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Abstract On the one hand, kernel density estimation has become a common tool
for empirical studies in any research area. This goes hand in hand with the fact that
this kind of estimator is now provided by many software packages. On the other
hand, since about three decades the discussion on bandwidth selection has been going
on. Although a good part of the discussion is about nonparametric regression, this
parameter choice is by no means less problematic for density estimation. This becomes
obvious when reading empirical studies in which practitioners have made use of kernel
densities. New contributions typically provide simulations only to show that the own
selector outperforms some of the existing methods. We review existing methods and
compare them on a set of designs that exhibit few bumps and exponentially falling
tails. We concentrate on small and moderate sample sizes because for large ones the
differences between consistent methods are often negligible, at least for practitioners.
As a byproduct we find that a mixture of simple plug-in and cross-validation methods
produces bandwidths with a quite stable performance.
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404 N.-B. Heidenreich et al.

1 Introduction

Suppose some i.i.d. data X1, X2, . . . , Xn from a common distribution with density
f (·) are observed, and one aims to estimate this density using the standard Parzen–
Rosenblatt kernel estimator

̂fh(x) = 1

nh

n
∑

i=1

K

(

x − Xi

h

)

, (1)

where K is a kernel and h the so-called bandwidth parameter.
The problem is then to find a reliable data-driven estimator for the optimal band-

width. To assess the performance of ̂fh , generally accepted measures are the integrated
squared error

ISE(h) = ISE{̂fh(x)} =
∫

{̂fh(x)− f (x)}2 dx (2)

or alternatively, the mean integrated squared error, i.e.

MISE(h) = MISE
[

f̂h(x)
]

=
∫

MSE
[

f̂h(x)
]

dx . (3)

Let us denote the minimizers of these two criteria bŷh0 and h0 respectively. The
main difference is that ISE(h) is a stochastic process indexed by h > 0, while MISE(h)
is a deterministic function of h. Based on these criteria, we distinguish two classes of
methods: the cross-validation methods trying to estimatêh0 (and, therefore, looking
at the ISE), and the plug-in methods which try to minimize the MISE to find h0. It is
obvious that these criteria coincide asymptotically but not for finite samples.

Part of the community working on nonparametric statistics has accepted that there
may not be a perfect procedure to select the optimal bandwidth. Nevertheless, one
should be able to say which is a reasonable bandwidth selector, at least for a particular
problem. The so-called SiZer method tries to indicate what is a range of reasonable
bandwidths and is, therefore, quite attractive for data snooping, see Chaudhuri and
Marron (1999) for an introduction, Godtlibsen et al. (2002) for an extension to the
bivariate case, and Hanning and Marron (2006) for an interesting modification using
extreme value theory. However, SiZer does not give back any specific data-driven
bandwidth. Therefore, the development of bandwidth selectors has been going on,
so that we believe that a review and comparison of existing selectors would be quite
helpful to get an idea of their objective and performance.

We counted more than 30 bandwidth selectors, several of them being modifications
made for particular estimation problems. So we decided to limit our study to the fol-
lowing restrictions. Firstly, we consider only independent observations. Secondly, we
look at L2, not L1-based methods, see also our discussion below. Boundary problems
are not discussed, because it is hard to say how they can be combined with the problem
of bandwidth selection. In our simulation comparison, we concentrate on rather small
and moderate sample sizes, and on quite smooth densities. The considered degree of
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Bandwidth selection for kernel density estimation 405

smoothness covers a broad range of problems in any research area but excludes sharp
peaks and highly oscillating functions.Notice that the latter problems should not be
tackled with kernels anyway.Density problems with extreme tails are not included.
It is well known that those problems should be solved by data transformation; see
e.g. Wand et al. (1991) or Yang and Marron (1999) for parametric, and Ruppert and
cline (1994) for nonparametric transformations.After an appropriate data transfor-
mation, the remaining estimation problem falls into the here considered smoothness
class (though, may be, with boundary problems). Note that the limitation to global
bandwidths is not that restrictive, and even quite common in density estimation. More-
over, when the covariates X were transformed such that a similar smoothness can be
assumed over the whole (transformed) support,using a global bandwidth is a quite
reasonable choice. Finally, we have limited our study to already published methods.

The idea of cross-validation methods goes back to Rudemo (1982) and Bowman
(1984), but we should also mention in this context the so-called pseudo-likelihood CV
methods invented by Habbema et al. (1974) and by Duin (1976). Due to the lack of
stability of this method, see e.g. Wand and Jones (1995), different modifications have
been proposed like the stabilized bandwidth selector of Chiu (1991a,1991b, 1992), the
smoothed CV proposed by Hall et al. (1992), the modified CV (MCV) of Stute (1992)
or the one of Feluch and Koronacki (1992), and most recently the one-sided CV of
Martinez-Miranda et al. (2009), and the indirect CV by Savchuk et al. (2010). The
biased CV (BCV) of Scott and Terrell (1987) is minimizing the asymptotic MISE, like
plug-in methods do, but uses a jack-knife procedure (therefore called CV) to avoid the
use of prior information. Methods that mingle different selectors or density estimators
were proposed by Ahmad and Ran (2004), calling it kernel contrast method, and by
Mammen et al. (2011), proposing the do-validation method.

Compared to CV, the so-called plug-in methods do minimize a different objective
function, namely the MISE instead of the ISE; they are less volatile but not entirely
data adaptive as they require some pilot information. In contrast, CV allows to choose
the bandwidth without making assumptions about the smoothness class (or the like) to
which the unknown density belongs. Plug-in methods have a faster convergence rate
compared to CV. Unfortunately, they can heavily depend on the choice of pilots; but if
we have excellent pilot estimators, then the performance of plug-in methods is pretty
good. Among these selectors, Silverman (1986) rule-of-thumb method is probably the
most popular one. Various refinements were introduced, like for example by Park and
Marron (1990), Sheather and Jones (1991), or by Hall et al. (1991). The bootstrap
methods of Taylor (1989) and all its modifications (cf. Cao 1993, or Chacon et al.
2008) are counted into the plug-in methods as they aim to minimize the MISE.

There are already several papers dealing with a comparison of different automatic
data-driven bandwidth selection methods. But they are actually older than 10 years. In
the 1970s and the early 1980s, survey papers about density estimation were published
by Wegman (1972), Tartar and Kronmal (1976), Fryer (1977), Wertz and Schneider
(1979), Bean and Tsokos (1980), etc. An introduction and comparison to various
methods of smoothing parameter selection was released by Marron (1988a) and by
Park and Marron (1990). Then, extensive simulation studies were published by Park
and Turlach (1992), Cao et al. (1994) and Chiu (1996). A brief survey was provided
by Jones et al. (1996a) with a comprehensive simulation study published in Jones
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et al. (1996b). Somewhat later, also Loader (1999) published a comparison paper,
partly as a reply to Jones et al. (1996b). To our knowledge, only Chacon et al. (2008),
published a comparison study in more recent years. However, they concentrated on
Bootstrap methods and only compared them with classical CV and the plug-in version
of Sheather and Jones (1991). While all these focused on the L2 norm, for the L1 view
we refer to Devroye and Gyorfi (1985) for density estimation, to Devroye and Lugosi
(1996) for an optimal bandwidth choice, and to Devroye (1997) for a comprehensive
comparison study.

The general criticism against the two classes of selection methods can be summa-
rized as follows: CV leads to undersmoothing and is known to hardly stabilize for large
data sets (they often just choose the smallest possible value among all bandwidths),
whereas plug-in depends on prior information and typically works badly for small
samples.

To make some statements about asymptotic theory, we use the following assump-
tions on the kernel and on the density.

– (A1) The kernel K is a compactly supported density function on R, symmetric
around zero, and has a Holder-continuous derivative K ′.

– (A2) It holds μ2(K ) < ∞, where μl(K ) = ∫ ul K (u)du.
– (A3) The density f is bounded and twice differentiable; f ′ and f ′′ are bounded

and integrable, and f ′′ is uniformly continuous.

For some methods, we will have to modify these conditions.
In our simulation study, we restrict to selection methods not using higher-order

kernels. Recall that the main motivation for the application of higher-order kernels
is their theoretical advantage of faster asymptotic convergence rates. However, their
substantial drawback is a loss in the practical interpretability as they involve negative
weights and might, therefore, give negative density estimates, see also Marron (1994).

In the context of asymptotic properties of bandwidth selectors, there is a trade-off
between the classical plug-in method and standard cross-validation. The plug-in has
always a smaller (asymptotic) variance compared to cross-validation (see Hall and
Marron 1987a) but often a larger bias in practice. To our knowledge, no other band-
width selector has so far outperformed the asymptotic properties of the sophisticated
plug-in methods. Although Hall and Jonstone (1992) stated that such methods must
theoretically exist, they could not give any practical example.

2 A brief review of previous reviews

The study of Park and Turlach (1992) comprised least square cross-validation, the
biased cross-validation (BCV) of Scott and Terrell (1987), the plug-in method (SJPI)
of Sheather and Jones (1991), the plug-in method (PM) of Park and Marron (1990), the
smooth cross-validation (SCV) of Hall et al. (1992), and a modified version (bandwidth
factorized SCV by Jones et al. (1991). The algorithms were discussed in the appendix
but there was no discussion about motivation, derivation or statistical properties. They
considered the estimation performance of mixtures of uni-, bi-and tri-modal normal
densities along three criteria: the mean integrated squared error, the mean integrated
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absolute error, and mode detection. To our knowledge, that study has been published
only as working paper.

Jones et al. (1996a,b) gave in their first paper a brief survey including rule-of-thumb
(ROT), CV, BCV, SJPI, and finally the smooth bootstrap method. They mentioned other
selectors like that of Chiu (1992) or Hall et al. (1992) without giving further details.
Their findings mainly coincided with those of Cao et al. (1994) who considered less
selectors, and only a few, quite smooth densities but also some qualitative measures like
the so-called IP- or the double kernel method. Jones et al. (1996b) took samples of sizes
n = 100 and n = 1,000 to estimate 15 different mixtures of normal densities. Along
the quality measures they chose, their own SJPI bandwidth selector performed best.

Chiu (1996) extended the set of bandwidth selectors considered in Park and Turlach
(1992) by his various stabilized methods, but he used just one specific bias-related
criterion to show the superiority of his methods. His article is actually neither a review
nor a general (simulation) or comparison study.

Loader (1999) replied to the then often claimed superiority of plug-in methods
on several fronts. He compared them with CV methods for density estimation and
regression, looking into the sources of differences. He argued that plug-in methods
were heavily dependent on arbitrary specifications of pilot bandwidths and failed when
this specification was wrong. He considered the likelihood based CV together with
its approximation by an Akaike-style criterion, the classical CV, SJPI, BCV, and the
fixed point iterations (GKK) approach of Gasser, Kneip and Köhler (1991). A detailed
simulation study comparing them all was not performed. Instead, he compared some
selectors along real data, and the methods CV, BCV, SJPI and GKK by some particular
simulations. Half of the paper was dedicated to regression.

Sheather (2004) gave a practical description of kernel density estimation revising
some estimation and bandwidth selection methods which he considered to be the most
popular at that time, together with software advise, a new modifications (data sharpen-
ing), and a real data application. Simulations or comparison studies were not provided.

Devroye (1997) presented the doubtless largest and most extensive comparison
study with discussion. The three main differences to all the other studies (including
ours) were that: first,he looked at the L1 measures when studying the asymptotic
properties. Second, he considered different kernel density estimators. Third, for the
estimation of about half of the densities from which he draw the samples in his simu-
lations one faces serious boundary problems or problems with jumps. Consequently,
he considered partly ‘quite’ and partly ‘slightly’ different bandwidth selectors. For
these four reasons, all other studies are hardly comparable with that one.

Nonetheless, our choice of considered densities has partly been guided by his sam-
ple even if we show only the results for a tiny subsample. Furthermore, as it has turned
out that for large samples, most of the selectors behave pretty well with diminishing
differences, we have concentrated in our simulation study on small (n ≥ 25) to at most
moderate (n ≤ 200) samples sizes. We also tried with n = 500 and n = 1,000; but the
only new findings were that the indirect CV methods reveal their (asymptotic) supe-
riority, whereas the leave-one-out cross-validation can easily recommend bandwidths
close to zero (depending on the real underlying density). This is also the moment when
the modified cross-validation (MCV) of Stute (1992) starts to become attractive. See
also our comment below on data rounding.
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3 Cross-validation methods in density estimation

Recall the performance measure ‘integrated squared error’ (ISE)

ISE(h) =
∫

̂f 2
h (x) dx − 2 E{̂fh(X)} +

∫

f 2(x) dx .

Evidently, the first term can be calculated from the data, the second can be expressed
as the expected value of ̂fh(X), and the third term can be ignored in the context of
bandwidth selection since it does not depend on the bandwidth. Note that estimating
E{̂fh(X)} by 1

n

∑n
i=1
̂fh(Xi ) is inadequate due to the implicit dependency (̂fh depends

on Xi ). So the different modifications of CV basically vary in the estimation of this
problematic second part.

Ordinary least squares cross-validation

This is the classical straightforward approach by just dropping Xi when estimating
f (Xi ), called jack-knife estimator and denoted by ̂fh,−i (Xi ). It yields the least-squares
CV criterion

min
h

CV(h) =
∫

̂f 2
h (x) dx − 2

1

n

n
∑

i=1

̂fh,−i (Xi ).

Stone (1984) showed that under the assumptions (A1)–(A3), the minimizing argu-
ment̂hCV fulfills

ISE(̂hCV)/ISE(ĥ0)
a.s.−−→ 1.

However, Hall and Marron (1987a) stated that this happened at a very slow rate;
specifically

n3/10(̂hCV −̂h0) −→ N (0, σ 2c−2) and

n
(

ISE(̂hCV)− ISE(ĥ0)
)

−→ 1

2
σ 2c−1χ2

1 (4)

under assumptions (A1)–(A3), and with terms σ and c depending only on f and K .
Many practitioners use this classical CV method nonetheless because of its intuitive
definition and simple implementation.

Recall the criticism saying that this classical CV lacks stability (even) when the
sample size increases. Silverman (1986) and others gave explanations based on con-
siderations of what happens if the distances |xi − x j | become very small for many
observations j �= i . Chiu (1991a) studied the problem occurring with data rounding
such that one obtains many ties (x j = xi for i �= j). Based on these considerations,
the following stabilized and modified CV versions emerged.
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Stabilized bandwidth selection

Based on characteristic functions Chiu (1991a,b, 1992) gave an expression for
wideĥCV which revealed the source of variation. Note that the CV criterion is approx-
imately equal to the expression

1

π

∫ ∞

0
|φ̃(λ)|2

{

w2(hλ)− 2w(hλ)
}

dλ+ 2K (0)/(nh),

with φ̃(λ) = 1
n

∑n
j=1 eiλX j and w(λ) = ∫ eiλu K (u)du. The noise in the CV estimate

is mainly contributed by |φ̃(λ)|2 at high frequencies, which does not contain much
information about f . To mitigate this problem, he looked at the difference of the
CV criterion and the MISE. As one alternative, he defined � as the first λ fulfilling
|φ̃(λ)|2 ≤ 3/n and replaced |φ̃(λ)|2 by 1/n for λ > �. This gave his criterion

min
h

Sn(h) =
∫ �

0
|φ̃(λ)|2

{

w2(hλ)− 2w(hλ)
}

dλ

+1

n

∫ ∞

�

{

w2(hλ)− 2w(hλ)
}

dλ+ 2πK (0)/(nh),

= π

nh
||K ||22 +

∫ �

0

{

|φ̃(λ)|2 − 1

n

}

{w2(hλ)− 2w(hλ)}dλ,

For the minimizer̂hST it can be shown that̂hST
a.s.−−→̂h0, and that it converges to h0

even at the optimal
√

n-rate. Note that in the literature this procedure is often counted
among the plug-in methods as it rather minimizes the MISE than the ISE. In our
implementation, when calculating � we came across with the computation of square
roots of negative terms in our simulations. To avoid complex numbers, we calculated
the absolute value of the radicand.

Modified cross-validation

Stute (1992) proposed a so-called modified CV (MCV). He approximated the prob-
lematic term by the aid of the Hajek projection. In fact, he showed that under some
regularity assumptions given below, 2E[ fh(x)] is the projection of

S + 1

h
E

[

K

(

X1 − X2

h

)]

= S + 1

h

∫ ∫

K

(

x − y

h

)

f (x) f (y) dx dy

= S +
∫

f 2(y)dy + 1

2
h2
∫

t2 K (t)dt
∫

f (y) f ′′(y)dy

+O(h3)

for S := 1

n(n − 1)h

∑

i �= j

K

(

Xi − X j

h

)
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yielding the criterion

min
h

MCV (h) =
∫

̂f 2
h (x)dx − S − μ2(K )

2n(n − 1)h

∑

i �= j

K ′′
(

Xi − X j

h

)

.

It can be shown that under assumptions (A1),

– (A2′) K is three times differentiable, with
∫

t4|K (t)| dt < ∞,
∫

t4|K ′′(t)| dt
< ∞,

∫

t4[K ′(t)]2 dt < ∞, and
∫

t2[K ′′′(t)]2 dt < ∞,
– (A3′) f four times continuously differentiable, the derivatives being bounded and

integrable,

one gets the consistency result

ISE(̂h0)

ISE(̂hMCV)

P−→ 1, and
̂h0

̂hMCV

P−→ 1 as n → ∞.

One-sided cross-validation

Marron (1986) made the point that ”the harder the estimation problem the better CV
works”. Based on this idea, Martinez-Miranda et al. (2009) proposed to first apply CV
to a harder estimation problem, and to afterward calculate the corresponding bandwidth
for the underlying ‘real’ estimation problem. To make the estimation problem harder,
they used a worse estimator, still (1) but with a local linear version of a one-sided
kernel,

L(u) =
μ2(K )− u

(

2
∫ 0
−∞ t K (t) dt

)

μ2(K )−
(

2
∫ 0
−∞ t K (t) dt

)2 2K (u)1{u<0}.

This modification goes back to Hart and Yi (1998) who did this for regression. One
defines the one-sided versions of ISE and MISE with their minimizerŝb0 and b0, and
the criterion becomes

min
b

OSCV(b) =
∫

̂f 2
le f t,b(x) dx − 2

n

n
∑

i=1

̂fle f t,b(Xi ),

where ̂fleft,b is the one-sided (to the left) kernel density estimator. The corresponding
bandwidth for the ‘real’ estimation problem is then given by

̂hOSCV := C ·̂bOSCV with C = h0/b0.

Note that C is deterministic, depending only on kernel K because of

h0 =
(

||K ||22
(μ2(K ))2|| f ′′||22n

)1/5

, b0 =
(

||L||22
(μ2(L))2|| f ′′||22n

)1/5

.
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This gives, for example C ≈ 0.537 for the Epanechnikov kernel. The theoretical
justification for the stability of one-sided CV is based on the result of Hall and Marron
(1987a), recall Eq. (4). That result allows to calculate the variance reduction of OSCV
compared to CV by {C σ̄c/(c̄σ)}2 where c̄, σ̄ are just as c, σ but with kernel L instead
of K . Note that L can also be constructed as a one-sided kernel to the right.

Indirect cross-validation

Based on the same idea, Savchuk et al. (2010) proposed to use

L(u) = (1 + α)φ(u)− ας−1φ(uς−1),

whereφ is the Gaussian kernel, andα > 0,ς > 0 have to be chosen appropriately. They
demonstrated the excellent theoretical properties of such an ‘indirect method’, and
discussed the robustness of the indirect methods to data rounding (see above or Density
estimation 1986). For the two additional prior parameter (α, ς) they made several
proposals derived from their asymptotic theory. Specifically, they first recommended
for 100 ≤ n ≤ 500,000 to take the values

α = 103.39−1.093 log10(n)+0.025 log3
10(n)−0.00004 log6

10(n),

ς = 10−0.58+0.386 log10(n)−0.012 log2
10(n).

But based on asymptotic and practical considerations, the following rule is
proposed:

(α, ς) = (2.42; max(5.06, 0.149n3/8)),

where the max function chooses always 5.06 unless n > 12, 094. For our imple-
mentation with Epanechnikov kernels, their method worked well only for pretty large
samples whatever proposal for choosing (α, ς) we tried.

Further cross-validation methods

Feluch and Koronacki (1992) proposed to cut out not only Xi when estimating f (Xi )

but rather dropping also the m < n nearest neighbors with m → ∞ such that m/n →
0. The idea is similar to the CV selection for time series data, cf. Hardle and Vieu
(1992). Like Stute (1992), they called this version modified CV. Unfortunately, it
turned out that the quality of this method crucially depended on the choice of m. As
we could not find any recommendation for its choice, this method cannot be classified
as one being automatic or data driven, and would not be considered further.

Scott and Terrell (1987) introduced the B(iased)CV. As they worried about unre-
liable small-sample results, i.e. the high variability of CV, they directly focused on
minimizing the asymptotic MISE. The unknown term || f ′′(x)||22 was estimated via
jack-knife methods. Already in their own paper they admitted a poor performance for
small samples and mixtures of densities, see also Chiu (1996). Jones et al. (1996b)
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underlined in their simulation study its deficient performance (‘quite good’ to ‘very
poor’) even when referring to situations where it still seemed to be a reasonable selec-
tor.

The S(moothed)CV was evolved by Hall et al. (1992). The general idea was a
kind of presmoothing of the data before applying the CV criterion. This procedure of
presmoothing results in smaller sample variability but enlarges the bias. Therefore, the
resulting bandwidth is often oversmoothing and cuts off some important features of the
underlying density. With this method, it is possible to achieve the optimal

√
n rate of

convergence—but only when using a kernel of order ≥6. So it seems to be appropriate
for huge samples only.Jones et al. (1996b) showed that without such a higher-order
kernel, there exists an n−1/10 convergent version of SCV that is identical to Taylor’s
bootstrap method (Taylor 1989), and is closely related to the bootstrap method of Cao
(1993). These methods do not belong to the cross-validation methods, and hence, will
be discussed later. Additionally, with a special choice of pilot bandwidth (necessary in
all these methods), the SCV results in an n−5/14 convergent version that is similar to
the so-called diagonal-in selector of Park and Marron (1990). In conclusion, we have
not implemented the SCV, because its similarity to other methods and because we did
not want to use higher-order kernels for samples with n < 500.

The P(artitioned)CV was suggested by Marron (1988b). He modified the CV cri-
terion by splitting the sample of size n into m subsamples. The PCV is calculated by
minimizing the average of the score functions of the CV-score for all subsamples. In
a final step, the resulting bandwidth needs to be rescaled. The number of subsamples
affects the trade-off between variance and bias. Hence, the choice of a pilot m is the
crucial problem in this case, and as Park and Marron (1990) noticed: “this method ...
is not quite fully objective”. It further requires a large sample size to get subsamples
of reasonable sizes.

The pseudo-likelihood (also called the Kullback–Leibler) cross-validation, invented
by Habbema et al. (1974) and by Duin (1976), aims to find the bandwidth maximizing
a pseudo-likelihood criterion with leaving-out the observation Xi . Due to the fact that
many authors criticized this method being inappropriate for density estimation, we
skipped also this method in our simulation study.

Wegkamp (1999) suggested a method being very much related to the CV technique
providing a quasi-universal bandwidth selector for bounded densities. This was based
on a optimality concept of Devroye and Lugosi (1996) but translated to the L2-norm
context. Among other problems in practice, the procedure requires sample splitting
which can be quite problematic for small and moderate sample sizes, see above. His
paper stayed on a rather technical level without providing any algorithm or how to do
for example the sample splitting in practice.

4 Plug-in methods in density estimation

Under (A1)–(A3) the MISE can be written as

MISE
[

f̂h(x)
]

= h4

4
μ2

2(K )|| f ′′(x)||22 + 1

nh
||K ||22 + o

(

1

nh

)

+ o(h4),
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for n → ∞, h → 0, such that the asymptotically optimal bandwidth is then equal to

||K ||2/52

(

|| f ′′||22 [μ2(K )]
2 n
)−1/5

, (5)

where || f ′′||22 is unknown and has to be estimated. A most popular method is the
rule-of-thumb choice introduced by Silverman (1986). He used the normal density
as a prior for approximating || f ′′||22. For the necessary estimation of the standard
deviation of X , he proposed a robust version making use of the interquartile range. If
the true underlying density is unimodal, fairly symmetric and does not have fat tails,
Silverman’s rule-of-thumb bandwidth (hS) works fairly well.

Park and Marron’s plug-in

Natural refinements consist of using nonparametric estimates for || f ′′||22. Let us con-
sider

̂f ′′
g (x) = 1

ng3

n
∑

i=1

K ′′
(

x − Xi

g

)

,

where g is a prior bandwidth.
Hall and Marron (1987b) proposed several estimators for || f ′′||22, all containing

double sums over the sample. They pointed out that the diagonal elements give a non-
stochastic term which does not depend on the sample but increases the bias. They,
therefore, proposed the bias-corrected estimator

̂|| f ′′||22 = ||̂f ′′
g ||22 − 1

ng5
||K ′′||22, (6)

which is used in (5) to obtain

ĥ =
⎛

⎝

||K ||22
̂|| f ′′||22μ2

2(K )n

⎞

⎠

1/5

. (7)

The question which arises is how to obtain a proper prior bandwidth g. In Park and

Marron (1990), g was the minimizer for the asymptotic mean squared error of ̂|| f ′′||22.
With (7), one gets a prior bandwidth g in terms of ĥ (using the notation in the original
paper)

g = C3(K )C4( f )ĥ10/13, (8)

where C3(K ) contains the fourth derivative and convolutions of K , and C4( f ) contains
the second and third derivatives of f . The optimal (g, h P M ) can be obtained by
numerical solution of the Eqs. (7) and (8). The relative rate of convergence to h0 is
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of order Op(n−4/13), which is suboptimal compared to the optimal
√

n-rate, cf. Hall
and Marron (1991).

Sheather and Jones’ plug-in

An often cited method is the so-called Sheather and Jones (1991) bandwidth, see also
Jones and Sheather (1991). They used the same idea like Park and Marron (1990) but
replaced the ‘diagonal-out’ estimator of || f ′′||22 by their ‘diagonal-in’ version to avoid

the problem that the estimator ̂|| f ′′||22 (see (6)) may give negative results. They stated
that the non-stochastic term in (6) was subducted because of its positive effect on the
bias in estimating || f ′′||22. The idea was to choose the prior bandwidth g such that the
negative bias due to the smoothing compensates the impact of the diagonal-in terms.
As a result they estimated || f ′′||22 by ||̂f ′′

g ||22 which is always positive, and obtained

g = C(K , L)

(

|| f ′′||22
|| f ′′′||22

)1/7

h5/7,

where C(K , L) depends on L , the kernel used to estimate || f ′′||22. As usual, K indicates
the kernel of the original estimation. Then, || f ′′||22 and || f ′′′||22 were estimated using
||̂f ′′

a ||22 and ||̂f ′′′
b ||22, where a and b were set equal to the rule-of-thumb bandwidths

of Silverman. Sheather and Jones (1991) showed that their optimal bandwidth had
a convergence rate of n−5/14 which is slightly better than that of Park and Marron
(1990). Using real data, Jones et al. (1996b) found that ̂hSJ was pretty close to Park
and Marron’s bandwidth in practice. Hence, without beating that one in practical
performance, having only a slightly better convergence rate, but being computationally
much more expensive, we suppressed̂hSJ in favor of the (simplified) Jones et al. (1991)
bandwidth.

Implemented refined plug-in

For small samples and small (optimal) bandwidths, the above estimator ̂|| f ′′||22 can eas-
ily fail in practice. Also, to find a numerical solution for (g, hPM)may become quite dif-
ficult in practice; the final result depend on stopping rules and there might exist multiple
local maxima for the finite-sample two-dimensional problem. To avoid these inconve-
niences, and to offer a quick and easy solution, we propose to first take Silverman’s rule-
of-thumb bandwidth for Gaussian kernels, i.e. hS = 1.06 min{1.34−1IR, sn}n−1/5

with interquartile range (IR) of X , and sn the sample standard deviation. Then adjust
hS for Quartic kernels along the idea of canonical kernels and equivalence bandwidths,
see Hardle et al. (2004). The Quartic kernel is pretty similar to the Epanechnikov ker-
nel but allows for the estimation of second derivatives. Then, adjusting for the slower
optimal rate for second derivative estimation gives as a prior for (6)

g = hS
2.0362

0.7764
n1/5−1/9.
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This bandwidth leads to very reasonable estimates of the second derivative of f ,
and hence of || f ′′||22. A further advantage is that this prior g is rather easily obtained.
For the rest we follow Park and Marron (1990) and call the resulting bandwidtĥh P M

because this is a simplified version of their ideas.

Bootstrap methods

The principle of the bootstrap-based selection methods is to select the bandwidth
along bootstrap estimates of the ISE or the MISE. For a general description of this
resampling idea in nonparametric problems, see Hall (1990). Imagine that we have
a Parzen-Rosenblatt estimate ̂fg for a given pilot bandwidth g. From ̂fg we can
now draw some bootstrap samples (X∗

1, X∗
2, . . . , X∗

n). Defining the bootstrap kernel
density

̂f ∗
h (x) = 1

nh

n
∑

i=1

K

(

x − X∗
i

h

)

,

the (mean) integrated squared error to be minimized could be approximated by

ISE∗(h) :=
∫

(

̂f ∗
h (x)− ̂fg(x)

)2
dx,

MISE∗(h) := E∗
[∫

(

̂f ∗
h (x)− ̂fg(x)

)2
dx

]

. (9)

It can be shown that the expectation E∗ and MISE∗ depend only on the orig-
inal sample, and not on the bootstrap samples. Consequently, there is no need to
do resampling to obtain the MISE∗. Using Fubini’s theorem and decomposing the
MISE∗ = V ∗ + SB∗ into the integrated variance

V ∗(h) = 1

nh
· ||K ||22 + 1

n
·
∫ (∫

K (u) · ̂fg(x − hu) du

)2

dx (10)

and the integrated squared bias

SB∗(h) =
∫ (∫

K (u) · (̂fg(x − hu)− ̂fg(x)) du

)2

dx (11)

one obtains

V ∗(h) = 1

nh
||K ||22 + 1

n3

n
∑

i=1

n
∑

j=1

[

(Kh 
 Kg) 
 (Kh 
 Kg)
]

(Xi − X j ), (12)

where 
 denotes convolution, and
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SB∗(h) = 1

n2

n
∑

i=1

n
∑

j=1

[

(Kh 
 Kg − Kg) 
 (Kh 
 Kg − Kg)
]

(Xi − X j ). (13)

In practice, it is hard to get explicit formulae for these integrals when the kernel
has a bounded support. However, using the Gaussian kernel in (12) and (13), we can
directly calculate the optimal bandwidth as the minimizer of

MISE ∗ (h) = 1

2nh
√
π

+ 1√
2π

⎡

⎢

⎢

⎢

⎢

⎣

∑

i, j

(

exp

(

− 1
2

(

Xi −X j

g
√

2

)2
))

√

2g2 · n2
(14)

−
2 ·∑i, j

(

exp

(

− 1
2

(

Xi −X j√
h2+2g2

)2
))

√

h2 + 2g2 · n2

+
(n + 1)

∑

i, j

(

exp

(

− 1
2

(

Xi −X j√
2(h2+g2)

)2
))

√

2(h2 + g2) · n3

⎤

⎥

⎥

⎥

⎥

⎦

.

The equivalent bandwidth for any other kernel can be obtained as described in
Marron and Nolan (1988) or Hardle et al. (2004).

The bootstrap approach in kernel density estimation was first presented by Taylor
(1989). However, many modified versions were published later on, see for example
Faraway and Jhun (1990), Hall (1990) or Cao (1993). The crucial differences between
these versions are how they choose the pilot bandwidth g, and they generate the
bootstrap samples.

Taylor (1989) suggested to take g = h and used a Gaussian kernel. Several authors
pointed out that this procedure had no finite minimum and hence would choose a local
minimum or the upper limit of the bandwidths grid as its optimum. Marron (1992)
showed that this led to an inappropriate choice and a serious positive bias. Differing
from this approach, Faraway and Jhun (1990) proposed a least-square cross-validation
estimate to find g. Hall (1990) recommended to use the empirical distribution to draw
bootstrap samples of size m < n, proposed m � n1/2, h = g(m/n)1/5, and minimized
MISE∗ with respect to g. Cao et al. (1994) demonstrated that the bootstrap version
of Hall was quite unstable and showed a bad performance, especially for mixtures of
normal distributions. They found also that the methods of Faraway and Jhun (1990) as
well as the one of Hall (1990) were outperformed by the method of Cao (1993) which
we introduce below.

A bias corrected bootstrap estimate was developed by Grund and Polzehl (1997).
They obtained an root-n convergent bandwidth estimate which attained very good
results for larger sample sizes, but less so for moderate and small samples. Moreover,
to derive their asymptotic theory they had to use extraordinarily strong assumptions
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compared to the other methods. In their simulation study, Grund and Polzehl showed
that the performance heavily depended on the choice of g. They stated that using
their oversmoothing bandwidth (that guaranteed root-n convergence) seemed to be far
from optimal for smaller sample sizes. In contrast, using g = h would achieve better
performance in practical applications. However, setting g = h results in a convergence
rate of order n−1/10. Summing up, they remarked that faster rates of convergence do
not result in better practical performance.

In the smoothed bootstrap version of Cao (1993), the pilot bandwidth g is estimated
by asymptotic expressions of the minimizer of the dominant part of the mean squared
error. For further details see Cao (1993). He noticed that in (13) for i = j this term
would inflate the bias artificially. He, therefore, proposed to use a modified bootstrap
integrated squared bias, namely

MB∗(h) = 1

n2

∑

i �= j

[

(Kh 
 Kg − Kg) 
 (Kh 
 Kg − Kg)
]

(Xi − X j ).

Concerning the convergence rate, he showed for his bandwidth, say h∗
0,

MISE(h∗
0)− MISE(h0)

MISE(h0)
= OP (n

−5/7)

MISE(h∗
0M
)− MISE(h0)

MISE(h0)
= OP (n

−8/13).

Note that the convergence rate for the original bootstrap version was slightly faster.
Recently, Chacon et al. (2008), published a bootstrap version quite similar to Cao

(1993). They showed that the asymptotic expressions of his bandwidth estimates might
be inadequate and defined an expression g(h) for fixed h. They proposed estimators
for g, and allowed for different kernels L and K for the bandwidths g and h. They
stated that their approach was a good compromise between classical cross-validation
and plug-in. However, its performance depended seriously on the reference density.
Exploring the asymptotics, they achieved root-n convergence only under the use of
higher-order kernels.

In sum, in our simulation study, we concentrate on just one representative of the class
of bootstrap estimates, going back to Cao (1993). He proved that the pilot bandwidth
g as the minimizer of (9) coincides with the minimizer of the dominant part of the
mean squared error. Specifically, it is given by

g =
⎛

⎝

||K ||22
̂|| f ′′′||22μ2

2(K )n

⎞

⎠

1/7

.

This formula is used for the pilot bandwidth g when calculating (14). In our sim-
ulations, we additionally ran the bootstrap for the Epanechnikov kernel calculating
formulae (10) and (11) numerically. As this was much slower and gave uniformly
worse results, we will neglect that approach for the rest of the paper.
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Further plug-in methods

Many other plug-in methods have been developed. Some of them exhibited better
asymptotic properties and others a better performance in some particular small sam-
ple simulations. However, most of them have not become (widely) accepted (n)or
known.

Hart et al. (1991) introduced a plug-in method giving back a bandwidth ĥHSJM
which achieved the optimal

√
n-rate of convergence. A problem with their bandwidth

ĥHSJM was that they used higher-order kernels to ensure the
√

n convergence (actu-
ally a kernel of order 6 or higher). It is well known (see Marron and Wand 1992)
that albeit their theoretical advantages, higher-order kernels have a surprisingly bad
performance in practice, at least for moderate sample sizes. Furthermore, in the simu-
lation study of Park and Turlach (1992) ĥHSJM was generally bad for bi- and trimodal
densities.

Jones et al. (1991) developed a plug-in method based on the SCV idea, see
above. They used the prior bandwidth g = C( f )n phm , where the normal den-
sity was used as a reference distribution to calculate the unknown constant C( f ).
The advantage of their estimator was the

√
n convergence rate if m = −2 and

p = 23
45 even for kernels of order 2. In their simulation studies, Turlach (1994)

and Chiu (1996) found a small variance compared to CV, but an unacceptable huge
bias.

Also Kim et al. (1994) showed the existence of a
√

n convergent method without
the use of higher-order kernels. The main idea of obtaining asymptotically best band-
width selectors was based on an exact MISE expansion. But the results of their paper
were primarily provided for theoretical completeness; the practical performance in
simulation studies was rather disappointing, which was already explicitly mentioned
in their own paper and also confirmed later in a simulation study performed by Jones
et al. (1996b).

For the sake of completeness, we also refer to the ’Double Kernel method’ of
Devroye (1989) and Jones (1998). This method has the advantage to be quite univer-
sal. Under some particular assumptions, it coincides with Taylor’s bootstrap selector,
respectively the BCV method, see above. As already mentioned, these two methods
had several disadvantages, and also the Double Kernel method required the use of
higher-order kernels. In Jones (1998), the performance of the Double Kernel method
was assessed by comparing asymptotic convergence rates, but it did not exhibit the
expected improvement in the estimation of h0 (MISE optimal bandwidth) compared
for example to SCV.

5 Mixing methods in density estimation

Recall that all authors have criticized that the cross-validation criterion tends to under-
smooth and suffers from high sample variability. At the same time, the plug-in esti-
mates deliver a much more stable estimate but typically oversmooth. These findings
suggest to combine different bandwidths or density estimators.
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Mixing the bandwidths: Do-validation

Recently, Mammen et al. (2011) took the idea of indirect cross-validation of which
OSCV is a particular case, and extended it to the idea of mixing bandwidth selectors.
For these mixtures they calculated the asymptotic properties and derived numerically
optimal weights for particular cases. They considered

̂h =
J
∑

j=1

w j

(

R(K )

μ2
2(K )

μ2
2(L j )

R(L j )

)1/5

̂h j (15)

for some weightsw j (not necessarily positive) with
∑J

j=1w j = 1, where thêh j were
bandwidth estimates based on selector methods with selection kernel L j , see above.
After multiplying with the factor (R(K )μ2

2(L j ))
1/5(μ2

2(K ) R(L j ))
−1/5 one gets a

selector for a density estimator with kernel K . They further looked at

̂h∗ =
J
∑

j=2

w j

(

R(K )

μ2
2(K )

μ2
2(L j )

R(L j )

)1/5

̂h j + w1̂hMISE, (16)

with an asymptotically MISE-optimal bandwidth ̂hMISE. For all these selectors they
showed that

n3/10(̂h − ĥ0) → N (0, σ 2
1 ) in distribution,

and n3/10(̂h − h0) → N (0, σ 2
2 ) in distribution.

Explicit expressions for σ1 and σ2 were given in that paper for all kind of (mixtures
of) bandwidth selectors. For J = 2 and L2 being the left-sided version of K , they
found that the asymptotically optimal weights were w2 = 1 − w1 = −0.21 in (16),
and w2 = 1 − w1 = 0.5 in (15) with L1 being the right-sided version of K . They
recommended mixing left-sided CV with right-sided CV, calling it Do-validation.
Finally, they compared the asymptotics and finite sample behavior of their proposals
with three standard methods.

Mixing the estimators: the contrast method

Ahmad and Ran (2004) proposed a kernel contrast method for choosing bandwidths
either minimizing the ISE or alternatively the MISE. Their idea is as follows. Choose
J different kernels K j with arbitrary contrast coefficients a j and positive weights b j

such that
∑

j a j = 0,
∑

j b j = 1. Then construct the contrast
∑

j a j ̂fh(x; K j ) with
̂fh as in (1) but with different kernels K j . Find ĥ that minimizes the ISE (or the MISE,
respectively) of the contrast

∫

⎛

⎝

∑

j

a j ̂fh(x; K j )

⎞

⎠

2

dx .
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Take as a final density estimator

˜f (x) =
∑

j

b j ̂fλĥ(x; K j ), where λ5 =
(

∑

j a jσ
2
j

)2
R(ϕ)

(

∑

j b jσ
2
j

)2
R(ψ)

ϕ(u) =
∑

j

a j K j (u), ψ(u) =
∑

j

b j K j (u), and σ 2
j = μ2(K j ).

The evident problem is that one has to choose J and needs two series of coefficients
which can have a serious impact on the performance of the method, especially for small
and moderate sample sizes. We doubt that practitioners will opt for a method that even
increases the number of prior parameter to be chosen—and this even by an arbitrary
amount—instead of reducing it. Note that different choices lead to different outcomes.
As we are not aware of any reasonable data driven method to choose them, we will
not consider this bandwidth selector in the simulation study.

Further mixing methods

We are aware of the existence of other approaches which combine various density
estimators by using a mixture of their smoothing parameters. In the literature, we
found some papers that addressed the problem of linear and/or convex aggregation, e.g.
Rigollet and Tsybakov (2007), Samarov and Tsybakov (2007) as well as Yang (2000).
However, as the main focus of our review paper is not on the aggregation of different
density estimators, we will not investigate this further in detail, but only study some
mixtures of bandwidths which, admittedly, arise from intuition1. More specifically,
having in mind that CV undersmoothes and PI oversmoothes, and that bandwidths
are scaling parameters which should be combined on a logarithmic (i.e.multiplicative)
scale, we will consider (̂hαCV

̂hβPM)
1/(α+β) with α = 1, β = 2 (mix1), α = 2, β = 1

(mix2), and α = β = 1 (mix3).

6 Finite sample performance

The small sample performance of the different cross-validation, plug-in and bootstrap
methods is compared. For obvious reasons, we limit the study to data adaptive methods
without boundary correction. Although we tried many different designs we summarize
here the results for six densities where the estimation results expose pretty well the
main findings, in particular:

1. Laplace distribution f (x) = 4 exp(−|8(x − 0.5)|)
2. Simple Gamma distribution: Gamma(a, b) with b = 1.5, a = b2 applied on 5x

with x ∈ R, i.e. f (x) = 5 ba

�(a) (5x)a−1e−5xb

3. Mixture of three gamma, Gamma(a j , b j ), a j = b2
j , b1 = 1.5, b2 = 3 and b3 = 6

applied on 8x giving two bumps and one plateau

1 We are grateful to the comments and suggestions of one of the anonymous referees.
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4. Simple normal distribution, N (0.5, 0.22) with only one mode
5. Mixture of N (0.35, 0.12) and N (0.65, 0.12) giving two modes
6. A triple mode mixture of N (0.25, 0.0752), N (0.5, 0.0752), and N (0.75, 0.0752)

As can be seen in Fig. 1, all densities have the main mass in [0, 1] with exponentially
decreasing tails. So that we can neglect possible boundary effects. We also simulated
estimators with boundary corrections getting results very close to what we have found
in the here presented study.

We have compared the performance by several measures based on the integrated
squared error (ISE) of the resulting density estimate (not the bandwidth estimate),
and on the distance to the numerically ISE minimizing bandwidth, say hopt ≈ ̂h0 (of
each simulation run, as it is sample-dependent). The considered performance measures
were

c1: mean(ĥ − hopt), bias of the estimated bandwidth

c2: mean
[

ISE(ĥ)
]

, the average (or expected) ISE

c3: std
[

ISE(ĥ)
]

, the volatility of the ISE

c4: mean

(

[

ISE(ĥ)− ISE(hopt)
]2
)

, squared L2 distance of the ISEs

c5: mean
[

| ISE(ĥ)− ISE(hopt) |
]

, L1-distance of the ISEs

We also considered other indicators of quality but will concentrate now only on
these as we believe that they are the most meaningful ones. Instead of looking at
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Fig. 1 The data generating densities: design 1–6 from the upper left to the lower right

123



422 N.-B. Heidenreich et al.

(c2, c3), one can certainly look at the ISE distribution as a whole, for example, via
box-plots.

We studied almost all selection methods, excluding the non-automatic ones and
those having proved to perform uniformly worse than their competitors. In the presen-
tation of the results, we concentrate on the methods which delivered the best results.
Hence, some methods were dropped, e.g. the MCV sometimes provides multiple min-
ima with a global minimum being far outside the range of reasonable bandwidths. We
do neither show results for the indirect cross-validation since for small and moderate
samples it just works worse than OSCV. Among the bootstrap methods, we concen-
trate on the presentation of the version (14) of the Smoothed Bootstrap which has
achieved the best results among all bootstrap methods. For our mixed version (CV
with refined plug-in), we first concentrate on mix3 when comparing it to the other
selection methods, and later sketch the results comparing different mixtures.

While it is clear that one-sided CV and Do-validation give almost identical results
for symmetric distributions, it is also clear that the latter will be more robust when
asymmetry is present but unknown. We, therefore, skipped all results for Do-validation
and refer to the paper of Mammen et al. (2011) instead. Notice that they only considered
additive mixtures.

Summarizing, we present the following methods: CV (cross validation), OSCV-l
(one-sided CV to the left), OSCV-r (oscv to the right), STAB (stabilized), RPI (refined
plug-in), SBG (smooth bootstrap with Gaussian kernel—the results refer to the equiva-
lent bandwidth for the Epanechnikov kernel), Mix 1/2 (our mix3), and as a benchmark
the ISE (infeasible ISE minimizing hopt). For all methods, the bandwidth search is
performed on the same bandwidth grid of 25 bandwidths on a logarithmic scale from
n−1 to 1. We give only results referring to sample sizes n = 25, 50, 100, and n = 200.

6.1 Simulation results

To summarize and compare the different bandwidth selectors, we first consider the
selected bandwidths and the corresponding biases for each method separately. After-
ward, we compare the methods by various performance measures. All results are based
on 250 simulation runs.

Comparison of the bias for the different bandwidths

In Fig. 2, we illustrate the Bias (c1) for the different methods for different sample sizes
and distributions.

Let us consider the cross-validation method (CV). Many authors have mentioned
the lack of stability of the CV criterion and its tendency to undersmooth. In Fig. 2,
we see that CV has the smallest bias for all sample sizes and densities (except for
the simple normal for which the mix3 is competitive). This is simply due to the fact
that CV chooses always a smaller bandwidth than the other selectors. When the ISE
optimal bandwidth is indeed very small, CV does, therefore, very well. However, CV
clearly undersmoothes in the case of the simple normal distribution as id does for all
rather smooth densities.
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Fig. 2 Comparison of the BIAS for different sample sizes and different densities

The one-sided versions (OSCV) are quite stable. Regarding the bias, they are neither
the best nor the worst over all sample sizes and models. As already stated by the original
authors, the OSCV tends to overestimate the bandwidth a little bit. While for n = 25,
the OSCV is outperformed by almost all other methods, the bias problem disappears
rapidly for increasing n. For n = 100 and 200 we see that their biases become much
smaller than for the other methods except CV (and STAB in the simple normal case).
Moreover, they never fail dramatically when n > 25. This feature is an intuitive benefit
of this method when in practice the underlying density is completely unknown. For
the densities studied, the differences between the left-(OSCV-l) and the right-sided
(OSCV-r) versions are negligible except for the gamma distributions because of its
asymmetry.

The stabilized procedure of Chiu (STAB) is excellent for the simple normal case but
it falls short when estimating other densities confirming that ”when the true density
is not smooth enough, the stabilized procedure is more biased toward oversmoothing
than CV”, see (Chiu 1991a,b). This fact can be seen well in Fig. 2 where STAB has
increasing difficulties, compared to CV, with an increasing number of bumps. Even
though this method demonstrates here a reasonable performance, the results should
be interpreted with care, since in the derivation of � one has to deal with complex
numbers. This problem we solved in favor of this method for the context of our
simulations such that all presented results are clearly biased in favor of STAB.

The refined plug-in (refPI) and the smoothed bootstrap SBG show a similar behav-
ior, though the bias of the SBG is mostly smaller than for refPI. Both are worse than
STAB for small samples but outperform it for increasing n. Not surprisingly, in gen-
eral, the bias for the MISE minimizing methods is larger than for all others. This
partly results from the fact that we constructed our prior bandwidth on second and
third derivatives that result from a simple normal distribution.

The mixture of CV and plug-in is a compromise giving biases lying between the
ISE and the MISE minimizing methods. It is interesting to see that this yields such a
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stable performance. We should mention that there were only minor differences between
the three versions of mixtures (not shown here). Clearly, the larger the share of the
respective method, the bigger their impact on the final estimate.

Comparison of the ISE values

Next, we compare the ISE values of the density estimates based on the different
bandwidth selectors. The results are given in terms of boxplots plus the mean (linked
squares) displaying this way the distribution of the ISEs over 250 simulation runs. In
Fig. 3, we consider the mixture of three normal distributions (model 6) and compare
different sample sizes, whereas in Fig. 4 the sample size is fixed to n = 100 while the
true underlying distribution varies.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n=25

T
hr

ee
 N

or
m

al
 D

is
tr

ib
ut

io
ns

C
V

O
S

C
V

−
l

O
S

C
V

−
r

S
TA

B

re
fP

I

S
B

G

M
ix

1/
2

IS
E

0.
0

0.
1

0.
2

0.
3

0.
4

n=50
T

hr
ee

 N
or

m
al

 D
is

tr
ib

ut
io

ns

C
V

O
S

C
V

−
l

O
S

C
V

−
r

S
TA

B

re
fP

I

S
B

G

M
ix

1/
2

IS
E

0.
00

0.
10

0.
20

0.
30

n=100

T
hr

ee
 N

or
m

al
 D

is
tr

ib
ut

io
ns

C
V

O
S

C
V

−
l

O
S

C
V

−
r

S
TA

B

re
fP

I

S
B

G

M
ix

1/
2

IS
E

0.
00

0.
05

0.
10

0.
15

0.
20

n=200

T
hr

ee
 N

or
m

al
 D

is
tr

ib
ut

io
ns

C
V

O
S

C
V

−
l

O
S

C
V

−
r

S
TA

B

re
fP

I

S
B

G

M
ix

1/
2

IS
E

Fig. 3 Box-plots and means (filled square) of the ISE values for the mixture of three normal densities with
different sample sizes
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Fig. 4 Box-plots and means (filled square) of the ISE values for different distributions with sample size
n = 100

Certainly, for all methods the ISE values decrease with the sample size and increase
with the complexity of the estimation problem. As expected, the classical CV shows
a high variation for all cases (upper extreme values are not shown for the sake of
presentation). The one-sided CV and the STAB versions do much better, while the
least variation is achieved by the MISE minimizing methods (STAB, refPI and SBG).
However, the drawback of these three methods becomes obvious when looking at
the size of its ISE values; they are clearly smaller for the CV-based methods when
n ≥ 25. Moreover, for increasing sample size the ISE values decrease very slowly
for the MISE-based methods, whereas for the CV methods they come close to the
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smallest achievable ISE. Note that regarding the ISE minimization, the one-sided CV
methods show the best performance, except for the triple mode normal mixture. They
do not vary as much as the classical CV selector, and their mean value is almost always
smaller than for the other methods, see Fig. 4.

The stabilized procedure of Chiu (STAB) delivers—as the name suggests—a very
stable estimate for the bandwidth. But in the end, it is hardly more stable than, for
example, the one-sided CV-based selectors. It is much worse regarding the mean and
median. We else see confirmed what we already discussed in the context of biases
above. The mixture of CV and plug-in lowers the negative impacts of both versions
and does surprisingly well; the mixture delivers a more stable estimate, and produced
good density estimates.

Comparison of the L1- and L2-distance of the ISE

To get an even better idea of the distance between the ISE values achieved by the
selectors and the ISE optimal (i.e. achievable) values, let us have a closer look at c5
and c6, say the L1 and L2 distances. In our opinion, these measures are probably
the most interesting ones for practitioners. Figures 5 and 6 show these L1- and the
L2-distances for the different sample sizes and models.

The pictures reveal that for CV bandwidths, the c5 are really big, even if the under-
lying density is not wiggly at all. This obviously is due to the high variability of the
selected bandwidths. This effect does especially apply for small sample sizes; but
notice that for large samples like n = 500 the classical CV still does not work well
(not shown). Regarding the L1 measure (c5), we see that the CV delivers often pretty
small values for samples of size n > 50.

While both OSCV methods have problems with particularly small sample sizes,
they else easily compete with all the other selectors. One may say that for the normal
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Fig. 5 L1-distances to ISE(hopt) for different sample sizes of the six underlying densities
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Fig. 6 L2-distances to ISE(hopt) for different sample sizes of the six underlying densities

densities the OSCV methods are neither the best nor the worst methods, but always
within the grasp of the best method. This corroborates our statement from above that
an OSCV selector should be used if we do not know anything about the underlying
density. Another conspicuous finding in Fig. 5 is the difference between the two one-
sided versions for the gamma distribution(s). Because of missing boundary correction
on the left, the OSCV-l behaves very badly especially for small sample sizes. We
actually get similar results for n = 25 when looking at the L2-distances, see below.

The three MISE minimizing methods do very well for the simple normal and simple
gamma distribution, but else we observe a worse performance which can be traced
back to the prior selection problem already described above. Even for bigger sample
sizes, all three methods deliver a relative big L1-distance for the mixture models. They
do further not benefit as much from an increasing n as other methods do. Within this
MISE minimizing group, the STAB shows a smaller L1-distance for more complex
densities. Actually, for the mixture of the three Gamma distributions, we can see that
his L1-distances to the optimal ISE are always very small, except for the refPI and
SBG with n = 25.

The mixture of CV and refined plug-in reflects the negative attributes of the CV, but
nevertheless it is often in the range of the best methods for larger samples. A further
advantage of the mixed version is that it is much more stable than the CV or refPI
when varying the sample size. For more details, see our next subsection.

We obtain not exactly the same but similar results when looking at the L2-distance to
the optimal ISE, plotted in Fig. 6.CV obtains very large values for small sample sizes.
The one-sided versions show an important improvement. The three MISE minimizing
methods perform excellent for the simple normal (not surprisingly) and the simple
gamma. Among them, the STAB shows the smallest L2 distance to ISE(hopt). For
sample sizes n > 50 the one-sided CV versions outperform the others in most cases.
Large differences between the left and the right one-sided version can be observed
where we have asymmetric densities.
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Fig. 7 L1- and L2-distances to ISEhopt for different underlying densities when n = 100

A comparison of the L1- and the L2-distance for a sample size fixed at n = 100
but varying the distributions is shown in Fig. 7. As can be seen in both pictures, the
performance of all measures (without CV) for the simple normal distribution and the
mixture of the three gamma distributions is pretty good. Also for the mixture of two
normals, most of the methods deliver good results; only the values for CV, refPI and
the SBG become much larger. For more complex densities, the pictures show that the
MISE minimizing measures deliver worse results, because of the large biases. STAB
shows a pretty good performance with respect to the L1 measure what is not surprising
when recalling its construction. The most stable versions are the OSCV and the Mix,
except for the triple mode normal mixture. For smaller sample sizes (not shown), the
pictures are quite similar, but the tendencies are strengthened and only the Mix version
delivers stable results for all distributions.

Comparison of the mixed methods

Finally, we have a closer look to the quite promising results obtained by mixing CV
with refPI. We have done this mingling using the different proportions described above.
In Tables 1 and 2 we have tabulated the different performance measures looking at the
bias of the chosen bandwidth, the average ISE as well as the L1- and L2-distances to
the optimal ISE for all of the six densities.

For all smooth densities, we observe that the values of the different measures are
pretty close to each other. The main differences occur for small sample sizes and
wiggly densities. It is hard to say which mixture is the best as sometimes mix2 is the
best and sometimes mix1 whereas mix3 lies certainly always in between. The reason
seems to be obvious, either refPI is more appropriate than CV or vice verse. But this
is a conclusion one may draw from the means while at the same time they reduce a lot
the variance. We, therefore, see the potential gain of the methods is best when looking
at the L2 distances. Recall also our results from the last subsections and compare
mix3 with CV and refPI looking at that measure c4. We should also now give a special
emphasis on this performance measure c4.
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Table 1 Laplace, simple gamma, and mixture of three gamma distributions

n Crit. Design 1 Design 2 Design 3

mix1 mix2 mix3 mix1 mix2 mix3 mix1 mix2 mix3

25 c1 .0620 .0454 .0483 .0535 .0264 .0331 .2460 .1354 .1756

c3 .1180 .1185 .1133 .0999 .1218 .1076 .0503 .0746 .0596

c4 .0085 .0094 .0075 .0074 .0148 .0097 .0076 .0078 .0066

c5 .0647 .0659 .0597 .0545 .0687 .0574 .0728 .0601 .0618

50 c1 .0404 .0241 .0268 .0431 .0140 .0225 .1388 .0741 .0954

c3 .0810 .0917 .0812 .0634 .0997 .0759 .0297 .0367 .0298

c4 .0031 .0065 .0038 .0024 .0086 .0039 .0021 .0020 .0015

c5 .0391 .0467 .0389 .0340 .0455 .0346 .0380 .0305 .0288

100 c1 .0366 .0197 .0227 .0382 .0088 .0167 .0988 .0414 .0615

c3 .0460 .0756 .0536 .0380 .0560 .0409 .0203 .0374 .0277

c4 .0013 .0050 .0020 7e−04 .0026 9e−04 9e−04 .0015 9e−04

c5 .0246 .0288 .0220 .0184 .0213 .0155 .0244 .0175 .0171

200 c1 .0245 .0083 .0117 .0330 .0097 .0152 .0782 .0326 .0480

c3 .0292 .0533 .0385 .0223 .0400 .0295 .0107 .0123 .0105

c4 7e−04 .0030 .0014 3e−04 .0015 7e−04 3e−04 1e−04 1e−04

c5 .0154 .0203 .0152 .0109 .0135 .0094 .0144 .0080 .0084

Table 2 Simple normal distribution, mixture of two and three normal distributions

n Crit. Design 4 Design 5 Design 6

mix1 mix2 mix3 mix1 mix2 mix3 mix1 mix2 mix3

25 c1 .0290 .0030 .0073 .0818 .0447 .0561 .1979 .1338 .1545

c3 .0749 .1126 .0926 .0567 .1011 .0740 .0475 .0739 .0571

c4 .0045 .0143 .0086 .0043 .0119 .0061 .0096 .0104 .0086

c5 .0405 .0640 .0504 .0504 .0602 .0498 .0819 .0731 .0729

50 c1 .0281 .0097 .0120 .0663 .0337 .0440 .1216 .0670 .0876

c3 .0435 .0799 .0581 .0396 .0695 .0510 .0342 .0526 .0420

c4 .0014 .0068 .0032 .0023 .0059 .0029 .0057 .0043 .0041

c5 .0190 .0354 .0249 .0343 .039 .0307 .0657 .0445 .0506

100 c1 .0151 −.0074 −.0042 .0571 .0259 .0344 .0897 .0366 .0577

c3 .0248 .0490 .0358 .0234 .0379 .0273 .026 .0456 .0302

c4 4e−04 .0025 .0012 8e−04 .0015 6e−04 .004 .0023 .0020

c5 .0096 .0203 .0139 .0218 .0225 .0169 .0572 .0276 .0364

200 c1 .0134 −.0022 −.0021 .0382 .0153 .0200 .0684 .0230 .0393

c3 .0314 .0258 .0134 .0223 .0354 .0305 .0225 .0285 .0235

c4 1e−04 9e−04 6e−04 5e−04 .0012 9e−04 .0021 9e−04 9e−04

c5 .0047 .0093 .0069 .0119 .0122 .0094 .0406 .0154 .0201
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We first see that over the different sample sizes the considered performance mea-
sures converge toward zero as expected for increasing sample size. Notice, however,
that depending on the smoothness of the underlying density they do so at seemingly
different rates. A similar observation can be made if comparing the development over
an decrease of smoothness: compare, for example, design 4–6 (from a simple to a triple
mode normal mixture). Since we could not identify a clear winner between refPI and
CV, it may be not surprising that the best compromise seems indeed to be mix3. In
total, the main conclusion is that the considered bandwidth mixtures produce very
stable results and are attractive competitor to the other bandwidth selection methods.

7 Conclusions

A first finding is that it definitely makes a difference which bandwidth selector is
chosen; not only in numerical terms but also for the quality of density estimation.
We can identify clear differences in quality, and we can say in which situation what
kind of selector is preferable.As is well known, the CV leads to a small bias but a
large variance. It works well for rather wiggly densities and a moderate sample size.
However, it neither performs well for rather small nor for rather large samples. The
quality is unfortunately dominated by its variability. An also fully automatic alternative
is the one-sided version. In contrast to the classical CV, the OSCV methods exhibit
much less variation without increasing too much in bias. For very small samples these
methods have their numerical problems, what is caused by their construction. They
may be not uniformly but quite often the best, and never the worst. Depending on
the skewness, either the left- or the right-sided CV performs better. This disadvantage
is no longer present for the alternative Do-validation or the indirect SHS bandwidth
selector. Unfortunately, for a reasonable working of the SHS selector, a sample size of
n > 100 is strongly recommended. Further, it also depends on two prior parameters
for which some recommendations exist for n > 100. Note that also all the following
statements are conditioned on our prior choices, and may be just the selection of
densities and sample sizes. We are aware that for large samples and quite wiggly
densities our findings and conclusions might change.

The refPI and the SBG show a similarly stable behavior due to the fact that they
are minimizing the MISE, and depend on prior information. It is generally accepted
that the need of prior knowledge is the main disadvantage of these methods, and—as
explained above—typically requires a smooth underlying density. We have to admit
that larger samples would allow for more complex plug-in methods but these often
require more prior knowledge.

The STAB method is quite stable as suggested by its name. Although the full
name refers to cross-validation, it actually minimizes the MISE like refPI and SBG
do. Consequently, it performs particularly well for the estimation of rather smooth
densities but else does not. It certainly pays for the stability with some bias increase. It
is, therefore, hard to say to what extend it is an improvement to CV, but it seems to be
an improvement compared to refPI when looking at the ISE of the density estimator.

While the mix methods (combining CV and plug-in) do very well, one cannot really
identify a ’best mix’ in advance. A further evident computational disadvantage is that
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we first have to apply two other methods (CV and refPI) to achieve good results.
Therefore, we have studied here only the combination of the simplest plug-in with the
simplest CV method. It would be little surprising if better results were obtained when
mixing more sophisticated methods, see for example Mammen et al. (2011).

Our conclusion is, therefore, that among all existing (automatic) methods for ker-
nel density estimation, concentrating on small or moderate samples and relatively
smooth densities, the best strategies seem to be either a mixing or an indirect method.
Among the two competing indirect methods (OSCV and SHS) the two OSCV seem
to outperform SHS. However, if sample sizes increase a lot, and skewness becomes
an important issue, then SHS is doubtless an interesting alternative for the reasons
discussed. Depending on the boundary, one would apply left- or right-sided OSCV,
respectively. For moderate sample sizes however, the mixture of CV and refPI seems
to be an attractive alternative until n becomes that large that CV fails completely.
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