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Abstract This paper proposes an implementation of a constrained analytic center
cutting plane method to solve nonlinear multicommodity flow problems. The new
approach exploits the property that the objective of the Lagrangian dual problem has
a smooth component with second order derivatives readily available in closed form.
The cutting planes issued from the nonsmooth component and the epigraph set of
the smooth component form a localization set that is endowed with a self-concordant
augmented barrier. Our implementation uses an approximate analytic center associated
with that barrier to query the oracle of the nonsmooth component. The paper also
proposes an approximation scheme for the original objective. An active set strategy
can be applied to the transformed problem: it reduces the dimension of the dual space
and accelerates computations. The new approach solves huge instances with high
accuracy. The method is compared to alternative approaches proposed in the literature.

Keywords Constrained ACCPM · Approximation scheme · Active set strategy
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1 Introduction

The multicommodity network flow problem (MCF) consists of routing multiple com-
modities from a set of supply nodes to a set of demand nodes on a same underlying
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network. The cost associated with a routing is the sum of costs on the individual arcs.
The cost on an individual arc is itself a function of the sum of the commodity flows
on that arc. In the nonlinear multicommodity flow problem (NLMCF), the cost as-
sociated with an arc is a nonlinear (convex, increasing) function of the total flow on
the arc, usually named congestion in transportation and delay in telecommunications.
The main challenge of NLMCF is the size of problem instances. In this paper, we
modify the Analytic Center Cutting Plane Method (ACCPM) in order to solve very
large-scale instances.

NLMCF problems mainly arise in the areas of transportation and telecommu-
nications. In the transportation sector, the concepts in use are “traffic assignment”
and “Wardrop equilibrium”. They are not equivalent, but both can be formulated as
NLCMF, with arc costs that are convex polynomial functions of the flows. In the tele-
communications sector, NLMCF models congestion on transmission networks. When
several messages must be processed on a same link, the total processing time, hence the
travel time of the messages, increases and tends to infinity when the flow approaches
the arc capacity. This version of NLCMF is usually considered to be more difficult,
due to the capacity constraint.

Two types of test problems can be found in the literature. In the first category, each
commodity must be shipped from a single origin to a single destination. The poten-
tial number of commodities may be as large as the square of the number of nodes,
a huge number on large networks, but finding the best route for a single commodity
(independently of the other commodities) is a simple shortest path problem. In the
second category, there are multiple supply nodes and demand nodes for each commo-
dity. Finding the best route for a single commodity is then a transshipment problem,
a more involved one, but the number of commodities is usually small to very small
(with respect to the number of nodes). Papers in the literature deal with either one
category, but not both. In this paper, we deal with problems in the first category.

The literature on NLMCF is abundant. We briefly review it. We first discuss me-
thods that directly apply to the arc-flow formulation of the problem. The Frank and
Wolfe method [9] works on a sequence of linearized versions of the problem. This
approach is attractive because the direction finding subproblem is easy in the case of
NLMCF problems with no capacity constraint. There, the direction finding subpro-
blem turns out to be an unconstrained linear MCF that is separable in independent
shortest path problems. The standard technique to cope with delay functions with a
vertical asymptote consists in approximating the delay by a function with an unboun-
ded domain. The main drawback of the Frank–Wolfe method is its slow convergence
rate [2,26,31]. The Frank–Wolfe algorithm has been applied to NLMCF, e.g. [10,19].
The convergence of the method has been improved in [30]. More recently, Daneva and
Lindberg [6] report dramatic acceleration using a conjugate gradient scheme.

Column generation is a standard tool to cope with large-scale optimization pro-
blems. In the case of NLMCF, this technique amounts to working on a sequence of
restricted versions of the path-flow formulation of the problem. At each iteration, the
method generates a shortest path for each commodity, with respect to arc lengths equal
to the current marginal value of the delay or congestion function. The method then
strives to allocate the flows on the generated paths in an optimal way. Bertsekas and
Gafni [3] use a scaled projected Newton method to find an improved allocation. In the
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ACCPM to solve nonlinear multicommodity flow problems 181

comparative study carried in [25], the projected Newton method appeared to be one
of the most efficient one. The method in [2] is an origin-based algorithm conceptually
similar to [3]. Let us just mention that, as in the case of Frank–Wolfe, the method
cannot handle arc capacity constraint directly. One must replace constraint violation
by a fixed penalty function.

Most other methods can be classified as cutting plane methods (CPM). CPMs natu-
rally arise in connection with a Lagrangian relaxation of the arc-flow formulation. It is
easy to check that the relaxed master problem in a CPM is equivalent to the restricted
primal in column generation. Lagrangian relaxation yields a Lagrangian dual problem
of much smaller dimension. It is well known that the Lagrangian dual is nondifferen-
tiable. Kelley’s cutting plane method [14] is appealing because the master problem
is linear, but it often converges very slowly. The bundle method has been used in the
context of linear MCF [8] to remedy this drawback. The method could be extended to
NLMCF. Good numerical results have been obtained with the analytic center cutting
plane method [13]. In that paper, ACCPM was used in a disaggregate mode, that is
with as many objective components as the number of commodities. An augmented
Lagrangian technique has been used in [16] to solve non-linear traffic assignment
problems with link capacity constraints. The subgradient method [27] is a possible
alternative (see also [29]). It is easy to implement, but it is also known to converge
very slowly. Recently, an important and promising enhancement has been proposed
in [23]. To the best of our knowledge, this new method has not yet been applied to
NLMCF. We conclude this brief review by mentioning the proximal decomposition
method [20].

In this paper, we revisit ACCPM to improve its performance on transportation and
telecommunications problems with nonlinear cost functions. The Lagrangian dual
objective function of those problems has two main components: a piece-wise linear
one (the same as in linear MCF) and one that is the negative Fenchel conjugate of
the congestion function. The latter is smooth and can often be computed in closed
form. In a traditional approach with ACCPM [13], the two components are approxi-
mated by cutting planes. The intersection of these half-spaces define a localization
set whose analytic center becomes the point where to refine both approximations. In
the present paper, we use in the definition of the localization set a direct representa-
tion of the epigraph of the smooth component as a fixed constraint. This approach is
similar to [24] but our implementation does not use the embedding into a projective
space.

The second contribution of this paper is an approximation scheme which replaces
the congestion function near the origin by a linear function. This scheme is motivated
by the fact that no Lagrangian dual variables need to be introduced in connection
with arcs with a linear cost function. This results in a reduction of the dimension of
the Lagrangian dual space and easier calculation of analytic center. This strategy has
been implemented with success in [1] and can be described as an active set strategy
aiming to find and eliminate unsaturated arcs. In the nonlinear case, the strategy is
applied to arcs on which the optimal flow lies in a region where the cost function is
well approximated by a linear function. The idea of active set has already been used
in the context of linear multicommodity flow problems [1,8,21], but not within an
approximation scheme for the nonlinear component in NLMCF.
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The new method has been tested on standard problems that can be found in the
open literature. We use four categories of problems. The first two categories, planar
and grid, gather artificial problems that mimic telecommunication networks. Some
of them are very large. The third category is made of four small to medium size
telecommunication problems. One of them has been used in [25] to compare available
specialized optimization codes. The last category includes six realistic traffic network
problems; some of them are huge, with up to 13,000 nodes, 39,000 arcs and over
2,000,000 commodities.

The paper is organized as follows. In Sect. 2 we give formulation of the nonlinear
multicommodity flow problem and in Sect. 3 we presents the associated Lagrangian
relaxation. Section 4 provides a brief summary of the constrained ACCPM. Section 5
presents the most commonly used congestion functions and explicit their conjugate
functions. Section 6 defines our approximation scheme. It discusses the active set and
presents it as a partial Lagrangian relaxation. Section 7 details implementation issues
and choices, while Sect. 8 is devoted to numerical results.

2 The nonlinear multicommodity flow problem

Let G(N ,A) be an oriented graph, where N is the set of nodes and A the set of arcs.
The graph represents a network on which multiple commodities must be shipped from
specific origins to specific destinations. Given a shipment schedule, the total flow on an
arc induces a congestion.1 The objective is to find a shipment schedule that minimizes
the total congestion on the network. In many applications, in particular in transportation
and telecommunications, the congestion function is nonlinear: the resulting problem
is named the nonlinear multicommodity flow problem, in short NLMCF.

The arc-flow formulation of NLMCF is

min g

( ∑
τ∈T

xτ

)
≡ ∑

a∈A
ga

( ∑
τ∈T

xτ
a

)
(1a)

N xτ = dτ δ
τ , ∀τ ∈ T , (1b)

xτ
a ≥ 0, ∀a ∈ A, ∀τ ∈ T . (1c)

Here, N is the network incidence matrix; T is the set of commodities; dτ is the demand
for the commodity τ ∈ T ; and δτ is vector of zeros except a “1” at the supply node
and a “−1” at the demand node. The vector xτ = (xτ

a )a∈A represents the flows of
commodity τ on the arcs of the network. The number of arcs is m = |A|; |T | is the
number of commodities; and |N | is the number of nodes.

The congestion function g : R
m → R is assumed to be convex and twice conti-

nuously differentiable. The objective function is separable. Problem (1) has n =
|A| × |T | variables and |N | × |T | constraints (plus possible upper bound constraints
on variables). In general, |T | is large and n � m > |N |. (We have in mind instances
for which m ≥ 104 and n ≥ 1010.)

1 In the sequel, we shall not differentiate between “delay” and “congestion”.
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ACCPM to solve nonlinear multicommodity flow problems 183

The literature essentially deals with two types of congestion function: the Kleinrock
function, used in telecommunications [4,13,15,25] and the BPR (Bureau of Public
Roads) function used in transportation [2,5,6,16]. The Kleinrock function is given by

ga(ya) = ya

ca − ya
, with ya ∈ [0, ca), (2)

where ca is the capacity on the arc. The function has a vertical asymptote at ya = ca .
The BPR function is

ga(ya) = ra ya

(
1 + α

β + 1
(

ya

ca
)β

)
, with ya ∈ R

+. (3)

In general, the parameter α is very small and β > 1 does not exceed 5. When the
flow ya is less than ca , the second term under the parenthesis in (3) is negligible. Thus
ga(ya) ≈ ra ya : the parameter ra is called free-flow travel time and it can be interpreted
as a fixed travel time on a congestion-free arc. For larger values of ya the nonlinear
contribution to congestion increases. The threshold value ca for the flow ya is usually
named the practical capacity of the arc, beyond which congestion becomes effective.
In some applications, the parameters α and β are arc-dependent.

3 Lagrangian relaxation

For the sake of simpler notation, let us consider the more general problem

min{g(Mx) | x ∈ X}. (4)

We assume that g : R
m → R is convex, M is a m × n matrix, while X ⊂ R

n is
convex. We easily identify problem (4) with (1). In nonlinear multicommodity flow
problems on oriented graphs, X is defined as a set of network flow constraints (one per
commodity). The matrix M collects the flows on the individual arcs; it is thus made
of zeroes and ones. If the dimension of x is large, as it is the case in multicommodity
flow problems, it becomes difficult to apply a direct method, even when the problem
falls into the realm of structural programming (see [22]), e.g., g is self-concordant
and X is endowed with a self-concordant barrier. An alternative to a direct method
consists in applying a Lagrangian relaxation to a slightly transformed problem with
an auxiliary variable y and an auxiliary constraint y = Mx . The new formulation

min g(y) (5a)

Mx = y, (5b)

x ∈ X, (5c)

is equivalent to (4). Since the flows x on the oriented graph must be nonnegative, then
Mx ≥ 0. Therefore, the condition y ≥ 0 is implied by (5b) and (5c). We need not
introduce it explicitly in formulation (5). Relaxing (5b) yields a concave programming
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problem in the dual variables u ∈ R
m associated with the constraints y = Mx . The

Lagrangian dual problem is
max

u
L(u), (6)

where L is defined by

L(u) = min
y,x

{g(y) + 〈u, Mx − y〉 | x ∈ X}. (7)

By duality, this Lagrangian dual problem has the same optimal value as (4). Since
m � n, the transformed problem has much smaller dimension: it is potentially solvable
by a suitable convex optimization method.

A quick inspection shows that (7) is separable in the variables y and x . Then, (7)
can be written as

L(u) = f1(u) + f2(u), (8)

where

f1(u) = min
x

{〈MT u, x〉 | x ∈ X},

and

f2(u) = min
y

{g(y) − 〈u, y〉}.

In view of our assumption on X , f1(u) can be routinely computed for arbitrary values
of u. Since f1 is defined as the point-wise minimum of a collection of linear functions,
f1 is concave but usually nondifferentiable. Besides, if

x(u) = argmin{〈MT u, x〉 | x ∈ X},

then
f1(u

′) ≥ 〈Mx(u), u′〉 = f1(u) + 〈Mx(u), u′ − u〉, ∀u′ ∈ R
m . (9)

This shows that Mx(u) is an antisubgradient of f1(u) at u, that is Mx(u)∈−∂(− f1(u)).
Akin, the function f2(u) is the point-wise minimum of a collection of affine func-

tions of u. It is thus concave and one may construct an inequality similar to (9).
Actually, we can get more. From the definition, we observe that f2(u) is the opposite
of the Fenchel conjugate g∗(u) of g. In the cases under study, g∗(u) can be given in
closed form and it also appears to be twice continuously differentiable. We certainly
want to exploit this property when it is verified, and devise more efficient algorithms
to solve the Lagrangian dual problem.

Let us introduce conditions that are relevant for our multicommodity network flow
problem of interest. They are of considerable help in solving (6).
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ACCPM to solve nonlinear multicommodity flow problems 185

Condition 1 The linear programming problem

min{〈c, x〉 | x ∈ X},

can be solved at low computational cost.

In other words, f1(u) can be computed routinely, without excessive burden on the
overall algorithm.

Condition 2 The congestion function g(y) is separable, i.e., g(y) = ∑m
i=1 gi (yi ).

The functions gi are nonnegative, convex, monotonically increasing and dom gi ⊂ R+.
Moreover, the convex conjugate (gi )

∗ can be computed in closed form.

Let us explore an immediate consequence of Condition 2. The first order optimality
conditions for problem (5) are

0 ∈ ∂g(y) − u, (10)

MT u ∈ −NX (x), (11)

where NX (x) is the normal cone of X at x . The right derivative g′+(y) of g at y = 0
is well defined. Since g is convex on dom g = [0, c), (with possibly c = ∞), then
∂g(y) is monotone. Thus for y ≥ 0, condition (10) implies that the constraint

u ≥ g′+(0), (12)

is always met at the optimum. It is nevertheless convenient to introduce this redundant
constraint in the formulation of problem (6).

4 Constrained ACCPM

We aim to solve (6) with a version of ACCPM in which the smooth component f2 of
the objective function is handled as fixed, explicit constraint on the localization set.
This constraint can be viewed as a cutting surface. The general setting is a problem as
(6) with the constraint (12)

max{ f (u) = f1(u) + f2(u) | u ≥ ul}, (13)

in which u ∈ R
m , f1 : R

m → R is a concave function and f2 : R
m → R is a concave,

twice continuously differentiable function. Information on these functions is delivered
by oracles.

Definition 1 A first order oracle for the concave function h : R
m → R is a black-box

procedure that returns a support to h at the query point ū. This support takes the form
of the cutting plane, called optimality cut

aT (u − ū) + h(ū) ≥ h(u), ∀u ∈ dom h, (14)

where the vector a ∈ R
m is an element of the anti-subgradient set, a ∈ −∂(−h(ū)).
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186 F. Babonneau, J.-P. Vial

Definition 2 A second-order oracle for the concave function h : R
m → R is a black

box procedure with the following property. When queried at ū, the oracle returns the
function value and the first and second derivatives of h(u) at u = ū.

We assume that f1 is revealed by a first order oracle, while f2 is accessed through a
second-order oracle.

4.1 The algorithm

The hypograph set of the function f is the set defined by {(z + ζ, u) | z ≤ f1(u), ζ ≤
f2(u)}. Optimality cuts (14) provide an outer polyhedral approximation of the
hypograph set of the concave function f1. Suppose that a certain number of query
points uk , k = 1, . . . , K , have been generated. The associated anti-subgradients
ak ∈ −∂(− f1(uk)) are collected in a matrix A. We further set γk = f1(uk)−〈ak, uk〉.
The polyhedral approximation of the hypograph set of f1 is γ ≥ ze − AT u, where
e is the all-ones vector of appropriate dimension. Finally, let θ be the best recorded
value: θ = maxk≤K { f1(uk) + f2(uk)}.

In view of the above definitions, we can define the so-called localization set, which
is a subset of the hypograph of f

Fθ = {(u, z, ζ ) | −AT u + ze ≤ γ, ζ ≤ f2(u), z + ζ ≥ θ, u ≥ ul}. (15)

Clearly, the set contains all optimal pairs (u∗, f (u∗)). Thus, the search for a solution
should be confined to the localization set.

In the proposed version of ACCPM, the query point is an approximate proximal
analytic center of the localization set defined as the intersection of cutting planes and
a fixed cutting surface. For the sake of clarity, we first sketch the basic step, or outer
iteration, of a generic cutting plane method.
Outer iteration of constrained ACCPM

1. Select a query point in the localization set.
2. Send the query point to the first order oracle and get

back an optimality cut to f1.
3. Send the query point to the second order oracle to

compute the objective function f2.
4. Update the lower and upper bounds and the

localization set.
5. Test termination.

4.2 Proximal analytic centers

The proximal analytic center is defined as the unique minimizer of a logarithmic barrier
for the localization set, augmented with a proximal term. The analytic center is the u
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ACCPM to solve nonlinear multicommodity flow problems 187

component of the solution (u, z, ζ ) to the minimization problem

min F(u, z, ζ ) = ρ

2
‖u − u‖2 −

K∑
i=0

log si − log σ −
m∑

i=1

log(ui − uli ) (16a)

s0 = z + ζ − θ ≥ 0, (16b)

si = γi − z + (ai )T u ≥ 0, i = {1, . . . , K }, (16c)

σ = f2(u) − ζ ≥ 0. (16d)

Note that F(u, z, ζ ) is defined on the interior of the localization set Fθ . The proxi-
mal reference point u and the proximal coefficient ρ are arbitrary. In practice, u
is chosen to be the query point uk that achieves the best recorded value θ , i.e.,
u = arg maxk≤K { f1(uk) + f2(uk)}.

Remark 1 It is easy to show that F(u, z, ζ ) achieves its minimum value when the
localization set has a non-empty interior. Moreover, this minimum is unique.

4.3 Newton method

If f (x) is a self-concordant function with bounded level sets, then it is well known
[22] that Newton method converges quadratically to the neighborhood

{
x | 〈−[ f ′′(x)]−1 f ′(x), f ′(x)〉 ≤ η <

3 − √
5

2

}
, (17)

and that a damped Newton method converges to that neighborhood in a number of
iterations that is polynomial. Thanks to a lemma in [12], it is easy to verify that the
barrier function (16a) with f2 equal to the Kleinrock or the BPR function is self-
concordant.

In the rest of this subsection, we use the following notation. Given a vector s > 0,
S is the diagonal matrix whose main diagonal is s. We also use s−1 = S−1e to
denote the vector whose coordinates are the inverse of the coordinates of s. Similarly,
s−2 = S−2e. With this notation, the first order optimality conditions for Problem (16)
are

ρ(u − u) − As−1 − f ′
2(u)σ−1 − (u − ul)

−1 = 0, (18a)

eT s−1 − s−1
0 = 0, (18b)

σ−1 − s−1
0 = 0, (18c)

s0 − z − ζ + θ = 0, (18d)

s − γ + ze − AT u = 0, (18e)

σ − f2(u) + ζ = 0. (18f)
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The algorithm that computes the analytic center is a damped Newton method applied
to (18). To write down the formulae, we introduce the residuals

ru = −(ρ(u − u) − As−1 − f ′
2(u)σ−1 − (u − ul)

−1),

rz = −(eT s−1 − s−1
0 ),

rζ = −(σ−1 − s−1
0 ),

rs0 = −(s0 − z − ζ + θ),

rs = −(s − γ + ze − AT u),

rσ = −(σ − f2(u) + ζ ).

The Newton direction (du, dz, dζ, ds0, ds, dσ) associated to (18) is given by

P

⎛
⎜⎜⎜⎜⎜⎜⎝

du
dz
dζ

ds0
ds
dσ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ru

rz

rζ

rs0

rs

rσ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ I − f2(u)′′σ−1 + (U − Ul)
−2 0 0 0 AS−2 f2(u)′σ−2

0 0 0 s−2
0 −eT S−2 0

0 0 0 s−2
0 0 −σ−2

0 −1 −1 1 0 0
−AT e 0 0 I 0

− f ′
2(u) 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since (18f) is nonlinear, a full Newton step does not yield a feasible point with respect
to (18f). Thus, we use the following empirical rule to compute the step length αstep.
Let 0 < γ < 1 be a fixed parameter and

αmax = max{α | s + α ds > 0, σ + α dσ > 0, u + α du > ul},

the step length is
αstep = min(1, γ αmax). (20)

Since it is not essential in our solution method to compute an exact analytic center,
we use the termination criteria η = 0.99 that is looser than (17).

To summarize, a basic step of the Newton iteration, or inner iteration, is
Inner iteration

1. Send the current point to the second order oracle to
compute the objective function f2 and its first and
second derivatives.

2. Compute the Newton step (du, dz, dζ, ds0, ds, dσ) by (19).
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ACCPM to solve nonlinear multicommodity flow problems 189

3. Compute a step length by (20) to update (u, z, ζ, s0, s, σ ).
4. Test termination.

Remark 2 The computation in the inner iteration uses second order derivatives of f2.
Since the derivatives change at each iteration, the inner iteration must have access to
the second order oracle. In pure cutting plane methods, the inner iteration does not
interact with the oracle.

4.4 Upper and lower bounds

By duality, any feasible solution of (13) provides a lower bound for the original problem
(1). Taking the values returned by the two oracles at the successive query points, we
obtain the lower bound

θ = max
k≤K

{ f1(u
k) + f2(u

k)}. (21)

An upper bound θ̄ can be obtained from information collected in the computation of
the analytic center. More precisely, assume that (uc, zc, ζ c) is an approximate analytic
center, in the sense that (sc

0, sc, σ c), defined by (18d)–(18f), are strictly positive, and
the equations (18a)–(18c) are approximately satisfied. Let

λc = (sc
0)(s

c)−1 > 0. (22)

If (18b) and (18c) are satisfied, then eT λc = 1 and (sc
0)(σ

c)−1 = 1. Otherwise, we
scale λc and (σ c)−1 to meet the conditions. Using the cuts Mxk , where xk = x(uk),
k = 1, . . . , K and x̄ K = ∑K

k=1 λk
c xk , we define the vector

ȳK =
K∑

k=1

λk
c Mxk = M

K∑
k=1

λk
c xk = Mx̄ K . (23)

The vector x̄ K is a convex combination of vectors in X : it also belongs to X . If
ȳK ∈ dom g then, g(ȳK ) is a valid upper bound for the optimal value. If we extend
the definition of g to have g(y) = +∞ when y �∈ dom g, we have the upper bound

θ̄ = min
k≤K

g(ȳk). (24)

Let us now argue that we may expect that ȳk becomes feasible. It is easy to relate

r = −ȳK − f ′
2(u

c) − (sc
0)(u

c − ul)
−1,

to the residual in (18a). If we are getting close to an optimal solution of the original
problem, i.e., ‖uc − u∗‖ is small, we can reasonably hope that r is small with respect
to (sc

0)(u
c − ul)

−1. Then, since (sc
0)(u

c − ul)
−1 ≥ 0 we have

0 ≤ ȳK ≤ − f ′
2(u),

where − f ′
2(u

c) = (g∗)′(uc) ∈ dom (g). Thus, ȳK is a feasible solution for (1).
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5 Congestion functions and their conjugates

The implementation of ACCPM with a constraint requires an explicit calculation of
the conjugate function g∗ of the congestion g

g∗(u) = max
y

{〈u, y〉 − g(y)}.

In the sequel we shall name −g∗ the negative conjugate. The computation for the two
congestion functions, Kleinrock and BPR, is straightforward. The objective f2(u) is
separable into a the elementary functions g∗

a . We display in Table 1 the functional
form of an individual component −g∗

a , its domain and its first and second derivatives.
The functions and their conjugate are also plotted on Figs. 1 and 2.

In this paper, we shall also consider a more general class of congestion functions
defined by

ga(ya) = max
ya∈domg̃a

{ta ya, g̃a(ya)}, a ∈ A, (25)

where ta ≥ 0 and g̃a(ya) is a convex nondecreasing function whose domain is a closed
or half-closed interval of R+:

dom g̃a = [0, ȳa[ or dom g̃a = [0, ȳa].

The upper limit may be finite (e.g., the support function associated with the constraint
ya ≤ ȳa) or infinite. The meeting point between the linear and the nonlinear part is
denoted yc

a which is uniquely defined by ta yc
a = g̃a(yc

a). In view of the convexity of ga ,
we have g̃′

a(yc
a) ≥ ta . We assume that g̃a is continuously differentiable on the interior

of its domain. Note that dom ga = dom g̃a . We name the function (25) a compound
congestion function.

Let us compute the negative conjugate of the compound congestion function. Let

y(u) = arg min
y∈domg

{g(y) − 〈u, y〉},

Table 1 Conjugate functions

Kleinrock delay function BPR congestion function

Domain ua ∈ [ 1
ca

, +∞[ ua ∈ [0, +∞[

Conjugate 1 + uaca − 2
√

uaca
ca (ua−ra )

β+1
β

(αra )
1
β

β
β+1

Gradient ca −
√

ca
ua

ca

(αra )
1
β

(ua − ra)
1
β

Hessian (diagonal) 0.5
√

cau−1.5
a

ca

β(αra )
1
β

(ua − ra)
1−β
β
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Fig. 1 Kleinrock delay function
and its negative conjugate

y

c

g(y)

1/c

u

−g*(u)

whenever the minimum occurs in dom g̃. Simple calculation yields

−g∗
a(ua) =

{
(ta −ua)yc

a, with ya(ua) = yc
a, if ta ≤ ua < g̃′

a(yc
a),

−g̃∗
a(ua), with ya(ua) = [g′

a]−1(ua), if g̃′
a(yc

a)≤ua ≤g′
a(ȳa).

It follows that dom g∗ ⊂ {u ≥ t}. In other words, we can add the constraint u ≥ t in
the maximization of the Lagrangian dual function.

Finally, g∗(u) is differentiable on the interior of dom g∗ ⊂ {t < u < g′(ȳ)} and

(g∗)′(u) = y(u).

Figures 3 and 4 display the plot of compound functions and their negative conjugate
in the case of Kleinrock and BPR functions, respectively.

6 Active set strategy on compound functions

Our interest for the class of compound congestion functions (25) has been triggered by
the observation that multicommodity flow problems with linear congestion functions
and no capacity constraint are easy to solve. Those problems are separable in the
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Fig. 2 BPR congestion function
and its negative conjugate

y

g(y)

u

−g*(u)

commodities, and for each commodity the minimization problem boils down to a
shortest path calculation. In the case of capacity constraints on the arcs, the above
property can still be exploited on those arcs where the capacity constraint is inactive
at the optimum. A heuristic that dynamically estimates the sets of active and inactive
arcs has proved successful for LMCF [1]. This procedure can be extended to NLMCF
problems with a compound congestion since, on those arcs where ya < yc

a , the function
is linear. It can be further extended to standard NLMCF problems if one approximates
the objective function by a compound one. Note that the approximation error is easily
controlled by an appropriate choice of the meeting point yc

a in (25). The approximation
error tends to zero when ta ↓ (g̃a)′+(0). In the previous section, we gave the formula
for the negative conjugate of the compound congestion function. We can also use this
expression to compute the maximal error on the dual side.

Consider the first order optimality conditions for the Lagrangian dual problem (6).
In full generality, the condition stipulates that u ≥ ul is optimal if there exists a
nonnegative vector τ such that

τ + ∂ f1(u) + ∂ f2(u) � 0, (26)

〈τ, u − ul〉 = 0, (27)

τ ≥ 0, u ≥ ul , (28)
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Fig. 3 Compound Kleinrock
function and its conjugate

y

c

g(y)

yc

1/c t g’(yc)

u

−g*(u)

where ul = g′+(0). An anti-subgradient of f1 is of the form Mx with x ∈ X , while
for f2 one can take −y(u). Hence, (26) and (27) imply

Mx ≤ y(u),

and
(Mx)a < ya(ua) ⇒ ua = ula = (ga)′+(0). (29)

A similar analysis can be performed on the primal side.
Our goal is to use condition (29) to find a set A∗

1 ⊂ A with the property that for a
optimal primal-dual pair (τ ∗, u∗)

τ ∗
a > 0 and u∗

a = ula, ∀a ∈ A∗
1.

If the set A∗
1 were known in advance, the variables ua , a ∈ A∗

1, could be fixed to their
lower bound ula . The original problem (6) would then boil down to a simpler problem
in the variables ua , a ∈ A∗

2 = A \ A∗
1. Note that f2a(ula) = 0; thus, the nonlinear

term f2a(ua), a ∈ A∗
1, can be removed from this equivalent formulation. The above

reasoning applies to any subset Ã1 ⊂ A∗
1 and its complement Ã2 ⊃ A∗

2.
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Fig. 4 Compound BPR
function and its conjugate
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g(y)
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u

−g*(u)

t g’(yc)

In view of the above partition, we define (6) as the partial Lagrangian problem

max{L(u) | ua = ula, a ∈ A∗
1; ua ≥ ula, a ∈ A∗

2}.

In practice, the partition is not known in advance and the proposed space reduction
technique cannot be straightforwardly implemented. An active set strategy aims to
guess the partition. Let A1 and A2 be the current estimate of A∗

1 and A∗
2 with A1∪A2 =

A. This partition is used to work in a dual space of reduced dimension, a powerful
gimmick if the cardinality of A∗

2 is small. How one should build these approximation
sets? The danger is to have an arc that moves from a set to its complement back and
forth. We propose heuristic rules to avoid this bad behavior.

Suppose that our iterative procedure has generated Mxk, k = 1, . . . , K , with
xk ∈ X . From (23), we know that it is always possible to construct flows yK that meet
all the demands. We also recall that yc is the meeting point between the linear and the
nonlinear part. Assuming we are given a current partition of A = A1 ∪ A2 into an
active set and its complement, the rules that move elements between A1 and A2 are:

– An arc a ∈ A1 such that yK
a > yc

a is moved into the active set A2.
– An arc a ∈ A2 such that yK

a ≤ γ yc
a is moved into the non active set A1.
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Note that we introduce the parameter γ < 1 to increase the chances that an arc that
is made inactive at some stage will not become active later in the process. In practice,
we get γ = 0.9.

In the experiments, we approximate the Kleinrock delay function and the BPR
congestion function by compound functions and use an active set strategy. The algo-
rithm generates an ε-optimal primal-dual solution (y∗, u∗) for the compound function.
The primal-dual pair can also be used to measure the relative optimality gap with the
original functions g̃ and g̃∗. This gap depends on the quality of the approximation by
the compound function and thus may be larger than ε.

7 Implementation issues

In this section, we review the main items in the implementation of our solution method.

7.1 First order oracle

The first order oracle consists of |T | shortest path computations, using Dijkstra’s
algorithm [7]. This algorithm computes shortest paths from a single node to all other
nodes in a directed graph. To compute the shortest paths for all commodities, we
partition the commodities according to the origin node of the demand. This defines
a subset of nodes S ⊂ N . We apply |S| times Dijkstra’s algorithm, once for each
s ∈ S. For large graphs, most of the computational time is devoted to data handling.
To speed-up computation, the algorithm is implemented with binary heap structures.
This implementation is efficient enough, but probably not on par with the state-of-
the-art. A better implementation would most likely improve the performance of the
overall algorithm, but the focus of the paper is on the cutting plane method and not on
shortest path computation.

7.2 Parameter settings in ACCPM

Few parameters have to be set in ACCPM. The important ones are the coefficient of
the proximal term and the proximal reference point; the weight on the logarithmic
barrier on the floor cut; and a heuristic to eliminate almost inactive cutting planes.

7.2.1 Proximal reference point and proximal coefficient

The initial proximal reference point is the first query point. Thereafter, the proximal
reference point is updated to the current query point whenever the oracle returns an
objective function value that improves upon the best lower bound.

The initial value for the proximal coefficient ρ is 1. The rule to update this parameter
is the following. When the method do not improve the lower bound θ during few
iterations, it may happen that the weight of the generated cuts is to large pushing the
query point to far from the proximal reference point. To fix this behavior, we increase
the impact of the proximal term multiplying ρ by 10 to ensure the new query point
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to remain closest from the best recorded value. It thus makes it easier for ACCPM to
find a best dual solution, i.e., a best lower bound.

7.2.2 Weight on floor cut

The localization set is bounded below by the special constraint z + ζ ≥ θ in (15).
We name it the floor cut. It is easily checked that the floor cut makes a negative angle
with the cutting planes. When the number of cutting planes increases, their total weight
dominates the weight of the floor cut in (16). Thus, the floor cut tends to become active
at the analytic center, with the possible effect of slowing the global convergence. To
counteract this negative effect, we put a weight to the floor cut that equals the total
number of generated cuts.

7.2.3 Column elimination strategy

It is well known that column generation techniques are adversely affected by the total
number of generated columns. This is particularly true with ACCPM, since the Newton
iterations in the computation of the analytic center have a complexity that is roughly
proportional to the square of the number of generated columns. It is thus natural to
try to reduce the total number of columns by eliminating irrelevant elements. Our
criterion to eliminate columns is based on the contribution of a column to the primal
flow solution. Let λ be defined by Eq. (22). (We assume without loss of generality that
eT λ = 1.) Then Aλ is the total flow on the network. If λi is much smaller than the
average of λ, then column i contributes little to the solution (dually, the distance si

between the analytic center and the cut is high,) and is a good candidate for elimination.
To make the elimination test robust, we compute the median of the λ’s and eliminate
any column whose coefficient λi is less than 1/κ times the median. In practice, we
choose κ = 4. We also perform the test once every τ = 20 iterations. (For the largest
problem, we took τ = 100.)

7.3 Termination criterion

The standard termination criterion is a small enough relative optimality gap:

(θ̄ − θ)/max(θ, 1) ≤ ε, (30)

where θ is the best lower bound computed with (21) and θ̄ is the best upper bound
computed with (24). In our experiments we use ε = 10−5.

7.4 Approximation scheme

The goal of the approximation scheme is to replace the original nonlinear function
g̃a by the compound function ga defined by (25). The error function induced by the
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linear approximation

ea(ya) = ta ya − g̃a(ya), ya ∈ [0, yc
a].

Let ŷa ∈ [0, yc
a] be the point that maximizes the error ea . Let A∗

1 be the set of inactive
arcs at the optimum. The error due to the approximation is bounded by

∑
a∈A∗

1
ea(ŷa).

We want that this error to be lower than ε g̃∗, where ε is the relative optimality gap
and g̃∗ is the optimal objective value. Furthermore we impose that ea(ŷa) = µ be the
same for all a ∈ A∗

1. We estimate µ by

µ = ε̂ g̃∗

|A∗
1|

, with ε̂ < ε. (31)

Then we compute ta such that ea(ŷa) = µ. Unfortunately g̃∗ and |A∗
1| must be

estimated. In the experiments, we take the parameter ε̂ = 10−6 and |A∗
1| = n/2. The

value of g̃∗ is chosen empirically depending on the class of problems.

8 Numerical experiments

The main goal of our empirical study is to test the efficiency (i) of using a nonlinear
cutting surface, (ii) of column elimination, (iii) of an active set strategy and (iv) of a
joint implementation of a column elimination scheme and an active set strategy. We
also use published results to benchmark the new algorithm.

8.1 Test problems

We used four sets of test problems. The first set, the planar problems, contains
ten instances that have been generated by Di Yuan to simulate telecommunication
problems. Nodes are randomly chosen as points in the plane, and arcs link neigh-
bor nodes in such a way that the resulting graph is planar. Commodities are pairs
of origin and destination nodes, chosen at random. Demands and capacities are uni-
formly distributed in given intervals. The second set, the grid problems, contains 15
networks that have a grid structure such that each node has four incoming and four
outgoing arcs. Note that the number of paths between two nodes in a grid network
is usually large. Commodities, and demands are generated in a way similar to that of
planar networks. These two sets of problems are used to solve the linear multicom-
modity flow problem in [1,17]. The data include arc capacities and linear costs and can
be downloaded from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html. We
use directly these arc capacities in the definition of the Kleinrock function. To solve
(1) with BPR function, we use the capacity as practical capacity and the linear cost
as free-flow travel time. As suggested in [28], we use the parameter values α = 0.15
and β = 4.

The third collection of problems is composed of telecommunication problems of
various sizes. The small problems ndo22 and ndo148 are two practical problems
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solved in [11,13]. Problem 904 is based on a real telecommunication network and was
used in the survey paper [25]. This problem set is adapted to solve (1) with Kleinrock
function. To solve (1) with BPR function, we use the capacity as practical capacity
and also use it as free-flow travel time. We choose the parameter values α = 0.15 and
β = 4.

The last collection of problems is composed of six realistic transportation problems
used in [1,2,6,16]. Some of them are huge, with up to 13,000 nodes, 39,000 arcs
and over 2,000,000 commodities. The data are adapted for the BPR function. They
include free-flow travel time, practical capacity and the tuning parameters α and β.
These problems, can be downloaded from http://www.bgu.ac.il/~bargera/tntp/. To
solve (1) with Kleinrock function we use practical capacity as capacity and to turn
these problems feasible with respect to the capacity, which is handled by the objective
function, the demands are reduced as in [1,16].

Table 2 displays data on the four sets of problems. For each problem instance, we
give the number of nodes |N |, the number of arcs |A|, the number of commodities
|K|, the optimal solution values to (1) z∗

Kleinrock for the Kleinrock function and z∗
BPR

for the BPR function, with a relative optimality gap less than 10−5.

8.2 Numerical results

We carry the experiments with the two congestion functions: the Kleinrock delay
function and the BPR congestion function. For each solution strategy, we attempt to
solve all problem instances contained in Table 2 with a 10−5 relative optimality gap. To
benchmark the results with our best solution strategy, we use, for telecommunications
problems (Kleinrock function), the results with the Projection Method reported in [25]
and, for transportation problems (BPR function) several implementations of Frank–
Wolfe algorithm reported in [6].

For all results using ACCPM, the tables give the number of outer iterations, denoted
Outer, the number of Newton’s iteration, or inner iterations, denoted Inner, the com-
putational time in seconds CPU and the percentage of CPU time denoted %Or spent
to compute the shortest path problems. When the active set strategy is activated, the
working space of ACCPM is reduced to the active arcs only. Thus, we give the percen-
tage of arcs in the active set, %|A2|, at the end of the solution process. We display also
the error, denoted Error, resulting from the approximation with respect to the optimal
solution of the original problem. Finally, when the elimination column is activated we
display the number of remaining cuts Nb cuts at the end of the process.

The ACCPM code we use has been developed in Matlab, while the shortest path
algorithm is written in C. The tests were performed on a PC (Pentium IV, 2.8 GHz, 2
Gb of RAM) under Linux operating system.

8.2.1 Impact of using a nonlinear cutting surface

In this subsection, we experiment the impact of the second order information in the
solution method solving all the instances. We compare ACCPM using a second order
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Table 2 Test problems

Problem ID |N | |A| |K| z∗
Kleinrock z∗

BPR

planar problems

planar30 30 150 92 40.5668 4.44549 × 107

planar50 50 250 267 109.478 1.21236 × 108

planar80 80 440 543 232.321 1.81906 × 108

planar100 100 532 1,085 226.299 2.29114 × 108

planar300 300 1,680 3,584 329.120 6.90748 × 108

planar500 500 2,842 3,525 196.394 4.83309 × 109

planar800 800 4,388 12,756 354.008 1.16952 × 109

planar1000 1,000 5,200 20,026 1, 250.92 3.41859 × 109

planar2500 2,500 12,990 81,430 3, 289.05 1.23827 ×1010

grid problems

grid1 25 80 50 66.4002 8.33599 × 105

grid2 25 80 100 194.512 1.72689 × 106

grid3 100 360 50 84.5618 1.53241 × 106

grid4 100 360 100 171.331 3.05543 × 106

grid5 225 840 100 236.699 5.07921 × 106

grid6 225 840 200 652.877 1.05075 × 107

grid7 400 1,520 400 776.566 2.60669 × 107

grid8 625 2,400 500 1, 542.15 4.21240 × 107

grid9 625 2,400 1,000 2, 199.83 8.36394 × 107

grid10 625 2,400 2,000 2, 212.89 1.66084 × 108

grid11 625 2,400 3,000 1, 502.75 3.32475 × 108

grid12 900 3,480 6,000 1, 478.93 5.81488 × 108

grid13 900 3,480 12,000 1, 760.53 1.16933 × 109

grid14 1,225 4,760 16,000 1, 414.39 1.81297 × 109

grid15 1,225 4,760 32,000 1, 544.15 3.61568 × 109

Telecommunication-like problems

ndo22 14 22 23 11.5631 1.87110 × 103

ndo148 58 148 122 151.926 1.40233 × 105

904 106 904 11,130 33.4931 1.29197 × 107

Transportation problems

Sioux-Falls 24 76 528 600.679 4.23133 × 106

Winnipeg 1,067 2,975 4345 1, 527.41 8.25673 × 105

Barcelona 1,020 2,522 7922 845.872 1.23277 × 106

Chicago-sketch 933 2,950 93,513 615.883 1.67484 × 107

Chicago-region 12,982 39,018 2,297,945 3, 290.55 2.58457 × 107

Philadelphia 13,389 40,003 1,151,166 2, 558.01 1.27810 × 108
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oracle and ACCPM in which the smooth function is handled implicitly by the first
order oracle as in the traditional approach.

The results are reported in Table 3 for the Kleinrock function and in Table 4 for
the BPR function. In the two cases, we observe that the new approach outperforms
the classical ACCPM. The larger problems are not solved by the classical ACCPM,
partly because too many cuts in the localization set jammed the memory space.

8.2.2 Impact of column elimination

In this subsection, ACCPM solves the sets of problems using the column elimination.
We report the results in Table 5 for the Kleinrock function and in Table 6 for the
BPR function. The last column CPU Ratio displays the improvement ratio of the
CPU time of ACCPM without column elimination (see Tables 3 and 4), and with
column elimination. We observe that column elimination speed-up the CPU time on
all problems, with an average value 1.5. Since the number of outer iterations is about
the same, the speed-up is due to a reduction of the computation time in ACCPM. It is
apparent in comparing the proportion of time spent in the oracle.

8.2.3 Impact of the active set strategy

In this subsection, we experiment the active strategy to solve (1) with the Kleinrock
and BPR functions. This strategy turns out to be efficient only with the BPR function,
but not with the Kleinrock function. The very steep slope of Kleinrock close its to
asymptote leads to a larger spread of the flows on the arcs. All arcs turn out to be
moderately congested and the compound function does not provide a satisfactory
approximation.

Table 7 gives the computational results using the active set strategy on the approxi-
mate BPR function. The last column, shows the improvement ratio of CPU time of
ACCPM without active set strategy (see Table 4), and with the active set strategy. The
value of g∗ in (31) is empirical. We get g∗ = 108 for telecommunication instances
(planar, grid and telecommunications-like problems) and g∗ = 107 for traffic
networks.

Table 7 shows that active set strategy speed-up the CPU time on all problems
(excepted the smaller ones) until 8.4. This speed-up is partly due to the large number
of inactive arcs in the optimal solution. The number of dual variables handled by
ACCPM is usually lower than 60%. A second explanation is the reduction of the
total number of outer iteration around 10%. Removing the inactive arcs from the
Lagrangian relaxation seems to make ACCPM easier the converge. The important
point is that the quality of the optimal solution is not affected by the approximation,
i.e., the computed optimal solution for the approximate problem is also a optimal
solution with 10−5 optimality gap for the original problem. For three instances, the
approximation does not ensure a 10−5 optimality gap but it is also traduced by a larger
decrease of number of outer iterations, of size of the active set, and obviously of CPU
time. This observation shows the difficulties to guaranty a given optimality gap in a
static approximation scheme.
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Table 3 Impact of the cutting surface (Kleinrock delay function)

Problem ID ACCPM with cutting surface ACCPM without cutting surface

Outer Inner CPU %Or Outer Inner CPU %Or

planar30 93 197 1.1 22 832 1,664 59.2 17

planar50 134 279 2.8 20 1,234 2,468 253.5 14

planar80 182 383 8.1 16 1,965 3,930 1, 381.3 11

planar100 187 392 10.2 17 2,342 4,684 2, 593.5 10

planar300 175 367 29.5 24 – – − –

planar500 127 324 32.2 37 – – − –

planar800 182 429 110.5 40 – – − –

planar1000 381 869 568.1 26 – – − –

planar2500 543 1,224 3, 471.7 45 – – − –

grid1 52 118 0.4 24 462 924 11.5 21

grid2 93 212 1.0 25 456 912 11.4 21

grid3 138 341 4.1 15 1,713 3,426 798.4 12

grid4 167 344 5.7 17 1,613 3,226 710.2 12

grid5 204 474 18.5 17 3,409 6,818 11, 005.7 8

grid6 333 686 55.9 14 3,326 6,652 10, 457.4 8

grid7 410 811 155.4 15 – – − –

grid8 845 1,783 1, 416.8 10 – – − –

grid9 582 1,269 576.9 15 – – − –

grid10 432 964 300.6 20 – – − –

grid11 261 581 106.4 29 – – − –

grid12 201 409 106.7 41 – – − –

grid13 222 454 128.7 39 – – − –

grid14 204 414 173.2 48 – – − –

grid15 203 414 172.8 48 – – − –

ndo22 12 86 0.2 7 173 346 1.5 27

ndo148 70 361 1.3 7 737 1,474 45.7 17

904 135 294 10.4 27 – – − –

Sioux-falls 140 345 1.7 24 533 1,410 13.0 15

Winnipeg 338 988 215.0 14 – – − –

Barcelona 253 678 101.1 15 – – − –

Chicago-sketch 145 370 48.6 41 – – − –

Chicago-region 190 500 8, 621.9 94 – – − –

Philadelphia 279 822 13, 094.4 89 – – − –

8.2.4 Impact of active set strategy with column elimination

In this set of experiments, we combine both column elimination and the active set
strategy. Of course, since active set strategy is not efficient with Kleinrock function, we
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Table 4 Impact of the cutting surface (BPR congestion function)

Problem ID ACCPM with cutting surface ACCPM without cutting surface

Outer Inner CPU %Or Outer Inner CPU %Or

planar30 56 256 1.2 25 202 502 5.7 15

planar50 96 422 3.4 15 328 775 21.8 11

planar80 159 665 13.0 12 651 1,400 165.0 7

planar100 101 423 6.5 16 629 1,341 172.3 8

planar300 98 358 18.3 21 1,101 2,398 1, 980.2 6

planar500 42 164 10.0 37 986 2,261 2, 548.9 7

planar800 88 299 51.1 43 2,155 4,513 32, 792.7 5

planar1000 192 552 209.6 37 – – − –

planar2500 364 1,744 3, 099.2 38 – – − –

grid1 24 108 0.4 26 148 329 1.8 30

grid2 49 202 0.8 25 238 557 3.5 27

grid3 31 121 0.7 23 259 586 13.4 16

grid4 57 216 1.7 22 386 859 35.3 10

grid5 60 199 3.5 23 557 1,230 174.2 7

grid6 125 385 11.5 16 918 1,931 660.0 6

grid7 102 307 15.1 22 1,111 2,405 1, 872.9 5

grid8 158 422 49.5 23 1,982 4,119 13, 010.7 3

grid9 211 597 97.3 22 2,379 4,923 22, 202.1 3

grid10 207 586 94.8 24 2,404 4,965 22, 925.9 3

grid11 138 413 47.9 31 1,966 4,082 12, 873.5 4

grid12 107 323 52.7 46 2,002 4,369 20, 391.3 4

grid13 117 340 59.1 44 2,300 4,785 28, 038.6 4

grid14 84 274 61.9 56 1,995 4,179 26, 729.3 5

grid15 93 293 70.2 55 1,588 4,011 17, 449.6 4

ndo22 4 35 0.1 0 75 287 0.8 23

ndo148 6 45 0.2 0 171 390 3.6 24

904 93 316 8.4 19 802 1,729 470.2 6

Sioux-falls 80 411 2.0 19 366 1,057 10.1 20

Winnipeg 81 298 16.3 36 1,307 2,783 3, 352.8 8

Barcelona 56 245 10.4 29 925 2,040 1, 493.7 8

Chicago-sketch 72 265 20.4 48 1,828 4,075 11, 891.0 5

Chicago-region 332 1,502 10, 606.5 64 – – − –

Philadelphia 287 1,250 7, 469.9 63 – – − –

solve only (1) with the BPR congestion function. The settings of the active set strategy
and the column elimination are those used in the previous subsections. The results are
displayed on Table 8. In the last column of the table, we give the improvement ratio
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Table 5 Impact of column elimination (Kleinrock delay function)

Problem ID Nb cuts Outer Inner CPU %Or ratio

planar30 54 114 293 1.1 26 1.0

planar50 67 164 385 2.2 27 1.3

planar80 126 239 544 6.5 24 1.2

planar100 95 208 481 6.0 24 1.7

planar300 104 205 484 22.2 32 1.3

planar500 75 129 319 24.1 47 1.3

planar800 99 179 447 77.1 54 1.4

planar1000 207 369 836 303.6 43 1.9

planar2500 339 567 1,292 2, 398.5 64 1.5

grid1 45 59 194 0.5 27 0.8

grid2 55 108 242 0.8 46 1.0

grid3 71 121 307 2.3 22 1.8

grid4 71 188 394 3.1 31 1.8

grid5 137 203 472 12.0 21 1.5

grid6 113 389 828 24.3 26 2.3

grid7 244 471 1,024 90.9 22 1.7

grid8 311 876 1,845 384.0 21 3.7

grid9 344 646 1,397 305.5 24 1.9

grid10 274 474 1,039 199.8 29 1.5

grid11 228 270 599 96.6 32 1.1

grid12 189 212 431 107.2 43 1.0

grid13 207 234 478 125.8 41 1.0

grid14 183 212 430 166.5 51 1.0

grid15 181 205 418 161.5 52 1.1

ndo22 12 12 86 0.2 7 1.0

ndo148 47 73 176 0.8 25 1.6

904 85 138 300 7.6 27 1.4

Sioux-falls 73 144 353 1.6 25 1.1

Winnipeg 202 384 1,155 135.3 19 1.6

Barcelona 182 261 732 71.2 19 1.4

Chicago-sketch 77 130 340 30.1 53 1.6

Chicago-region 92 194 597 8, 672.1 95 1.0

Philadelphia 109 290 826 13, 021.8 93 1.0

of the CPU time of ACCPM without using the two options (see Table 4), and with
using them. As expected, column elimination reduces the computational time. As in
Sect. 8.2.2, it decreases the time spent in computing the analytic centers.
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Table 6 Impact of column elimination (BPR congestion function)

Problem ID Nb cuts Outer Inner CPU %Or ratio

planar30 26 57 276 1.2 21 1.0

planar50 34 95 418 2.9 23 1.2

planar80 39 167 611 6.7 21 1.9

planar100 25 99 383 4.3 23 1.5

planar300 42 98 345 12.6 33 1.5

planar500 24 40 156 8.6 44 1.2

planar800 36 76 250 34.2 56 1.5

planar1000 72 177 519 135.1 51 1.5

planar2500 120 346 1,350 1, 657.9 66 1.9

grid1 15 24 105 0.4 33 1.0

grid2 27 52 194 0.8 33 1.0

grid3 20 30 114 0.7 27 1.0

grid4 20 55 194 1.5 28 1.1

grid5 30 61 194 2.4 9 1.5

grid6 39 139 380 6.8 24 1.7

grid7 34 100 283 9.2 32 1.6

grid8 51 166 441 30.6 35 1.6

grid9 57 217 578 46.4 40 2.1

grid10 52 206 560 45.6 44 2.1

grid11 39 144 398 30.0 48 1.6

grid12 35 100 287 34.5 60 1.5

grid13 37 122 346 44.2 60 1.3

grid14 28 88 270 53.1 67 1.2

grid15 33 99 293 59.9 68 1.2

ndo22 4 4 35 0.1 0 1.0

ndo148 6 6 45 0.2 0 1.0

904 37 100 311 6.2 27 1.4

Sioux-falls 28 83 346 1.4 30 1.4

Winnipeg 36 76 259 10.6 47 1.5

Barcelona 20 55 231 7.9 38 1.3

Chicago-sketch 36 84 272 18.3 57 1.1

Chicago-region 124 342 1,327 8, 224.8 85 1.2

Philadelphia 95 254 1,031 4, 962.5 83 1.5

8.2.5 Comparisons with other methods

In this subsection, we compare ACCPM with a Projection Method on telecommuni-
cations problems using the Kleinrock delay function. We also compare ACCPM with
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Table 7 Impact of the active set strategy (BPR congestion function)

Problem ID Error %|A2| Outer Inner CPU %Or ratio

planar30 <10−5 53 58 299 1.2 36 1.0

planar50 <10−5 63 99 473 2.9 33 1.2

planar80 <10−5 62 154 803 9.4 24 1.4

planar100 <10−5 60 97 536 4.9 29 1.3

planar300 <10−5 44 82 399 9.2 38 2.0

planar500 <10−5 26 38 216 5.8 62 1.7

planar800 <10−5 26 77 383 29.6 68 1.7

planar1000 <10−5 40 168 775 132.2 54 1.6

planar2500 <10−5 43 323 1,996 2, 063.3 51 1.5

grid1 <10−5 86 25 118 0.4 32 1.0

grid2 <10−5 99 49 210 0.8 31 1.0

grid3 <10−5 40 25 122 0.6 33 1.1

grid4 <10−5 50 52 222 1.7 34 1.0

grid5 <10−5 47 50 224 2.3 37 1.5

grid6 <10−5 63 107 400 8.6 31 1.3

grid7 <10−5 52 76 312 8.8 39 1.7

grid8 <10−5 54 113 437 26.1 38 1.9

grid9 <10−5 64 178 612 60.8 34 1.6

grid10 <10−5 66 195 661 74.5 34 1.3

grid11 <10−5 61 139 475 41.9 43 1.1

grid12 <10−5 51 87 330 34.6 59 1.5

grid13 <10−5 57 113 448 53.4 51 1.1

grid14 <10−5 44 78 323 47.2 69 1.3

grid15 <10−5 49 88 346 56.9 66 1.2

ndo22 <10−5 50 5 46 0.1 −10 1.0

ndo148 <10−5 75 6 49 0.2 17 1.0

904 <10−5 32 93 358 5.1 42 1.6

Sioux-falls <10−5 100 69 336 1.7 30 1.2

Winnipeg 1.3 × 10−5 33 48 246 6.8 49 2.4

Barcelona <10−5 24 37 241 3.8 51 2.7

Chicago-sketch <10−5 52 65 262 16.9 56 1.2

Chicago-region 5 × 10−4 34 55 698 1, 261.3 87 8.4

Philadelphia 5 × 10−5 54 97 1,234 2, 157.9 74 3.5

several implementations of Frank–Wolfe algorithm on transportation problems with
the BPR congestion function.
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Table 8 Active set strategy and column elimination (BPR congestion function)

Problem ID Error %|A2| Nb cuts Outer Inner CPU %Or ratio

planar30 <10−5 53 26 58 315 1.2 30 1.0

planar50 <10−5 63 26 92 475 2.9 31 1.2

planar80 <10−5 63 42 196 896 7.6 33 1.7

planar100 <10−5 60 36 98 506 4.2 32 1.5

planar300 <10−5 44 35 96 434 9.4 50 1.9

planar500 <10−5 26 16 34 196 5.1 70 2.0

planar800 <10−5 27 31 78 363 27.1 77 1.9

planar1000 <10−5 20 78 177 815 113.6 64 1.9

planar2500 <10−5 43 118 354 1,898 1, 540.0 73 2.0

grid1 <10−5 86 16 25 117 0.4 34 1.0

grid2 <10−5 97 21 56 229 0.8 31 1.0

grid3 <10−5 40 18 26 125 0.7 33 1.0

grid4 <10−5 50 27 51 197 1.4 40 1.2

grid5 <10−5 47 22 45 207 1.9 39 1.8

grid6 <10−5 63 47 115 384 6.4 41 1.8

grid7 <10−5 52 37 73 290 6.7 47 2.3

grid8 <10−5 54 45 116 413 19.1 50 2.6

grid9 <10−5 64 45 177 680 39.0 48 2.5

grid10 <10−5 67 42 188 605 40.9 55 2.3

grid11 <10−5 61 44 139 455 28.4 59 1.7

grid12 <10−5 51 32 89 321 29.4 70 1.8

grid13 <10−5 57 35 112 418 38.9 64 1.5

grid14 <10−5 44 33 74 324 40.8 75 1.5

grid15 <10−5 49 35 84 328 47.4 75 1.5

ndo22 <10−5 50 5 5 46 0.1 −12 1.0

ndo148 <10−5 75 6 6 49 0.1 23 2.0

904 <10−5 32 37 114 358 3.5 55 2.4

Sioux-falls <10−5 100 31 93 413 1.5 40 1.3

Winnipeg 1.4 × 10−5 33 21 47 251 5.7 51 2.9

Barcelona <10−5 24 18 35 213 3.1 54 3.3

Chicago-sketch <10−5 52 29 68 269 15.1 64 1.3

Chicago-region 5 × 10−4 34 22 55 681 1, 229.5 89 8.6

Philadelphia 5 × 10−5 54 41 99 1,185 2, 004.0 81 3.7
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Table 9 Test problems
Problem ID Load factor z∗

Kleinrock

904 1 33.4931

904(1.5) 1.5 52.2678

904(2) 2 72.6437

904(2.5) 2.5 94.8839

904(3) 3 119.305

Table 10 ACCPM and PM

Problem ID ACCPM Previous ACCPMa PMa

Nb cuts Outer Inner CPU %Or Outer CPU ratio Outer CPU ratio

904 85 138 300 7.6 27 14 3,233 30.4 579 380 3.6

904(1.5) 105 150 314 9.8 24 14 3,441 25.0 663 434 3.2

904(2) 109 172 357 11.8 24 14 3,186 19.3 688 471 2.8

904(2.5) 107 189 398 13.9 24 13 3,276 16.8 741 558 2.9

904(3) 101 192 415 12.6 24 13 3,544 20.1 691 501 2.8

aTests performed in [25] on an IBM RISC/System 6000 machine

ACCPM versus the Projection Method
In this experiment, we compare the results of our solution method ACCPM using

column elimination with the results of the Projection Method (PM) reported in [25].
As in [25], we solve problem 904 with a varying load factor to generate different
demands. Table 9 gives the load factors we use and the corresponding optimal value
with a 10−5 relative optimality gap.

In [25], the authors compare a previous version of ACCPM implemented in [13]
with the Flow Deviation Method [18], the Projection Method [4], and the Proximal
Decomposition Method [20]. In this comparative study, the Projection Method (PM)
appears to be the most efficient method to solve the 904 instances. We use the figures
reported in [25] for PM and ACCPM.2

The computational tests in [25] are performed on an IBM RISC/System 6000. We
report the original computing times in Table 10. In order to compare these results with
those we obtain with the new version of ACCPM on a Pentium IV, we have performed
benchmark computations according to BYTEmark.3 We found a ratio 14. We use this
value to compare the speeds of the algorithms in the two columns entitled ratio in
Table 10. These ratios are just indicative.

2 The ACCPM version [13] works on a disaggregated form of the objective function. It exploits the sparsity
in the master problem to cope with the very large number of generated cuts. In the disaggregated approach,
the oracle generates as many cuts as the number of commodities at each outer iteration. In the case of
problem 904, this means 11,130 cuts.
3 BYTE Magazine’s BYTEmark benchmark program (release 2) available at
http://www.byte.com/bmark/bmark.htm.
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Table 11 ACCPM vs.
Frank–Wolfe

Problem ID ACCPM BFW CFW FW

Sioux-falls 44 124 357 1,869

Winnipeg 39 163 243 838

Barcelona 31 41 34 51

Chicago-sketch 27 21 17 24

Chicago-region 115 43 53 126

Table 10 shows that the new ACCPM using column elimination outperforms the
previous version of ACCPM and improves the computational time of the Projection
Method with a ratio 3.

ACCPM versus Frank–Wolfe algorithm
In this experiment, we compare ACCPM with the results obtained in [6] with

different versions of Frank–Wolfe algorithm: a classical Frank–Wolfe method (FW),
a conjugate direction Frank–Wolfe method (CFW) and a bi-conjugate Frank–Wolfe
method (BFW). These methods outperform the Frank–Wolfe method implemented in
[2]. We solve the same set of transportation problems as in [6], with BPR function
with a 10−4 relative gap.

Since we have not at our disposal the machine used in [6], we cannot compare the
computational times. To get an idea of ACCPM performances, we focus on the number
of iterations to solve the problems to compare ACCPM to the different versions of
FW. In this experiment, we do not use the active set strategy to have perfect control
on the precision of the optimal solution. The results displayed on Table 11 show that
ACCPM is competitive with the implementations of Frank–Wolfe algorithm in term
of number of iterations, except for the last instance. ACCPM is more efficient on the
smaller instances.

9 Conclusion

In this paper, we proposed two important modifications of the analytic center cutting
plane method to solve nonlinear multicommodity flow problems: a cutting surface to
handle the smooth component of the Lagrangian dual objective and an approximation
scheme for the nonsmooth component of that objective. The approximation scheme
is coupled with an active set strategy that leads to an expression of the Lagrangian
dual in a space of smaller dimension. The new approach considerably improves the
performance of the former implementation of ACCPM. It compares favorably with
the known most efficient methods.

The computation in a Lagrangian relaxation approach breaks into two main compo-
nents: computation of the query point (an approximate analytic center of the localization
set, in our case) and the solving of the oracle subproblem (shortest paths compu-
tation, in our case). The overall computation depends on the computational effi-
ciency of these two operations and on the number of times they are performed, i.e.,
on the number of calls to the oracle. In this paper, we focused on two items: the
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number of outer iterations and the computation of the query point. In contrast, our
implementation of the shortest path algorithm is rather straightforward and could be
improved, in particular if one wishes to exploit special network structures.

The present study suggests that possible further improvements could be achieved
using the approximation/active set approach with a different linearization scheme for
the cost function. Conceptually, this linearization could be performed around points
that are dynamically chosen to lead more efficient approximations. This will be the
object of further researches.

Acknowledgments The work was partially supported by the Fonds National Suisse de la Recherche
Scientifique, grant # 12-57093.99.
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