), attributes, and associations.

3.1 Graphical languages

Figure 5 presents our definition of the graphical concrete
syntax of UML class diagrams. The left part contains the
metamodel of the modeling language; here, UML class
models: each (instance of) Classifier owns a set of
Attributes (see composition betweenClassifier and
Attribute) and each Attribute in turn refers to a
Classifier as its type. Each Association owns two
AssociationEnds, each of which refer to exactly one
Classifier as its participant. The right part of Fig. 5 con-
tains the metamodel of the representation language, which
classifies possible graphical objects in class diagrams (e.g.,
LabeledTextContainer, LabeledEdge) and identi-
fies relevant attributes.

The two classes ClassifierDM and Association-
DM are so-called display manager classes (the name of these
classes has, by convention, always the suffix DM). Display
manager classes are actually the “piers” for the bridge from
the modeling to the representation language. A display man-
ager class is always connected via an association with multi-
plicity 1-1 to one modeling class (i.e., a class from the mod-
eling language metamodel). The purpose of display manager
classes is to manage the rendering of the instances of the
referred modeling class. By convention, we always use me
(for model element) and dm (for display manager) as role
names on the association between display manager class and

123

Correctly defined concrete syntax 387

Fig. 5 Bridging the two
metamodels that define
modeling concepts and the
graphical representation
language

Attribute
name:String

Classifier

name:String
isAbstract:Boolean

LabeledEdge
firstRole:String
secondRole:String
label:StringAssociationEnd

name:String

Association
name:String

type 1

TextField
text:String
inItalic:Boolean

AssociationDM

1

1 ov1 md

1 me dm 1

Modeling Part
(Graphical Language MM)

Concrete Syntax Definition 1

 1 participant

2 {ordered} ae

ClassifierDM
1 me

<<abstract>>
Node

shape:String

<<abstract>>
Edge1 target

1 source

vo 1

LabeledTextContainer

item *

label 1

1

 0..1 0..1

1

*

*

*

1

1

*

*

Representation Part
(Abstract Syntax MM)

managed class. Moreover, display manager classes are con-
nected via composition with multiplicity 1 and rolename vo
(for visual object) to a representation class (i.e., a class from
the representation language metamodel).

The bridge between modeling and representation language
is specified by OCL invariants, which are normally attached
to the display manager classes. These invariants formalize
conditions for synchronizing the state of modeling elements
with the state of representation objects (which realize the
rendering of modeling elements).

Listing 2 Invariants of Concrete Syntax Definition 1 (graphical render-
ing)

context ClassifierDM
inv shape: self .vo. shape=’box’
inv label : self .me.name = self .vo. label . text and

self .me. isAbstract = self .vo. label . inI ta l ic
inv attributes : self .vo. item . text−>asSet () =

self .me. attribute−>collect (at t |
a t t .name. concat(’ : ’) . concat(at t . type .name))−>asSet ()

context AssociationDM
inv roles : self .vo. firstRole = self .me.ae−>at (1).name and

self .vo.secondRole = self .me.ae−>at (2).name and
self .vo. label = self .me.name

inv connections : self .vo. source = self .me. ae
−>at (1). participant .dm.vo and
self .vo. target = self .me.ae−>at (2). participant .dm.vo

For the example shown in Fig. 5, the necessary OCL con-
straints are given in Listing 2. The first constraint shape
stipulates that a Classifier is always represented by
a box-shaped node. The next two constraints label and
attributes formulate the synchronization conditions for
Classifiers and their representations (instances of
LabeledTextContainer and TextField). Further-

employer

employee

Person

name:String
age:Integer

Company

WorksFor

(a) Graphical representation (b) Textual representation

Fig. 6 Example of graphical class diagram and its textual representa-
tion as USE input

more, from the invariants for AssociationDM, one can
conclude that each Association is rendered by a
LabeledEdge, whose values for firstRole, second
Role and label correspond to the name of the association
and to the name of its two association ends. Furthermore, the
edge connects those two nodes that render the classifiers to
which the two association ends refer as participants.

3.2 Textual languages

As an example of a purely textual representation of class dia-
grams, we investigate in this subsection the input format of
the USE tool [8]. The USE tool is a popular and often cited
OCL tool, which allows its users to enter both OCL con-
straints and the underlying class diagram in a purely textual
format. A tiny example is given in Fig. 6.

123

388 T. Baar

Fig. 7 Bridging the
metamodels describing abstract
syntax and textual
representation language

Attribute
name:String

Classifier
name:String
isAbstract:Boolean

AssociationEnd
name:String

Association
name:String

type 1

AssociationDM

dm 1

1 me dm 1

Modeling Part
Concrete Syntax Definition 2

 1 participant

2 {ordered}

ClassifierDM

1 me

AtomicString
val:String

StringRegion
<<query>>
lt(StringRegion):Boolean
<<query>>
dlt(StringRegion):Boolean

ComposedString

child 1..*

AttributeDM

dm 1

1 me

AssociationEndDM
dm 11 me

kwabstract 0..1

name 1

kwclass 1

kwend 1

name 1

kwcolon 1

type 1

kwassociation 1

kwbetween 1

name 1

kwend 1

name 1

kwrole 1

type 1

to 1

to 1

to 1

to 1

*

* 1

*
1

kwattributes 1

attDM *

cdm 1

1 assoDM

2 {ordered} aeDM

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

*

0..1

0..1

0..1

Representation Part
(Textual Language MM) (Abstract Syntax MM)

The expected format of the textual input files for class dia-
grams was specified by the USE developers by a traditional
EBNF grammar1 that looks as follows:

classDefinition ::=
[’ ’abstract ’ ’] ’ ’class ’ ’ id

’ ’ attributes ’ ’ { attributeDefinition }
’ ’end’ ’

attributeDefinition ::=
id ’ ’ : ’ ’ id

associationDefinition ::=
’ ’association ’ ’
id ’ ’between’ ’
associationEnd associationEnd
’ ’end’ ’

associationEnd ::=
id [’ ’ role ’ ’ id]

Grammar-based language definitions suffer from the gen-
eral problem to encode merely the concrete syntax tree but
to leave the relationship to the abstract syntax open (see also
Muller et al. in [9]). For instance, the non-terminalid appears
in clause classDefinition but it is nowhere stated what
id actually represents. The information that id is a place-
holder for a class name has to be given elsewhere.

Figure 7 shows an alternative concrete syntax definition
for the USE input files, which follows our approach. This

1 The grammar presented here is a simplified version and has dropped
all elements not needed for our running example, e.g. operation decla-
rations, specialization between classes, different kinds of associations
(aggregation, composition), etc.

definition resembles literally the above given USE gram-
mar but specifies in addition also formally the bridge to the
abstract syntax. It uses the simple metamodel for textual rep-
resentation languages shown in Fig. 3 and has—compared
to the definition of a graphical representation—more display
manager classes (one for each metaclass of the modeling lan-
guage metamodel). Each display manager class encodes one
clause in the USE grammar.

All display manager classes have a directed association
with multiplicity 1 and role to (for text object) to class
ComposedString. The referredComposedString rep-
resents a region of strings and contains as children exactly
the elements that appear at the right hand side of the corre-
sponding grammar rule. The mapping to the abstract syntax
as well as the spatial relationships between the strings are
encoded as OCL invariants. For the purpose of illustration,
the constraints for ClassifierDM are given in Listing 3.
The constraints for each display manager class can be clas-
sified into four groups:

keyword For each keyword occurring in the right hand side
of the corresponding grammar rule, the display manager
class has a directed association toAtomicStringwith
a suitable role name (e.g. kwclass in Classifier
DM). Keyword constraints ensure that the referred
instance of AtomicString has the expected value.

mapping Mapping constraints establish the bridge between
modeling and representation elements.

child Child constraints declare all children of the referred
textual object.

123

Correctly defined concrete syntax 389

ordering Ordering constraints define the ordering between
the children.

Listing 3 Selected Invariants of Concrete Syntax Definition 2

context ClassifierDM
−− value of keywords
inv keyword:

(self . kwabstract−>notEmpty() implies
self . kwabstract . val=’abstract ’) and

self . kwclass . val=’class ’ and
self . kwattributes . val=’ attributes ’ and
self .kwend. val=’end’

−− mapping to model elements
inv mapping:

self .name. val=self .me.name
−− children of sel f . to
inv child :

le t mandatoryElements: Set(StringRegion) =
self .attDM. to
−>union(Set{self . kwclass , self .name,

self . kwattributes , self .kwend})
in

self . to . child =
i f self . kwabstract−>isEmpty()
then mandatoryElements
else mandatoryElements−>including(self . kwabstract)
endif

−− ordering of children
inv ordering :

(self . kwabstract−>notEmpty()
implies self . kwabstract . dlt (self . kwclass)) and

self . kwclass . dlt (self .name) and
self .name. dlt (self . kwattributes) and
self . attribute . to−>forAll (a |

self . kwattributes . l t (a) and
a . l t (self .kwend))

3.3 Summary

In our approach, concrete syntax definitions

– specify in a purely declarative way all possible cases
how a model (an instance of the abstract syntax meta-
model) can be bridged to its graphical/textual representa-
tion (instance of the representation language metamodel).
The bridge is formally encoded by OCL invariants, which
are usually attached to display manager classes. Note that
these invariants can be arbitrary boolean OCL expres-
sions, what makes our approach very flexible and allows,
for example, to define presentation options, i.e. the same
model can be shown by different, i.e. non-isomorphic,
representations.

– do not require to define a display manager class for each
class of the abstract syntax metamodel. In the above given
concrete syntax definition for graphical representations
of class diagrams (see Fig. 5), display manager classes
are defined only for the metaclasses Classifier and
Association. The classes Attribute and

AssociationEnd do not need their own display
manager class, because the rendering of these classes is
already captured by ClassifierDM and Associ-
ationDM.

4 Analysis of concrete syntax definitions

As already mentioned in the introduction, concrete syntax
definitions can be incorrect. Correctness means in our context
that each instance of the representation metamodel that is
well-formed and that satisfies the bridge constraints attached
to the display manager classes corresponds to exactly one
instance of the abstract syntax metamodel. Otherwise stated,
it must be always possible to construct the model from the
given representation of this model in a unique way.

This section presents two techniques for checking the
correctness of concrete syntax definitions rigorously. Both
techniques are—from the mathematical point of view—
equivalent since they both allow the user to prove or to dis-
prove the correctness of a given concrete syntax definition.
The second technique presented in Sect. 4.3, however, is more
amenable to automatization since it relies on the generation
of proof obligations, which, in principle, can be discarded by
automatic deduction tools.

Before digging into details, we shortly summarize how a
language designer is rewarded for the effort of conducting a
rigorous correctness analysis:

– By analyzing the concrete syntax definition, one also
cross-checks the representation language against the mod-
eling language. The representation language must be at
least as expressive as the modeling language (recall that
all information about a model should be obtained from
the given representation of the model). Our analysis algo-
rithm will make explicit all side-conditions that must hold
to ensure a unique construction of a model from a given
representation. As we will see later, this especially means
that our analysis algorithm can detect the incompleteness
of one metamodel with respect to the other metamodel
(i.e. some well-formedness rules have been forgotten in
the first metamodel). Thus, the correctness analysis can
also be seen as a validation technique on the completeness
of a given metamodel.

– The analysis can be done as a paper-and-pencil work
once the metamodels for modeling and representation
language are available. Consequently, possible inconsis-
tencies in the metamodels can be detected prior to the
(cost-intensive) development of tools (e.g. editors) for the
defined modeling language. After the analysis, all subse-
quent activities can be done with higher confidence that
the defined metamodels really reflect the intentions of the
language designer.

123

390 T. Baar

Fig. 8 Example for an
incorrect syntax definition
and counterexample

LabeledTextContainer

dm 1

vo 1

1 me

tf1:TextField

text='Car'
inItalic=true

dmme

tf2:TextField

text='Car'
inItalic=true

dmme

Classifier
name:String
isAbstract:Boolean

ClassifierDM

cdm1:ClassifierDM

c1:Classifier

name='Car'
isAbstract=true

c2:Classifier

name='Car'
isAbstract=false

cdm2:ClassifierDM

TextField
text:String
inItalic:Boolean

label 1

1

 1

ltc1:LabeledTextContainer

ltc2:LabeledTextContainer

csi1

csi2 vo

vo

label

label

C-CDM

CDM-LTC
LTC-TF

Modeling Part Representation Part

To summarize, correctness analysis is not only a verifica-
tion activity but also a validation activity for the involved
metamodels.

4.1 Correctness criterion

We start with an example of an incorrect syntax definition
and derive from this example afterwards a general criterion
for the correctness of concrete syntax definitions.

4.1.1 Illustrating example

The upper part of Fig. 8 is a simplified version of the running
example shown in Fig. 5 for the definition of a graphical
concrete syntax (note that for technical reasons, however, we
added association names to the metamodel shown in Fig. 8).
Suppose, only the following invariant were attached to the
concrete syntax definition:

context ClassifierDM inv nameMapping:
self .me.name=self .vo. label . text

The lower part of Fig. 8 shows two instantiations csi1,
csi2 of the concrete syntax metamodel, which conform to all
multiplicity constraints made in the metamodel and to the
invariant attached to ClassifierDM. These two instanti-
ations witness an error in the concrete syntax definition: It is
possible that two� different�models (note that objects c1,
c2 of class Classifier have different values for attribute
isAbstract) are represented by the�same� representa-
tion. Otherwise stated, the representation part of csi1 (which
coincides with the representation part of csi2) does not define
a unique model. These erroneous instantiations csi1, csi2
are possible because the invariant nameMapping attached

to ClassifierDM stipulates how attribute name in class
Classifier is represented, but nothing is said on the rep-
resentation of attribute isAbstract.

The correctness analysis presented below is able to create
automatically witness scenarios as the one shown in the lower
part of Fig. 8. If witness scenarios do not exist, the correctness
analysis verifies systematically their absence. If the analy-
sis could find some errors in a syntax definitions, the found
errors can be fixed by the language designer in two ways: (1)
strengthening the mapping constraints attached to the display
manager classes or (2) adding new well-formedness rules to
the abstract syntax metamodel.

4.1.2 Mathematical definitions

When arguing for the incorrectness of the above given syn-
tax definition, we have been quite vague when saying that
two models are�the same� or that they are�different�.
What we actually meant, was, that two models are—when
seen as instances of their metamodel—isomorphic or non-
isomorphic graphs. For a better understanding of the remain-
der of this section, we now summarize here the relevant math-
ematical foundation of graph-isomorphism.

Definition 1 (Isomorphic sets) Two sets A, B are isomor-
phic iff there exists a function m from A to B (Notation:
m : A −→ B), which is bijective.

A function m : A −→ B is called bijective iff m is

– total (for each a ∈ A exists exactly one b ∈ B such that
m(a) = b)

– injective (two different arguments result in two different
function values: a1 �= a2 implies m(a1) �= m(a2))

123

Correctly defined concrete syntax 391

A1 A2 An. . .

B2B1 Bn. . .

CPA

CPB

m1 m2 mn
m = [m1,m2,...,mn]

Fig. 9 Isomorphic Cartesian products

– surjective (for each b ∈ B there exists one a ∈ A such that
m(a) = b)

Recall that two isomorphic sets A, B have always the same
cardinality (i.e., the same number of elements) and that there
is a bijective reverse function m−1 : B −→ A such that
m−1(m(a)) = a.

Fact 1 (Isomorphic Cartesian products) Let CPA=[A1, . . . ,

An] and CPB = [B1, . . . , Bn] be two Cartesian Products of
sets Ai, Bi for i = 1, . . . , n.

If Ai is isomorphic to Bi for all i = 1, . . . , n then CPA is
isomorphic to CPB.

Figure 9 illustrates the situation described by Fact 1.
Note that the bijection m : CPA −→ CPB can be simply con-
structed by composing all existing bijections mi : Ai −→ Bi

(i.e. m = [m1, . . . , mn]).
Fact 2 (Isomorphic structures) Let STRA = [A1, . . . , An,

f a1, . . . , f al] and STRB=[B1, . . . , Bn, fb1, . . . , fbl] be two
structures (Cartesian Products of sets and functions), where
fak : Ak1 −→ Ak2, fbk : Bk1 −→ Bk2 for k = 1..l are func-
tions between sets of the same structure (Fig. 10).

If Ai is isomorphic to Bi for all i = 1, . . . , n and the func-
tions fak, fbk commute over the bijection m = [m1, . . . , mn]
with mi : Ai −→ Bi then STRA is isomorphic to STRB.

The functions fak :Ak1−→Ak2 and fbk :Bk1−→Bk2

commute over the bijection m=[m1, . . . , mn] iff for all
a∈Ak1 the following holds:

mk2(fak(a)) = fbk(mk1(a))

Based on this mathematical foundation, we are now almost
ready to precisely argue, why for the counter example given
in the lower part of Fig. 8 the two representations are iso-
morphic but the two represented models are not. The only
step left open is to encode the instantiations of metamodels
as mathematical structures (i.e., Cartesian Products of sets
and functions).

An instantiation of a metamodel has three parts: (1) the set
of existing objects for each non-abstract metaclass, (2) the
assignment of values to attributes for each object, (3) the set
of existing links for each metaassociation whereas each link
connects exactly two objects. We will encode part (1) and
part (2) straightforwardly, but part (3) (set of links) needs
special attention since a naive encoding would result into a
very clumsy data structure.

The set of links can be encoded for each metaassocia-
tion as by a relation ras : ObjSourceClass ←→ ObjTargetClass,
where (o1, o2) ∈ ras iff there exists a link for metaassocia-
tion as between o1 and o2. This encoding, however, requires
to assign a direction to metaassociation as (i.e., determine,
which of the two classes participating in as is the SourceClass
and which is the TargetClass). In order to indicate this direc-
tion in our examples, we slightly abuse UML’s navigation
arrows (note that in Figs. 5 and 7 all plain associations are
directed). If the association is a composition, we can omit
the navigation arrow since the container class should always
be read as the source class and the contained class is always
read as the target class.

As a last optimization of the encoding, we will use instead
of the relation ras its functional counterpart
fas : ObjSourceClass −→ TargetType, which yields for a given
object o1 of the source class all objects that are connected
with o1 via a link for as. The result type TargetType of fas

depends on the multiplicity and ordering attached to

Fig. 10 Isomorphic structures

A1 A2 An. . .

B2B1 Bn. . .

STRA

STRB

m1 m2 mnm = [m1,m2,...,mn]

fa1 fal

fb1 fbl

. . .

. . .

fak and fbk commute:

Ak1

Bk1

Ak2

Bk2

fak

fbk

mk1 mk2

123

392 T. Baar

association as and can, in our examples, be ObjTargetClass,
Set(ObjTargetClass) or OrderedSet(ObjTargetClass).

Definition 2 (Concrete syntax instantiation) An instantia-
tion of a concrete syntax metamodel is a structure

csi=[ObjC1 , . . . , ObjCk , DATA, fae1 , . . . , faem , atta1 , . . . ,

attal] where

– ObjCi is a set denoting the existing objects of class Ci,
where Ci is a metaclass of the metamodel

– DATA denotes the semantic domain of all predefined
types, such as String, Integer, Boolean, etc.

– faei is a function encoding the links stemming from the
association, for which aei is the target association end

– attai is a function encoding values of attribute ai for the
objects that are instances of the owner class of ai

We call the part of csi that instantiates the representation
part of the concrete syntax metamodel also representation
part of csi and the remaining part the modeling part of csi.

Example We consider the syntax definition in the upper part
of Fig. 8. Instances of this definition are encoded as a structure

csi = [ObjC , ObjC DM , ObjLT C , ObjT F , DATA, fme, fvo,

flabel , attname, attisAbstract, atttext, attinItalic]
where

– ObjC, ObjCDM , ObjLTC, ObjTF denote the sets of existing
objects of metaclasses Classifier, Classifier-
DM, LabeledTextContainer, TextField,
respectively

– fme, fvo, flabel are functions encoding the links stemming
from metaassociations C-CDM, CDM-LTC, LTC-TF,
respectively. Due to the multiplicities, the functions have
the following signatures:
fme : ObjCDM −→ ObjC ,
fvo : ObjCDM −→ ObjLTC ,
flabel : ObjLTC −→ ObjTF

– attname : ObjC −→ DATA is a function encoding values
of metaattribute name for objects of metaclass
Classifier;
attisAbstract, atttext, attinItalic are analogous functions for
the remaining metaattributes

The instantiations csi1 and csi2 shown in the lower part
of Fig. 8 can now be encoded as structures as follows:

csi1 = [{c1}, {cdm1}, {ltc1}, {tf1},
DATA,

{(cdm1, c1)}, {(cdm1, ltc1)}, {(ltc1, tf1)},
{(c1,′ Car′)}, {(c1, true)}, {(tf1,′ Car′)}, {(tf1, true)}]

csi2 = [{c2}, {cdm2}, {ltc2}, {tf2},
DATA,

{(cdm2, c2)}, {(cdm2, ltc2)}, {(ltc2, tf2)},
{(c2,′ Car′)}, {(c2, false)}, {(tf2,′ Car′)}, {(tf2, true)}]

The structures csi1 and csi2 are not isomorphic because
the only possible bijection between the object sets would be
{c1 �→ c2, cdm1 �→ cdm2, ltc1 �→ ltc2, tf1 �→ tf2}. Further-
more, the elements from DATA are mapped by the identity
function (what will always be the case in the rest of this
paper). However, for this bijection, the function attisAbstract

does not commute.
After these preparations, we are now able to define the

correctness of concrete syntax definitions formally.

Definition 3 (Correctness criterion for concrete syntax def-
initions) Let CSMM be a concrete syntax definition given
in form of a metamodel (cmp. Fig. 5) and csi1, csi2 be two
arbitrary but well-formed instantiations of CSMM.

We call the concrete syntax definition CSMM correct if
and only if the following holds:

Whenever the representation part of csi1 is isomorphic to
the representation part of csi2 then csi1 must be isomorphic
to csi2.

Figure 11 illustrates the situation described in Definition 3.
In order to prove the correctness of CSMM, one has to prove
that the modeling part of csi1/csi2 are isomorphic. The proof
is done by extending the existing bijection m_r between the
representation parts to the bijection m_m between the mod-
eling parts of csi1/csi2.

4.2 Proving correctness: Technique 1

A correctness proof using this technique consists of an
explicit definition for the bijection between csi1 and csi2. In
order to illustrate the situation, we consider a proof attempt
for the correctness of the concrete syntax definition given
in Sect. 4.1.1 (upper part of Fig. 8 plus constraint name
Mapping).

Let csi1 = [Obj1
C, Obj1

CDM , . . .] and csi2 = [Obj2
C,

Obj2
CDM , . . .] be given as two instantiations of the concrete

syntax metamodel and m_r be a bijection for their represen-
tation part. We define: m_m : Obj1

C −→ Obj2
C as

m_m(c1) := f 2
me(m_r((f 1

me)
−1(c1))) for all c1 ∈ Obj1

C
It remains to be shown that m_m is a bijection between

Obj1
C and Obj2

C and that the functions belonging to the mod-
eling part, fme, attname and attisAbstract, commute over m_m:

– The bijection property of m_m follows immediately from
the fact that m_m is defined as the composition of three
bijections: (f 1

me)
−1, m_r, f 2

me. Note that f 1
me, (f 1

me)
−1 are

both bijections due to the multiplicity 1 on both ends of
association C-CDM.

– fme commutes iff m_m(f 1
me(cdm1)) = f 2

me(m_r(cdm1))

From the definition of m_m we obtain
m_m(f 1

me(cdm1)) = f 2
me(m_r((f 1

me)
−1(f 1

me(cdm1)))) what
can be simplified to the conjecture since, trivially,
(f 1

me)
−1(f 1

me(cdm1)) = cdm1 holds.

123

Correctly defined concrete syntax 393

Fig. 11 Correctness criterion Representation PartModeling Part

csi1 -- well-formed instance of
 Concrete Syntax Definition
 (all multiplicities and
 invariants hold)

csi2 -- well-formed instance of
 Concrete Syntax Definition
 (all multiplicities and
 invariants hold)

m_r() -- already defined
 as bijection

m_m() -- to be defined
 -- proof of bijection needed

– attname commutes iff m_m(att1
name(c1)) = att2

name
(m_m(c1))

Due to invariant nameMapping, we know that
att1

name(c1) = att1
text(f

1
label(f

1
vo((f

1
me)
−1(c1)))) and an

analogous equation holds for att2
name(c1) Together with

m_m(d) = d for all d ∈ DATA, this implies the conjec-
ture since f me commutes over m_m and atttext, fvo, flabel

commute over m_r.
– attisAbstract commutes iff m_m(att1

isAbstract(c1)) =
att2

isAbstract(m_m(c1))

Here, the proof gets stuck since a similar invariant argu-
ment as in the case of attname is missing. The problem
could be resolved by adding a new invariant either to the
display manager class, e.g.

context ClassifierDM inv isAbstractMapping :
self .me. isAbstract=self .vo. label . inI ta l ic

or also directly to the modeling part of CSMM (what,
however, changes the modeling language), e.g.

context Classifier inv isAbstractValue :
self .me. isAbstract=false

In this case, the remaining proof would be analogous to
that for attname.

Notation The usage of the strict mathematical syntax when
defining the mapping (e.g., m_m(c1) := f 2

me(m_r((f 1
me)
−1

(c1))) for all c1 ∈ Obj1
C) or the usage of strict mathemati-

cal syntax for arguments in the proof
(e.g., att1

name(c1) = att1
text(f

1
label(f

1
vo((f 1

me)
−1(c1))))) can

become — as the reader might have recognized—quite
clumsy. Thus, we will use in the remainder of the paper a
more OCL-like notation, which is as expressive as the strict
mathematical one, but more readable. Instead of f 1

assoend(x) or
f 2
assoend(x) we can write the navigation expression x.assoend,

because from the type of x we can always conclude which
of the two cases is meant. Similarly, atti

attrib(x) is written as
x.attrib and m_r(x) as x.m_r.

4.3 Proving correctness: Technique 2

The explicit definition of m_m for all metaclasses in the mod-
eling part of the syntax definition and proving its bijection
property is not always as easy as in the above given example
and can require substantial mental efforts from the language
designer.

We describe now a variant of Technique 1, which allows
a more straightforward definition of m_m. This Technique 2
allows an automatic generation of proof obligations (formu-
lated in OCL), which can be discarded by an OCL prover.
According to our experience, a large number of proof oblig-
ations can be discarded fully automatically. We will describe
in Sect. 4.4 more in detail how Technique 2 can be enhanced
with automated deduction technology.

Technique 2 is formulated in form of a two-step algo-
rithm. The correctness of this algorithm, however, depends
on the hierarchical structure of the concrete syntax defini-
tion it is applied on. More precisely, Technique 2 depends on
the assumption that the modeling part of the concrete syntax
definition can be partitioned, so that each partition is a tree
of classes (the nodes of the tree are classes and the edges are
compositions) and the root of the tree is connected via an 1-1
association to a display manager class.

4.3.1 The algorithm

The starting point is as in Technique 1: There are given two
structures csi1, csi2 and a bijection m_r between their repre-
sentation parts.

123

394 T. Baar

Step 1 For each display manager class DMC and for each
dmc1 ∈ Obj1

DMC assign dmc1.me.m_m := dmc1.m_r.me
This assignment defines a bijection between Obj1

C and
Obj2

C if C is the class, for which DMC is the display man-
ager (i.e., C and DMC are connected by an 1-1 association
with role names me and dm). The bijection property of
m_m immediately follows from the fact, that DMC and
C are connected by an 1-1 association. What remains to
be shown, is, that the assigned objects have the same
attribute values and that outgoing links (except those
stemming from a composition, these are handled sepa-
rately in the next step) point to objects, which are already
assigned by m_m/m_r.
PO 1 (attributes commute):
dmc1.m_r = dmc2 implies dmc1.me.att = dmc2.me.att
for all attributes att that are visible in class C . Recall that
an attribute is visible in a class if it is declared in this
class or in one of its parent classes.
PO 2 (outgoing associations commute):
dmc1.m_r = dmc2 implies dmc1.me.ae.m_m = dmc2.

me.ae
for all association ends ae of C’s outgoing associations
(except compositions).

Step 2 For each class C in the modeling part do:
For each outgoing composition with association end ae
do:
Let T be the type of expression c1.ae if ae had multiplic-
ity 1. Define a selection function sel : Set(T), T −→ T
that gives back an element of the first argument. Then,
assign
elem1.m_m := c1.m_m.ae->sel(elem1) for each elem1
∈ c1.ae If association end ae has multiplicity 1, then sel
must give back the single element in c1.m_m.ae
PO 1 (well-definedness):
The selection function sel is well-defined for each elem1
∈ c1.ae
PO 2 (attributes commute):
c1.m_m = c2 and c1.ae->includes(elem1) implies

elem.att = c2.ae->sel(elem1).att
for all attributes att that are visible in T .
PO 3 (outgoing associations commute):
c1.m_m = c2 and c1.ae->includes(elem1) implies

elem.ae1.m_m = c2.ae->sel(elem1).ae1
for all association ends ae1 of associations that are out-
going from class T and that are not a composition.

4.3.2 Application of the algorithm

As an example, we analyze now the concrete syntax defini-
tion given in Sect. 3.1. As we shall see, the analysis process
will be an enormous help for the language designer to dis-
cover losses in the modeling language metamodel.

Step 1 We have two display manager classes.

ClassifierDM The assignment is cdm1.me.m_m :=
cdm1.m_r.me
PO 1 (attribute name commutes):
cdm1.m_r = cdm2 implies cdm1.me.name =
cdm2.me.name
This conjecture follows from invariant label and
the fact that the composed function vo.label.text com-
mutes for bijection m_r:
cdm1.m_r = cdm2 implies cdm1.vo.label.text =
cdm2.vo.label.text
PO 1 (attribute isAbstract commutes):
cdm1.m_r = cdm2 implies

cdm1.me.isAbstract = cdm2.me.isAbstract
The argumentation is the same as for attribute
name.
PO 2 (outgoing associations commute): not applica-
ble

AssciationDM The assignment is adm.me.m_m =
adm.m_r.me
PO 1 (attribute name commutes):
adm1.m_r = adm2 implies adm1.me.name =
adm2.me.name
This follows from invariant roles and the fact that
vo.label commutes for m_r:
adm1.m_r = adm2 implies adm1.vo.label = adm2.

vo.label
PO 2 (outgoing associations commute): not applica-
ble

Step 2 We have to define for each object of modeling classes
with outgoing compositions the mapping m_m on the
children of this object. The ordering of this analysis does
not matter for the current example, but can in some rare
cases also be important for discarding proof obligations.
Since the analysis for class Association is simpler
than for Classifier, we start with Association.

Association We define selection function sel as
as1.m_m.ae->sel(elem1) :=

as1.m_m.ae->at(as1.ae.indexOf (elem1))

for each elem1∈as1.ae Informally speaking, if elem1
is the first/second element in the sequence as1.ae,
then sel yields also the first/second element of
sequence as1.m_m.ae
PO 1 (well-definedness):
The selection function sel is well-defined simply
because of multiplicity 2 of association end ae.
PO 2 (attribute name commutes):
as1.m_m = as2 and as1.ae->includes(elem1) and
elem1.m_m = elem2 and elem2 = ae2.ae->
sel(elem1) implies
elem1.name = elem2.name

123

Correctly defined concrete syntax 395

We need a case distinction whether elem1 is the first
or the second element in the sequence as1.ae. In both
cases, the conjecture follows from invariant roles.
PO 3 (outgoing association participant com-
mutes):
as1.m_m = as2 and as1.ae->includes(elem1) and
elem1.m_m = elem2 and elem2 = ae2.ae->
sel(elem1) implies

elem1.participant.m_m = elem2.participant
We know that
as1.dm.vo.source.classifierDM.m_r = as2.dm.vo.

source.classifierDM
The conjecture follows from this fact and the defini-
tion of mm for Obj1

C .
Classifier We define selection function sel as

c1.m_m.attribute->sel(elem1) :=
c1.m_m.attribute->any(a | a.name = elem1.name)

for each elem1 ∈ c1.attribute
PO 1 (well-definedness):
This proof obligation is not provable what witness
an error in the original concrete syntax definition. In
order to resolve the problem, the language designer
could add the following well-formedness rule to the
metamodel of the modeling language, saying, that the
name of an Attribute is unique within a
Classifier:

context Classifier inv uniqueAttributeName:
self . attribute−>unique(a | a .name)

PO 2 (attribute name commutes):
c1.m_m = c2 and c1.attribute->includes(elem1)

implies
elem1.name = c2.attribute->sel(elem1).

name
Simply by construction of sel.
PO 3 (outgoing association type commutes):
c1.m_m = c2 and c1.attribute->includes(elem1)

implies elem1.type.m_m = c2.attribute->sel
(elem1).type

We know from invariant attributes that
elem1.name.concat(‘ :′).concat(elem1.type.name)
= c2.attribute->sel(elem1).name.concat(‘ :′).
concat(c2.attribute->sel(elem1).type.name)
Under the assumption that names of Attribute
and Classifier do not contain the character ‘:’
we could conclude that
elem1.type.name = c2.attribute->sel(elem1).type.
name
However, this is not sufficient to justify the conjecture.
The metamodel still misses some well-formedness
rules. In order to make the conjecture provable, the
language designer could add the following well-
formedness rules to the metamodel:

context Classifier inv delimiterClassifierName :
Set{1.. self .name−>size()−1}−>forAll (i |

self .name. substring(i , i+1) <> ’ : ’)
context Attribute inv delimiterAttributeName :

Set{1.. self .name−>size()−1}−>forAll (i |
self .name. substring(i , i+1) <> ’ : ’)

context Classifier inv uniqueClassifierName:
Classifier . allInstances()−>unique(c | c .name)

4.3.3 Correctness of analysis algorithm

The algorithm defines a mapping m_m on the objects of
the modeling part of csi1 to objects of the modeling part
of csi2. This mapping is, first of all, a total function and cov-
ers all objects of csi1, because the algorithm starts assigning
m_m for all root objects (which are connected with a dis-
play manager object) and traverses for each class the com-
position links. Since we assume that each non-root object in
csi1 has an owner (a container in the composition hierarchy)
the algorithm finally reaches each object in csi1 and defines
m_m for it.

The mapping m_m is injective and surjective because of
the generated proof obligation PO 1 (well-definedness).

Finally, also the fact that all attributes and outgoing links
commute over m_m is ensured by the generated proof oblig-
ations.

4.4 Encoding of proof obligations for Simplify

Solving proof-obligations manually is an error-prone and
tedious task. On the other hand, there are currently no auto-
matic deduction systems available that could solve the above
proof obligations formulated in OCL.

In the sequel, we show by example how our proof
obligations can be encoded into first-order logic so that auto-
mated deduction tools (we have used the decision procedure
Simplify [10]) can prove or disprove the generated proof
obligation. Simplify was originally developed to decide the
validity of a given formula in the theory of Presburger Arith-
metik [11], a set of axioms defining the arithmetic operators
for natural numbers except multiplication. Simplify is also
applicable to prove validity in any other first-order theory,
but then, due to the undecidability of first-order logic, Sim-
plify is not able to prove all valid theorems. For the proof
obligations that have been generated as the encoding of our
correctness criterion, however, Simplify was impressively
powerful and could prove or disprove almost every proof
obligation. A very useful feature of Simplify is to return
a counterexample when the proof goal has been disproved.
This happens when the concrete syntax definition is not cor-
rect and the generated proof obligations are not valid.

Listing 4 shows the full encoding of the correctness crite-
rion for the example given in Fig. 8. We do not show here the
final input file for Simplify, because such input files have to

123

396 T. Baar

be written in a low level notation, which is hard to read for
humans. What is shown in Listing 4, is the input file for the
KeY system [12], which can be used as a front-end for Sim-
plify since the KeY system is able to automatically generate
equivalent input files for Simplify.

Listing 4 Encoding of correctness criterion for Simplify in KeY format

\ sorts {
classif ier ;
classifierdm ;
labeledtextcontainer ;
textfield ;
string ;

}
\ functions{

/ / associations
classif ier me(classifierdm);
classifierdm dm(classif ier) ;
labeledtextcontainer vo(classifierdm);
textfield label (labeledtextcontainer) ;
/ / reverse mappings for vo, label
classifierdm vorev(labeledtextcontainer) ;
labeledtextcontainer labelrev (textfield) ;
/ / attributes
string name(classif ier) ;
string text (textfield) ;

}
\predicates{

/ / attributes
isAbstract (classif ier) ;
inI ta l ic (textfield) ;
/ / encoding of bijection m_r
mapClassifier(classifier , classif ier) ;
mapClassifierDM(classifierdm , classifierdm);
mapLabeledTextContainer(labeledtextcontainer ,

labeledtextcontainer) ;
mapTextField(textfield , textfield) ;

}
\problem {
/ / premise
/ / invariant on ClassifierDM (core of syntax definition)
(\ forall classifierdm cdm; name(me(cdm)) =

text (label (vo(cdm)))) &
/ / properties of mapClassifierDM
(\ forall classifierdm cdm1; \ forall classifierdm cdm2;

(mapClassifierDM(cdm1,cdm2)
−> mapLabeledTextContainer(vo(cdm1) , vo(cdm2)))) &

/ / properties of mapLabeledTextContainer
(\ forall labeledtextcontainer ltc1 ;

\ forall labeledtextcontainer ltc2 ;
(mapLabeledTextContainer(ltc1 , ltc2)
−> mapClassifierDM(vorev(ltc1) , vorev(ltc2)) &

mapTextField(label (ltc1) , label (ltc2)))) &
/ / properties of mapTextField
(\ forall textfield tf1 ; \ forall textfield tf2 ;

(mapTextField(tf1 , tf2)
−> mapLabeledTextContainer(labelrev (tf1) ,

labelrev (tf2)) &
text (tf1) = text (tf2) &
(inI ta l ic (tf1) <−> inItal ic (tf2))))

−>
/ / conclusio
/ / PO to show that attributes name, isAbstract commute
\ forall classifierdm cdm1; \ forall classifierdm cdm2;

(mapClassifierDM(cdm1,cdm2)
−> name(me(cdm1)) = name(me(cdm2)) &

(isAbstract (me(cdm1)) <−> isAbstract (me(cdm2))))
}

The KeY syntax expects at the beginning of the file a list of
declarations for all occurring types, functions and predicates.
There are standard techniques how a UML class diagram
is encoded by types, functions and predicates, for example,
the classes are represented by types, associations by func-
tions and attributes by functions or predicates (see [12] for
details). The clause \problem contains the formula to be
proven and has always the form of an implication premise
-> conclusio. In KeY syntax, the logical connectors ‘not’,
‘and’, ‘or’, ‘if-then’, ‘if-and-only-if’ are denoted by ‘!’, ‘&’,
‘|’, ‘->’, ‘<->’, respectively, and the two quantifiers ∀, ∃
are written as ‘\forall’, ‘\exists’. The premise of the
problem clause is a conjunction of all the invariants occurring
in the concrete syntax metamodel and the commute-property
of all attributes and association ends with respect to bijection
m_r (which is encoded here as a family of map-predicates).
The conclusio encodes literally proof obligation PO 1 in Step
1 (see Sect. 4.3.1) for attributes name and isAbstract.
The encoding of all remaining proof obligations is analogous.

When invoked for this input file shown in Listing 4, Sim-
plify cannot find a proof because the original concrete syntax
definition is not correct. Nevertheless, Simplify gives very
useful feedback in form of a counterexample. The found
counterexample is exactly the same counterexample as we
have already presented in the lower part of Fig. 8. Such
counterexamples are extremely valuable for the language
designer to detect and to resolve errors in the concrete syntax
definition.

4.5 Summary

In this section, we presented two techniques for analyzing
the correctness of concrete syntax definitions. Technique 1
simply extends explicitly m_r to m_m on the modeling part of
csi1. It has to been shown manually that the defined mapping
m_m is actually a bijection and that all attribute values and
outgoing association links commute.

Technique 2 defines the mapping m_m only implicitly.
The algorithm implementing Technique 2 starts with the root
objects in csi1 (those, that are connected with a display man-
ager object) and traverses then the tree structure of the mod-
eling part (exploiting our additional assumption that each
object in the modeling part has a container object or is a root
object). Whenever m_m is extended to the children objects of
a given object, some proof obligations are generated ensuring
that the defined mapping m_m is indeed a bijection and com-
mutes the values for relevant attributes and outgoing links.

We have seen on the example, how the analysis process
can help the language designer to uncover forgotten

123

Correctly defined concrete syntax 397

well-formedness rules in the modeling part, i.e. errors in the
definition of the modeling language. Many of these errors
are found automatically by modern deduction tools, such as
Simplify.

5 Related work

This paper has two topics, the formalization and the analysis
of concrete syntax definitions. While the definition of the con-
crete syntax for modeling languages has attracted recently
much research interest, the correctness analysis of such def-
initions is a rather new topic.

The definition of textual/graphical representation langua-
ges has a long tradition in computer science. Textual lan-
guages are most often defined by an EBNF grammar, whereas
graphical languages are either defined by graph grammars
[13] or directly in form of a metamodel (see, for example,
the OMG standard Diagram Interchange [7] or the language
definitions given by Costagliola et al. in [5]). A technique to
bridge graph grammars and metamodeling is described by
Bardohl et al. in [14]. There are even various generators for
graphical editors available (e.g., GenGed [15], AToM3[16],
DiaGen [17], to name few of them), but the language spec-
ification used by these generators usually do not have such
a strict separation between modeling language and repre-
sentation language as we described in this paper. A notably
exception is DiaGen, which provides a pre-defined repre-
sentation language consisting of boxes, lines, etc. Diagrams
in this representation language are internally represented in
form of a hypergraph model (HGM), what would correspond
in our setting to an instance of the representation language
metamodel. The bridge between an HGM and an instance of
the modeling language metamodel is described in DiaGen by
reduction rules, which allow a stepwise construction of the
model from an HGM. Recall that in our approach this bridge
is specified by OCL constraints, which are usually attached
to display manager classes.

Another approach for bridging the gap between modeling
and representation language is to use a template-based lan-
guage, e.g., the OMG standard MOF Models to Text Trans-
formation Language [18], in order to describe a mapping
from the model to the representation of the model. Also gen-
eral purpose model transformation languages, such as MTL,
ATL, or QVT could be used to describe such mappings. While
mapping approaches work sufficiently well in practice, we
are not aware of any research that investigates the correctness
of such mapping definitions. Note that mappings, which gen-
erate the model representation out of the model, are generally
in danger to assign two different models to the same represen-
tation. In this case, the representation becomes ambiguous.

Xia and Glinz present in [19] an approach to describe
the concrete syntax of their own graphical modeling lan-
guage ADORA [20]. The main idea is to map the graphical

representation of a language construct to a textual represen-
tation and to define the textual syntax finally in EBNF style.
One restriction of this approach is that each graphical ele-
ment must correspond to exactly one model element, and
vice versa.

Alanen et al. define in [21] the special purpose transforma-
tion language DIML, which can render models written in an
arbitrary modeling language into the representation language
Diagram Interchange [7]. However, DIML-transformations
are strictly less expressive than our concrete syntax defini-
tions since they map each model to a unique representations
and sacrifice—by doing so—presentation options. Moreover,
there is a simple technique to encode DIML-transformations
into our concrete syntax definitions (for each DIML-rule, a
new display manager class had to be created). Consequently,
our algorithm to analyze the correctness of syntax defini-
tions could also be applied to show the correctness of DIML-
transformations.

Muller et al. propose in [9] an interesting approach to
incorporate the mapping from a textual representation of a
model to the model itself already into the definition of the
textual language, i.e. into the corresponding EBNF grammar.
Their main technique is to define a metamodel for EBNF
grammar rules. Besides metaclasses representing traditional
EBNF constructs, this metamodel has also a metaclass called
Template, whose purpose is to realizes the bridge from the
textual representation elements to the concepts of the mod-
eling language.

Last but not least, we have to mention Triple-Graph-
Grammars (TGGs), invented by Schürr already in 1994 [22]
(see also [23] for a more recent survey and a case study). Our
approach to define a concrete syntax shares many similarities
with the TGG approach. The most important difference lies
in the fact, that our goal is merely to describe valid instances
of the concrete syntax metamodel, but we are—in the first
place—not interested in how such instances are constructed.
This is the goal of TGGs and causes some restrictions for
the kind of constraints one can attach to bridging elements
(only equations are allowed). Nevertheless, our correctness
analysis algorithm described in Sect. 4 could also be applied
to verify, that isomorphic structures on the right-hand-side of
TGG instances are always mapped to isomorphic structures
on the left-hand-side.

6 Summary

In this paper, we have described a purely declarative approach
to formally define the concrete syntax of modeling languages.
The formalization we propose is directly based on the pri-
mary language definition, i.e. the metamodel that encodes the
abstract syntax, and on a metamodel of the representation
language. While the user is free to choose any convenient

123

398 T. Baar

metamodel of the representation language he has in mind,
there are already a number of frameworks for metamodels of
visual languages available, e.g. the OMG standard for Dia-
gram Interchange [7] or the Graphical Model Framework
(GMF) from Eclipse [24].

A formal definition of a concrete syntax has many advan-
tages over an informal one. First of all, it forces the language
designer to strictly distinguish between the concepts a mod-
eling language should provide and the representation of these
concepts. Furthermore, we have shown how a formal defin-
ition can be rigorously analyzed, what uncovers problems
either of the concrete or of the abstract syntax (cmp. Sect. 4).
If the syntax definition is incorrect, our rigorous analysis is
able to report an erroneous situation. For correct definitions,
our approach is able to certify that erroneous situations never
occur.

Acknowledgements I would like to thank the anonymous reviewers
for their insightful comments and for guidance on earlier drafts of this
paper.

References

1. Marković, S., Baar, T.: An OCL semantics specified with QVT. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Proceedings,
MoDELS/UML 2006, Genova, Italy, October 1–6, 2006, vol. 4199,
LNCS, pp. 660–674. Springer, Heidelberg (2006)

2. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Object Technology Series, 2nd edn.
Addison-Wesley, Reading (2005)

3. Baar, T.: Correctly defined concrete syntax for visual models. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Proceedings,
MoDELS/UML 2006, Genova, Italy, vol. 4199, LNCS, pp. 111–
125. Springer, Heidelberg (2006)

4. Fondement, F., Baar, T.: Making metamodels aware of concrete
syntax. In: Hartman, A., Kreische, D. (eds.) Proceedings of Euro-
pean conference on Model Driven Architecture (ECMDA-FA), vol.
3748, LNCS, pp. 190–204. Springer, Heidelberg (2005)

5. Costagliola, G., De Lucia, A., Orefice, S., Polese, G.: A classifica-
tion framework to support the design of visual languages. J. Vis.
Lang. Comput. 13(6), 573–600 (2002)

6. Costagliola, G., Deufemia, V., Polese, G.: A framework for
modeling and implementing visual notations with applications
to software engineering. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 13(4), 431–487 (2004)

7. OMG. Diagram Interchange, Version 1.0. formal/06-04-04 (2006)
8. USE homepage, http://www.db.informatik.uni-bremen.de/projects/

USE/
9. Muller, P.-A., Fleurey, F., Fondement, F., Hassenforder, M., Sch-

neckenburger, R., Gérard, S., Jézéquel, J.-M.: Model-driven analy-
sis and synthesis of concrete syntax. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio G. (eds.) Model Driven Engineering Languages
and Systems, 9th International Conference, MoDELS 2006, Gen-
ova, Italy, October 1–6, 2006, Proceedings, vol. 4199, LNCS, pp.
98–110. Springer, Heidelberg (2006)

10. Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: the ESC theorem
prover. Technical Report (1996)

11. Presburger, M.: Über die vollständigkeit eines gewissen systems
der arithmetik ganzer zahlen, in welchen, die addition als einzige
operation hervortritt. Sprawozdanie z I Kongresu Matematikow
Krajow Slowcanskich Warszawa, pp. 92–101 (1929)

12. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of
Object-Oriented Software: The KeY Approach, vol. 4334, LNCS.
Springer, Heidelberg (2007)

13. Rozenberg, G. (ed.): Handbook of Graph Grammars and Comput-
ing by Graph Transformation, vol. 1. World Scientific, Singapore
(1997)

14. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-
modelling aspects with graph transformation for efficient visual
language definition and model manipulation. In: Fundamental
Approaches to Software Engineering, 7th International Confer-
ence, FASE 2004, vol. 2984, Lecture Notes in Computer Science,
pp. 214–228. Springer, Heidelberg (2004)

15. Bardohl, R.: A visual environment for visual languages. Sci. Com-
put. Program. (SCP) 44(2), 181–203 (2002)

16. de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism
and meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) Fun-
damental Approaches to Software Engineering, 5th International
Conference, FASE 2002, held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8–12, 2002, Proceedings, vol. 2306, LNCS, pp. 174–
188. Springer, Heidelberg (2002)

17. Minas, M.: Specifying graph-like diagrams with DiaGen. Electron.
Notes Theor. Comput. Sci. 72(2), 102–111 (2002)

18. OMG. MOF Models to Text Transformation Language, Final
Adopted Specification. OMG Adopted Specification, ptc/06-11-01
(2006)

19. Xia, Y., Glinz, M.: Rigorous EBNF-based definition for a graphic
modeling language. In: Proceedings of 10th Asia-Pacific Software
Engineering Conference (APSEC 2003), pp. 186–196. IEEE Com-
puter Society Press (2003)

20. Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with
ADORA. Inf. Syst. 27(6), 425–444 (2002)

21. Alanen, M., Lundkvist, T., Porres, I.: A mapping language from
models to DI diagrams. In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) Proceedings, MoDELS/UML 2006, Genova,
Italy, vol. 4199, LNCS, pp. 454–468. Springer, Heidelberg (2006)

22. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Proceedings of 20th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG’94), vol.
903, LNCS, pp. 151–163. Springer, Heidelberg (1995)

23. Königs, A., Schürr, A.: Tool integration with triple graph
grammars—a survey. In: Heckel, R. (ed.) Proceedings of the Seg-
raVis School on Foundations of Visual Modelling Techniques, vol.
148, Electronic Notes in Theoretical Computer Science, pp. 113–
150. Elsevier, Amsterdam (2006)

24. Eclipse. Eclipse project, http://www.eclipse.org (2007)

Author Biography

Thomas Baar This paper was
written while Thomas was emplo-
yed by École Polytechnique
Fédérale de Lausanne (EPFL),
Switzerland. For researchers,
EPFL is a place almost in heaven:
enthusiastic students, moderate
teaching load, a de-facto unlim-
ited budget for attending confer-
ences;allthiscombinedwithahigh
degreeofscientificfreedom.More-
over, the professional duties still
allow to devote plenty of time to
leisureactivities, to the family, and
to teach the next generation some

core concepts of the real world, and how these concepts are represented.

123

http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.eclipse.org

	Correctly defined concrete syntax
	Abstract
	1 Introduction
	2 Representation languages
	2.1 Graphical languages
	2.2 Textual languages

	3 Concrete syntax definition
	3.1 Graphical languages
	3.2 Textual languages
	3.3 Summary

	4 Analysis of concrete syntax definitions
	4.1 Correctness criterion
	4.2 Proving correctness: Technique 1
	4.3 Proving correctness: Technique 2
	4.4 Encoding of proof obligations for Simplify
	4.5 Summary

	5 Related work
	6 Summary
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

