
TRANSPORT CYCLE

The transport cycle (see Fig. 1) has been char-
acterized by either tracer uptake or electrophys-
iological measurements performed after
expression of the cloned type IIa Na/Pi trans-
porter in Xenopus laevis oocytes (1,5–8). A com-
parison of Pi uptake, Na+ uptake, and charge
movements indicate an overall three Na+ to one
Pi stoichiometry (7). Although monovalent Pi
can be transported, divalent Pi is the preferred
substrate (7,9–11). This explains part of the
observed pH dependence of proximal tubular Pi

reabsorption (1). However, changing pH has
additional effects (e.g., on the reorientation of the
empty carrier and on the interaction with Na+

ions) (1,4,9). The reorientation of the empty car-
rier involves the apparent transfer of one nega-
tive charge (5). Under normal physiological
conditions, the first step involves an interaction
of the carrier with one Na+ ion on the external
surface (5,9). In the absence of the transport sub-
strate (Pi), a Na+-dependent leak or slippage
(approx 10% of fully loaded carrier) can be
observed (1,5). In the presence of Pi the trans-
porter interacts with the transport substrate (Pi)
followed by the loading of two additional Na+

ions (1,5). Thus, the translocation of the fully
loaded carrier is, per se, an electroneutral process;
that is, the observed charge transfer within the
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mechanism (cycle) as well as particular regions of the transporter protein (“molecular domains”)
that potentially determine transport characteristics.
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transport cycle is the result of the reorientation of
the unloaded carrier (1,5). Phosphonoformic
acid (PFA), a well-known inhibitor of this trans-
port activity, interacts with the Pi-binding site
and is apparently not (or only at an extremely
slow rate) transported (1,5,12).

FUNCTIONAL REGIONS

The type IIa Na/Pi cotransporter has at least
eight transmembrane domains (TMDs) with
cytoplasmic amino and carboxy-termini (Fig. 2).
This prediction is based on epitope insertion/
antibody accessibility (13) and cysteine inser-
tion/accessibility studies (14–17). Functional
regions (i.e., affecting transport activity) were
identified by two separate approaches: cysteine
insertion/modification [cysteine scanning
(14–17)] and chimera construction (18,19). The
latter is based on the different transport proper-
ties of type IIa (renal) and type IIb (intestinal)
Na/Pi cotransporters (1,5,20,21).

Three amino acids in the predicted third
extracellular loop are responsible for the
increased transport rates at alkaline pH values
of type IIa as compared to type IIb-mediated
transport activity (19). This conclusion is based
on experiments involving chimera construc-
tions, sequence comparisons, and site-directed
mutagenesis (19). A similar strategy suggested
that amino acid residues in the predicted fifth
transmembrane domain codetermine the lower
apparent affinity for Na+ interaction in type
IIa-mediated, as compared to type IIb-medi-
ated, transport activity (18).

Cysteine modification experiments provided
information on structure–function relationships
in the type IIa cotransporter (15–17). In addition
to two used glycosylation sites (22), the pre-
dicted second extracellular loop contains a func-
tionally important disulfide bridge (14,23)
(Fig. 2). The transporter might be cleaved
between the two glycosylation sites and is (with
an intact disulfide bridge) still functional (24–26);
Ehnes et al., in preparation). The predicted third
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Fig. 1. Transport cycle of type IIa Na/Pi-cotransporter activity. The transporter interacts first
with one Na+, followed by interaction with Pi and two additional Na+ ions. The translocation of the
fully loaded carrier is an electroneutral process, whereas reorientation of the empty transporter is
associated with a net-charge translocation. Phosphonoformic acid (PFA) blocks the carrier by inter-
acting with the Pi-binding step. Protons reduce transport activity by interfering with the transloca-
tion of the unloaded carrier, with the Na+ interactions as well as with the availability of divalent Pi.
For further discussion, see the text. (Based on data presented in refs. 5 and 9.)



extracellular loop is thus far, functionally the
most important: Cysteine insertion/modifica-
tion (scanning) leads to transport inhibition
depending on the amino acid position and con-
ditions of application (time, concentration, side
of membrane) of the cysteine-modifying reagent
(15,16). We concluded that this region is in part
membrane associated (“re-entrant”) and α-heli-
cal and undergoes transport-dependent confor-
mational changes (15,16) (Fig. 2). Intramolecular
sequence comparisons indicated that the pre-
dicted first intracellular loop shows sequence
homology to the predicted third extracellular
loop (14,17). Cysteine insertion/modification in
this region suggested a functional importance of
these amino acid residues, also which were
shown to be preferentially accessible from the
cell interior (17). Thus, we propose that the first
intracellular together with the third extracellular

loop forms a putative “permeation pore” (17)
(Fig. 2).

MONOMERIC VS
MULTIMERIC FUNCTION

Radiation/inactivation studies suggested that
Na/Pi-cotransport function may require a
homotetrameric organization (27). The cysteine
insertion/modification resulted in fully
inhibitable transporter constructs (15) (Fig. 3,
S460C). This provided an opportunity to
re-evaluate the question of multimeric require-
ments. We have used two different protocols
(28): First, mixing wild-type and mutant trans-
porters resulted in inhibitable transport activity
directly related to the mixing ratio. Second,
fusion proteins (concatamers) comprising two
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Fig. 2. Membrane topology and functional domains of the type IIa Na/Pi cotransporter. The trans-
porter contains at least eight TMDs with cytoplasmic amino- and carboxy-termini. The predicted first
intracellular and third extracellular loops contain functionally important domains and might be “re-
entrant” to form a “permeation pore.” In addition, the predicted third intracellular loop contains
sequences for regulatory internalization, the carboxy-terminus sequences required for apical expres-
sion, in part involving an interaction with PDZ-binding proteins. For further discussion, see the text.



identical mutants (S460C–S460C), mixed wild
type (WT) and mutant (WT–S460C), and two
WT components (WT–WT), gave respectively
50%, 100%, and 0% loss of transport activity after
Cys modification (28) (Fig. 3). These findings are
consistent with each monomer-mediating Na/Pi
cotransport, but does not exclude that the trans-
porter can be clustered in “multimeric” com-
plexes. Thus, the larger functional molecular
weight observed in the radiation/inactivation
studies could suggest that the transporter is part
of a larger complex also containing “specific”
interacting proteins (29).

CONCLUSIONS

The type IIa Na/Pi cotransporter mediates
a 3Na+ : 1HPO4

2– cotransport and is a func-
tional monomer. The transporter is separated
by a large glycosylated extracellular loop into
two functional domains containing “re-
entrant” loops (Fig. 2). The transporter can be
cleaved at the extracellular loop without

functional influence if stabilized by a disul-
fide bridge. In addition, sites important for
regulatory internalization (predicted third
intracellular loop) and for apical expression
including scaffolding mechanisms (COOH-
terminal sequences) have been identified
(29–32; Gisler et al., in preparation) (Fig. 2).
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