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Abstract

Introducing experimental values as restraints into molecular dynamics (MD) simulations to bias the values of
particular molecular properties, such as nuclear Overhauser effect intensities or distances,3J coupling constants,
chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure re-
finement method. To account for the averaging of experimentally derived quantities inherent in the experimental
techniques, time-averaging restraining methods may be used. In the case of structure refinement using3J coupling
constants from NMR experiments, time-averaging methods previously proposed can suffer from large artificially
induced structural fluctuations. A modified time-averaged restraining potential energy function is proposed which
overcomes this problem. The different possible approaches are compared using stochastic dynamics simulations of
antamanide, a cyclic peptide of ten residues.

Introduction

Experimental techniques such as X-ray diffraction and
NMR spectroscopy are widely used to derive struc-
tural information from molecules in solution, solid
state or in crystal form. A molecular structure, in
the form of Cartesian coordinates of theNa atoms
Er = ( Er1, . . . , ErNa ) cannot be directly observed in the
experiment. Instead,Nobs configuration dependent pa-
rametersEq(Er) = (q1(Er), . . . , qNobs (Er)) are observed,
which are subsequently used as input to a refinement
procedure, the result of which is a structure or set of
structures which best satisfies the experimental data.
This contribution concentrates on the underlying as-
sumptions and models that flow into the refinement
procedure and, as a consequence, influence the results
obtained.

The experimental methods considered here have in
common that the observed values are averagesover
timeand overan ensemble of molecules, i.e.

Eqobs = 〈{Eq(Er(t))}〉, (1)

∗To whom correspondence should be addressed.

where {} denotes an average over the molecules in the
system at any given point in time and〈〉 denotes an
average over time. Deriving information aboutEr from
Eqobs is hampered by the following considerations:
• The number of observablesNobs is typically too

small to uniquely deriveEr.
• As a result of the effect of averaging inherent in the

experimental techniques, the observables can con-
tain conflicting data which cannot be reconciled
with one single configuration.

• Generally, it is not clear how to invert the averages
in Equation 1 to obtainEr.

• The relation Eq(Er) is often empirical, as is, for
example, the Karplus equation (Karplus, 1959).

• The relationEq(Er) is itself often not invertible, i.e.
Er(Eq) is not uniquely defined, e.g. by the Karplus
equation
In the molecular modelling refinement approach,

an empirical model of the molecule under study is
constructed. Averaging is introduced by means of
combining the experimental data with the empirical
model in a molecular dynamics simulation from which
a trajectory of coordinates results. An average of the
observable can then be calculated from this trajectory
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and compared to the experimental value. In general,
only the time average is considered, as the averages
over time and over molecules are the same under the
assumptions of infinite dilution and ergodicity. In cer-
tain cases these assumptions do not hold, notably due
to crystal packing effects.

The most widely used method of obtaining an
ensemble of configurations consistent with a set of ex-
perimental data is the restraining or penalty function
approach. In this approach, the physical potential en-
ergy functionV phys(Er(t)) is combined with a penalty
functionV qr(Er(t); Eqobs) to produceV (Er(t))

V (Er(t)) = V phys(Er(t))+ V qr(Er(t); Eqobs) (2)

which is then used in the coordinate generation proce-
dure. The choice ofV qr(Er(t); Eqobs) is important. The
means by which the experimental data is introduced
into the simulation must be consistent with the manner
in which the experimental data was collected if serious
artefacts are to be avoided.

In conventional instantaneous restraining (denoted
by the symbolinst), a functional form harmonic in
qi(Er(t)) is generally chosen

V insti (Er(t);Kqr
i , q

obs
i ) =

K
qr
i

2
(qi(Er(t))− qobsi )2 (3)

for thei-th observable. A better approach is to take the
averaging inherent to the experimental technique into
account. In conventional time-averaged restraining
(denoted by the symbolctave), the potential energy
function is harmonic in the average ofqi(Er(t)):

V ctavei (Er(t);Kqr

i , q
obs
i ) =

K
qr
i

2

(
qi(Er(t))− qobsi

)2
, (4)

where

qi(Er(t)) = 1

[τqr(1− exp(− t
τqr
))]∫ t

0
exp(− t ′

τqr
)qi(Er(t − t ′))dt ′ (5)

is the weighted average used during the simulation.
The true time average value over the course of a
simulation is

〈qi(Er(t))〉 = 1

t

∫ t

0
qi(Er(t ′))dt ′ (6)

which may be calculated from the trajectory and
compared to the experimental value after the simu-
lation. During the course of a simulation, however,

〈qi(Er(t))〉 becomes increasingly insensitive to instan-
taneous fluctuations for increasing values oft. To
avoid this, a decay with characteristic decay timeτqr
may be built into the averaging process during the sim-
ulation. This approach has been successfully applied
to refinement with experimental data originating from
Nuclear Overhauser Effect (NOE) measurements with
the quantityq taken as the inverse third power of an
atom-atom distanced, q ≡ d−3 (Torda et al., 1990),
3J coupling constant experiments with the quantityq
taken as the3J coupling constant,q ≡ J (Torda et
al., 1993) and X-ray diffraction experiments with the
quantityq taken as the crystallographic structure factor
F, q ≡ F (Schiffer et al., 1995).

However, it has been observed in3J coupling
constant restraining that, although the experimental
average〈qi(Er(t))〉 is achieved, the fluctuations can be
much larger than observed for unrestrained simula-
tions (Pearlman, 1994; Nanzer et al., 1997). This is
due to the fact that overshooting occurs during the
simulation. As the average value lags behind the in-
stantaneous value in time, a force due to the restraining
function continues to be applied for some time after
qi(Er(t)) equalsqobsi . The problem is inherent to all
standard time-averaging restraining applications, but
is less manifest in NOE distance restraining applica-
tions for the following reasons:
• In most cases, only the upper bound violations of

atom-atom distances are penalized.
• Overshooting towards low distances is blocked by

the van der Waals repulsive interactions.
• The average〈d−3〉 is dominated by lower values

of d, so〈d−3〉 quickly followsd−3 when the upper
bound is satisfied.

In order to address this problem which is particularly
important in the case of3J -value restraining, we pro-
pose alternative functional forms to Equation 4 for
V qr(Er(t); Eqobs) in the next Section. The test results
are presented in the Section Results and discussed in
the Section Discussion.

Materials and methods

In conventional time-averaged3J -value restraining
(Torda et al., 1993), the potential energy function for a
single upperbound3J restrainti is

V ctavei (Er(t);Kqr
i , q

0
i ) =

K
qr
i

2

[
qi(Er(t))− q0

i

]2
H(qi(Er(t)); q0

i ), (7)
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whereH(x; xo) is the Heavyside step function

H(x; xo) =
 0 if x < xo

,

1 otherwise
(8)

qi(Er(t)) is the instantaneous coupling constant calcu-
lated from coordinates using the Karplus equation

qi(Er(t)) = AK cos2(φi(Er(t)))
+ BK cos(φi(Er(t)))+ CK (9)

with the empirically derived Karplus constantsAK ,
BK andCK , qi(Er(t)) is its time average with an ex-
ponential memory function (Equation 5) andq0

i is
the experimentally determined coupling constant. The
corresponding lower bound restraint is obtained by in-
terchanging the arguments of the Heavyside function
in Equation 7.

In practice,qi(Er(t)) is not calculated during the
simulation by applying Equation 5; instead, use is
made of the equivalence

qi(Er(t))
= AK cos2(φi(Er(t)))+ BK cos(φi(Er(t)))+ CK
= AKcos2(φi(Er(t)))+ BKcos(φi(Er(t)))+ CK.

(10)

Equation 5 is then applied to the individual co-
sine terms and discretized to obtain expressions for
cos2(φi(Er(t))) and cos(φi(Er(t))). For an arbitrary
power ofm, the equivalent of Equation 5 is

cosm(φ(Er(t))) = 1

[τqr(1− exp(− t
τqr
))]
∫ t

0

exp(− t−t ′
τqr
) cosm(φi(Er(t ′)))dt ′. (11)

During a simulation using discrete time steps of size
1t, the average at timetn can be approximated by the
sum

cosm(φi(Er(tn)))
= 1

[τqr(1− exp(− tn
τqr
))]

n∑
i=0

exp(− tn − ti
τqr

)

cosm(φi(Er(ti)))1t

= 1

[τqr(1− exp(− tn
τqr
))]

n−1∑
i=0

exp(− tn − ti
τqr

)

cosm(φi(Er(ti)))1t
+ 1

[τqr(1− exp(− tn
τqr
))] cosm(φ(Er(tn)))1t

= exp(
−1t
τqr

)
[τqr(1− exp(− tn−1

τqr
]

[τqr(1− exp(− tn
τqr
]

cosm(φi(Er(tn−1)))

+ 1

[τqr(1− exp(− tn
τqr
))]

cosm(φi(Er(tn)))1t (12)

For tn >> τqr this reduces to

cosm(φi(Er(tn))) ≈ exp(−1t
τqr

)cosm(φi(Er(tn−1)))

+ 1t

τqr
cosm(φi(Er(tn))). (13)

Equation 13 is equivalent to Equation 11 in (Torda et
al., 1993):

cosm(φi(Er(t))) ≈ exp(−1t
τqr

)cosm(φi(Er(t −1t)))

+
(

1− exp(−1t
τqr

)

)
cosm(φi(Er(t))), (14)

using
(
1− exp(− 1t

τqr
)
)
≈ 1t

τqr
for 1t << τqr . Thus,

the potential energy function, Equation 7, reads

V ctavei (Er(t);Kqr
i , q

0
i )

= K
qr
i

2
[qi(Er(t))− q0

i ]2H(qi(Er(t)); q0
i )

= K
qr
i

2
[AKcos2(φi(Er(t)))

+BKcos(φi(Er(t)))+ CK − q0
i ]2

× H(qi(Er(t)); q0
i ) (15)

with the corresponding force

Ef qri (Er, t) = −Kqr
i [qi(Er(t))− q0

i ]

H(qi(Er(t)); q0
i )
∂qi(Er(t))
∂Er(t)

= +Kqr

i [qi(Er(t))− q0
i ]H(qi(Er(t)); q0

i )

×
[

2AK cos(φi(Er(t))) ∂cos2(φi(Er(t)))
∂ cos2(φi(Er(t)))

+BK ∂cos(φi(Er(t)))
∂ cos(φi(Er(t)))

]

× sin(φi(Er(t)))∂φi(Er(t))
∂Er(t) (16)

SettingX = ∂cos(φi (Er(t)))
∂ cos(φi (Er(t))) =

∂cos2(φi (Er(t)))
∂ cos2(φi (Er(t))) , the force

reads

Ef qri (Er, t) = K
qr
i [qi(Er(t))− q0

i ]
H(qi(Er(t)); q0

i )X
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× [2AK cos(φi(Er(t)))+ BK ]
sin(φi(Er(t)))∂φi(Er(t))

∂Er(t) (17)

Note thatX = 1t
τqr

if Equation 13 is applied, or

X =
(
1− exp(− 1t

τqr
)
)

if Equation 14 is applied. This

means that the restraining force is inversely propor-
tional to the exponential memory relaxation timeτqr
(for 1t << τqr ). In order to obtain comparable re-
straining forces for different values ofτqr , one would
have to choose the values of the force constantK

qr

i

proportional to[1−exp(− 1t
τqr
)]−1. Since the choice of

the value for the force constantKqr

i is empirical any-
way, the factorX is set to 1 in Equation 17 by default
in the current implementation of time averaging in the
GROMOS96 code (Scott et al., 1998; van Gunsteren
et al., 1996). The values in Torda et al. (1993) were
produced usingX = 1.

The problem of generating too large fluctuations
of qi(Er(t)) when using conventional time averaging
restraining is due to the fact that the restraining func-
tion 15 only depends indirectly on the instantaneous
valueqi(Er(t)) at time t through the averageqi(Er(t)).
The overshooting effect can be reduced by increas-
ing the weight of the instantaneous value compared to
that of the average value in the restraining function.
Below, we propose two different simple modifica-
tions of the restraining function 7 that lead to a larger
weight ofqi(Er(t)) relative toqi(Er(t)) when determin-
ing the restraining energy and force, while keeping
these quantities a continuous function ofqi(Er(t)) and
qi(Er(t)).

In the biquadratic restraining function (symbolbi-
quador bq), the instantaneous valueqi(Er(t)) and the
average valueqi(Er(t)) are equally weighted:

V
biquad
i (qi(Er(t)), qi(Er(t));Kqrbq

i , q0
i )

= K
qrbq

i

2
[qi(Er(t))− q0

i ]2[qi(Er(t))− q0
i ]2

× H(qi(Er(t)); q0
i )H(qi(Er(t)); q0

i ). (18)

The corresponding force is

Ef qri (Er, t) = −Kqrbq

i

(
[qi(Er(t))− q0

i ]

[qi(Er(t))− q0
i ]2

∂qi(Er(t))
∂Er(t)

+ [qi(Er(t))− qi0]2[qi(Er(t))− q0
i ]

∂qi(Er(t))
∂Er(t)

)

× H(qi(Er(t)); q0
i )H(qi(Er(t); q0

i )

= +Kqrbq
i

([
qi(Er(t))− q0

i

]
[qi(Er(t))− q0

i ]2

×
[

2AK cos(φi(Er(t))) ∂cos2(φi(Er(t)))
∂ cos2(φi(Er(t)))

+ BK ∂cos(φi(Er(t)))
∂ cos(φi(Er(t)))

]

+
[
qi(Er(t))− q0

i

]2 [
qi(Er(t))− q0

i

]
[
2AK cos(φi(Er(t)))+ BK

])
× sin(φi(Er(t)))∂φi(Er(t))

∂Er(t) H(qi(Er(t)); q0
i )

H(qi(Er(t)); q0
i )

= +Kqrbq

i

([
qi(Er(t))− q0

i

] [
qi(Er(t))− q0

i

]2

X +
[
qi(Er(t))− q0

i

]2 [
qi(Er(t))− q0

i

])
× [

2AK cos(φi(Er(t)))+ BK
]
sin(φi(Er(t)))

∂φi(Er(t))
∂Er(t)

× H(qi(Er(t)); q0
i )H(qi(Er(t)); q0

i ). (19)

The elliptic restraining function

V elli (qi(Er(t)), qi(Er(t));Kqr
i , q

0
i , Aell)

=K
qr

i

2

[
Aellqi(Er(t))+ (1−Aell)qi(Er(t))− q0

i

]2

×H(Aellqi(Er(t))+ (1−Aell)qi(Er(t); q0
i ) (20)

is obtained from Equation 7 by replacing the aver-
ageqi(Er(t)) by a linear combination of the average
qi(Er(t)) and the instantaneous valueqi(Er(t)). The
corresponding force is

Ef qri (Er, t)
=−Kqr

i

[
Aellqi(Er(t))+ (1−Aell)qi(Er(t))− q0

i

]
×
(
Aell

∂qi(Er(t))
∂Er(t) + (1−Aell)

∂qi(Er(t))
∂Er(t)

)
H(Aellqi(Er(t))+ (1−Aell)qi(Er(t)); q0

i )

=+Kqr
i

[
Aellqi(Er(t))+ (1−Aell)qi(Er(t))− q0

i

]
×
(
Aell

[
2AK cos(φi(Er(t))) ∂cos2(φi(Er(t)))

∂ cos2(φi(Er(t)))



505

+ BK ∂cos(φi(Er(t)))
∂ cos(φi(Er(t)))

]

+ (1−Aell)
[
2AK cos(φi(Er(t)))+ BK

] )

×sin(φi(Er(t)))∂φi(Er(t))
∂Er(t) H(Aellqi(Er(t))

+(1−Aell)qi(Er(t)); q0
i )

=+Kqr
i

[
Aellqi(Er(t))+ (1−Aell)qi(Er(t))− q0

i

]
×(AellX + (1− Aell))[2AK cos(φi(Er(t)))+ BK ]
×sin(φi(Er(t)))∂φi(Er(t))

∂Er(t) H(Aellqi(Er(t))
+(1−Aell)qi(Er(t)); q0

i ). (21)

The parameterAell ∈ [0. . . 1] is a mixing parame-
ter. ForAell = 0 and usingq0

i both as upper and lower
bound, Equation 20 reduces to the instantaneous re-
straining potential energy function in Equation 3. For
Aell = 1 it reduces to the conventional time-averaged
restraining potential energy function in Equation 7.

Results

In order to assess the three time-averaging methods
of restraining, a series of simulations for a cyclic
decapeptide, antamanide (Karle et al., 1979) was con-
ducted. This is an interesting system, as previous stud-
ies have found no single conformation which could ex-
plain the NOE values measured (Kessler et al., 1988,
1989; Brüschweiler et al., 1991). All simulations were
performed using the GROMOS96 biomolecular sim-
ulation package (Scott et al., 1998; van Gunsteren et
al., 1996) and the GROMOS96 43A1 force field (van
Gunsteren et al., 1996). Starting from the X-ray struc-
ture (Karle et al., 1979), an energy minimisation was
performed with the six backbone HN–Hα

3J value re-
straints in place (Table 1). Simulations ensued from
this minimised structure, with velocities generated
from a Maxwell distribution at 300 K. All simulations,
each of 1 ns in length, were performed in vacuo using
the GROMOS96 stochastic dynamics simulation algo-
rithm (van Gunsteren and Berendsen, 1988) with the
SHAKE procedure to constrain bond lengths (Ryck-
aert et al., 1977) at a temperature of 300 K using a time
step of 0.002 ps. The atomic friction coefficients were
set to 19 ps−1 for atoms. No temperature coupling was
employed and no cut-offs were used for long-range

interactions.Kqr

i was set either to 10 kJmol−1 Hz−2

or 50 000 kJmol−1 Hz−2 in all cases, withKqrbq
i set

to 10 kJmol−1 Hz−4 or 50 000 kJmol−1 Hz−4 for
the biquadratic time-averaged functional form. The
Karplus constantsAK = 9.4 Hz,BK = −1.1 Hz and
CK = 0.4 Hz were taken from Bystrov (1976) de-
spite the existence of newer values (Pardi et al., 1984)
in order to compare to the literature (Kessler et al.,
1988; Torda et al., 1993). A value ofτqr = 10 ps
was chosen for the averaging simulations. Coordinates
and energies were saved to file every ps, yielding 1000
values from which the averages〈qi(Er(t))〉 in Tables 1,
2 and 3 were calculated using Equation 6. In addition,
the average and root mean square (rms) fluctuations
of the potential energy of the systemexcludingthe
restraining term, and the average rms atomic position
fluctuation were calculated

1X =
〈

1

Np

Np∑
i=1

[Eri(t)− < Eri(t) >]2
〉 1

2

(22)

both for all atoms (Np = 110) and for just theCα

atoms (Np = 10). The averages involving positions
are calculated after a superposition of the structures
taking all atoms into account. In Equation 22, the
square of a vector is defined as its scalar or dot product.

Discussion

Table 1 summarises the results obtained using a force
constant ofKqr

i = 10 kJmol−1 Hz−2 (Kqrbq
i =

10 kJmol−1 Hz−4 in the case of biquadratic restrain-

ing) and setting∂cos(φi (Er(t)))
∂ cosφi (Er(t))) and ∂cos2(φi (Er(t)))

∂ cos2 φi (Er(t))) both
to 1. The unrestrained simulation fails to reproduce
the experimental results, especially for residues 1 and
6. Clearly, the physical force field alone is unable
to reproduce all experimental3J values on the time
scale simulated. The conventional instantaneous re-
straining method produces better averages, although
the 3J values for residues 5 and 10 are not satisfac-
torily reproduced. The fluctuations are small when
compared to the unrestrained simulation, an indication
that the method is restricting the molecule’s motion.
The conventional time-averaging method achieves the
correct averages, however, the fluctuations are in-
creased for residues 1 and 6, the ones that needed
the most restraining. Time averaged restraining using
the biquadratic functional form results in worse aver-
ages (residues 4, 6 and 9) and reduced fluctuations
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Table 1. Comparison of simulation results (averages and rms fluctuations) of the antamanide test system with∂cos(φi (Er(t)))
∂ cos(φi (Er(t))) ,

∂cos2(φi (Er(t)))
∂ cos2(φi (Er(t))) = 1 andKqri = 10 kJmol−1 Hz−2 andKqrbqi = 10 kJmol−1 Hz−4 (see text). Experimental values are taken

from Kessler et al. (1988). Calculated3J values in Hz and average positional rms fluctuations in nanometres are full trajectory
averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuations in kJmol−1 of
the potential energy of the system excluding the contribution of the restraining term

3J coupling constant (Hz) potential pos. fluc.

Residue 1Val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)

Restraint 1 2 3 4 5 6 (kJmol−1) Cα all

Experiment 7.3 – 8.6 – 6.8 – 6.6 – 8.3 – 6.7 – – – – –

Unrestrained 10.0 1.8 7.4 2.3 8.0 2.2 9.9 1.4 7.1 2.5 8.0 2.0 136 26 0.06 0.11

Instantaneous 7.1 0.5 8.6 0.5 7.4 0.5 6.4 0.5 8.3 0.5 7.3 0.5 178 27 0.05 0.10

Aell = 0.1 7.1 0.5 8.6 0.5 7.4 0.6 6.4 0.5 8.3 0.5 7.3 0.5 184 29 0.05 0.09

Aell = 0.4 7.2 0.6 8.7 0.7 7.0 0.7 6.5 0.6 8.4 0.7 6.9 0.7 208 27 0.10 0.17

Aell = 0.6 7.2 0.8 8.7 0.8 6.9 0.9 6.5 0.8 8.3 0.8 6.8 0.9 205 28 0.10 0.16

Aell = 0.8 7.1 1.1 8.6 1.1 7.3 1.1 6.4 1.1 8.3 1.1 7.2 1.1 187 30 0.05 0.09

Aell = 0.9 7.6 1.6 8.6 1.5 6.9 1.4 6.7 1.6 8.3 1.5 6.8 1.3 166 34 0.05 0.09

Aell = 0.95 7.7 1.9 8.7 1.6 6.8 1.6 6.8 1.8 8.3 1.7 6.8 1.7 168 33 0.06 0.11

Conv. t-ave 7.5 3.0 8.6 2.3 6.9 2.6 6.8 2.8 8.2 2.3 6.8 2.4 188 32 0.08 0.15

Biquadratic 7.6 0.8 4.6 2.2 7.2 0.5 2.6 1.5 6.9 2.8 7.0 0.6 213 27 0.07 0.13

Table 2. Comparison of simulation results (averages and rms fluctuations) of the antamanide test system with∂cos(φi (Er(t)))
∂ cos(φi (Er(t))) ,

∂cos2(φi (Er(t)))
∂ cos2(φi (Er(t))) =

1t
τqr

, Kqr
i
= 10 kJmol−1 Hz−2 andKqrbq

i
= 10 kJmol−1 Hz−4 (see text). Experimental values are taken

from Kessler et al. (1988). Calculated3J values in Hz and average positional rms fluctuations in nanometres are full trajectory
averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuations in kJmol−1 of
the potential energy of the system excluding the contribution of the restraining term

3J coupling constant (Hz) potential pos. fluc.

Residue 1Val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)

Restraint 1 2 3 4 5 6 (kJmol−1) Cα all

Experiment 7.3 – 8.6 – 6.8 – 6.6 – 8.3 – 6.7 – – – – –

Unrestrained 10.0 1.8 7.4 2.3 8.0 2.2 9.9 1.4 7.1 2.5 8.0 2.0 136 26 0.06 0.11

Instantaneous 7.1 0.5 8.6 0.5 7.4 0.5 6.4 0.5 8.3 0.5 7.3 0.5 178 27 0.05 0.10

Aell = 0.1 7.2 0.6 8.7 0.6 6.9 0.6 6.5 0.6 8.3 0.6 6.8 0.6 203 27 0.08 0.14

Aell = 0.4 6.9 0.8 8.6 0.9 7.7 0.8 6.3 0.8 8.3 0.9 7.6 0.8 181 29 0.05 0.09

Aell = 0.6 7.3 1.4 8.6 1.3 7.7 0.9 6.3 1.3 8.4 1.2 6.8 1.2 181 29 0.07 0.12

Aell = 0.8 8.5 2.0 8.5 1.7 7.0 1.8 7.6 2.2 8.2 1.8 6.9 1.7 151 29 0.06 0.10

Aell = 0.9 8.5 2.6 8.4 2.0 6.9 2.0 7.9 2.6 8.0 2.3 7.4 1.9 151 32 0.06 0.11

Aell = 0.95 8.5 2.9 8.0 2.2 7.4 2.0 7.8 3.0 7.7 2.4 7.7 1.8 148 31 0.06 0.11

Conv. t-ave 2.1 1.8 8.3 2.1 6.7 2.0 8.6 2.5 5.1 3.1 8.4 0.4 148 26 0.06 0.11

Biquadratic 2.6 1.7 6.1 2.8 7.3 0.6 3.3 1.7 6.6 3.0 7.3 0.6 172 26 0.05 0.10
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Table 3. Comparison of simulation results (averages and rms fluctuations) of the antamanide test system with∂cos(φi (Er(t)))
∂ cos(φi (Er(t))) ,

∂cos2(φi (Er(t)))
∂ cos2(φi (Er(t))) =

1t
τqr

, Kqr
i
= 50 000 kJmol−1 Hz−2 andKqrbq

i
= 50 000 kJmol−1 Hz−4 (see text). Experimental values

are taken from Kessler et al. (1988). Calculated3J values in Hz and average positional rms fluctuations in nanometres are full
trajectory averages calculated using Equations 6 and 22. Entries labelled ‘potential energy’ are averages and rms fluctuations in
kJmol−1 of the potential energy of the system excluding the contribution of the restraining term

3J coupling constant (Hz) potential pos. fluc.

Residue 1Val 4Ala 5Phe 6Phe 9Phe 10Phe energy (nm)

Restraint 1 2 3 4 5 6 (kJmol−1) Cα all

Experiment 7.3 – 8.6 – 6.8 – 6.6 – 8.3 – 6.7 – – – – –

Unrestrained 10.0 1.8 7.4 2.3 8.0 2.2 9.9 1.4 7.1 2.5 8.0 2.0 136 26 0.06 0.11

Conv. t-ave 7.5 3.0 8.7 2.1 6.9 2.6 6.7 3.0 8.3 2.2 6.9 2.3 196 38 0.09 0.15

Biquadratic 7.2 2.8 6.3 3.4 6.9 2.4 5.7 3.1 7.2 3.2 6.6 2.5 651 247 0.24 0.34

(residues 1, 5 and 10), even when compared to the
unrestrained simulations. The elliptic time-averaged
restraining method was applied using different values
of Aell . For small values, the method shows the same
behaviour as instantaneous restraining which corre-
sponds toAell = 0. For larger values ofAell , the
3J values are better reproduced overall. Note that
the averages for residues 5 and 10 generally improve
with increasingAell. The fluctuations also increase,
but do not become excessive when compared to the
unrestrained run. In these simulations, the molecule
moves between conformations to produce the correct
averages overall. Furthermore, the average potential
energy (excluding the restraining term) decreases with
increasingAell beyond 0.4. Values aroundAell = 0.95
produce a low average potential energy and a good
compromise between correct3J value averages and
fluctuations.

Table 2 was produced withX = 1t
τqr

and a force

constant ofKqr
i = 10 kJmol−1 Hz−2 (Kqrbq

i =
10 kJmol−1 Hz−4 in the case of biquadratic restrain-
ing). The various methods are affected to varying
degrees by the choice ofX. In conventional time-
averaged restraining, the force that is applied when
settingX = 1t

τqr
is typically much smaller than is

the case withX = 1. In the simulations discussed
here, it is τqr

1t
= 5000 times smaller. With this much

smaller force, conventional time-averaging fails to
achieve the correct experimental averages. As Table 3
shows, comparable averages and fluctuations in the
3J values as in Table 1 can be achieved using con-
ventional time-averaging by choosingX = 1t

τqr
and a

correspondingly high force constant. As expected, the

average potential energy is higher in Table 3. For the
elliptic restraining method the effect of the choice of
X depends on the value ofAell , as a comparison of
Tables 1 and 2 reveals. In Table 1 the correct aver-
ages are largely maintained with increasingAell (only
the fluctuations increase as expected). In Table 2 the
quality of some (residues 1 and 6) of the calculated
averages deteriorates with increasingAell. In this case
the method behaves progressively like conventional
time-averaging which fails forX = 1t

τqr
in combina-

tion with a lowKqr
i . The effect of the choice ofX

on the biquadratic restraining method is difficult to
ascertain, either from Equation 19 or from the com-
parison of Tables 1 and 2. In either case, the method
performs poorly. With the much higher force constant
(Table 3), the quality of the averages improves, but the
fluctuations are large.

The results of the various simulations of anta-
manide illustrate that both proposed modifications
of the conventional time-averaging restraining func-
tion (Equation 7), the biquadratic restraining function
(Equation 18) and the elliptic restraining function
(Equation 20) do achieve their goal of reduced fluctua-
tions in the restrained quantities, in this case3J values,
when compared to conventional time-averaging re-
straining as used in the literature (Torda et al., 1990;
Schiffer et al., 1995; Nanzer et al., 1997). Use of
the biquadratic restraining function has the undesired
side-effect of a larger discrepancy between the aver-
aged3J values and the target (restraint)3J values, and
of a higher potential energy of the molecule.

The elliptic restraining function (Equation 20) with
X = 1 andAell around 0.95 best fulfills the com-
bined requirements of i) low potential energy; ii)



508

agreement with the experimental values; while iii) pro-
ducing fluctuations comparable to those produced by
an unrestrained simulation for the molecular model of
antamanide considered here.

In conclusion, one may say that the overshooting
problem inherent in the use of time-averaging restrain-
ing in molecular dynamics refinement of molecular
structure can be alleviated by using an elliptic re-
straining function in which the relative weight of the
time-averaged and the instantaneous restrained quan-
tity (parameterAell) can be adapted to tune averages
and fluctuations to desired values. However, the proper
choice of the values of the parameters of the restrain-
ing function, the force constantKqr

i , the memory
relaxation timeτqr and the weightAell will depend on
the type of molecule and the number and types of re-
straints. A wholly satisfactory solution to the problem
of structure refinement may have to wait for improved
force fields and much longer simulations, which may
reproduce the experimentally measured values without
the use of any restraining function.
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