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Abstract We hypothesized that in untrained individuals
(n=6) a single bout of ergometer endurance exercise
provokes a concerted response of muscle transcripts
towards a slow-oxidative muscle phenotype over a 24-h
period. We further hypothesized this response during
recovery to be attenuated after six weeks of endurance
training. We monitored the expression profile of 220
selected transcripts in muscle biopsies before as well as
1, 8, and 24 h after a 30-min near-maximal bout of
exercise. The generalized gene response of untrained
vastus lateralis muscle peaked after 8 h of recovery
(P=0.001). It involved multiple transcripts of oxidative
metabolism and glycolysis. Angiogenic and cell regula-
tory transcripts were transiently reduced after 1 h inde-
pendent of the training state. In the trained state, the
induction of most transcripts 8 h after exercise was less
pronounced despite a moderately higher relative exercise
intensity, partially because of increased steady-state
mRNA concentration, and the level of metabolic and
extracellular RNAs was reduced during recovery from
exercise. Our data suggest that the general response of
the transcriptome for regulatory and metabolic pro-
cesses is different in the trained state. Thus, the response
is specifically modified with repeated bouts of endurance
exercise during which muscle adjustments are estab-
lished.
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Introduction

Skeletal muscle tissue shows a remarkable malleability
to remodel its structural make-up and to adapt func-
tionally in response to contractile stimuli. For instance,
endurance training is known to lead to specific
improvements of oxidative metabolism [14, 16, 28, 37],
capillarity [1, 8, 28] and occasionally a shift towards a
slower contractile phenotype [15]. Several studies also
demonstrate an increase in the content of intramyocel-
lular lipids (IMCL) [14, 32], while the size of muscle
fibers seems to remain essentially unchanged with
endurance training [6, 14].

Concerted changes in the concentration of expressed
messenger ribonucleic acids (mRNAs), i.e., the tran-
scriptome, have been identified as a major molecular
strategy of muscle for governing structural and func-
tional adaptations with exercise training [4, 12, 13, 21].
A match between the quantity of multiple mitochondrial
transcripts, both coded on the nuclear and mitochon-
drial genome, and mitochondrial volume density was
found in highly endurance-trained subjects [24, 25, 31].
Thus, coordinated adaptations of the concentration of
mitochondrial transcripts appear to underlie the
improvement of oxidative metabolism in the endurance-
trained state. However, the involvement of other gene
families and the time course of the response of the
transcriptome remain largely unknown.

In untrained vastus lateralis muscle, a single bout of
intense or prolonged ergometer exercise is known to
induce transient expressional adaptations of gene on-
tologies involved in lipid metabolization (LPL), mito-
chondrial biogenesis (TFAM, PGC-1a), redox
regulation (UCP3, HO1), carbohydrate metabolism
(GLUT4, HKII, PDK4) and angiogenesis (VEGF)
within the first hours of recovery [17, 22, 23, 26, 33, 34,
36]. Repetitive exercise bouts have further been shown to
enhance the basal concentration of factors of oxidative
(FAT, CPT1) and glycolytic metabolism (GAPD) after
weeks to years of endurance training [22, 36, 39]. This
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indicates that the accumulation of specific gene tran-
scripts in skeletal muscle due to the repetitive action of
exercise stimuli may contribute to the functional
improvements that are typical of the endurance-trained
state [10, 12, 25, 31]. Recent evidence further suggests
that the transcriptional response of metabolic factors
(HKII, TFAM, PPARa, CPT1, FAT) may be different
in the trained compared to the untrained state [23, 36].
However, the knowledge on how short-term transcrip-
tional changes relate to long-term adjustments of the
transcriptome with exercise stimuli and whether they
reflect the time course of improvements of muscular
performance with training [30] is limited.

In order to gain information on the coordination of
the gene response during endurance exercise-induced
alterations, we carried out a gene expression profiling
study. Biopsies were taken from vastus lateralis muscle
during the first 24 h of recovery from a single bout of
intense ergometer cycling before and after 6 weeks of
endurance training. The samples were subjected to
analysis on custom-designed microarrays. This allowed
for parallel analysis of transcript levels of gene ontolo-
gies involved in metabolic, contractile and regulatory
muscle function as well as in the adjustment of the
interstitial compartment. It was hypothesized that the
acute alterations of the transcriptome of sedentary
subjects to a single bout of endurance exercise should
encompass the set of genes responsible for the structural
and biochemical muscle adjustments occurring with
training. Secondly, it was hypothesized that the acute
transcript-level adaptations of the trained muscle to a
single bout of exercise at the same relative intensity
would be qualitatively similar to those seen in the un-
trained state, but reduced in quantity due to the ex-
pected increase in steady-state concentration of mRNA.

Materials and methods

Subjects

Six healthy, not systematically trained men gave their
written consent to participate in the study. The study
was conducted with permission of the Ethics Com-
mittee of Bern, Switzerland, in compliance with the
Helsinki Convention for Research on human subjects.

Anthropometric parameters (age, height, body mass,
and percent body fat) were determined at the begin-
ning of the study and after the 6 weeks’ training per-
iod. Percent body fat was determined by a seven-point
skin fold measurement using a calibrated skin fold
caliper (GPM, Switzerland).

Endurance training

During the 6 weeks, the subjects trained five times per
week for 30 min at an intensity of approximately 65% of
the maximal workload (Pmax). The training intensity was
monitored and adjusted by heart rate. Training work-
load was increased as necessary to maintain a constant
individual training heart rate which corresponded to
83±1% of the maximal heart rate in the first training
week and to 90±2% in the sixth training week.

Exercise test

The subjects were advised to stop extra physical activity
4 weeks before the start of the study (see Fig. 1). All
subjects were familiarized with the test equipment
2 weeks before the initial exercise single bout. At the
same time, an exercise test was carried out to determine
the admissible intensity of the initial exercise bout. A
second exercise test was carried out after the 6 weeks’
training period. Exercise tests were carried out on a
bicycle ergometer (Ergoline 800S, Ergoline GmbH, Bitz,
Germany). Expired air was analyzed with breath-
by-breath measurements (Oxycon alpha, Jäger GmbH,
Würzburg, Germany). Starting with 40 watts, the
workload was increased by 30 watts every 2 min until
the subjects could no longer maintain a cadence of more
than 60 rpm.

Single endurance exercise bout

Before and after the endurance-training period, the
subjects performed a single bout of bicycle exercise at a
low intensity (approximately 40% of Pmax) for 10 min
followed by 30 min of high-intensity exercise (approxi-
mately 65% of Pmax) on the ergometer. After the

Fig. 1 Experimental protocol
time line. Muscle biopsies were
taken before and after a single
bout of ergometer exercise in
the untrained state (EU) and
after 6 weeks of endurance
training (ET)
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6 weeks’ training period, the relative intensity was 6%
higher and the absolute intensity was 21% higher than
before (Table 1).

Muscle biopsies

Using the Bergstroem technique [2], resting needle
biopsies were taken from the vastus lateralis muscle
3 days before the first exercise test and 3 days after the
training period. A fraction of the muscle tissue was fixed
in glutaraldehyde and subsequently embedded in Epon
for microscopical analyses as described earlier [14]. For
measuring the capillary density, 1 lm cross-sections
were cut with an ultramicrotome from two tissue blocks
randomly chosen from each biopsy. Sections were
stained with toluidin blue and pictures were obtained by
light microscopy at a final magnification of ·1,850. On
average 117 fibers were analyzed per muscle biopsy. The
number of capillaries was counted directly. For mean
fiber cross-sectional area, point counting was performed
in consecutive corners of the frames on 100-square mesh
grids on the same sections.

The mitochondrial volume density was measured as
described on electron micrographs performing point
counting with a B36 grid with 144 test points at a final
magnification of ·24,000 [14].

For additional analysis of the molecular time course,
fine needle biopsies (14 Gauge single use; Medilink S.A.,
Pregassona, Switzerland) were taken 1, 3, 8 and 24 h
after the first and second single bout of exercise alter-
nately from the left and right leg. For each biopsy a fresh

incision was made at a distance of at least 1.5 cm from
any previous biopsy of the same leg. These biopsies were
frozen in isopentane cooled by liquid nitrogen and
subsequently stored in liquid nitrogen.

Fiber typing

Immunohistochemical determination of fast, slow, and
hybrid fiber types was carried out as described on 12-lm
cryosections using monoclonal antibodies specific for
fast myosin (My-32) or slow myosin (MAB1628) [11].
Type II fiber percentage was determined by counting all
fibers on the cross-sections of the biopsies.

Microarray analysis

Total RNA was isolated from 25 lm cryosections of the
muscle biopsies and quantified as described previously
[40]. Subsequently, microarray experiments and signal
quantification using custom-designed low-density At-
las� cDNA expression arrays (BD Biosciences, Allsch-
wil, Switzerland) was carried out basically as described
previously [7]. The filter membrane held 229 double-
spotted probes of human cDNAs associated with
particular aspects of skeletal muscle functioning (see
supplemental online Fig. 1). Additionally, cDNA probes
for the internal reference, 18S rRNA, were included on
the nylon membrane. 32P dATP-labeled cDNA was
generated from 0.8 lg of total RNA by using the 229
gene-specific primers supplied. Probe synthesis for the
measurement of the internal 18S rRNA reference was
carried out in parallel. 0.3 lg of total RNA of each
sample was always run for the generation of 32P dATP-
labeled cDNA with a specific primer for 18S rRNA.
Filters were hybridized with a mix of total cDNA and
18S cDNA diluted 1:1,800 and washed as described [7].
The microarray experiment was designed to minimize
variability of the time course data for individual sub-
jects. Therefore, samples from the pre, 1, 8, and 24 h
biopsies of any subject were processed in parallel for
reverse transcription and array hybridization from the
same master mix. Due to space limitations during the
washing step, we had to process biopsies of the subjects
taken after 3 h of recovery from exercise separately. As a
consequence, we found a low variability for the time
course in each subject as well as a low variability in the
dataset for the 3-h recovery. Due to the fact that the 3-h
recovery data was generated separately, we did not
include these data in the time course of each subject.

Array evaluation

Raw signals were determined from the average signal
intensities of the two corresponding dots as described
previously [7]. The background was estimated using the
Grid Background Dots mode for 54 dots. Transcripts

Table 1 Subject characteristics

Untrained Trained P

Age (years) 28 (21;38)
Height (cm) 182 (172;189)
Body mass (kg) 75.8 (65.0;101.8) 74.8 (65.8;99.3) 0.92
Body fat (%) 12.1 (6.0;35.4) 12.9 (5.2;34.0) 0.60
_V O2max(ml/min/kg)a 44.6 (26.8;56.2) 50.2 (28.5;58.7) 0.03
4 mmol/l Lactate
threshold (watt)a

199 (149;291) 228 (180;312) 0.03

Pmax (watt)
a 285 (226;371) 316 (253;403) 0.03

Pexercise bout (%) lowa 39 (35;40) 42 (39;49) 0.03
Pexercise bout (%) higha 62 (57;65) 66 (62;75) 0.03
Pexercise bout (watt) low

a 105 (90;145) 138 (100;195) 0.03
Pexercise bout (watt) high

a 170 (140;235) 205 (165;300) 0.03
Vv(mt, f) (%)a 4.1 (2.8;5.8) 6.0 (3.7;7.3) 0.05
NN(c,f) 1.8 (1.5;2.0) 1.8 (1.4;2.1) 0.60
NA(c,f) (mm�2) 528 (455;634) 686 (457;803) 0.07
a(f) (lm2)a 3426 (2605;4084) 2848 (2499;3847) 0.03
Fiber type (% type II) 46.5 (39,9;56,9) 45.4 (39,5;54,1) 0.92

Median and range of the six subjects. Systemic and ultrastructural
changes in response to 6 weeks of endurance training
_V O2max maximal oxygen consumption, Pmax maximal power out-
put, Pexercise bout (%) load of the single exercise bout relative to
Pmax, Vv(mt,f) total mitochondrial volume per fiber volume,
NN(c,f) number of capillaries per number of fibers, NA(c,f) number
of capillaries per fiber area, a(f) fiber cross sectional area
aSignificantly changed (P<0.05) relative to the untrained state
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were considered as detected if the corresponding signal
intensity was 30% above background in at least four of
six possible filter hybridizations for one time-point (see
supplemental online Fig. 1). This led to the inclusion of
112 (untrained state) and of 104 (trained state) out
of 229 possible transcript signals in the statistical eval-
uation.

Statistics

Data are presented as median and range. Differences
between values obtained before and after 6 weeks of
training were statistically evaluated using the paired
Wilcoxon test (Statistica 6.1; StatSoft (Europe), Ham-
burg, Germany).

Raw signals of the detected transcripts were back-
ground-corrected. Negative values were set to zero and a
pixel count of one was added to each value. The cor-
rected transcript signals were logarithmized to the base of
2 and standardized to 18S rRNA by subtraction. Stan-
dardization to 18S was chosen since ribosomal RNA
represents a major portion of the total RNA (i.e.,�27%)
[18]. To analyze the overall effect of training on the
mRNA levels in both training states, an ANOVA with
repeated measurements was carried out with all 702 time
courses (117 transcripts of six subjects).

Afterwards, transcripts were divided into different
gene ontologies according to the literature. Then, the
same analysis was done for each ontology. To determine
which mRNA signals were significantly different
(P<0.05) throughout the time course, a Friedman
ANOVA with repeated measurements was used for each
transcript (Statistica 6.1). The nonparametric Friedman
ANOVA was used because it is not possible to reliably
test for distribution with six observations. Then, to lo-
cate differences between before and after the single
exercise bout, the paired Wilcoxon test was applied. No
adjustments were made for multiple testing.

Verification of the array results with RT-PCR

The levels of seven transcripts (LPL, CPT1, PFKM,
PPARG,MCT1,MYH1,MYH2) were verified by means
of RT-PCR as previously described [31]. For this pur-
pose, RNA from pre and 8-h biopsies was used from
those four subjects where sufficient total RNA was
available and compared to the corresponding four array
measurements. New primers were designed with the Pri-
mer Express software (PE Biosystems, Rotkreuz, Swit-
zerland) for MYH1 (5¢-primer: ggaggaacaatccaacgtcaa,
3¢-primer: tgacctgggactcagcaatg), MYH2 (5¢-primer: ca-
atctagctaaattccgcaagc, 3¢-primer: tcacttatgacttttgtgt-
gaacc) and MCT1 (5¢-primer: ccaaggcagggaaagataagtct,
3¢-primer: atcttttttcacaccagattttcca). Relative cDNA
amounts to 18S were calculated using the comparative
CT method (threshold cycle for target amplification)
according to user bulletin no. 2 of the ABI Prism 7700

Sequence Detection System (PerkinElmer) with the
modification that the relative efficiency of each primer
pair was included in the calculation. To test for a trend of
transcript level alterations a paired Wilcoxon test at a
significance level of P<0.1 was applied on log-trans-
formed 18S-normalized values.

Results

Anthropometry

All six subjects completed the 6 weeks of endurance
training and the two acute bouts of ergometer exercise.
The subjects performed 92±4% of the 30 possible
training sessions. Neither body mass nor body fat was
altered after training (see Table 1). Training improved
the maximal power output by 11%, the maximal oxygen
consumption by 13% and the 4 mmol/l lactate threshold
by 15%.

Morphometry and fiber typing

Ultrastructural muscle analysis revealed an increase in
the mitochondrial density by 46% after training. The
mean fiber area was reduced by 17%. The capillary
density showed a shift towards an increase (30%). The
fiber type distribution remained unchanged (see Table 1).

Training effects on steady-state transcript levels

The steady-state mRNA concentration of 26 transcripts
was altered. Transcripts involved in oxidative metabo-
lism were increased after 6 weeks of endurance training
(Fig. 2). The number of transcripts of several matrix
proteins (MMP8, MMP9, MMP15, PLAT, TIMP2,
COL1A1, COL4A4) was also increased (data not shown).

Variability for microarray experiments

The separate analysis of the 3 h biopsies indicated an
important assay-to-assay variability for microarray
experiments. Handling the 3 h biopsies on 2 consecutive
days resulted in a coefficient of determination (r2) of the
transcripts of 0.95 of this particular time point. This is
significantly better than the r2 of transcripts of the other
time points (r2=0.79), when biopsies were processed on
6 different days.

Acute effects on muscle transcriptome

In the untrained state, a 30-min bout of exercise at 62%
of Pmax led to an upregulation of the concentration of 23
out of 112 detected transcripts. The concentration of
three mRNAs was downregulated. These adaptations
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concerned different gene ontologies. The largest differ-
ences were evident after 8 h of recovery (Fig. 3, Table 2).
Transcript levels of several glycolytic and oxidative
metabolic pathways were significantly enhanced. Addi-
tionally, three transcripts coding for myogenic factors
and the myosin heavy polypeptide 4 (MYH4) were
increased. The pooled effect on angiogenic mRNA con-
centrations was a reduction after one hour of recovery
independent of the training state. However, only one
single factor (KDR) was significantly downregulated at
this time point. Likewise, transcripts for regulatory fac-
tors collectively showed a transient reduction after one
hour (Fig. 3; supplemental online Table 1).

After 6 weeks of ergometer training, 16 of 104 de-
tected transcripts were affected during recovery from the
single bout of endurance exercise even though the
intensity was higher both in absolute and relative terms
than before training. Most of them were downregulated
between 1 and 8 h after the cessation of endurance
training. In general, the response after 6 weeks of
training was less pronounced than in the untrained state
(Fig. 3). Compared to the single bout in the untrained
state, three transcripts showed a similar regulation
(PDK1, SLC16A1 and TUBA1; Table 2). 21 of the 23
previously upregulated transcripts were not significantly
changed. Additionally, 11 mRNA levels were signifi-
cantly altered after the single bout in the trained state
(Table 2).

PCR verification

Due to the insufficient amount of muscle tissue, PCR
verification could only be carried out on four biopsies.

Because of the few biopsies analysed, the level of sta-
tistical significance cannot be reached with the Wilcoxon
test applied. We therefore tested for trends (P<0.1).
Real-time RT-PCR experiments confirmed the trend for
an alteration of PFKM, CPT1, MCT1 at 8 h of recovery
from a single bout of endurance exercise in the untrained
muscle. No differences in mRNA levels were found in
either experiment for three additionally tested tran-
scripts (MYH1, MYH2, PPARG; Table 3).

Discussion

Endurance exercise leads to specific phenotypical adap-
tations of muscle tissue. The known adjustments to
6 weeks of endurance training on a bicycle ergometer
involve an increase in mitochondrial content and capil-
larity and occasionally a fast-to-slow muscle fiber type
shift [12]. Marked differences of the training response
found between endurance-trained and untrained subjects
suggest that the adaptive processes induced by exercise
stimuli critically depend on the training state [30]. Our
longitudinal microarray study demonstrates that the
rapid transcriptome response of human skeletal muscle
during the recovery from a single endurance exercise
bout is biphasic for some gene ontologies and modulated
by endurance training. The observed alterations point to
the cellular processes, which are induced by bouts of
endurance exercise and underlie the specific structural
adjustments of muscle tissue to endurance exercise.
Finally, our results provide the molecular rationale for
the observed decrease in the adaptive potential in trained
compared to sedentary populations [30].

Fig. 2 Changes in the steady-state mRNA levels. Median and
range of 18S standardized mRNAs with significantly altered
steady-state levels after 6 weeks of training relative to the untrained
state. Underlined gene names and italic letters represent those

transcripts which were significantly (P<0.05) or tendentiously
(P<0.1) altered in response to a single bout of endurance exercise
in the untrained state
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Fig. 3 Differences in the gene response after 6 weeks of endurance
training. Mean values and standard error bars of logarithmized and
18S standardized mRNA levels grouped into gene ontologies.
Underlined titles indicate a significantly different response of the
untrained (dashed line) compared to the 6 weeks trained state (solid
line; P<0.001). Bottom of each graph, asterisk symbol indicates

significant (P<0.05) difference between the same time point of the
two states. dagger symbol indicates significant (P<0.05) difference
between the time point and the pre biopsy of the same training
state. The transcripts included in this analysis are listed in
supplemental online Table 1
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Elevated steady-state mRNA levels after endurance
training

The prominent, twofold enhancement of steady-state
levels of mRNAs encoding factors for fatty acid trans-
port and mitochondrial respiratory functions points to
the coincident alterations of multiple aspects of the
oxidative metabolism (Fig. 2). The changes indicate that
transcript concentrations of the myocellular fatty acid
transport (FABP3), import of pyruvate in the citrate
cycle (PDHA1, PDK1), beta oxidation (ECH1, HAD-
HB, ACADVL, DCI), citrate cycle (MDH2), respiration
(CYCS, MTCO1, COX5B) and redox regulation (CA3)
are subject to concurrent regulation (Fig. 2). The train-
ing-enhanced GAPD mRNA levels are in line with the
increased level of this transcript in professionally trained
cyclists [39]. Our observations thus extend previous
findings on elevated levels of other mitochondrial and
glycolytic factors (HKII, GAPD) in endurance-trained
human skeletal muscle [23, 25, 31, 36, 39]. The novel
observation on significantly increased mRNA concen-
trations of fast IIA (MYH2) and slow type I myosin
heavy chain (MYH7) provide evidence that transcrip-
tional alterations in contractile make-up are molecular
manifestations of the occasionally observed shift to-
wards a slower contractile phenotype and the loss of
type IIB muscle fibers with 6 weeks of endurance
training (Fig. 2; [15]). No significant shift towards type I
fibers could be observed in our study as estimated from
immunohistochemistry, indicating that corresponding
mRNA shifts towards the slower fiber types are more
sensitive to training interventions than overt fiber type
transitions.

Only three of the RNA species of metabolic factors
for which steady-state concentrations were significantly
increased after 6 weeks of training showed an increase
after the single bout of endurance exercise in the un-
trained state (Table 2, Fig. 2) (FABP3, ECH1, CYCS).
As most of the permanently increased mRNAs are not
significantly affected after a single bout of exercise,
transcriptional microadaptations need to accumulate
with repetition of the endurance exercise stimuli. This
may be the cause for the increased pre-exercise concen-
trations of several mRNAs in the trained state as pre-
viously suggested [22, 36, 39].

Limitations in repeated biopsies

Any biopsy sampling scheme may influence transcript
levels and thus interfere with the interpretations on the
exercise-dependence of mRNAs during a time course of
recovery from exercise [38]. Repeated sampling of mus-
cle tissue has been shown to provoke a regenerative re-
sponse in a small percentage (2% of total muscle area) of
muscle fibers [20]. In the present study, we have used
minimally traumatic fine-needle biopsies in combination
with alternate sampling at both legs to limit possible bias
due to the biopsy intervention. Hence, the 1-h biopsy is

taken from muscle that had not been traumatized by
biopsies and can thus be regarded as not being affected
by such biopsy-dependent micro-lesions. With regard to
the transcript alterations observed in the untrained state
that relate to muscle regeneration, i.e., IGFBP6 and
IGF1, we cannot exclude interference from biopsy
damage. The fact that these transcripts were not found
to be altered in the trained-state using the same biopsy
scheme is an argument against the biopsy procedure
producing significant alterations in these (and possibly
other) transcript levels. Moreover, other significantly
altered transcripts involved in muscle regeneration, i.e.,
IL6 and MYOD1 have been reported to be elevated
after cycling or resistance exercise in previously not bi-
opsied legs [3, 35]. This indicates that some muscle
regeneration is part of the normal response to exercise.

Limitations due to technical variability

We abstained from integrating the separately processed
3 h time-point data into the set of time course data as
this inclusion massively added noise to the time course
data. Further, this type of technical noise inhered in
array processing possibly prevented the identification of
transcript to structure relationships such as those pre-
viously identified in RT-PCR studies [24, 31].

Acute transcriptome response to a single bout
of endurance exercise in the untrained state

To the best of our knowledge, this is the first exploratory
study to show concerted alterations of multiple gene
transcripts of important metabolic pathways during
recovery from endurance exercise in humans. This
transcriptional response induced by a single bout of
endurance exercise in sedentary subjects included mul-
tiple steps of myocellular oxidative, glycolytic and redox
metabolism (Fig. 3, Table 2).

The quantified mRNA alterations of different gene
ontologies point to a general adaptive response in the
recruited muscle of sedentary subjects in the first hours
after a single bout of exercise (see Fig. 3). We assume
that the upregulation of the concentration of transcripts
involved in mitochondrial respiration is essential for the
increase of the mitochondrial density.

Difference in the transcriptome response
between the untrained and the trained state

Our study indicates that several aspects of transcript
level adaptations to a single bout of endurance exercise
are modified with endurance training. The dependence
of transcript level changes on the training state is shown
by a less-pronounced response of the trained muscle
throughout recovery (Fig. 3). In contrast to the un-
trained state, the mRNA concentrations were decreased
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Table 2 Time course of mRNA levels. Median values of 18S
standardized transcript levels relative to the pre biopsy levels after a
single bout in the untrained and in the trained state. P-values
resulting from the Friedman ANOVA are indicated. Significantly

upregulated and downregulated transcripts at P<0.05 are colored
in black or grey, respectively (Wilcoxon test). n.d. mRNA not de-
tected. If the transcript could not be detected in the pre biopsy, the
ratios of the time course are italicized
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throughout the first 24 h of recovery from the single
bout of endurance exercise in the trained state (Fig. 3).
Relative changes in mRNA concentrations were dimin-
ished after the 6 weeks of endurance training even
though the absolute as well as the relative load was
higher in the second single bout. The results are com-
patible with previous observations on an attenuation of
exercise-induced changes of IL6 and HKII concentra-
tions with endurance training [9, 23, 36]. However, the
attenuation of the VEGF response due to training could
not be confirmed [27] (Table 2). The lower gene response
in the trained state could be a reason why both func-
tional [30] and structural [14] adaptations are attenuated
with ongoing training with the same relative intensity.
Hence, adaptations may possibly level out when the
training stimulus is not changed.

Adjustments of major extracellular matrix compo-
nents, i.e., collagen (COL1A1, COL4A4) and metallo-
proteinases (MMP8, MMP9, MMP15), indicate an
important remodeling of interstitial components with
endurance training. The decrease in the concentration of
these factors and several transcripts involved in angio-
genesis and redox regulation throughout the 24 h after
the single bout of exercise in the trained state awaits
explanation (see below).

Regulatory implications

How can the apparent downregulation of multiple
RNAs (see Table 2) in response to exercise in the un-
trained and trained state be explained? Our surprising
findings may be related to the events governing rapid
RNA degradation. The common pathway for degrada-
tion of normally poly-adenylated RNA species includes
a translation-mediated degradation via binding of fac-
tors to AU-rich sequence elements in the 3¢-untranslated
region (3¢UTR) of the RNA [29]. Inspection of the
3¢UTRs in the up- and downregulated transcript species
of our study does not indicate a strict association of the
presence of AU-rich sequences and reduced mRNA
levels after training for these mRNAs, which would have
explained the observed phenomenon. We postulate that
an additional mechanism could be responsible for the

regulation of the observed drop after a single bout of
endurance exercise in the trained state. For instance,
changed interaction of mRNA with stabilizing proteins
such as seen for cytochrome c and VEGF mRNA after
increased contractile activity [41] or local hypoxia [12,
19] could be involved and needs investigation.

Remarkable findings

In contrast to similar studies, the capillary per fiber ratio
was not significantly increased after 6 weeks of endur-
ance training. Angiogenesis could have been expected in
response to endurance exercise, since muscle blood flow
and mechanical stress are increased [5] and capillary
supply has previously been shown to be enhanced after
endurance training of similar duration and intensity [1,
8, 28]. However, in keeping with the structural findings
of an essentially unchanged capillarity we found a low
incidence of transcriptional response of pro- and anti-
angiogenic factors after the single bouts as well as due to
6 weeks of endurance training. It is unclear at present
why this training study did not result in the expected
improvement of capillarity.

Conclusions

An intense exercise bout induces a rapid, transient
transcriptome response in untrained muscle. The repet-
itive impact of concentric endurance exercise stimuli
leads to increased steady-state levels of transcripts
mainly involved in mitochondrial metabolism, muscle
contraction and extracellular matrix composition. These
changes go along with an increased mitochondrial den-
sity but not with a shift towards a slow fiber phenotype.
In the trained muscle, a lowered responsiveness of
transcript levels to a single bout of endurance exercise
and a different response between regulatory events
which are downregulated and metabolic processes that
were upregulated after one hour of recovery is apparent.
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Zürich

25. Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R
(1995) mRNAs of enzymes involved in energy metabolism and
mtDNA are increased in endurance-trained athletes. Am
J Physiol 269:C619–C625

26. Richardson RS, Wagner H, Mudaliar SR, Henry R, Noys-
zewski EA, Wagner PD (1999) Human VEGF gene expression
in skeletal muscle: effect of acute normoxic and hypoxic exer-
cise. Am J Physiol 277:H2247–H2252

27. Richardson RS, Wagner H, Mudaliar SR, Saucedo E, Henry
R, Wagner PD (2000) Exercise adaptation attenuates VEGF
gene expression in human skeletal muscle. Am J Physiol
279:H772–H778

28. Rosler K, Hoppeler H, Conley KE, Claassen H, Gehr P, Ho-
wald H (1985) Transfer effects in endurance exercise. Adapta-
tions in trained and untrained muscles. Eur J Appl Physiol
Occup Physiol 54:355–362

29. Sachs AB (1993) Messenger RNA degradation in eukaryotes.
Cell 74:413–421

30. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E
(1977) Fiber types and metabolic potentials of skeletal muscles
in sedentary man and endurance runners. Ann N Y Acad Sci
301:3–29

31. Schmitt B, Fluck M, Decombaz J, Kreis R, Boesch C, Wittwer
M, Graber F, Vogt M, Howald H, Hoppeler H (2003) Tran-
scriptional adaptations of lipid metabolism in tibialis anterior
muscle of endurance-trained athletes. Physiol Genomics
15:148–157

32. Schrauwen-Hinderling VB, Schrauwen P, Hesselink MK, van
Engelshoven JM, Nicolay K, Saris WH, Kessels AG, Kooi ME
(2003) The increase in intramyocellular lipid content is a very
early response to training. J Clin Endocrinol Metab 88:1610–
1616

33. Seip RL, Angelopoulos TJ, Semenkovich CF (1995) Exercise
induces human lipoprotein lipase gene expression in skeletal
muscle but not adipose tissue. Am J Physiol 268:E229–E236

34. Seip RL, Mair K, Cole TG, Semenkovich CF (1997) Induction
of human skeletal muscle lipoprotein lipase gene expression by
short-term exercise is transient. Am J Physiol 272:E255–E261

35. Starkie RL, Arkinstall MJ, Koukoulas I, Hawley JA, Febbraio
MA (2001) Carbohydrate ingestion attenuates the increase in
plasma interleukin-6, but not skeletal muscle interleukin-6
mRNA, during exercise in humans. J Physiol 533:585–591

36. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A,
Hargreaves M, Cameron-Smith D (2002) Exercise training in-
creases lipid metabolism gene expression in human skeletal
muscle. Am J Physiol 283:E66–E72

37. Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B,
Schena F, Ferretti G (1997) Effects of endurance training on
oxidative capacity and structural composition of human arm
and leg muscles. Acta Physiol Scand 161:459–464

38. Vissing K, Andersen JL, Schjerling P (2005) Are exercise-
induced genes induced by exercise?. FASEB J 19:94–96

39. Wittwer M, Billeter R, Hoppeler H, Fluck M (2004) Regula-
tory gene expression in skeletal muscle of highly endurance-
trained humans. Acta Physiol Scand 180:217–227

40. Wittwer M, Fluck M, Hoppeler H, Muller S, Desplanches D,
Billeter R (2002) Prolonged unloading of rat soleus muscle
causes distinct adaptations of the gene profile. FASEB J
16:884–886

41. Yan Z, Salmons S, Jarvis J, Booth FW (1995) Increased muscle
carnitine palmitoyltransferase II mRNA after increased con-
tractile activity. Am J Physiol 268:E277–E281

687


	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Fig1
	Sec7
	Sec8
	Sec9
	Sec10
	Tab1
	Sec11
	Sec12
	Sec13
	Sec14
	Sec15
	Sec16
	Sec17
	Sec18
	Sec19
	Sec20
	Fig2
	Fig3
	Sec21
	Sec22
	Sec23
	Sec24
	Sec25
	Tab2
	Sec26
	Sec27
	Sec28
	Ack
	Bib
	CR1
	CR2
	CR3
	Tab3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41

