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Abstract Given the stubborn phenom-
enon of many childrenÕs serious diffi-
culties and failure in mathematical
learning, the hypothesis of develop-
mental delay, or neurocognitively based
deÞciency should be complemented by

further explanantions of childrenÕs
weaknesses and substandard perform-
ance in mathematics. One obvious
explanantion is that schooling and
instruction for low ability children and
for children with special needs is often
inadequate. The present contribution
examines selected research on mathe-
matics learning under a cognitive
instructional (didactical) perspective.
Constructivist learning theory, the root-
ing of meaningful learning in concrete
modeling activities, the balancing of
understanding and practice in mathe-
matics instruction, diagnostic and

adaptive teaching, computer-assisted
instruction, and the role of nonmathe-
matical stumbling-blocks are discussed
as principles and factors of effective
mathematics learning and teaching. 
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Introduction

Mathematics learning and instruction Þgure prominently in the
concern of the public discourse on education. Given that math-
ematics pervades modern civilization, the life of a student who
persistently performs poorly in mathematics achievement can
become a nightmare. Sometimes, the suffering has a name Ð
developmental dyscalculia. However, compared to the wide-
spread phenomena of failure in mathematics learning by stu-
dents of all age and grade levels, only a few types of apparent
weaknesses and learning disabilities related to arithmetics and
mathematical problem solving might have a neurological basis
at all. Research on its genetic or neuropsychological basis are
still far from being clear-cut (14). The cognitive components
(e.g., Òfact retrievalÓ, ÒcountingÓ, Òconceptual knowledgeÓ,
Ònumber senseÓ) underlying mathematical ability not only rely
on the functioning of neurocognitive systems, but are also
heavily sensitive to instructional and environmental factors.

Given the rich body of research literature on mathematics
learning and teaching (see, e.g., (15, 21)) there is convincing
evidence that

O Most observed failures and substandard performance in
mathematics learning are not due to genetic factors at all
but to insufficient teaching-learning environments, i.e., to
inadequate schooling;

O Even learning difficulties with a neuropsychological diag-
nosis (of deÞciency or developmental delay of cognitive
components) are substantially reinforced and shaped by
environmental inßuences, e.g., insufficient measures taken
by the instructional and educational support systems.

Mathematical learning difficulties, even if proven to have a
genetic or hereditary component, do not appear Òout of the
blueÓ but manifest itself, as combinations of environmental
and neurodevelopmental problems, in instructional and socio-



cultural contexts (14, 32). There is a common Òmisunder-
standing to think that genes determine outcomes in a hard-
wired, there-is-nothing-that-we-can-do-about-it wayÓ (32, 
p. 235). Larger than the group of neurocognitively disabled
children in ordinary mathematics classrooms is the group of
the children whose motivational dispositions and attitudes
toward doing mathematics, and whose self-concept of ability
related to mathematical learning has been damaged (or are in
danger of doing so) by the low quality of educational and
instructional environments. The educational design of effec-
tive learning and teaching environments Ð or simply, good
teaching Ð should, thus, be considered a key factor both in the
prevention and remediation of a wide class of mathematical
learning difficulties. According to a recent meta-analysis of
treatment outcomes of intervention research on students with
learning disabilities (46), effective teaching methods identiÞed
in the general literature on learning and instruction are also
effective for disabled children.

The goal of this contribution is to present a view on the
teaching and learning of mathematics that has emerged from
theoretical and empirical research, such as studies on learning
as a constructive, cumulative and meaningful activity embed-
ded into sociocultural contexts. There is a consensus in current
learning theory (not only mathematical) that the importance of
domain-speciÞc knowledge and skills, the orientation toward
understanding, problem solving and social interaction are
among the most critical dimensions with regard to the design
of effective teaching-learning environments. This is consid-
ered to be valid not only for students of various grade levels
but also of all levels of mathematical ability, including children
with mathematical learning disabilities.

A cognitive-constructivist perspective on learning 
and instruction

The most basic idea in current learning theory is that learning
is an active and constructive process. Even if treated in many
schools as rather passive recipients of information, children are
active individuals who genuinely construct and modify their
mathematical knowledge and skills through interacting with
the physical environment, materials, teachers and other chil-
dren. Verbs such as observe, explore, express, describe, elab-
orate, justify, represent, re-arrange, paraphrase, investigate,
cooperate, discuss, review, negotiate and predict can be used
to convey this mindful involvement by children. According to
radical forms of constructivism (16), students construct on
their own/for themselves the meaning of mathematical con-
cepts and practices through interaction with the physical world
and during social interaction and dialogue, and develop con-
ceptual and procedural schemata that are unique.1 Opposing all
forms of direct instruction, radical constructivism, in some of

its proposed didactic consequences, comes close to radical
progressive education which goes along with an idealized,
almost mythical view of the self-constructive nature of learn-
ing. Less radical and more pragmatic forms of knowledge-
based constructivism (2, 33) emphasize the role of socially
shared prior knowledge and of teacher guidance to the forma-
tion of concepts and skill structures. Knowledge-based con-
structivism acknowledges that both procedural (skill-related)
and conceptual learning require extensive practice on a whole
range of tasks and examples, and it also acknowledges the
need for a balance in instruction between skill-orientation
(forms of drill and practice) and orientation toward learning
with understanding. Simply exposing children to (often
enough) poorly designed (social) situations and materials, and
telling them to (inter)actively construct mathematical meaning
is not enough. Students will not construct, or discover in a few
hours what has taken culture years or centuries to develop. Or,
with regard to any elementary mathematical skill: there are
merely slow constructive processes in which the elements of
a simple procedure partly and gradually becomes integrated
into a mastered skill. Only under intelligent support structures,
where teachers act as structural and procedural role models, as
domain experts, scaffolds and learning coachs Ð more gener-
ally, as impulse-givers and facilitators of learning Ð can (co-)
constructive learning of nondisabled children as well as of
children located in the lower segments of mathematical per-
formance be expected to be productive. It is a common mis-
conception that constructivist learning goes along with a
deemphasis of practicing basic cognitive skills and with the
fading of the role of the teacher. Given that learning is an active
and constructive process, the role of teachers is to design dis-
course-oriented learning environments encouraging children
to (inter-)actively explore, express, develop, discuss, and prac-
tice mathematical ideas. They need to be sensitive to childrenÕs
curiosity and their physical and mental efforts of sense mak-
ing, and be able to mediate the development of mathematical
thinking of students.
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1Epistemiological constructivism, which is rooted in the work of
Immanuel Kant, was introduced into modern psychology by Jean Piaget
(29). One of its fundamental assumptions is that no child and no learner
can be forced by any teacher, or tool, to any insightful understanding of
a concept, or to any intrinsic and deeper learning. According to Piaget,
any developmental change as well as any knowledge building activity is
building relationships (Òmise en relationÓ), thus a genuine constructive
activity that every child always has to do on his/her own, and that nobody
ever can do for the child.
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From concrete modeling to symbolic computation

According to Piaget and Szeminska (31), the development of
abstract conceptual structures, such as mathematical thinking,
is rooted in infancy and in early childhood. Mathematical
thinking only slowly emerges from informal acting and intu-
itive reasoning, including the use of ordinary language and
qualitative world knowledge, a developmental pass which
Piaget (30) framed as Òabstraction � partir de lÕactionÓ or
Òreßective abstractionÓ (abstraction r�ß�chissante). To acquire
the concepts of elementary mathematical operations means
learning to focus on the protoquantitative aspects of goal-
directed acting and real life situations. Children acting intelli-
gently (i.e., in goal-directed, task- and context-speciÞc ways)
in everyday situations acquire a considerable amount of pro-
tomathematical knowledge with real objects by collecting,
joining, taking-away, distributing them, before they enter
school and master mathematical language. As Staub and Stern
(44) point out:

ÒLong before children receive systematic instruction in
school, they can compare sets at least qualitatively by stating
which one is bigger: they can reason about increases and
decreases of sets; and they possess a protoquantitative part-
whole schema that allows them to understand that quantities
can be composed of each other. As children integrate their
protoquantitative reasoning with the separately developed
competency to count objects, they begin to operate with quan-
titative schemata. Finally, given that children encounter situa-
tions that encourage participation in corresponding discourse,
children also learn to reason about numbers and operators
without immediate reference to actions and physical quanti-
ties. In discourse about numbers and there relations, numbers
obtain the status of purely conceptual entitiesÓ (p. 70).

Mathematical operations are developmental derivatives of
sensorimotor actions; they are Òinteriorized abstract actionsÓ
(1, 35). Concrete actions, expressed by verbs such as giving,
getting, selling, or losing sets of objects are seen as bearing the
abstract relational ideas that are inherent in elementary math-
ematical operations like adding, subtracting, multiplying and
dividing. The responsibility of elementary teachers consists of
building onto this existing protomathematical experience of
children, i.e., to mediate the development from concrete phys-
ical modeling to progressively higher levels of abstraction.
Skillful guidance of children from direct acting (including the
studying of phenomena in the real world)2 to symbolic com-
putation, requires expert teachers who know that children must
learn to trust their own abilties of mathematical sense making,
and that a premature rush to impose formal mathematical lan-
guage is to be avoided. As experienced teachers know: swot-
ting up on number facts is fast and doable for everyone,
however, hardly productive, while learning by understanding
needs time Ð and skillful scaffolding and mediation. Through-
out the early years, teachers should give students widespread

opportunities to develop, use, and practice their mathematical
capacities by providing (or letting them Þnd) intelligible forms
of representation, and by letting them physically model, coop-
eratively discuss and reßectively think about situations. How-
ever, simply using materials in barely structured ways does not
ensure understanding. The teacherÕs role is to make students
become aware of the mathematical structures they are pro-
ducing while physically modeling concrete situations, and to
elicit studentsÕ thinking, communication, and reasoning (c.f.
(26)).

Learning with understanding and practice to mastery

It is a widely accepted idea that students should learn mathe-
matics with understanding, actively building new knowledge
from experience and prior knowledge (22, 27). An increas-
ingly less widely accepted idea is that student should practice
to mastery what they might be able to understand. The educa-
tional philosophy of radical constructivism currently shatters
the beliefs of many mathematics teachers about the pedagog-
ical value of drill and practice, that is, of fostering basic skills,
such as immediate retrieval of number facts and the ßuent exe-
cution of elementary mathematical operations. From a point of
view of knowledge-based cognitive constructivism, which
goes along with the appreciation for prior knowledge and basic
skills, meaning construction with understanding and auto-
maticity in the execution of procedures are just two sides of a
single coin. According to Hiebert and Carpenter (22), under-
standing not only enhances transfer but also promotes remem-
bering, as by reducing the amount of pieces (ÒchunksÓ) of
knowledge that must be held at the same time in short-term
memory.

LetÕs take number sense Ð understanding numbers, recog-
nizing the relative magnitude of numbers and the effect of
operating on numbers, ways of representing numbers, multi-
ple relationships among numbers and operation properties,
number systems (27, 43) Ð as an example. Number sense or
ßexibility in thinking about numbers and operations refers to
a well-organized network of numerical knowledge allowing
numbers to be used and represented in multiple ways, includ-
ing relating them to each other, composing and decomposing
them, or embedding them in various contexts of mathematical
operations and problem solving.3 For example, the numbers 4,

2C.f. also the framework of Realistic Methematics Education (11, 47). In
this perspective, basic mathematics is in the Þrst place a human activity
connected to real life situations. Mathematical learning starts out from the
modeling of situations and phenomena in the real world. Higher levels of
conceptual abstraction are progressively acquired through cooperative
interactive, and reßective learning.



5 and 9 may appear in contexts where the problem is to add 4
+ 5, or to subtract either 9Ð4, or 9Ð5. While some students
solve the small arithmetic problems by just retrieving Ònum-
ber factsÓ from memory, or by counting and other informal cal-
culational procedures, most students, hopefully, will be able to
derive in an inventive process the unknown from already
known facts, i.e., to understand the multiple relationships of
numbers and operations. In developing the meanings of num-
bers and operations and how they relate to each other, children
should encounter the properties of these mathematical entities
that constitute the basic elements of mathematical knowledge.
Learning to calculate is more than memorizing and retrieving
number facts; even learning the most trivial arithmetical
knowledge means to construct, elaborate and ßexibly mentally
walk through networks of numerical connections. The more
structured and interconnected the networks, the fewer pieces
of knowledge that need to be retrieved separately. Moreover,
accessing single parts of the network may lead to the retrieval
of the whole network. That is, transparently structured and
tightly interconnected arithmetic networks not only are bene-
Þcial for deep conceptual understanding but also, by reducing
the processing demands, for remembering and the fast execu-
tion of subroutines.

Children in their Þrst two years of school need to under-
stand how numbers relate to each other, and how mathemati-
cal operations (beyond the mere manipulation of numbers)
represent relationships. Moreover, they need to develop a solid
understanding of the base-ten numeration system and place-
value concepts (13, 27). It needs many instructional experi-
ences and a lot of practice to develop the sense for numeros-
ity and operational relationship which allows, on demand,
children to go back and forth between conceptual under-
standing and fact memorization, and which ensures Ð beyond
learning in a rote manner Ð both transferable and persistent
mathematical knowledge.

Adaptivity and empathy in teaching

ÒThe success of education depends on adapting teaching to
individual differences among learnersÓ (7, 42). Even if
theories about instructional adaptation have been vague, and
no systematic procedures have been available to solve this
profound and pervasive problem, there is enough evidence
supporting the hypothesis that macro- and microadaptive, indi-
vidualized teaching is crucial to the success and failure of
children Ð especially of low ability children or children with
special needs Ð in school learning. Microadaptation refers to
the moment-to-moment decisions of teachers aiming at tailor-
ing instruction to the needs of different learners. As research
indicates, expert teachers deÞne themselves in part as experts
with regard to their craft to reach individual students, i.e., to

make their teaching responsive to individual differences (17).
There are many ways effective teachers can make both their
thinking and their behavior responsive to differences in stu-
dents. According to Corno and Snow (7, p. 613f) teachers can
qualitatively or quantitatively vary and adjust

O The organizational structures of the class Ð by manipulat-
ing the groups, the learning centers, the reward structures Ð
so long as grouping is short-term and not stigmatic;

O The manner in which information is presented in recitation4

Ð prompting students to organize lesson materials for them-
selves, or to provide their own examples of principles
learned; or to use self-monitoring or self-reinforcing tech-
niques and other aspects of self-regulation;

O The materials they chose to present information or to guide
problem solving Ð their examples, analogies, and points of
emphasis, review, and summary;

O The support materials they use Ð aides, media, and so forth,
and the level and form of question asked (e.g., higher order
questions that prompt students to go beyond information
given in their answers);

O Reinforcement given for correct responses, the level of
explanantion provided for incorrect responses, the push to
take a second try;

O The types of prompting student questions to aid in diagno-
sis;

O Instructional processes to individual student responses but
also to their growing conception of student cognition and
motivation with respect to learning the tasks at hand;

O The amount of time spent with different students on the
same problem; 

O The amount of time students are encouraged to spend with
other students or media;

O The number of questions asked to assess learning;
O The amount of feedback given for particular responses, and

pacing;

With regard to low performing students in mathematics, adap-
tive teaching is generally associated with remedial instruction
provided to individual students depending on their speciÞc
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3In the Curriculum and Evaluation Standards for School Mathematics
(NCTM 1989), number sense is described as Òan intuition about numbers
that is drawn from all the varied meanings of numberÓ (p. 39, quoted from
Sowder (43), p. 381).
4The term ÒrecitationÓ refers to a basic pattern of repeated instructional
steps that can be observed in almost all teaching. The three teaching
ÒmovesÓ corresponding to the pattern are: (i) ÒstructuringÓ (explanantory
presentation of information), (ii) ÒsolicitingÓ (diagnostic monitoring and
evaluating student learning, (iii) ÒreactingÓ (providing adaptive feedback
to student responses) (4; quoted from Corno & Snow (7)).
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weaknesses. An important prerequisite for remedial learning
and instruction is diagnostic monitoring resulting in a cogni-
tive instructional analysis of speciÞc difficulties and problems
of an individual learner. Teachers should attune to each stu-
dentÕs strengths and weaknesses, styles of problem solving,
and relevant prior knowledge in order to obtain a Þne-grained
proÞle of the general and task-speciÞc problems, conceptual
misunderstandings and procedural deÞcits before selecting
and/or designing appropriate alternative materials for remedi-
ation. That is, effective teaching requires understanding what
individual students know what they still need to learn and 
what their problems and difficulties are.

Adapting teaching should, moreover, include the study of
student errors while solving mathematical tasks. Errors ought
to be treated as a diagnostic and as a windows into their math-
ematical thinking. A pedagogical task of teachers is to estab-
lish a Òpositive error cultureÓ (see (3)), i.e., errors should less
be seen as indicators of failure Ð often enough negatively feed-
ing back to motivation and self-concepts of students5 Ð but as
learning opportunities and as challanges to clarify conceptual
misconceptions. Most errors that appear consistently and that
evolve over a long period of learning have their history in the
childÕs prior systems of knowledge and meaning. Overviews
on a whole range of diagnostic instruments for mathematics-
speciÞc learning difficulties including error proÞles of stu-
dents, as well as on remedial strategies, measures and materi-
als that are designed on a cognitive psychological basis (con-
tent and process analysis) can be found in Grissemann (19, 20,
25). Long-term cognitive instructional monitoring and adap-
tive, task-speciÞc remedial teaching which are responsive to
the difficulties of individual learners should be seen not only
as the backbone of professional teaching but also as a signiÞ-
cant prevention of more severe types of disorders in arithmetic
skills.

Learning and teaching with computer tools

A type of instruction that holds the promise to provide learner-
sensitive microadaptation more immediately and more sys-
tematically than do classroom teachers is computer-assisted
instruction. Even if the high expectations that were raised with

the advent of intelligent tutoring systems in the 1980s have not
been fulfilled, computer-based learning programs can be
designed to make moment-to-moment microadaptations in the
sense that subsequent information is selected conditioned on
different learnersÕ responses to previously presented informa-
tion (7, 23). There are many programs available, nowadays,
most of them drill-and-practice programs, that can be used to
acquire and practice elementary mathematical operations.
Typical drill-and-practice programs provide children with
sequences of tasks and immediate feedback about the correct-
ness of responses; some programs even with adaptive help and
verbal comments. There is evidence of a moderate effective-
ness of computer-assisted learning with regard to motiva-
tional, attitudenal, and performance measures (for a meta-
analysis see (24)). Given the fragility of the self-concept of stu-
dents with a negative learning history and the accompanying
side-effects of suffering teacher-student relationships, com-
puter programs behaving entirely unauthoritarian, being end-
lessly patient, not getting tired of poor responding from stu-
dents, and never distributing negative moral sanctions and
reinforcements, may be beneÞcial especially to slow learners
or to children with negative motivational patterns. Technology
may also help students with special needs to develop number
sense. For example, students having difficulties with place-
value concepts can Ð cooperatively or together with the teacher
- observe values displayed by a computer program, or on a cal-
culator and focus on (discuss, share) which digits (units digit,
tens digit) are changing if certain numbers are added or sub-
tracted, or if a target number must be reached (27; p. 81f).

“From words to situations to equations”: 
non-mathematical stumbling-blocks of mathematical
learning

Word problems are used at critical points of childrensÕ school
careers to assess situated mathematical problem solving. As
textual entities, word problems consist of two interwoven
semiotic layers: a story-like description of some event in the
real world, and a latent web of mathematical relations. Both
textual worlds are related by a problem question deÞning a
variable, the value of which has to be determined. Under-
standing and solving even of simple mathematical word prob-
lems has been proven to be a complex and highly inferential
process that requires skillfull interaction of at least three kinds
of knowledge: linguistic, situational (real world semantic),
and mathematical; and it entails transforming natural-language
texts into some canonical form of mathematical expression,
e.g., an equation, or in a form of representation which on an
elementary level allows for the application of counting strate-
gies. In this process of transformation, the underlying logico-
mathematical deep structure of a word problem is only one

5Research (c.f. (10, 26)) has persistently shown the problematic inßuence
of motivational patterns and non-cognitive apitudes Ð low interest, low
self-efficacy and self-concept, high anxiety, an external locus of control,
a tendency to internalize failure Ð on performance and achievement.
Cognitive-behavioral intervention, thus, should extend to non-cognitive
factors of performance.



constraining factor for arriving at the right calculation strate-
gies. As numerous studies have shown (c.f. (45)), factors other
than arithmetical skill are a major source of difficulty with
word problems. Two groups of nonmathematical factors have
been shown to heavily inßuence problem difficulty: semantic
factors and wording factors (ibid.). Semantic factors refer to
the nonmathematical action or situation structure underlying
word problems. As studies show, problem difficulty varies
with the type of familiar or unfamiliar, intuitively meaningful
or more abstract, realistic or artiÞcial, static or dynamic situa-
tion described in a word problem. Wording factors refer to the
linguistic (lexical, syntactic) surface structure, or presenta-
tional structure of tasks. Even minor variations in the use of
speciÞc linguistic means may have a signiÞcant impact on
problem difficulty that cannot be explained by the logico-
mathematical structures (34).

As an example, consider the problems in Table 1. They have
some similarities and some differences both on the surface
level of wording (presentational structure) and on the deep
structural level (semantic and logico-mathematical structure),
but are solvable by simple arithmetic operations (adding, sub-
stracting). P1 through P3, e.g., may be solved by adding 3 and
5. Yet the semantics of the three problems are quite different.
The Þrst and the second involve joining and separation, i.e.,
some literal action of change, in which a portion of objects is
added to or removed from a set, and the task is to discover what
the resulting set (P1) or the initial set (P2) is, or was, respec-
tively. P3 is semantically different, involving part-whole rela-
tions. Here the task is to use information on the two subsets to
obtain the number of the whole. Similar observations can be
made with P4-P6 that may be solved by subtracting 5 from 8.
Yet the conceptual strucures of the three problems again are
different. While P4 is semantically similar to P3 (even if Ð
because of the changed location of the unknown Ð leading to
a different formal arithmetic operation), P5 and P6 constitute
a third type6 of conceptual deep structure, requiring the
identiÞcation of a difference set (P5) or the reference set (P6)
in a compare situation.

Despite the fact that the formal solution methods for P1ÐP3
(adding) and P4ÐP6 (subtracting) are identical Ð and trivial, by
connecting merely two numbers Ð their underlying deep struc-
tures differ radically. Moreover, there are wording factors
which contribute to problem difficulty. It is known that young
children have particular difficulties in understanding words
that refer to quantity, such as some, more or more than, or to
time concepts, such as temporal adverbs, or the expression of
tense (8, 45) Ð a fact that also relates to what is known about
language development in children (6).

Finally, it should be noted that solving the same (and many
other) types of problems with and without manipulatives
makes a signiÞcant difference in difficulty. This is important
for the instruction of disabled and nondisabled children who
have difficulties in selecting and integrating relevant pieces of
problem information, in building adequate mental representa-
tions of actions and problem episodes, or in storing interme-
diate results in short-term memory. One of the advantages in
solving mathematical word problems with manipulatives is
that external aides, as blocks, allow for the concrete modeling
of problem situations and thus reduce the load of working
memory.

Successful mathematization in solving word problems
includes the construction of several interrelated mental repre-
sentations, each of which being able to become a major deter-
minant of childrenÕs difficulties: a textbase as a propositional
representation of the linguistic input, an episodic situation
model as a qualitative representation of the nonmathematical
Òreal-lifeÓ content, a mathematical problem model as the
abstract gist of the situation, and an equation (35). It is well
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Table 1 Percentage of solved problems by 2nd graders, either using manipulatives (blocks) or not (37)

without blocks using blocks

P1. Joe had three marbles. Then Tom gave him Þve more marbles. 
How many marbles does Joe have now? 100 100

P2. Joe had some marbles. Then he gave Þve marbles to Tom. 
Now Joe has three marbles. How many marbles did Joe have in the beginning? 65 70

P3. Joe has three marbles. Tom has Þve marbles. How many marbles do they have altogether? 100 100

P4. Joe and Tom have eight marbles altogether. Joe has three marbles. How many marbles does Tom have? 55 70

P5. Joe has eight marbles. Tom has Þve marbles. How many marbles does Joe have more than Tom? 65 85

P6. Joe has eight marbles. He has Þve more marbles than Tom. How many marbles does Tom have? 35 65

6The three types of problems represented in Table 1 are CHANGE
(P1ÐP2), COMBINE (P3ÐP4), and COMPARE problems (P5ÐP6). The
problem types differ in their situation semantics and in the location of the
unknown (c.f. (36)).
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known that students who are severely lacking in all types of
relevent knowledge and skills Ð reading and language com-
prehension skills, real world knowledge, diagramming and
problem representation skills, metacognitive organization of
problem solving, arithmetic-fact retrievel and counting skills
Ð are not able to easily go through these necessary steps of rep-
resentation, and adopt many types of coping strategies that
bypass the logic of mathematical sense-making activities. For
example, there are many students who just plug numbers into
some equations or perform various kinds of ÒmagicÓ number
work. Since students with learning disabilities, including poor
reading comprehension, belong to this group, they need the
guidance of effective pedagogical settings.

An important requirement is that problems are presented in
contexts that are meaningful to the child. This implies that, to
a certain degree, other types of problems and contexts Ð more
familiar and realistic ones than the impoverished diet that can
be found in many textbooks Ð are selected or created by the
teacher. Furthermore, in order to improve the problem-solving
skills of slow learners and of children with learning disabili-
ties, instruction should help those children to analyze, reßect
Ð and, above all, to practice Ð the overall required sequences
of steps in understanding and solving different types of word
problems, including the reßective discussion of errors. Steps
that should be included in the (remedial) teaching of mathe-
matical problem solving are

O Careful reading of the problem text, and putting what is
read into a childÕs own language, allowing them to connect
its semantic content with their everyday and intuitive
concepts and experience;

O Building an episodic situation model, i.e., a concrete and
vivid representation of the nonmathematical content of the
problem, of what the text is about;

O Focusing on critical words and phrases carrying informa-
tion with regard to the underlying deep structure of the
problem;

O Stating the mathematical goal associated with the speciÞc
problem, by analyzing the explicit question (or by generat-
ing one if no question is given);

O Constructing a reduced and gradually abstract mathema-
tical understanding of the problem, including the use of
drawings and diagrams;

O Mapping the abstract problem model onto a formalized
canonical notation, such as an equation, or onto the appli-
cation of arithmetic procedures.

Mathematical sense making and the culture of schooling

Mathematical behavior is shaped by the instructional context
and the social and historical culture of schooling in which it

takes place. In quite contrast to an idealistic understanding of
classroom problem solving as insightfully following the fac-
tual logic of things, or the inner requirements of situations
(48), there is a growing body of research showing that school-
ing also follows a social or contextual logic. There is ample
evidence showing that learning in many mathematics class-
rooms is hardly optimally directed toward mathematical mod-
eling or deep conceptual understanding. Many students con-
ceptualize and solve mathematical problems in a rather rote
manner, without going back to a level where they are trying to
understand its mathematical and/or real world meaning.
Among the evidence documenting studentsÕ failure in mathe-
matical understanding are studies showing that, e.g., students
readily ÒsolveÓ unsolvable, even absurd, problems if presented
in ordinary classroom contexts (34, 40), almost never ask
themselves if a problem given to them is solvable (47), and
frequently use superÞcial key word strategies in order to solve
a problem (28).

Consider the following nonsense problem from a French
source that was given to 76 Þrst and second graders in a school
setting (34; p. 324f):

O There are 26 sheep and 10 goats on a ship. How old is the
captain?

Although being clearly absurd, more than three of four stu-
dents produced a numerical answer to it. A similar problem
goes as follows: ÒThere are 125 sheep and 5 dogs in a ßock.
How old is the shepherd?Ó The following quote from a fourth
grade student working the problem out loud speaks for itself:

O 125 + 5 = 130 ... this is too big, and 125 Ð 5 = 120 is still
too big ... while 125/5 = 25 ... that works ... I think the
shepherd is 25 years old.

Reusser and Stebler (37) asked in two studies 180 Swiss
students from 4th/5th, and from the 7th grade level to work a list
of ten ill-deÞned or unsovable problems. Examples were

O Steve has bought 4 planks of 2.5 m each. How many planks
of 1 m can he get out of these planks?

O JohnÕs best time to run 100 m is 17 sec. How long will it
take him to run 1 km?

O A man wants a rope long enough to strech between two
poles 12 m apart, but he has only pieces of rope each 1.5 m
long. How many of these pieces would he need to tie
together to make the rope long enough to strech between the
poles?

More than 90 % of the studentsÕ responses to the problems
were numerical solutions. Only 18 % of the 4th/5th gradersÕand
42 % of the 7th gradersÕanswers reßected the inclusion of some
real-world knowledge into the solving of the problems. That



is, most students from 4th and 5th grade and still a majority of
7th grade students gave answers that simply do not make sense
if one takes the problem statements seriously. Asking the 4th

and 5th grade students afterwards to comment on the problems
and to evaluate the correctness of their solutions, revealed the
result that most of the students reported that they understood
most of the problems well, that they did not have difficulties
solving them, and that they were not wondering whether the
tasks were solvable or not. Very few students spontaneously
expressed the opinion that one or several problems were the
least bit out of the ordinary.

Note that the reported behavior stems from nondisabled
students from regular classrooms.7 If nondisabled students
apparently disregard considerations of reality and fail to to
note any ill-deÞnedness, unsolvability, or meaninglessness of
simple problem statements (see (34, 40), for further examples),
one can easily imagine what the difficulties of disabled stu-
dents are or might be, if being left with the solving of irregu-
lar Ð and regular (!) Ð mathematical problems.

What can be learned from this research on Ònon-realistic
mathematical behaviorÓ? The Þrst lesson is that the docu-
mented Òsuspension of sense-making is anything but anom-
alous. It is, rather an all-too-frequent occurrence ... that devel-
ops in school, as a result of schoolingÓ (41, p. 316f, com-
menting on the empirical Þndings of Reusser 34). That is, the
explanantion of this kind of mindless behavior should not be
sought in some cognitive deÞcit of the children but in the web
of conventions and everyday practices of the mathematics
classroom (18, 34, 41). The second lesson is instructional
(didactical) support of mathematical modeling. Realistic
mathematical modeling that is based on understanding the
meaning of mathematical tasks and situations is a highly
demanding, however, in almost any respect /aspect of diffi-
culty, clearly underestimated activity. In a subsequent study,

Reusser and Stebler (38) transformed Þve out of the ten prob-
lematic (equivocal, unsolvable) tasks that were used in their
previous study (37) Ð including the three above mentioned
problems Ð into hands-on performance tasks. That is, the still
verbally formulated problems were, in addition, presented as
practical tasks, accompanied by appropriate concrete material
(as real planks with saw and meter stick, stop watch, rope, scis-
sors, etc.). Instead of merely solving the problems with paper
and pencil, two classes of 6th and 7th grade students were
instructed to do a hands-on-performance of each tasks Ð with
the result that realistic reactions (explicitely noticing that
and/or why the problems were unsolvable or equivocal) almost
tripled compared to a baseline (paper and pencil) collected
from the same students at the beginning of the study. The study
shows that changing the modeling perspective Ð from a merely
verbal to an interactive presentation of tasks Ð immediately
had a signiÞcant impact on performance. The third lesson is to
change the socio-mathematical norms within the classroom
community (18), by the use of more realistic problems8, and
by varying instructional methods and socio-cognitive support
structures including, e.g., small-group interactions, whole-
class discussions, and various forms of communicative
scaffolding and coaching. It implies a critical stance towards
any shallow practices of mathematization in classrooms, and
it includes breaking with some Òtacit sets of beliefs and values
that are perpetuated by the day-to-day practices and ritualsÓ
(40; p. 82) of schooling over a considerable period of time 
Ð practices that apparently lead to undesirable effects of
mathematical learning and socialization.

Schooling and school culture are not the only inßuence on
childrenÕs academic behavior. A complementary, even more
basic determinant of the socialization of strategies, habits,
beliefs and values related to learning in general as well as to
subject-matter-related learning, is family culture. What expec-
tations for mathematical performance parents have, what their
relative emphasis on ability versus effort is, in what direct and
indirect ways school learning is cognitively stimulated and
assisted by the home environment, greatly affects childrenÕs
beliefs, attitudes, and behavior (12, 14). Thus, to intervene, as
a didactician, as a cognitive instructional psychologist, or as a
medical person in the case of serious mathematical learning
difficulties, requires one to study the individual socio-systemic
context of learning and instruction. The learning of basic
mathematical skills, its long-term success Ð or failure Ð is the
least shaped by our genes alone, but by the systemic factors of
educational and instructional culture, and by our ability to cre-
ate supportive learning environments for all children.
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7The whole range of student ability and school types were included into
the study.
8C.f. also Freudenthal (11; p. 70): ÒIn the textbook context each problem
has one and only one solution: There is no access for reality, with its
unsolvable and multiply solvable problems. The pupil is supposed to
discover the pseudo-isomorphisms envisaged by the textbook author and
to solve problems, which look as though they were tied to reality, by
means of these pseudo-isomorphisms. WouldnÕt it be worthwhile
investigating whether and how this didactic breeds an antimathematical
attitude and why the childrenÕs immunity against this mental deformation
is so varied.Ó
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