
Struct Multidisc Optim (2008) 36:429–442
DOI 10.1007/s00158-007-0182-7

RESEARCH PAPER

Complex-shaped beam element and graph-based
optimization of compliant mechanisms

M. Sauter · G. Kress · M. Giger · P. Ermanni

Received: 4 February 2007 / Revised: 24 July 2007 / Accepted: 22 August 2007 / Published online: 16 October 2007
© Springer-Verlag 2007

Abstract Compliant mechanisms are designed to be
intentionally flexible, providing hingeless mechanisms.
This work contributes a complex-shaped beam element
formulation in conjunction with the ground structure
approach. We identify compliant mechanism design
solutions by using evolutionary topology optimization
and increase flexibility by using a parametrization con-
cept based on graph theory. The new operators for evo-
lutionary optimization are also explained and sample
problems are used to address the question of how our
contribution increases design solutions space.

Keywords Compliant mechanisms · Curved variable
thickness beam · Evolutionary algorithms · Graph

1 Introduction

Compliant mechanisms are receiving much attention
because of their potential for mass reduction and in-
trinsic multifunctionality. They are designed to be in-
tentionally flexible, providing hingeless mechanisms
(Ananthasuresh and Kota 1995). Topology, shape, or
sizing optimization techniques help in finding best
design solutions for compliant mechanism problems.
The optimization methods can be categorized into
two general areas, pseudo-rigid body methods and

M. Sauter (B) · G. Kress · M. Giger · P. Ermanni
ETH Zurich, Centre of Structure Technologies,
Leonhardstrasse 27, 8092 Zurich, Switzerland
e-mail: sauterm@ethz.ch

continuum-based methods. The pseudo-rigid body
methods are kinematic type methods that start with a
known rigid-link mechanism and convert it to a compli-
ant mechanism (Howell 2001).

Continuum-based methods, such as the homogeniza-
tion method (Bendsoe and Kikuchi 1988), were orig-
inally developed for finding, for a given amount of
material, structure topologies for maximum stiffness.
They divide the geometric design space into a num-
ber of cells that are often identical with the elements
of a finite-element mesh (Suzuki and Kikuchi 1991;
Nishiwaki et al. 1998; Yin and Ananthasuresh 2001).
The topology is given by the state of such cells, which
can be either filled with material or void. Thus, finding
the best solution implies an optimization problem with
discrete parameters. Because of the astronomically
high number of possible combinations, it has proven
to be very efficient to introduce a continuous density
distribution for each cell, transforming the originally
discrete problem into a smooth one and making it
accessible to efficient mathematical programming solu-
tion techniques. Moreover, the minimum compliance
problem has been proven to be convex. A classical
example for the compliant mechanism synthesis us-
ing the homogenization method is the modified 99
line topology optimization code by Sigmund (Bendsoe
and Sigmund 2003; Sigmund 2001) for a force in-
verter. In contrast to the minimum compliance opti-
mization, the goal is to maximize the displacement,
the force, or the work at the output. By specifying
different values for the spring constant at the inputs
and outputs, the displacement and the stiffness of the
mechanism can be controlled. Rahmatalla and Swan
(2005) introduced two different sets of springs. The
first is an artificial spring set of relative large stiff-

430 M. Sauter et al.

ness that prevents quasi-hinge solutions. The second
is only attached to the output with smaller stiffness
that represents the resistance of the workpiece as it
is manipulated by the mechanism. Yin and Anan-
thasuresh (2003) applied two different methods for
a design of distributed compliant mechanisms. The
first method penalizes high-stress regions. The second
uses local, relative rotations and restrains it by using
an objective function that makes the local deforma-
tion uniform throughout the structures. However, only
the second method is successful in giving distributed
compliant designs.

A primary issue in the synthesis of a distributed
compliance mechanism is the efficient transfer of
energy from input to output, while providing the de-
sired mechanical traits such as mechanical or geometric
advantage (Kota et al. 2001).

Another way for the representation of the design is
the use of ground structures such as beam or truss ele-
ments. Frecker et al. (1998), Saxena and Ananthasuresh
(2000), and others have adapted the frame element-
based ground structure approach to the compliant
mechanisms optimization. Joo et al. (2000) performed
studies on synthesis of compliant mechanisms using
geometrically linear and nonlinear beam elements (Joo
and Kota 2004) for ground structures.

The results of an optimization are heavily influ-
enced by the optimization algorithm. The fast gradient-
based solution methods generally only identify local
minima of non-convex problems, a problem overcome
by evolutionary algorithms. Although these typically
require a much higher number of function evaluations,
multi-objective problems are set without significant ad-
ditional effort. Genetic algorithms, which belong to
the evolutionary algorithms, were first introduced by
Holland and his colleagues at the University of
Michigan (Goldberg 1989) and, since then, have found
application in many areas of engineering optimization.
These algorithms are searching techniques based on
the natural forces of evolution, forces that join the
process of natural selection with a random information
exchange among the designs and mutations of genes
that represent the designs. They are robust, computa-
tionally simple yet capable in their search abilities, and
do not require derivatives.

In the past few years, the compliant mechanism
design by genetic algorithms has been given increas-
ing attention in the scientific community. Parsons
and Canfield (2002) explored genetic algorithms for
the multi-criteria topology optimization of compliant
structures. Saxena (2005) presented a procedure to
synthesize compliant mechanisms for a prescribed non-
linear output path. Lu and Kota (2003) utilized a load

path representation method to efficiently exclude the
invalid topologies (disconnected structures) from the
genetic algorithm solution space to avoid useless func-
tion evaluations. Zhou and Ting (2005) introduced the
spanning-tree theory for the topological synthesis of
compliant structures. The spanning-tree theory is based
on the graph theory where a graph consists of vertices
and edges. A valid topology is regarded as a network
connecting input, output, support, and intermediate
nodes (vertices), which contains at least one spanning-
tree among the introduced nodes. Akhtar et al. (2002)
combined the graph theory, genetic algorithms, and
Bezier curves representation. The Bezier curves rep-
resent the underlying topology of the structures. In a
second step, the curves are mapped into a continuum
finite element model (FEM).

This paper introduces an approach to solving
compliant-mechanism problems that combines evolu-
tionary optimization techniques where the use of graph
theory and a complex-shaped two-dimensional beam
element (Kress et al. 2006) can increase both numerical
efficiency and solution space.

The beam element is curved and of variable thick-
ness so that a localized compliant region can be placed
within one beam element. This reduces the number of
finite beam elements and, with it, the computational
effort for one function evaluation.

The ground-structure topology is represented by a
mathematical graph whose edges and vertices fall to-
gether with the beams and their nodes, respectively
(West 2001). All genetic operators, i.e., mutation and
crossover, directly apply on the graph representation
(vertices and edges). This parametrization concept
allows the optimization of topology, geometry, and
sizing of the beam structures at the same time. Be-
sides this, the representation can handle individuals of
different size.

The graph-theory method used was originally devel-
oped by Giger and Ermanni (2006) for link elements.
In this work, the complex-shaped beam element was
integrated into the program code, and the method
was extended to handle the design parameters of the
complex-shaped beam element. This implies a set of
modified and new genetic operators, new control rou-
tines, and fitness functions.

Discrete and multi-criteria optimization sample
problems serve to demonstrate the advantages of our
new approach.

Section 2 of this paper summarizes the parametriza-
tion of the complex-shaped beam element, Section 3
discusses the graph genotype of compliant mechanism
optimization, and Section 4 deals with the genetic op-
erators for the evolutionary optimization. Section 6 is

Complex-shaped beam element and graph-based optimization of compliant mechanisms 431

concerned with the implementation of the optimization.
Section 7 explains the inverter and the parallel gripper
optimization sample problems and presents all results
as well as an efficiency discussion.

2 Curved, variable thickness beam

The structural element beam is very useful for the
representation of compliant mechanism design. Com-
bining beams with high compliance and high stiffness
can model compliant mechanism structures, but the
necessary number of elements can be quite high.

The development of a beam element with high shape
complexity, such variable thickness and curved center-
line shape, was motivated by simultaneously increas-
ing the design flexibility and reducing the number of
elements for a complex topology (Kress et al. 2006).
Additionally, this beam is able to place compliant re-
gions within it. The two-dimensional beam element can
be extended to three-dimensional problems without
significant effort.

Figure 1 illustrates the shape complexity and how it
depends on the parameters used in this work.

Many compliant mechanism design problems require
finding a best topology as well as an optimized shape.
Often, the two aspects are separated. A first method
is used for finding the topology, and a second-step
method refines the result by obtaining the best shape
solution for the fixed topology. The shape flexibility of
this element opens up the possibility to combine the
topology and thickness distribution optimization within
one computational process.

We use Castigliano’s (1875) theorem for connecting
the set of beam parameters with the beam’s structural
properties because it provides a good compromise be-
tween accuracy and numerical costs for linear elasticity
problems (Kress et al. 2006; Lobontiu and Garcia 2003).

2.1 Parametrization

For the curved centerline, the Hermite curve
representation

x(σ) = a0 + a1σ + a2σ
2 + a3σ

3

y(σ) = b 0 + b1σ + b2σ
2 + b3σ

3 (1)

is chosen, where σ is in the range from −1 to 1.

T
1

β
1

β
2L

T
2

T
3 T

4

Fig. 1 Curved, variable thickness beam

y

x
L

x
1
, y

1
, β

1

x
2
, y

2
, β

2

(L
2
)

(L
3
)

Fig. 2 Centerline defined by start- and endpoint parameters and
factor L

The coefficients of these two equations depend
on the coordinates of the nodes with which the element
is connected, the chosen angle at the nodes, and the
factor L.

L influences the line length of the curved centerlines
(see Fig. 2).

dx
dσ

(σ = −1) = a1 − 2a2 + 3a3 = L cos(β1),

dy
dσ

(σ = −1) = b1 − 2b2 + 3b3 = L sin(β1),

dy
dx

(σ = −1) = dy(σ = −1)/dσ

dx(σ = −1)/dσ
= tan(β1). (2)

The coefficients of the cubic thickness distribution

t(σ) = t0 + t1σ + t2σ 2 + t3σ 3 (3)

are defined by thickness values at locations along the
beam centerline as Fig. 1 illustrates.

The parameter set for describing one complex
shaped beam element includes the values of

– Four end-point coordinates,
– Two centerline run-out angles at the end points,
– One factor L, and
– Four thicknesses at four points along the centerline.

The choice of material, if desired for multi-material
optimization, adds a 12th parameter to the set. The
shape complexity requires six more parameters than
would be necessary if simple beam elements were used.

432 M. Sauter et al.

v2n2
n3

v1v0n1n0

e1

e2
e0

v3

Fig. 3 Graph representation of the beam structures

3 The graph genotype

3.1 Graph topology representation

In this work, the complete topology is represented by a
graph, wherein each vertex corresponds to a node and
each beam is described by an edge (Fig. 3). In other
words, instead of holding the information of the beam
structure in a conventional one-dimensional genotype,
the graph itself is considered as the genotype, and
special operators are directly applied on it.

A graph is an abstract mathematical model; it is an
ordered pair (V, E), where V is a finite set called vertex
set and E is a binary relation on V called edge set.
Elements of V are called vertices, elements of E edges.

Some notations that are relevant for the study
presented here are briefly explained in the following.

Graph:

– An edge of an undirected graph is an unordered
pair(u, v) with u, v ∈ V. This means that e(u, v) and
e(v, u) represent the same edge.

– A graph is said to be labeled if its vertices are
distinguished from one another by labels like v1,
v2, ...vn.

– The order of the graph G(V, E) denotes the num-
ber of vertices.

– The size of the graph G(V, E) is determined by the
number of edges.

Vertex:

– An isolated vertex is not connected to any other
vertex.

– Two vertices are adjacent to each other if there is
an edge with both vertices as endpoints.

Edge:

– Two edges are parallel if they have the same end-
points.

– An edge is called a loop if the two endpoints are the
same.

Connected component:

– A path is a sequence of vertices where each vertex
is connected by an edge to the subsequent vertex in
the path.

– A vertex is reachable from another vertex if a path
exists from one to the other vertex.

– A connected component is a group of vertices in an
undirected graph that are all reachable from one
another.

In this work, an undirected, labeled graph topology
representation with a predefined order and a vari-
able size is applied. Loops and parallel edges are not
allowed.

Publications in the field of compliant mechanism
optimization often rely on beam ground structure
approaches with fixed number of nodes and beams
(Frecker et al. 1998; Joo et al. 2000; Lu and Kota 2002).
To the beam, a weight factor is assigned describing a
cross-sectional dimension. A zero weight factor of an
element means that there is no structural connection
between the respective element nodes. This work is
assuming a fixed number of vertices, which can either
be connected or not, and a variable number of edges.
The graph representation overcomes the ordinary re-
striction of having constant length genotype. Thus, the
design flexibility of the optimization is increased by the
independence from the predefined number of edges.
Thereby, the graph representation allows an easy mod-
ification of the topology by adding or removing edges.
Furthermore, the geometry, which is defined by the
coordinates of the moveable nodes, can be easily mod-
ified. The nodes themselves are represented by labeled
vertices and their related coordinates. The optimization
process is simplified by the fact that the edges refer to
the labels of the vertices (see Tables 1 and 2). Only
the properties of the vertices have to be changed, and
thereby, the edge parameters remain unchanged.

In addition, the graph theory provides a few
very useful and fast routines such as the connected-

Table 1 Edge/Beam
properties

Edge Label1 Label2 β1 β2 T1 T2 T3 T4 L Material Status

e0 0 3 0.0 4.3 1.0 7.7 10.7 8.6 2.1 1 2
e1 2 3 −1.2 3.2 1.0 9.9 15.8 9.2 2.0 1 2
e2 3 1 0.4 0.4 1.0 5.4 8.5 1.0 2.1 1 2

Complex-shaped beam element and graph-based optimization of compliant mechanisms 433

Table 2 Vertex/node properties

Vertex Label x y Moveable

v0 0 0.0 0.0 False
v1 1 100.0 0.0 False
v2 2 0.0 50.0 False
v3 3 49.2 49.9 True

component algorithm that is based on the depth-first
search algorithm. For further details, refer to Siek et al.
(2002). This algorithm is very useful for determining
whether all clamped or loaded vertices are connected
to each other.

According to Section 2.1, eight parameters and two
nodes are needed to define one curved, variable thick-
ness beam. The parameters are attached to edges as
properties and the coordinates of the nodes to the
vertices, respectively.

Table 1 contains the edges and theirs properties,
namely two labels of the vertices, two angles, four
thicknesses, the parameter L, and the material. Table 2
displays the vertices and their properties like label of
vertices and x- and y-coordinates.

In addition, two parameters are introduced.

– A boolean moveable defines whether or not node
coordinates may change.

– An unsigned number attached to the edge elements
describes the status of the edge/beam.

Three settings of the status are possible:

0 Endpoints and shape (the four thicknesses parame-
ter) are fixed.

1 Only endpoints are fixed.
2 Endpoints and shape can be modified.

Consequently, edges with status 0 or 1 must not be
removed or added from/to the graph and from/to the
structure during the optimization.

3.2 The universal gene concept

In Section 3.1, the graph representation with element
properties was introduced. In this section, the graph
representation is extended to the graph genotype
that represents the combination of the graph repre-
sentation and the eoUniGene concept introduced by
Koenig (2004).

The basic idea of the universal gene concept is to
hold not only the information, like thickness or coor-
dinate, but also its mutation parameters in each gene.

This implementation scheme allows to individually
adapt the gene and its mutation properties to the opti-
mization problem. In addition, the procedure to check

int_gene true 5 true 0 true 6 3 1 false

double_gene true 2.0 true 1.0 true 15.0 5.0 1.0 false

cyclic propertiesupper limit

lower limit mutation parameter

default value} }

} }

}

Fig. 4 Example for int_gene and double_gene

whether the parameters are out of range is very easy to
handle. The universal gene concept provides a variety
of gene types that can be combined to a heterogeneous
list of properties. Although various gene types such
as boolean-gene and string-list-gene are available, only
int-gene and double-gene are integrated into the pro-
gram code, see Fig. 4. For example, the vertex labels
are represented by an integer number, the so-called
int-genes. The first boolean denotes whether the gene
is active with 5 as default value. The boolean of the
following two pairs specifies whether the lower or up-
per limits with value 0 or 6, respectively, are acti-
vated. Furthermore, the mutation parameters ε = 3 and
σ= 1 are specified. ε denotes the range for uniform
mutation, if the lower and upper limits are not declared
(unbounded gene), and σ defines the standard devia-
tion to be used for Gaussian mutation. Equation (4)
displays the Gaussian probability distribution.

f (x) = 1
σ
√

2π
exp

(
−1

2
(x − μ)2

σ 2

)
, (4)

whereas f (x) measures the probability, that mutations
to x occurs, if μ is equal to the current value.

The last boolean indicates that the respective gene
does not have cyclic properties. Examples for double-
genes are the vertex/node coordinates and the thickness
properties of edges/beams.

In Fig. 5, a sample genotype containing two lists
of genes (Fig. 4) is given. The first list represents the
vertices and their properties and the second list the
edges and theirs properties, respectively.

4 Genetic graph operators

All information necessary to the genetic operators is
contained in the eoUniGene representation. Operators
can be applied to the individuals within a population
with a predefined probability, whereas an individual
denotes one solution of a population and the population
itself represents a set of solutions of one generation.
The i-th generation is equivalent to i-th optimization
step.

Operators can be classified in mutation and
crossover operators. Mutation operators change the
properties of the parameters with a defined probability

434 M. Sauter et al.

2 vertices 0 double_gene true 0 true 0 true 1 0.1 0.1 0 , double_gene true 0
true 0 true 1 0.1 0.1 0 , double_gene false 0 false 0 false 0 0.1 0.1 0 , 0 1
double_gene true 0.492355 true 0 true 1 0.1 0.1 0 , double_gene true 0.999651
true 0 true 1 0.1 0.1 0 , double_gene false 0 false 0 false 0 0.1 0.1 0 , 2

1 edges int_gene true 0 true 0 true 17 1 3 1 , int_gene true 1 true 0 true 17 1 3
1 , double_gene true 0.019664 true -30 true 30 1 1 0 , double_gene true
4.92213 true -30 true 30 1 1 0 , double_gene true 1.00038 true 1 true 20 1 1 0 ,
double_gene true 7.66708 true 1 true 20 1 1 0 , double_gene true 10.6811 true
1 true 20 1 1 0 , double_gene true 8.58696 true 1 true 20 1 1 0 , double_gene
false 0 false 0 false 0 0 0 0 , int_gene false 0 false 0 false 0 0 0 0 , 2

Fig. 5 Sample variable length graph genotype

independently of the other individuals of the genera-
tion. The aim of crossover operators is to recombine
the properties of two selected parent individuals in the
hope of generating even better offsprings. Crossover
operators increase the convergence if the individuals
differ from one another.

Mutation and crossover operators can be classified
in geometric, topology, or sizing operators. For further
details, refer to Giger and Ermanni (2006). Only op-
erators introduced for the curved, variable thickness
beam are described. The geometry usually depends on
the position of the connected nodes. Using the curved,
variable thickness beam, the curvature of the centerline
also influences the geometry. Anyway new, additional
geometric operators are not needed.

To increase the efficiency of the topology optimiza-
tion, operators who split one curved, variable thickness
beam in two beams and who merge two beams were
implemented. For splitting operators, a minimal length
of the beam was prescribed to prevent too many and
unfeasible beams.

Sizing operators for conventional beams only affect
one property, i.e., the cross-sectional area. But the
curved, variable thickness beam includes four thickness
parameter, which can individually be changed or can
be modified in the same step by operators. The latter
ones seek to increase the functionality of the compliant
mechanism.

Most of the optimization problems include either
minimization of the mass or mass restrictions within
the fitness function. As illustrated in Fig. 6, these sizing
operators are only influencing the shape of the beam,
thus the functionality of the structure, and not its mass.
In other words, these operators improve the fitness by
increasing functionality under the constraint that the
mass of the beam, respectively, mass influenced addend
of the fitness function, remains constant.

5 Control routines

The control routines guarantee that only legal design
solutions are evaluated. Under illegal design solutions,

a Uniform-thickness-mutation operator

d Compliant-stiff-ends-mutation operator

b Centred-compliancy-mutation operator

c Centred-stiffness-mutation operator

Fig. 6 Curved, variable thickness sizing operators

we understand that the parts of the domain boundary,
where nonzero forces and prescribed displacements are
described, are not connected so that the mechanism is
not realized and/or the stiffness matrix remains singu-
lar. In addition, design solutions not complying with
mechanical modeling assumptions must be rejected.
We distinguish two types of control routines. The first
one regards the FEM analysis and checks whether the
topology connects the above-mentioned parts of the
boundary and whether all beam elements are suffi-
ciently long with respect to their thickness to comply
with beam theory assumptions. The second one regards
other aspects of the topology. The here considered two-
dimensional design solutions do not permit crossing of
beam centerlines or that beams reach across certain
regions such as those between grippers. Furthermore,
minimum and maximum numbers of members can be
defined.

6 Implementation

The code is written in C++ and includes four powerful
libraries: the Evolving Objects (EO),1 Boost Graph
Library (BGL),2 eoUniGene concept, and the FELyX3

FE Code.
Figure 7 displays the optimization loop from the

initialization to the solution.
The EO library is providing the basic functionality

for the evolutionary optimization and controlling of

1http://eodev.sourceforge.net.
2http://boost.org.
3http://felyx.sourceforge.net.

http://eodev.sourceforge.net
http://boost.org
http://felyx.sourceforge.net

Complex-shaped beam element and graph-based optimization of compliant mechanisms 435

Feasibility check

Mapping

Selection

Reproduction

Feasibility check

Replacement

Evaluation

Mapping

Evaluation

Population

Endpopulation

Solution

Offspring

Initialization

Stop ?

Yes

Yes

No

No

- Control file

- Fixed member (vertex, edge spring)

- Edge prototype

- Boundary conditition

- Fitness function

- (Existing designs)

Random or based on existing designs

- Result file

- Statistic file

FELyX

FELyX

Evolving Obj.

Boost Graph/ eoUniGene

Fig. 7 Evolutionary optimization loop

the actual program run. This includes the initializa-
tion of the different objects, ensuring the whole data
flow between different populations, calling evaluation
modules, and managing storage of any kind of data.
It also provides the implementations for selection and
replacement strategy. The selection is responsible for
the identification of parent individuals mostly based on
fitness criteria. The replacement is the choice of the
individuals, which will be part of the next generation.
This mechanism is based on the fitness or on other

2F
2k

0
2k

1

symmetric

Ω

u

Fig. 8 Inverter optimization setup

0

0.5

1

1.5

2

[Nmm]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

[]

[]

a

b

-0.006 -0.004 -0.002 0.0020

wout-init

wout

Di

[]Di

v

wout-estim

vlimit

vlimit+vfeas-tol

Fig. 9 Mapping of the objective/constraint value; a negative of
the work wout, b volume fraction v

constrains. All EO functionalities are independent of
the optimization problem and the used data structures.

The initialization is performed either randomly or
based on existing designs. The parameters needed for
the optimization are provided by a control file including
probabilities for the reproduction. The reproduction
generates new individuals from the parent individuals.
Additional information, such as the edge prototype, the
prefixed elements (vertices, edges, or springs), bound-
ary conditions, and the fitness function, are summarized
in text files. The edge prototype is needed for the
definition of the range of the allowed variation for each
parameter.

All data about the structure are stored in the graph
genotype using the BGL and the eoUnigene concept.
After generating individuals, the control routines per-
form a feasibility check (Section 5). Having ensured
the feasibility, the graph-based representations of the
individuals are mapped to FEMs. The finite element

436 M. Sauter et al.

Table 3 Inverter optimization; best individuals consisting of three beams

Beam type Fixed nodes Moving nodes

Best work (mJ) (%) Vol. fraction Best work (mJ) (%) Vol. fraction

Straight uniform beam 0.0041 100.0 0.131 0.0047 100.0 0.123
Straight, variable thickness beam 0.0050 122.0 0.299 0.0058 124.6 0.299
Curved, variable thickness beam 0.0056 135.8 0.299 0.0058 124.6 0.299

computation, which is done by our in-house developed
tool, FELyX, allowing for fast mapping and evaluation,
gives the structural information like the deformation or
the mass back. Depending on these data, the fitness of
the individuals is evaluated.

Any complex fitness function composed of weighted
objective, constraints, and/or target value optimization
is utilized for determination of the fitness of each
individual.

7 Numerical examples

We validate the here presented approach, for finding
compliant mechanism designs, by applying it to the clas-
sical inverter and the parallel gripper problems. First,
the classical inverter problem setup is described. Three
levels of beam complexity are considered, namely

a) Straight beam with constant thickness,
b) Straight beam with variably distributed thickness,

and
c) Curved beam with variably distributed thickness

and each of them is combined with two levels of opti-
mization problem complexity, namely

1) Topology problem with fixed nodes and
2) Topology problem with moving nodes.

We receive a total of six different optimization setups.
Each of them, we performed 30 times, and from the 30
optimization, the 15 bests are taken, and the averages of
their results are computed, to eliminate outliers. Initial
populations were set by random. As stop criteria, the
number of generations (nnoimprovement = 5,000) with no
improvement and the maximal number of generations
(nmax = 200,000) are defined. The influence of springs
placed at input and output points is also investigated.

7.1 Setup of the inverter optimization

The setup of the evolutionary optimization is shown
in Fig. 8.

Domain: The optimization domain is represented by a
square area. The problem is geometrically symmetric,
which reduces the design domain � by a half.

Boundary: The displacements and the rotation of the
node in the upper left corner are blocked. Nodes on
the the symmetric line can only move in the x-direction,
and their rotations are suppressed, too.

Springs: At the input and output port, a predefined set
of springs is added.

Actuation: The actuation is provided by a constantly
applied force F.

Objective: The inverter problem has been solved by
Bendsoe and Sigmund (2003) using a different method
before (see Section 1). The homogenization method
uses an indirect way for maximizing the output work.
It depends on the mutual energy approach, which is a
combination of the results of a dummy load case and
the real load case, which allows generating derivatives
for each cell. As our algorithm is independent of any
gradient, we directly optimize the output work of the
inverter.

Our objective is to maximize the work in the negative
x-direction, i.e., to minimize the value of wout given by:

wout = sign(u)
uk1u

2 , (5)

where u is the displacement and k1 the spring constant
at the output.

Moreover, the structure must fulfill the constraint
of maximum volume fraction of 30%. Greater vol-
ume fractions are penalized. The volume fraction v is

Table 4 Inverter optimization; best and average of the 15 best individuals using fixed nodes

Fixed nodes Best Average

Beam type Work (mJ) (%) Vol. fraction Work (mJ) (%) Std dev (%) Vol. fraction

Straight uniform beam 0.0044 100.0 0.232 0.0043 100.0 1.9 0.248
Straight, variable thickness beam 0.0051 116.2 0.299 0.0050 116.0 0.6 0.299
Curved, variable thickness beam 0.0056 128.4 0.299 0.0055 127.1 1.8 0.299

Complex-shaped beam element and graph-based optimization of compliant mechanisms 437

Table 5 Inverter optimization; best and average of the 15 best individuals using moving nodes

Moving nodes Best Average

Beam type Work (mJ) (%) Vol. fraction Work (mJ) (%) Std dev (%) Vol. fraction

Straight uniform beam 0.0051 100.0 0.298 0.0050 100.0 1.8 0.297
Straight, variable thickness beam 0.0059 116.0 0.299 0.0058 116.6 0.5 0.299
Curved, variable thickness beam 0.0059 116.4 0.299 0.0059 117.0 0.8 0.299

defined as the ratio of the area covered by the beams
Ai over the area of the domain A�.

v =

n∑
i=1

Ai

A�

(6)

Fitness function: All objective and constraint values
computed during optimization are mapped to an ad-
dend Di of the fitness function. The fitness function is
defined as a weighted sum:

S = ∑
i wi Di (7)

where Di represents the rating of an objective value
or a specified constraint and wi is the corresponding
weight.

Mapping of the objectives values: The mapping, devel-
oped by Koenig (2004) as part of his Ph.D. work, is
shortly summarized here because it cannot be found
in the open literature. The basic idea was to introduce
mapping functions, which are scaled to the interval
[0,1], to avoid that one of these terms becomes much
larger than the other ones and therefore dominant.

We distinguish between objective and constraint
mapping functions. The first one is a measure of the ob-
jective of the design optimization problem. The second
ones penalize violated constraints.

In case of the present problem, the design objective
mapping function is defined as:

Di(wout) = (awout + b)α (8)

where wout is the objective, the choice of the exponen-
tial factor α = 5 is based on experience, and a and b are
scaling factors defined by conditions:

Di(wout = wout−init) = 1

Di(wout = wout−estim) = 0.1 (9)

wout−init represents an estimated initial value of the
design objective and wout−estim is the estimated goal
value that can be achieved in the optimization. Figure 9

shows the mapping of the objective/constraint value to
fitness values Di.

The constraint mapping function is defined as:

Di(v) = 1

1 + exp(−λ(v − vlimit −))
(10)

where v is the volume fraction, which has to fulfill our
constraint vlimit, λ and 	 are scaling factors defined by
conditions:

Di(v = vlimit) = 0.01

Di(v = vlimit + vfeas−tol) = 0.5 (11)

a
symmetric

b
symmetric

c
symmetric

F u

F u

F u

Fig. 10 Best solution employing three beams for fixed nodes;
a conventional, b variable thickness, c curved, variable thickness

438 M. Sauter et al.

a
symmetric

b
symmetric

c
symmetric

F u

F u

F u

Fig. 11 Best solution employing three beams for moving nodes;
a conventional, b variable thickness, c curved, variable thickness

where vlimit is the limited volume fraction and vfeas−tol

is a tolerance value that allows to define the steepness
of the constraining function near vlimit (Fig. 9).

Evaluation: Only small displacements are allowed, and
linear analysis is carried out.

7.2 Results of the genetic optimization

Although the optimization setup is simple, the opti-
mization itself is not as simple as maybe expected, as
the solution of the evolutionary optimization tends in
the first few steps to minimization of the compliance
[see (5)]. Generally, in a later step, the compliant
mechanism is established. Tables 3, 4, and 5 summarize
the results of this study.

As mentioned at the beginning, we intended to si-
multaneously increase the functionality and minimize
the number of elements. First, the best solutions em-
ploying three elements are considered. Three is the

minimal number of beams that can describe a semi-
symmetric inverter.

Figure 10 displays the best results, whereas nodes
have been uniformly distributed within the domain.
As expected, the performance improves by 22.0% us-
ing straight, variable thickness beams, by 35.8% using
curved, variable thickness beams over that of achieved
by straight conventional beams and fixed nodes config-
uration (see Table 3). The variable thickness distribu-
tion exerts an even greater influence than the moving
nodes in this configuration. Using linear computation
methods, the curved centerlines improve the results
only if fixed nodes are specified. It is assumed that they
partially compensate the geometrical limitation caused
by the fixation of the nodes (see Fig. 10c).

Generally, the volume fraction of the conventional
beam solution is even much lower than the allowed
maximum amount of material. The two effects, namely,
that less material increases the flexibility and more
material decreases the loss of elastic energy, work

a
symmetric

b
symmetric

c
symmetric

F u

F u

F u

Fig. 12 Best solution using moving nodes; a conventional,
b variable thickness, c curved, variable thickness

Complex-shaped beam element and graph-based optimization of compliant mechanisms 439

a
symmetric

b
symmetric

c
symmetric

F u

F u

F u

Fig. 13 Solution dependent on spring factor; a f = 0.01, b f = 1,
c f = 10

here stronger against each other. By contrast, all so-
lutions using a variable thickness distribution tend
to exploit the maximum non-penalized amount of
material (see Fig. 11).

The results employing more then three beams
confirm the outcomes of the previous configuration
(Tables 4 and 5), although the improvements are
smaller. The average work increases by 16.0 and 27.1%
using a complex-shaped beam and fixed nodes, respec-
tively. Employing moving nodes, the increases are 16.6
and 17.0% over that of the straight conventional beam,
respectively.

The fact that the cubic thickness function approach is
not optimal is shown by Fig. 12c. The evolutionary al-
gorithms have generated quasi “bubble” beams, which
seem to be the best compromise between an elastic
hinge at one end and a very stiff section at the other end
using as little material as possible. The observed funny
shapes are due to the limited solution space of the cubic
polynomial thickness parametrization.

7.3 Influence of the springs on the results

Springs are used to influence the resistance of the struc-
ture. The geometry as well as the sizing depends on
the springs. Stiffer springs lead to stiffer mechanisms.
Figure 13 illustrates the dependence.

The initial set of spring constants is multiplied by the
spring factor f , knew_i = f ki, to achieve a new set of
spring constants.

According to Rahmatalla and Swan (2005), the de-
vice stiffness near the input/output tends to mimic the
stiffness of the spring k0/k1. This can be partially ex-
plained by considering the energy/work equation:

Win = Wspring
in + Wtransmitted

in (12)

where Wspring
in is the energy stored in the input spring

and Wtransmitted
in the energy transferred to the mecha-

nism. Wtransmitted
in can be divided into:

Wtransmitted
in = Wout + Wstored

mechanism, (13)

a
symmetric

b
symmetric

c
symmetric

F u

F u

F u

Fig. 14 Solution dependent on spring ratio; a kin/kout 1 : 8,
b 1 : 1, c 8 : 1

440 M. Sauter et al.

Fig. 15 Gripper optimization
setup

u
1

u
2symmetric

Ω

k
1

k
1

k
0

k
0

2F

where Wout is equal the energy stored Wspring
out in the

output spring. Wstored
mechanism is the energy stored in the

compliant mechanism.
If we want to maximize the output work, we have

to maximize first the energy Wtransmitted
in transmitted to

the mechanism and then minimize the energy stored
Wstored

mechanism in the mechanism.
Rahmatalla and Swan’s (2005) explanation is that the

device stiffness near the input tends to k0 by using an
analogy of two springs in parallel, whereas one spring
represents the added spring and the other the stiffness
of the structure near the input. Assuming that the
added spring has a spring constant ks and the structure
stiffness is represented by the spring constant αks, the
work Wtransmitted

in of the spring in parallel is maximized
if α = 1:

Wtransmitted
in = α

2ks

(
F

1 + α

)2

, (14)

where F is the constant applied force.
Not only the stiffness itself or the sizing can influence

the solution of the structure, but also the geometry of
the inverter depends on the spring constants. The ratio
of the magnitude of the spring constants defines the
optimal x-coordinate of the node connected by three
elements. If the ratio is one, the optimal x-coordinate
is in the middle of the input and output. If one spring
is stiffer than the other, the node moves toward the
weaker spring (see Fig. 14).

Fig. 16 Gripper optimization
using conventional beams

u
1

u
2

2F

Fig. 17 Gripper optimization
using curved beams with a
quadratic thickness function

u
1

u
2

2F

7.4 Result of parallel gripper optimization

A second compliant mechanism optimization problem,
the parallel gripper, is added. As the optimization setup
is very similar to the inverter problem, the detailed de-
scription of the optimization setup becomes redundant.

The major differences lie in the prescription of the
straight beam at the output (see Fig. 15) and in the
fitness function. Of the energies of the output springs
1 and 2, we maximize the double of the lower value.

For the fitness function, we use the negative of it and
minimize the value wout given by:

wout = sign(v)vk1v, (15)

where k1 the spring constant at the output and v =
max(v1, v2).

The energy in the system is limited, and first, the
optimization maximizes the transmitted energy.

wtransmitted = wout_1 + wout_2 , (16)

where wtransmitted is the energy transmitted to the out-
put, wout_1 the output energy at the first spring, and
wout_2 the output energy at the second spring.

As the lower output energy at either the first or
second spring is maximized and the algorithm seeks to
exploit the whole amount of transmitted energy, opti-
mization leads to a result where the output energy at
both springs are the same and where parallel deflections
are achieved. The computed deflections of the grippers

Fig. 18 Gripper optimization
using curved beams with a
cubic thickness function

u
1

u
2

2F

Complex-shaped beam element and graph-based optimization of compliant mechanisms 441

Table 6 Gripper optimization; best and average of the 15 best individuals

Moving nodes Best Average

Beam type Work (mJ) (%) Vol. fraction Work (mJ) (%) Std dev (%) Vol. fraction

Straight uniform beam 0.0159 100.0 0.249 0.0157 100.0 0.4 0.249
Curved beam with quadratic 0.0171 107.8 0.249 0.0164 104.2 4.1 0.245

thickness function
Curved beam with cubic 0.0173 108.9 0.249 0.0170 108.1 0.9 0.249

thickness function

shown in Figs. 16, 17, and 18 differ by less than 0.002%
at the output.

Three different configurations using moving nodes
were optimized:

a) Using conventional, straight beams
b) Using curved beam with a quadratic thickness

function
c) Using curved beam with a cubic thickness function

The results are displayed in Table 6.
The average improvement of using a complex-

shaped beam for the parallel gripper is less than for
the inverter problem; 4.1% for the curved, quadratic
thickness function beam, and 8.1% for the curved, cubic
thickness function beam approach in comparison to the
straight beam optimization.

The lower efficiency increase in case of the parallel
gripper compared to the inverter problems can be ex-
plained by the fact that the demand for compliant and
stiff zones within one beam element is less strong.

Nevertheless, the geometries found by solving the
curved, variable thickness beam gripper problem are
very close to manufacturable designs, which can be
regarded as an additional efficiency increase.

8 Conclusion and outlook

In this paper, a method for the automated design
of compliant mechanisms has been presented. This
method is based on evolutionary algorithms and is com-
bining a complex-shaped beam element formulation
and a graph theory-based parameter representation.
We find several points of advantage. The complex-
shaped beam element with thickness variation and
curved centerline gives more design freedom than the
straight beams, which are conventionally used. The
graph theory-based topology representation greatly in-
creases the process efficiency because of its inherent
simplicity and its ability to quickly identify feasible
solutions. The methodology has been validated on
classical inverter and gripper problems.

The variation of the curvature does not seem to
significantly improve design solutions. We speculate
that curved centerlines may play a more significant
role when mapping large displacements with nonlinear
modeling. Shape solutions suggest that the finding of
even more suitable shape parametrizations remains to
be of interest. Furthermore, our future work will con-
sider mechanical constraints stemming from strength,
stiffness, and stability requirements.

References

Akhtar S, Tai K, Prasad J (2002) Topology optimization of com-
pliant mechanisms using evolutionary algorithm with design
geometry encoded as a graph. In: Computers and Informa-
tion in Engineering, DECT, ASME

Ananthasuresh G, Kota S (1995) Designing compliant mecha-
nisms. ASME Mech Eng 117:93–96

Bendsoe M, Kikuchi N (1988) Generating optimal topologies in
structural design using a homogenization method. Comput
Methods Appl Mech Eng 71:197–224

Bendsoe M, Sigmund O (2003) Topology optimization. Springer
Castigliano (1875) Nuova theria intorno dell’ equilibrio dei

sistemi elastici. Atti Acc. Sci
Frecker M, Kota S, Kikuchi N (1998) Optimal design of com-

pliant mechanisms for smart structures applications. In:
Mathematics and Control in Smart Structures, vol 3323,
SPIE, pp 234–242

Giger M, Ermanni P (2006) Evolutionary truss topology op-
timization using a graph-based parameterization concept.
Struct Multidisc Optim 32:313–326

Goldberg D (1989) Genetic Algorithms in search, optimzation
and machine learning. Addison-Wesley

Howell L (2001) Compliant mechanisms. Wiley, ISBN 0-471-
38478-X

Joo J, Kota S (2004) Topological synthesis of compliant mech-
anisms using nonlinear beam elements. Mech Based Des
Struct Mach 32(1):17–38

Joo J, Kota S, Kikuchi N (2000) Topological synthesis of com-
pliant mechanisms using linear beam elements. Mech Struct
and Mach 28(4):245–280

Koenig O (2004) Evolutionary design optimization. PhD thesis,
ETH Zurich

Kota S, Joo J, Li Z, Rodgers S, Sniegowski J (2001) Design
of compliant mechanisms: applications to mems. Analog
Integr Circuits Signal Process 29:7–15

Kress G, Sauter M, Ermanni P (2006) Complex-shaped beam
finite element. Finite Elem Anal Des 43:112–126

Lobontiu N, Garcia E (2003) Analytical model of displace-
ment amplification and stiffness optimization for a class

442 M. Sauter et al.

of flexure-based compliant mechanisms. Comput Struct
81:2797–2810

Lu KJ, Kota S (2002) Compliant mechanism synthesis for shape-
change applications: preliminary results. In: Rao V (ed) Sig-
nal processing and control, vol 4693, SPIE, pp 161–172

Lu KJ, Kota S (2003) Synthesis of shape morphing compliant
mechanisms using a load path representation method. In:
Smith R (ed) Signal processing, and control, vol 5049, SPIE,
pp 337–348

Nishiwaki S, Frecker M, Min S, Kikuchi N (1998) Topology op-
timization of compliant mechanisms using the homogeniza-
tion method. Int J Numer Meth Eng 42:535–559

Parsons R, Canfield S (2002) Developing genetic programming
techniques for the design of compliant mechanisms. Struct
Multidisc Optim 24:78–86

Rahmatalla S, Swan C (2005) Sparse monolithic compliant mech-
anisms using continuum structural topology optimization.
Int J Numer Meth Eng 62:1575–1605

Saxena A (2005) Synthesis of compliant mechanisms for path
generation using genetic algorithm. ASME J Mech Des
127:745–752

Saxena A, Ananthasuresh G (2000) On a optimal prop-
erty of compliant mechanism. Struct Multidisc Optim 19:
36–49

Siek J, Lee L, Lumsdaine A (2002) The boost graph library, C++
in-depth series. Addison-Wesley

Sigmund O (2001) A 99 line topology optimization code written
in matlab. Struct Multidisc Optim 21:120–127

Suzuki K, Kikuchi N (1991) A homogenization method for shape
and topology optimization. Comput Methods Appl Mech
Eng 93:291–318

West D (2001) Introduction to graph theory. Prentice Hall
Yin L, Ananthasuresh G (2001) Topology optimization of com-

pliant mechanisms with multiple materials using a peak
function material interpolation scheme. Struct Multidisc
Optim 23:49–62

Yin L, Ananthasuresh G (2003) Design of distributed com-
pliant mechanisms. Mech Based Des Struct Mach 31(2):
151–179

Zhou H, Ting KL (2005) Topological synthesis of compliant
mechanisms using spanning tree theory. ASME J Mech Des
127:753–759

	Complex-shaped beam element and graph-based optimization of compliant mechanisms
	Abstract
	Introduction
	Curved, variable thickness beam
	Parametrization

	The graph genotype
	Graph topology representation
	The universal gene concept

	Genetic graph operators
	Control routines
	Implementation
	Numerical examples
	Setup of the inverter optimization
	Results of the genetic optimization
	Influence of the springs on the results
	Result of parallel gripper optimization

	Conclusion and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

