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Abstract

Introducing experimental values as restraints into molecular dynamics (MD) simulations to bias the values of
particular molecular properties, such as nuclear Overhauser effect intensities or distdramsyling constants,
chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure re-
finement method. To account for the averaging of experimentally derived quantities inherent in the experimental
techniques, time-averaging restraining methods may be used. In the case of structure refinem&htosipting
constants from NMR experiments, time-averaging methods previously proposed can suffer from large artificially
induced structural fluctuations. A modified time-averaged restraining potential energy function is proposed which
overcomes this problem. The different possible approaches are compared using stochastic dynamics simulations of
antamanide, a cyclic peptide of ten residues.

Introduction where {} denotes an average over the molecules in the
system at any given point in time arjgl denotes an
average over time. Deriving information ab@utrom
g°" is hampered by the following considerations:
e The number of observable$,, is typically too
small to uniquely derivé.

Experimental techniques such as X-ray diffraction and
NMR spectroscopy are widely used to derive struc-
tural information from molecules in solution, solid
state or in crystal form. A molecular structure, in

the form of Cartesian coordinates of thé, atoms e Asaresult of the effect of averaging inherent in the
F = (r,...,ry,) cannot be directly observed in the experimental techniques, the observables can con-
experiment. InsteadV, ;s configuration dependent pa- tain conflicting data which cannot be reconciled
rametersj (¥) = (g1(F). . ... qn,,, (7)) are observed, with one single configuration.

which are subsequently used as input to a refinement ® Generally, itis not clear how to invert the averages
procedure, the result of which is a structure or set of  in Equation 1 to obtai.
structures which best satisfies the experimental data. e The relationg(r) is often empirical, as is, for
This contribution concentrates on the underlying as- example, the Karplus equation (Karplus, 1959).
sumptions and models that flow into the refinement e The relationg (¥) is itself often not invertible, i.e.
procedure and, as a consequence, influence the results  7(g) is not uniquely defined, e.g. by the Karplus
obtained. equation

The experimental methods considered here havein  |n the molecular modelling refinement approach,
common that the observed values are averayes an empirical model of the molecule under study is

timeand overan ensemble of moleculé. constructed. Averaging is introduced by means of
—obs o combining the experimental data with the empirical
q"" = {la(r)), 1) model in a molecular dynamics simulation from which

a trajectory of coordinates results. An average of the
*To whom correspondence should be addressed. observable can then be calculated from this trajectory
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and compared to the experimental value. In general,

(gi (F(1))) becomes increasingly insensitive to instan-

only thetime average is considered, as the averages taneous fluctuations for increasing valuestofTo
over time and over molecules are the same under theavoid this, a decay with characteristic decay tige

assumptions of infinite dilution and ergodicity. In cer-

may be built into the averaging process during the sim-

tain cases these assumptions do not hold, notably dueulation. This approach has been successfully applied

to crystal packing effects.

The most widely used method of obtaining an
ensemble of configurations consistent with a set of ex-
perimental data is the restraining or penalty function
approach. In this approach, the physical potential en-
ergy functionV?"s (7 (1)) is combined with a penalty
function V" (7(1); g°**) to produceV (¥ (r))

VFE@D) = VISGE@) + VI ED; ) (2)

which is then used in the coordinate generation proce-

dure. The choice oV?" (7(r); g°**) is important. The
means by which the experimental data is introduced
into the simulation must be consistent with the manner
in which the experimental data was collected if serious
artefacts are to be avoided.

In conventional instantaneous restraining (denoted
by the symbolinst), a functional form harmonic in
gi (7(¢)) is generally chosen

‘/iinSt(?(t); Kiqr7 qiobS) —
qr

; (qi F (1)) — q?7%)? ©)

for thei-th observable. A better approachis to take the
averaging inherent to the experimental technique into
account. In conventional time-averaged restraining
(denoted by the symbaltave, the potential energy
function is harmonic in the average @f(7 (r)):

Victave(;;(t); Kiqr’ qiobs) —

K1 2
= (@GO - ™)’ (4)
where
— 1
B = = em—)]
t !
/ exp(———)qi (F(t — 1'))d1’ (5)
0 Tgr

is the weighted average used during the simulation.
The true time average value over the course of a
simulation is

- 1M . / /
{qi(r())) = ;fo qi(r(1))dt (6)

which may be calculated from the trajectory and
compared to the experimental value after the simu-
lation. During the course of a simulation, however,

to refinement with experimental data originating from
Nuclear Overhauser Effect (NOE) measurements with
the quantityq taken as the inverse third power of an
atom-atom distancé, g = 42 (Torda et al., 1990),
37 coupling constant experiments with the quantjty
taken as théJ coupling constanty = J (Torda et
al., 1993) and X-ray diffraction experiments with the
guantityq taken as the crystallographic structure factor
F,q = F (Schiffer et al., 1995).

However, it has been observed #7 coupling
constant restraining that, although the experimental
averagelg; (¥ (1)) is achieved, the fluctuations can be
much larger than observed for unrestrained simula-
tions (Pearlman, 1994; Nanzer et al., 1997). This is
due to the fact that overshooting occurs during the
simulation. As the average value lags behind the in-
stantaneous value intime, a force due to the restraining
function continues to be applied for some time after
i (7 (1)) equalsg?®*. The problem is inherent to all
standard time-averaging restraining applications, but
is less manifest in NOE distance restraining applica-
tions for the following reasons:

e In most cases, only the upper bound violations of
atom-atom distances are penalized.

e Overshooting towards low distances is blocked by
the van der Waals repulsive interactions.

e The averagdd—3) is dominated by lower values
of d, so(d—3) quickly followsd—3 when the upper
bound is satisfied.

In order to address this problem which is particularly
important in the case of/-value restraining, we pro-
pose alternative functional forms to Equation 4 for
V4 (7(t); g°*) in the next Section. The test results
are presented in the Section Results and discussed in
the Section Discussion.

Materials and methods

In conventional time-averagetl/-value restraining
(Torda et al., 1993), the potential energy function for a
single upperboundl/ restraint is

Ve s KL qf) =
qr

- 2 N
o [aG@) - o] H@GEO): ¢,

()
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whereH (x; x,) is the Heavyside step function cog" (¢; (F(t—1)))
0 ifx <x, + 1
H(x; x,) = B (8) [tgr(1— exﬂ—%))]
L otherwise cog" (¢ (F(1)) At (12)

gi (7(1)) is the instantaneous coupling constant calcu-

lated from coordinates using the Karplus equation Fort, >> 4, this reduces to

N - _——— A >
qi(F(1)) = Ag cog(¢; (F(1))) cos™ (i (r(tn))) ~ exﬂ—t—t)COS”(d)i (r(th-1)))
+ Bx CoS¢; (F(1))) + Ck (9) Al v
with the empirically derived Karplus constantsc, + —cos’ (d: (F(tn)))- (13)
Bk andCg, ¢;(7(1)) is its time average with an ex- T _ _ _
ponential memory function (Equation 5) a@(ﬁ is Equation 13 is equivalent to Equation 11 in (Torda et

the experimentally determined coupling constant. The al., 1993):
corresponding lower bound restraint is obtained by in- e — At -
terchanging the arguments of the Heavyside function ~ €05" ($i(r(1))) ~ EX[X—t—r)COSn(q),'(I’(I‘ —An))
in Equation 7. At !

In practice,q;(¥(z)) is not calculated during the + <1— exp(——)) cos™ (¢; (F(1))), (14)
simulation by applying Equation 5; instead, use is g
made of the equivalence

using (1— exp(—%f)) ~ tATf for At << 1. Thus,

qi (r (1)) the potential energy function, Equation 7, reads
= Ak C0Z(¢i (F(1))) + Bk cos$i(F (1)) + Cx (10) Ve () KO, q0)
= AgCoZ(9; (F(1))) + Bgcod¢; (F(1))) + Ck. K4
Equation 5 is then applied to the individual co- = é [q:F(0) — ¢/ H (@i (F(1)); q7)
sine terms and discretized to obtain expressions for K
co(¢; (7(1))) and cog¢;(7(¢))). For an arbitrary = é [AkcoZ(¢; (F(1)))
power ofm, the equivalent of Equation 5 is - 0.2
1 . +Bgcod¢i(r(1)) + Cx —q;]
cog" (¢(r (1)) = [tqr(l—exp(—j?))]/o x H(qi(r(1)): q;) (15)
. . with the corresponding force
exp(—=) cog" (¢; (F(t)))dr. (11) o S
_ e _ _ [ = —KqiG@) - g
During a simulation using discrete time steps of size -
At, the average at timg can be approximated by the H@GED): ¢° dqi(r(t))
sum TR (@)
TG ) = +K/"1qiF(0) — 4)1H (i F(0): q))
1 - th — t; - IcoL(¢: (F(1)))
— _n ! 2A ; _—
[t (L~ exp—2))] ,ZZ;GX“ —_— * [ KOOSO 5 524 ()
cos” (¢ (7 (1)) At dcosd; (7 (1))
+Bk ————=
1 nl ty — 1 9 cog(¢; (7(1)))
= Tpd— e &) 01 (F(1))
Tar w0 ar X Siﬂ(d),'(?(t)))alﬁi (16)
cos” (i (7 (1)) At r(t)
1 N i _ 0cogdi F()) _ 3coP(di(F(1)))
+ co 1)) At SettingX = e = ~==, the force
(1= exp(—%))] (0(r(tn))) ads 9cosdi(F1)) 9 coR(@; (F(1)))
—Ar [t (L - exp(="1] @ = K'giG0) — ¢

= eX =
M T - o] H(@i@): g9 X
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x [2Ax COSi (F(1))) + Bx]
sin(y (7 (1)) 22 @)

37 (1) (47

At

Note thatX = Tor if Equation 13 is applied, or

X = (1 — exp(—%f)) if Equation 14 is applied. This
means that the restraining force is inversely propor-
tional to the exponential memory relaxation timg

(for At << 14). In order to obtain comparable re-
straining forces for different values of,, one would
have to choose the values of the force consrqﬁ’t
proportional ta1 — exg—%)]*l. Since the choice of

the value for the force constaft!” is empirical any-
way, the factoiX is set to 1 in Equation 17 by default
in the currentimplementation of time averaging in the
GROMOS96 code (Scott et al., 1998; van Gunsteren
et al.,, 1996). The values in Torda et al. (1993) were
produced using = 1.

The problem of generating too large fluctuations
of ¢;(¥(r)) when using conventional time averaging
restraining is due to the fact that the restraining func-
tion 15 only depends indirectly on the instantaneous
valueg; (7(¢)) at timet through the average (v(1)).

The overshooting effect can be reduced by increas-
ing the weight of the instantaneous value compared to
that of the average value in the restraining function.
Below, we propose two different simple modifica-
tions of the restraining function 7 that lead to a larger
weight ofg; (¥ (¢)) relative tog; (¥ (t)) when determin-
ing the restraining energy and force, while keeping
these quantities a continuous functiongef(¢)) and

qi G ().

In the biquadratic restraining function (symHu
guador bg), the instantaneous value(7(z)) and the
average value; (7 (¢)) are equally weighted:

vl i G, ¢ F@)); KT 0

grbq
S laiF(0) - q2Plqi G (1)) — ¢
x H(qi(F(1)); ¢ H(qiF(1); g).

The corresponding force is

(18)

FUE = -k ([qi(7(t)) — /]

= Y dgi (F (1))
lgi(r(®)) —q;] 27 (0)
+ [qiGF@®) — gb1Plqi () — ¢
aqﬁ(r»)
ar(t)

H(q:F(1); ¢ H(q:i F(0); g0
+k" (|0 FO) - 0| la: Py — g1

dcoF(¢; (F(1)))
3 coL(¢; (F(1)))

|

S 2
G = ¢ [a:Fan - 7]

[2Ak cog¢; (F(1))) + Bk])

. R ad; (¥ —_—
sin(; (r(z)))WH@ ;40

70
H(qi(F(1)); ¢°)
- 2

K/ ([qi GO -] [ - o]

|:2AK cos(¢; (F(1)))

B dcogd; (r(1)))
KT ——— 1 = <
d cog¢; (r(1)))

X + [m - 61?]2 [%(7(0) - q?])

[2AK cogd; (F(1))) + Bk ] Sin(@; (F(1)))
3 (F(1))

a7 (1)
H(qi(F(1)); ¢ H (i F(1)); ¢0).

The elliptic restraining function

X

(19)

Ve (i R, qi F0)); KI, g2, Aer)
qr

2
X H(Aeqi F(1) + (1 — Aa)qi (F(1); ¢°)

- . RE
[AeiaiG@O) + A= Aaai ) — a7
(20)

is obtained from Equation 7 by replacing the aver-
agegq;(¥(t)) by a linear combination of the average
qi(7(t)) and the instantaneous valug(#(z)). The
corresponding force is

£ E D
=—K{" [Aaigi @) + A= Aaai G0) - 7]
y ( A, 20T (r(r)))

a7 (1) or (1)

H(Aa1qi G @) + A — Aanqi F(1)); ¢
=+K{" [ Mg @) + A= Aaai G0) — 7]

dco(¢; (7 (1))

X <Aell |:2AK coqd; Um»m
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acog¢; (F(1))) interactions.K" was set either to 10 kJmot Hz—2
K5 coso: (7(1)) or 50 000 kJmot! Hz~2 in all cases, withKiq’bq set
to 10 kJmot! Hz=# or 50 000 kJmot! Hz™ for
+ 1= Au) [ZAK cosd; (F(1))) + BK] ) the biquadratic time-averaged functional form. The
Karplus constantd x = 9.4 Hz, By = —1.1 Hz and
A0 (F (D)) R Cx = 0.4 Hz were taken from Bystrov (1976) de-

X Sm(q)i("(t)))T(t)H(Aell% (r(®) spite the existence of newer values (Pardi et al., 1984)

. 0 in order to compare to the literature (Kessler et al.,
+(1 = Aangi(r(®)): ;) 1988; Torda et al., 1993). A value af, = 10 ps

=+Kiqr [Aellqi GO+ 1 — Au)gi F() — qP] was chosen for the averaging simulations. Coordinates
. and energies were saved to file every ps, yielding 1000
X (AennX + (1 = Aen))[2A g COLP; (r(1))) + Bk ] values from which the averageg (7(¢))) in Tables 1,

. - AP (7 (1)) — ; : e
x sin(d; (7 (1)) d’lﬁ H(Auqi (F1)) 2 and 3 were calculated using Equation 6. In addition,
ar(t) the average and root mean square (rms) fluctuations
+(1 = Aan)qi (F()); 61,'0)~ (21) of the potential energy of the systeexcludingthe

restraining term, and the average rms atomic position

. . fluctuation were calculated
The parameteAd,; € [0... 1] is a mixing parame-

ter. ForA,; = 0 and using;i0 both as upper and lower 1 Np 2

bound, Equation 20 reduces to the instantaneous re-  AX = <N_ D i) — < Fi(n) >]2> (22)

straining potential energy function in Equation 3. For P =1

Al = 1 it reduce; to the conven.tion_al time—gveraged both for all atoms §, = 110) and for just the’,

restraining potential energy function in Equation 7. atoms (v, = 10). The averages involving positions
are calculated after a superposition of the structures
taking all atoms into account. In Equation 22, the

Results square of a vector is defined as its scalar or dot product.

1

In order to assess the three time-averaging methods
of restraining, a series of simulations for a cyclic piscussion
decapeptide, antamanide (Karle et al., 1979) was con-

ducted. This is an interesting system, as previous stud-Tap|e 1 summarises the results obtained using a force
ies have found no single conformation which could ex- constant of K" = 10 kImotl Hz—2 (Kiqrbq

lain the NOE values measured (Kessler et al., 1988, 4 . / .
5989; Bruschweiler et al., 1991). ,&II simulations were 10 kymot™ Hz~* we of b|Mrestra|n-
performed using the GROMOS96 biomolecular sim- ing) and settingg and ?,i‘;?j;ﬁ;g}}} both
ulation package (Scott et al., 1998; van Gunsteren etto 1. The unrestrained simulation fails to reproduce
al., 1996) and the GROMOS96 43A1 force field (van the experimental results, especially for residues 1 and
Gunsteren et al., 1996). Starting from the X-ray struc- 6. Clearly, the physical force field alone is unable
ture (Karle et al., 1979), an energy minimisation was to reproduce all experimentd/ values on the time
performed with the six backbone HNgHJ value re- scale simulated. The conventional instantaneous re-
straints in place (Table 1). Simulations ensued from straining method produces better averages, although
this minimised structure, with velocities generated the3J values for residues 5 and 10 are not satisfac-
from a Maxwell distribution at 300 K. All simulations,  torily reproduced. The fluctuations are small when
each of 1 ns in length, were performed in vacuo using compared to the unrestrained simulation, an indication
the GROMOS96 stochastic dynamics simulation algo- that the method is restricting the molecule’s motion.
rithm (van Gunsteren and Berendsen, 1988) with the The conventional time-averaging method achieves the
SHAKE procedure to constrain bond lengths (Ryck- correct averages, however, the fluctuations are in-
aertetal., 1977) ata temperature of 300 K using atime creased for residues 1 and 6, the ones that needed
step of 0.002 ps. The atomic friction coefficients were the most restraining. Time averaged restraining using
set to 19 ps? for atoms. No temperature coupling was the biquadratic functional form results in worse aver-
employed and no cut-offs were used for long-range ages (residues 4, 6 and 9) and reduced fluctuations
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Table 1. Comparison of simulation results (averages and rms fluctuations) of the antamanide test syst { g : :((Zt))))))
1

3coP(; (F(1)))
9 coZ(¢; (7 (1))
from Kessler et al. (1988). Calculatéd values in Hz and average positional rms fluctuations in nanometres are full trajectory
averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuationg infkJmol
the potential energy of the system excluding the contribution of the restraining term

= 1 andk!" = 10 kmor! Hz=2 and Kiqrbq = 10 kJmoi'l Hz* (see text). Experimental values are taken

37 coupling constant (Hz) potential pos. fluc.
Residue 1val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)
Restraint 1 2 3 4 5 6 (KImol) ¢, all
Experiment 73 - 86 - 6.8 - 6.6 -— 83 - 6.7 - — - - —
Unrestrained 100 18 74 23 80 22 99 14 71 25 80 20 136 26 0.06 0.11
Instantaneous 71 05 86 05 74 05 64 05 83 05 73 05 178 27 0.05 0.10
A =01 71 05 86 05 74 06 64 05 83 05 73 05 184 29 0.05 0.09
A. =04 72 06 87 07 70 07 65 06 84 07 69 07 208 27 0.10 0.17
A. =0.6 72 08 87 08 69 09 65 08 83 08 68 09 205 28 0.10 0.16
A. =0.8 71 11 86 11 73 11 64 11 83 11 72 11 187 30 0.05 0.09
A =09 76 16 86 15 69 14 67 16 83 15 6.8 13 166 34 0.05 0.09
A. =0.95 77 19 87 16 68 16 68 18 83 17 6.8 17 168 33 0.06 0.11
Conv. t-ave 75 30 86 23 69 26 68 28 82 23 68 24 188 32 0.08 0.15
Biquadratic 76 08 46 22 72 05 26 15 69 28 70 06 213 27 0.07 0.13

Table 2. Comparison of simulation results (averages and rms fluctuations) of the antamanide test syst { g (D)

- i (r (1))’
w = AL g9 — 10 kdmott Hz2 and k9" = 10 kdmol! Hz—* (see text). Experimental values are taken
dco(¢; (F(1))) — Tar’ i i
from Kessler et al. (1988). Calculatély values in Hz and average positional rms fluctuations in nanometres are full trajectory
averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuations! infkJmol
the potential energy of the system excluding the contribution of the restraining term

37 coupling constant (Hz) potential pos. fluc.
Residue 1val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)
Restraint 1 2 3 4 5 6 (kImol) Ccy  all
Experiment 73 - 86 - 6.8 - 6.6 - 83 - 6.7 - — - - -
Unrestrained 100 18 74 23 80 22 99 14 71 25 80 20 136 26 0.06 0.11
Instantaneous 71 05 86 05 74 05 64 05 83 05 73 05 178 27 0.05 0.10
A =01 72 06 87 06 69 06 65 06 83 06 68 06 203 27 0.08 0.14
Ay =04 69 08 86 09 77 08 63 08 83 09 76 08 181 29 005 0.09
Ay =0.6 73 14 86 13 77 09 63 13 84 12 68 12 181 29 0.07 0.12
A, =0.8 85 20 85 17 70 18 76 22 82 18 69 17 151 29 0.06 0.10
A =0.9 85 26 84 20 69 20 79 26 80 23 74 19 151 32 0.06 0.11
A. = 0.95 85 29 80 22 74 20 78 30 77 24 77 18 148 31 0.06 0.11
Conv. t-ave 21 18 83 21 67 20 86 25 51 31 84 04 148 26 0.06 0.11
Biquadratic 26 17 61 28 73 06 33 17 66 30 73 06 172 26 0.05 0.10
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Table 3. Comparison of simulation results (averages and rms fluctuations) of the antamanide test syst g ¢', :((’l))))))
1

9COL(0; F(1) _ At pqr _ 1 4,-2 qrbq _ 1,4 ;
26026 F)) = Tar’ K/ = 50 000 kJmotf= Hz™< and K; = 50 000 kJmof+ Hz™* (see text). Experimental values

are taken from Kessler et al. (1988). Calculafetivalues in Hz and average positional rms fluctuations in nanometres are full
trajectory averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuations in
kJmot~1 of the potential energy of the system excluding the contribution of the restraining term

37 coupling constant (Hz) potential pos. fluc.
Residue 1val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)
Restraint 1 2 3 4 5 6 (kImol) c,  all
Experiment 73 - 86 - 6.8 - 6.6 - 83 - 6.7 - - - - -

Unrestrained 100 18 74 23 80 22 99 14 71 25 80 20 136 26 0.06 0.11
Conv. t-ave 75 30 87 21 69 26 67 30 83 22 69 23 19 38 0.09 0.15
Biquadratic 72 28 63 34 69 24 57 31 72 32 66 25 651 247 024 034

(residues 1, 5 and 10), even when compared to the average potential energy is higher in Table 3. For the
unrestrained simulations. The elliptic time-averaged elliptic restraining method the effect of the choice of
restraining method was applied using different values X depends on the value of,;, as a comparison of

of A,.;. For small values, the method shows the same Tables 1 and 2 reveals. In Table 1 the correct aver-
behaviour as instantaneous restraining which corre- ages are largely maintained with increasig (only
sponds toA,; = 0. For larger values ofi.;, the the fluctuations increase as expected). In Table 2 the
3J values are better reproduced overall. Note that quality of some (residues 1 and 6) of the calculated
the averages for residues 5 and 10 generally improve averages deteriorates with increasiyg . In this case
with increasingA.;. The fluctuations also increase, the method behaves progressively like conventional
but do not become excessive when compared to thetime-averaging which fails foX = TATi in combina-
unrestrained run. In these simulations, the molecule tjon with a low K", The effect of the choice ok
moves between conformations to produce the correct o the biquadratilc restraining method is difficult to
averages overall. Furthermore, the average pOte”tialascertain, either from Equation 19 or from the com-
energy (excluding the restraining term) decreases with arison of Tables 1 and 2. In either case, the method
increasingA.;; beyond 0.4. Values arountl;; = 0.95 performs poorly. With the much higher force constant

produce a low average potential energy and a good (apje 3), the quality of the averages improves, but the
compromise between corredf value averages and fluctuations are large.

fluctuations. _ o The results of the various simulations of anta-
Table 2 was produced with = == and a force  manjide illustrate that both proposed modifications
constant ofKiq’ = 10 kJmot?® Hz 2 ([(;V”q = of the conventional time-averaging restraining func-

10 kJmott Hz# in the case of biquadratic restrain- tion (Equation 7), the biquadratic restraining function
ing). The various methods are affected to varying (Equation 18) and the elliptic restraining function
degrees by the choice of. In conventional time-  (Equation 20) do achieve their goal of reduced fluctua-
averaged restraining, the force that is applied when tionsinthe restrained quantities, in this césevalues,
settingX = 2L is typically much smaller than is When compared to conventional time-averaging re-
the case With;(r — 1. In the simulations discussed Straining as used in the literature (Torda et al., 1990;
here, it is% = 5000 times smaller. With this much  Schiffer et al., 1995; Nanzer et al., 1997). Use of
smaller foAré:e conventional time-averaging fails to the biguadratic restraining function has the undesired

achieve the correct experimental averages. As Table 3S|de(—]§ffect of a larger discrepancy %etween the aver-
shows, comparable averages and fluctuations in the@9€d”/ values and the target (restraint) values, and

37 values as in Table 1 can be achieved using con- ofa higher p.otentiallerjergy of Fhe mOIeCl_Jle‘ )
ventional time-averaging by choosing = 2~ and a The elliptic restraining function (Equation 20) with
Tgr

. . q X = 1 andA,; around 0.95 best fulfills the com-
correspondingly high force constant. As expected, the bined requirements of i) low potential energy: ii)
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agreementwith the experimental values; while iii) pro- Karle, I.L., Wieland, T., Schermer, D. and Ottenheym, H.C.J. (1979)
ducing fluctuations comparable to those produced by ‘ PFIOC- R‘Aa“-l g;gd- i%' Usgﬁ 12%23?2-
an unrestrained simulation for the molecular mode of KZ‘;‘;I‘;" H fBats, )JJW ﬁghtz‘ ey Millr, A, (19883bigs Ann.
antamanide considered here. Chem.,, 9, 913-928.

In conclusion, one may say that the overshooting Kessler, H., Griesinger, C., Lautz, J., Miiller, A., van Gunsteren,
problem inherent in the use of time-averaging restrain- ~ W.F. and Berendsen, H.J.C. (1988) Am. Chem. Sqc11Q

. . . . 3393-3396.
ing In molecular dynamlcs refinement of molecular Nanzer, A.P., Torda, A.E., Bisang, C., Weber, C., Robinson, J.A.

structure can be alleviated by using an elliptic re-  and van Gunsteren, W.F. (1997)Mol. Biol, 267, 1012-1025.
straining function in which the relative weight of the Pardi, A., Billeter, M. and Wiithrich, K. (1984). Mol. Biol,, 180

time-averaged and the instantaneous restrained quan- /41-751. ,
Pearlman, D.A. (1994). Biomol. NMR4, 279-299.

tity (parame_temell) can be adapted to tune averages Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J.C. (19%7)
and fluctuations to desired values. However, the proper = comput. Phys23, 327-341.

choice of the values of the parameters of the restrain- Schiffer, C.A., Gros, P. and van Gunsteren, W.F. (199 Cryst,
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