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Abstract We give a framework for the globalization of a nonsmooth Newton
method. In part one we start with recalling B. Kummer’s approach to convergence
analysis of a nonsmooth Newton method and state his results for local convergence.
In part two we give a globalized version of this method. Our approach uses a path
search idea to control the descent. After elaborating the single steps, we analyze and
prove the global convergence resp. the local superlinear or quadratic convergence of
the algorithm. In the third part we illustrate the method for nonlinear complementarity
problems.
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1 Introduction

The local convergence analysis of Newton’s method is highly developed both in gen-
eral and specific framework. We prefer the approach first proposed and analyzed by
B. Kummer (see e.g. Kummer 1988, 1992, 2000) for the following reason. He states
two conditions for an approximation Gh of local Lipschitz function h between normed
vector spaces X and Y (abbreviated h ∈ C0,1(X, Y)), which are sufficient for local
(superlinear) convergence. So this method can be applied with any kind of generalized
derivative Gh. We give the details in Sect. 1.1. For further information on nonsmooth
Newton methods we refer e.g. (Pang 1990, 1991; De Luca et al. 1996, 2000; Qi et al.
1993; Facchinei and Pang 2003; Fischer 1997; Griewank 1987; Klatte and Kummer
2002; Kojima and Shindoh 1987; Outrata et al. 1998).
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236 S. Bütikofer

Locally convergent methods require a starting iterate to be close to the unknown
zero of the function h. In order to deal with the situation, where a good starting iterate
is not available, we have to introduce globally convergent methods that allow starting
iterates far from zero of h. Up to now there are basically three techniques namely
path search methods, line search methods and trust region methods (see Facchinei and
Pang 2003 for an detailed treatment).

After restating Kummer’s approach in Sect. 1.1, we introduce our globalized algo-
rithm in Sect. 2.1. We consider a path search idea. It seems to us natural to work with
a (possible) nonlinear path, when using (possible) nonlinear approximations Gh of h.
We want to stress at this place that we are not so much interested in the feasibility of
the algorithm but rather in the kind of limit points we get, when the algorithm does
not stop premature.

Premature termination is discussed in Sect. 2.2. We show there that the algorithm
either stops in a stationary point or when the path does not direct along a descent
direction of the merit function. In Sect. 2.3 we state a global convergence theorem under
the assumption of feasibility of the algorithm. The transition to fast local convergence
e.g. the acceptance of the full path length is discussed in Sect. 2.4. We illustrate and
explain the application of the algorithm to complementarity problems in Sect. 3. In the
last Sect. 4 we compare our method to other known path and line search approaches.

1.1 Newton’s method

Following Kummer, a local Newton method to find a zero x∗ of a nonsmooth equation

h(x) = 0

can be given in an abstract framework: given two normed spaces X, Y and h(x) a
local Lipschitz function with rank L in a neighborhood of a zero x∗ ∈ X of h, one
considers some multifunction

Gh : X × X ⇒ Y,

which satisfies at least the following conditions

∅ �= Gh(x, u) and Gh(x, 0) = {0} ∀ x ∈ X, ∀ u ∈ X. (1)

Given an iterate xk , one has to find u ∈ X such that

∅ �= α‖h(xk)‖B ∩ [h(xk)+ Gh(xk, u)], put xk+1 := xk + u, (2)

B is the closed unit ball in X , α ≥ 0 is an accuracy parameter. Gh(x, u) plays the
role of a multivalued generalized (directional) derivative. A linear ansatz is given if
Gh(x, u) is the image of a set of linear operators, but a nonlinear ansatz is possible
too (see Chap. 10 in Klatte and Kummer 2002). Examples for Gh(x, u) considered
in the literature are amongst others the Contingent derivative, the Thibault derivative,
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Globalizing a nonsmooth Newton method 237

the (normal) directional derivative, the Clarke subdifferential or selections out of them
(see again Klatte and Kummer 2002; Rockafellar and Wets 1998).

Definition 1 (Klatte and Kummer 2002, Chap. 10) Let h be in C0,1(X, Y ), x∗ a zero
of h and Gh a multifunction, which fulfils (1). We call the triple (h, Gh, x∗) feasible
if, for each ε ∈ (0, 1), there are positive r and α such that, whenever ‖x0 − x∗‖ ≤ r ,
process (2) has solutions and generates iterates satisfying

‖xk+1 − x∗‖ ≤ ε‖xk − x∗‖.

In Klatte and Kummer (2002) conditions are given such that superlinear local
convergence is ensured. Two types of conditions are essential, namely an injectivity
condition (CI) for Gh,

‖v‖ ≥ c‖u‖ ∀ v ∈ Gh(x, u),∀ u ∈ X,∀ x ∈ x∗ + δB, (c > 0, δ > 0 fixed) (CI)

and an approximation condition (CA) for h,

h(x)−h(x∗)+Gh(x, u) ⊂ Gh(x, x+u−x∗)+o(x−x∗)B, ∀u ∈ X,∀ x ∈ x∗+δB,

(CA)
where o(x − x∗)/‖x − x∗‖ → 0 as ‖x − x∗‖ → 0.

Note that (CA) is automatically satisfied if h ∈ C1 and Gh(x, u) = Dh(x)u, but
is an essentially restriction in the nonsmooth case, see Example BE.1 in Klatte and
Kummer (2002). The existence of an exact (α = 0) solution xk+1 of (2) is evident
if a linear ansatz is given and X, Y are finite dimensional, the injectivity condition
(CI) then ensures regularity of all linear operators in Gh(x, u). We quote the main
convergence theorem because we will need it in Sect. 2.4.

Theorem 1 (Local convergence I) (Klatte and Kummer 2002, Theorem 10.7) Let h
be in C0,1(X, Y ) and Gh a multifunction, which fulfils (1).

(i) The triple (h, Gh, x∗) is feasible if there exists c > 0, δ > 0 and a function o(·)
such that, for all x ∈ x∗ + δB, the conditions (CA) and (CI) are satisfied.

Moreover, having (CA) and (CI), let

ε ∈ (0, 1), α ∈ (0, 1
2 cεL−1], and let r ∈ (0, δ] be small

enough such that o(x − x∗) ≤ 1
2 c‖x − x∗‖, ∀ x ∈ x∗ + rB.

Under this condition, the convergence can be quantified as follows:

(ii) If r even satisfies

o(x − x∗) ≤ 1

2
αc‖x − x∗‖ ∀ x ∈ x∗ + rB. (3)

then ε, α and r fulfil the requirements in the definition of feasibility. In particular
(2) remains solvable if ‖x0 − x∗‖ ≤ r .
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238 S. Bütikofer

(iii) If there exists a solution u of (2) for every xk ∈ x∗ + rB, then

‖xk+1 − x∗‖ ≤ 1

2
(1+ ε)‖xk − x∗‖, provided that ‖x0 − x∗‖ ≤ r.

So (3) and ‖xk+1 − x∗‖ ≤ ε‖xk − x∗‖ hold for large k.
(iv) If all xk+1 are exact solutions of (2), then they fulfil

c‖xk+1 − x∗‖ ≤ o(xk − x∗) wi th o(·) f rom (C A) i f ‖x0 − x∗‖ ≤ r.

Corollary 1 (Local quadratic convergence) Assume the settings of Theorem 1(iv). If
additionally o(x − x∗) ≤ q‖x − x∗‖2, q > 0, holds for all x with ‖x − x∗‖ ≤ r1,
r1 > 0, we get

‖xk+1 − x∗‖ ≤ c−1q‖xk − x∗‖2 i f ‖x0 − x∗‖ ≤ min{r, r1}.

Proof It is a direct implication from Theorem 1 (iv) and the stronger condition on the
function o(·). �

2 A path search algorithm

It is the task of this article to find a suitable globalization of this local method by
applying and extending approaches to global Newton methods for complementarity
problems, finite-dimensional variational inequalities or generalized equations. In our
opinion a path search method is particularly suitable here (see the comments in the
introduction and in Sect. 4). For other approaches with the help of path search see e.g.
Facchinei and Pang (2003) and Ralph (1994).

2.1 The algorithm

Consider a path search algorithm in the spirit of the local method (2) as follows. Let
x0 ∈ X , γ ∈ (0, 1), σ ∈ (0, 1) and M ∈ N0 be given:

Step 1 Set k = 0.

Step 2 If h(xk) = 0 stop.

Step 3 Construct a path pk(τ ) : [0, τ̄k] → X with τ̄k ∈ (0, 1], so that

pk(0) = xk, pk is continuous on [0, τ̄k], pk ∈ C0,1([0, τ̄k), X) and

∅ �= (h(xk)+ Gh(xk, pk(τ )− xk)) ∩ (1− τ)‖h(xk)‖ · B, ∀τ ∈ [0, τ̄k]
(*)

Find the smallest nonnegative integer ik , so that with i = ik

‖h(pk(σ
i τ̄k))‖ ≤ (1− γ σ i τ̄k) · max

0≤ j≤m(k)
‖h(xk− j )‖ (**)
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Globalizing a nonsmooth Newton method 239

holds, where m(k) is an integer satisfying

m(0) = 0 and 0 ≤ m(k) ≤ min[m(k − 1)+ 1, M], for k ≥ 1. (4)

Step 4 Find jk ∈ {0, ..., ik} so that

‖h(pk(σ
jk τ̄k))‖ = min

0≤ j≤ik
‖h(pk(σ

j τ̄k))‖.

Set τk = σ jk τ̄k, xk+1 = pk(τk) and k ← k + 1, go to Step 2.

Let us shortly discuss the single steps.
If the algorithm stops in step 2, one has already found a zero of h. In step 3 one can

stop, if the construction of the path pk is not possible. In this case, it can be shown
(see Sect. 2.2) that we are in a stationary point of the merit function Θ(x) = ‖h(x)‖
(for stationarity see Definition 4). The Armijo stepsize in step 3 is necessary because
one cannot guarantee a descent on the whole path, when xk is far away from a zero.
We integrated a nonmonotone descent condition, which includes the monotone case
by setting M = 0. From a theoretical point of view, one cannot prove stronger conver-
gence results, than in the monotone case. But numerical tests show that nonmonotone
rules are robust and efficient (Facchinei and Pang 2003; Grippo et al. 1986; Pang et al.
1991; Sun et al. 2002).

2.2 Auxiliary results

In this section we are interested in the question of premature termination of the path
search algorithm. Looking at step 3, there are two main questions. Is there a path,
which fulfils the intersection (*) and can we descent along this path and fulfil the
Armijo-descent condition (**) ?
For the further discussion we have to introduce a new term.

Definition 2 Let h be in C0,1(X, Y ), x ∈ X and Gh : X × X ⇒ Y a multifunction,
which fulfils (1). Gh is called positive homogeneous in x , if

Gh(x, λu) = λGh(x, u), ∀λ ≥ 0 (5)

holds for all u ∈ X .

The next proposition shows us, when we are able to construct a path, which fulfils
the intersection (*) of step 3 of the algorithm.

Proposition 1 (Existence of a path) Let h be in C0,1(X, Y ) and be x ∈ X fixed with
h(x) �= 0. Assume as well that the multifunction Gh is positive homogeneous in x.

If there is a u ∈ X and a τ ∈ (0, 1] with

(h(x)+ Gh(x, u − x)) ∩ (1− τ)‖h(x)‖ · B �= ∅, (6)

then there exists a path p(τ ) : [0, τ ] → X, which fulfils the conditions (*) from the
algorithm’s step 3.
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240 S. Bütikofer

Proof Consider the function F : (−∞, 1] → R defined by

F(s) = ‖h(x)+ sv‖,

where v ∈ Gh(x, u − x)) fulfils the intersection (6).
The function F has the following properties:

– F(1) = (1− τ)‖h(x)‖, F(0) = ‖h(x)‖
– F is convex on (−∞, 1].
– F is continuous on (−∞, 1].
Let us define smin by

smin = min
s∈(−∞,1]{s | F(s) = (1− τ)‖h(x)‖}

(see example (ii) at the end of the Sect. 2.2).
F |(−∞,smin] is injective, otherwise there would be s1, s2 ∈ (−∞, smin]with F(s1) =

F(s2) and s1 �= s2 and hence s3 ∈ (s1, s2), which minimizes F on [s1, s2]. Then s3
minimizes F on (−∞, smin], which gives a contradiction to the definition of smin.

Therefore F−1 : [ ‖(1 − τ)h(x)‖,+∞ ) → (−∞, smin] exists and is continuous
on [ ‖(1− τ)h(x)‖,+∞ ).

F−1 is even a local Lipschitz function on (‖(1 − τ)h(x)‖, ‖h(x)‖]. This follows
from a inverse function Theorem Clarke (1983), since 0 �∈ ∂ F(s), ∀s ∈ (−∞, smin),
where ∂ F(s) denotes the convex subdifferential . Otherwise there would be a contra-
diction to the definition of smin like above.

Now we can define a continuous function s(τ ) : [0, τ ] → [0, smin] by

s(τ ) = F−1((1− τ)‖h(x)‖), and it holds s ∈ C0,1([0, τ ), R).

The desired continuous path on [0, τ ] is

p(τ ) = s(τ )(u − x)+ x, with p(τ ) ∈ C0,1([0, τ ), X).

It holds

‖h(x)+ s(τ )v‖ = (1− τ)‖h(x)‖, ∀τ ∈ [0, τ ] and s(τ )v ∈ Gh(x, p(τ )− x)

by construction of s(τ ) and the positive homogeneity of the multifunction Gh(x, ·).
�

Corollary 2 (Extension of the path) Assume the settings of Proposition 1. The path
p(τ ) : [0, τ ] → X constructed there can be extended, i.e there exists a τ ′ in [τ , 1]
and a path p1(τ ) : [0, τ ′] → X, which fulfils the conditions (*) from the algorithm’s
step 3. The paths p1(τ ) and p(τ ) coincide on [0, τ ].
Proof Consider again the function F(s) : R→ R with

F(s) = ‖h(x)+ sv‖,
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Globalizing a nonsmooth Newton method 241

but this time defined on R. F is still a convex function on R. We distinguish two cases:

1. F(s) attains the global minimum on R.
We get an interval [s, s] of global minimizers, where smin ≤ s ≤ s ≤ ∞ and smin
is defined as in the proof of Proposition 1.
We can use s to calculate the maximal path length τmax

F(s) = (1− τmax)‖h(x)‖ ⇐⇒ τmax = F(s)− ‖h(x)‖
−‖h(x)‖

By the same arguments as in Proposition 1, we conclude that the path p(τ ) con-
structed there can be extended to a path p1(τ ) defined on an interval [0, τ ′] with
any τ ′ ∈ [τ , τmax].

2. F(s) does not attain the global minimum on R.
In this case we conclude in the same way as in Proposition 1 the existence of a
path p1(τ ) defined on [0, τ ′] with a τ ′ ∈ (τ , 1). �

In the examples at the end of the section we calculate a path for a norm induced
by a scalar product. We have an example there too that shows that it was necessary to
work with smin in the proof of Proposition 1.

It is clear that in the absence of convexity, we have to take a closer look at some
kind of “stationary” points. For a comprehensible notation, we will denote in the rest
of the article the norm function by n(x) = ‖x‖.
In this article we work with the following stationarity term.

Definition 3 (Approximation of the merit function Θ(x)) Let h be in C0,1(X, Y )

and let the multifunction Gh : X × X ⇒ Y fulfil (1). Then we define the function
SΘ : X × X ⇒ R by

SΘ(x, u) =
⋃

v∈Gh(x,u)

n′(h(x); v), ∀ u ∈ X,

where n′(h(x); v) denotes the (standard) directional derivative of n(y) = ‖y‖ at the
point y = h(x) in direction v.

Definition 4 (S-stationarity) A point x is called S-stationary for the merit function
Θ , if

SΘ(x, u) ≥ 0, ∀ u ∈ X

holds, where SΘ is the multifunction from Definition 3.

So far we did not claim any quality property of the approximation Gh of h. We did
not want to introduce a general approximation condition for Gh but rather introduce
them at the suited place, i.e. when they are needed for the proofs.

Anyhow we want to discuss shortly an approximation condition, which has a kind
of minimal quality. It is met by many generalized derivatives addressed in the literature
and by the ones we want to use. We will see below that it holds also for SΘ .

123



242 S. Bütikofer

Definition 5 Let h be in C0,1(X, Y ), x ∈ X and Gh : X × X ⇒ Y a multifunction,
which fulfils (1). The multifunction Gh fulfils a (weak approximation) condition (N A)

in x for h, if

h(x + u)− h(x) ⊆ Gh(x, u)+ o(u) · B, ∀ u ∈ X (NA)

holds.

It is well known that “chain rules” do not hold in general for generalized derivatives
(see e.g. Fusek 1994; Klatte and Kummer 2002). In the light of the conditions (CA)
and (CI) we can show that the full composition of the generalized derivatives (as in
Definition 3) still fulfils the two conditions (unpublished until now).

The next lemma and the following corollary show that for the multifunction SΘ

the (weak approximation) condition (NA) still holds, if (NA) holds for h.

Lemma 1 (Conservation of the condition (NA) under composition) Let g be in C0,1

(Y, Z), h in C0,1(X, Y ) and x ∈ X. Assume that the multifunction Gh : X × X ⇒ Y
resp. the multifunction Gg : Y × Y ⇒ Z fulfils the condition (NA) in x ∈ X for h
resp. in h(x) ∈ Y for g.

Then the multifunction G f : X × X ⇒ Z defined by

G f (x, u) =
⋃

v∈Gh(x,u)

Gg(h(x), v), ∀ u ∈ X

fulfils the condition (NA) in x for f = g◦h, if the multifunction Gg(h(x), ·) is Lipschitz,
i.e. for every pair u1, u2 in X and every point v1 ∈ Gg(h(x), u1) there exists a point
v2 in Gg(h(x), u2) and a constant L with

‖v1 − v2‖ ≤ L‖u1 − u2‖.

Proof The proof is similar to the proof of the chain rule for differentiable functions.
We start with

f (x + u)− f (x) = g(h(x + u))− g(h(x))

⊆ Gg(h(x), h(x + u)− h(x))+ og(h(x + u)− h(x))t

= Gg(h(x), v + oh(u)s)+ og(h(x + u)− h(x))t,

where v ∈ Gh(x, u), s ∈ BY and t ∈ BZ are suitable chosen. Therefore we find
w ∈ Gg(h(x), v + oh(u)s) so that we can write

f (x + u)− f (x) = w + og(h(x + u)− h(x))t

= z + (w − z)+ og(h(x + u)− h(x))t

with z ∈ Gg(h(x), v) and by the Lipschitz property of Gg(h(x), ·), we can find z with

‖z − w‖ ≤ L‖v − (v + oh(u)s)‖ = Loh(u).

123



Globalizing a nonsmooth Newton method 243

It remains to show that

lim‖u‖→0

og(h(x + u)− h(x))

‖u‖ = lim‖u‖→0

⎛

⎝
og(h(x+u)−h(x))

‖h(x+u)−h(x)‖
‖u‖

‖h(x+u)−h(x)‖

⎞

⎠ = 0

holds.
But this is true because of the Lipschitz property of h(x) and the definition of og . �

Corollary 3 (The condition NA for SΘ) Let h be in C0,1(X, Y ) and the multifunction
Gh fulfils the condition (NA) in x for h.

Then the multifunction SΘ from Definition 3 fulfils the condition (NA) in x for Θ .

Proof The assertion follows easily from Lemma 1 and the properties of the norm
function n(x). �
It is now easy to see that the upper Dini derivative of Θ(x)

Θ D(x; u) = lim sup
t↓0

Θ(x + tu)−Θ(x)

t

lies in SΘ(x; u), if (NA) and positive homogeneity hold in x ∈ X for Gh and the set
Gh(x, u) is closed. Therefore every S-stationary point x is also a Dini stationary point
(Facchinei and Pang 2003) and so in this spirit we did not invent “new” stationary
points.

After this short insert about approximation and stationarity of the merit function
Θ(x) we return to the question of premature termination. The next Proposition gives
another confirmation that it was reasonable to work with SΘ and S-stationarity.

Proposition 2 (S-stationarity) Let x ∈ X be fixed and h be in C0,1(X, Y ) and let the
multifunction Gh be positive homogeneous.

Then there is no path p(τ ), which fulfils the conditions (*) from the algorithm’s
step 3 if and only if x is S-stationary.

Proof “⇒” by Proposition 1 we get

‖h(x)+ v‖ ≥ ‖h(x)‖, ∀v ∈
⋃

u∈X

Gh(x, u)

Let be u ∈ X and w ∈ SΘ(x, u) two arbitrary elements. We have to show that w ≥ 0
holds.

By definition of the SΘ(x, u), we have a sequence {tk}k∈N, tk ↓ 0 and v ∈ Gh(x, u)

with

w = lim
k→∞

‖h(x)+ tkv‖ − ‖h(x)‖
tk

.

The positive homogeneity of Gh(x, ·) implies that tkv ∈ Gh(x, tku) and so the fraction
in the above limit is positive by assumption.
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244 S. Bütikofer

“⇐” From the convexity of the norm function n(x) and S-stationarity we get

0 ≤ n′(h(x); v) ≤ ‖h(x)+ v‖ − ‖h(x)‖, ∀v ∈
⋃

u∈X

Gh(x, u).

Again with Proposition 1 we deduce that there is no path p(τ ), which fulfils the
conditions (*) from the algorithm’s step 3. �
Proposition 3 (Descent condition) Let h be in C0,1(X, Y ), γ in (0, 1) and Gh fulfils
the following approximation condition in x namely

h(x + u)− h(x)− Gh(x, u) ⊆ o(u) · B. (7)

Suppose as well that there exists a path p(τ ) : [0, τ ] → X, which fulfils the conditions
(*) from the algorithm’s step 3. Then there exists τ ′ ≤ τ with

‖h(p(τ ))‖ ≤ (1− γ τ)‖h(x)‖, ∀ τ ∈ [0, τ ′].

Proof Let γ be given in (0, 1) and assume that τ ′ does not exist.
Then there exists a sequence {τk}k∈N, τk ↓ 0 with

‖h(p(τk))‖ > (1− γ τk)‖h(x)‖, ∀ k ∈ N.

Using condition (7) and p(0) = x , we get

(1− γ τk)‖h(x)‖ < ‖h(x)+ v(τk)+ o(p(τk)− x)‖
(∗)≤ ‖(1− τk)h(x)‖ + ‖o(p(τk)− x)‖,

where v(τk) ∈ Gh(x, p(τk)− x) fulfils the intersection (*).
⇒ τk(γ − 1)‖h(x)‖ + ‖o(p(τk)− x)‖ > 0
⇒ (γ − 1)‖h(x)‖ > 0 because the path p(τ ) is Lipschitz in 0.
This gives a contradiction to the choice of γ ∈ (0, 1). �

Remark 1 Under the conditions of Proposition 3 it holds:

(a) the Armijo-stepsize rule in (**) of step 3 is realisable.
(b) If u, v ∈ Gh(x, u − x) and τ fulfil the intersection (6), then u − x is a descent

direction of Θ(x):

SΘ(x)(u − x) � n′(h(x); v) = n′(h(x); (1− τ)‖h(x)‖s − h(x))

≤ n(h(x)+ (1− τ)‖h(x)‖s − h(x))− n(h(x))

= −τ‖h(x)‖ < 0

with s ∈ B, where the second last inequality follows from the convexity of n(x).
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Globalizing a nonsmooth Newton method 245

Examples

(i) (Condition (CA) and (CI))
Unlike the smooth case (see Proposition 1) the conditions (CA) and (CI) in
the iteration point do not assure the existence of a path p(τ ) in step 3 of the
algorithm for a nonsmooth function h. Consider for this the following setting

h : R→ R, h(x) = |x | + 1, Gh(x, u) = h′(x; u)

The conditions (CA) and (CI) are fulfilled in x = 0, but x = 0 is a S-stationary
point.

(ii) (Illustration of Proposition 1)
Consider the function h : R2 → R

2 defined by

h(x, y) =
(−1.5x + 3.5

exp(y)(1− y)

)
.

The data given in Proposition 1 be (x, y) = (1, 0) and u − (x, y) = (1, 0). We
work with the Fréchet derivative Dh(x)u instead the multifunction Gh(x, u)

and the maximum norm. First we calculate τ :

∥∥∥∥ h(1, 0)+ Dh(1, 0)

(
1
0

)∥∥∥∥∞
=

∥∥∥∥

(
2
1

)
+

(−1.5 0
0 0

)(
1
0

)∥∥∥∥∞
= 1 = (1− 0.5)‖h(1, 0)‖∞

We get τ = 0.5.
The Function F(s) can be determined explicitly

F(s) =
∥∥∥∥

(
2
1

)
+ s

(−1.5
0

)∥∥∥∥∞
=

⎧
⎪⎨

⎪⎩

2− 1.5s, if s ≤ 2
3 ;

1, if 2
3 ≤ s ≤ 2;

−2+ 1.5s, if 2 ≤ s.

It follows that smin= 2
3 and since 0 ∈ ∂ F( 2

3 ) we can not further extend the path.
(iii) (Calculation of the path for a norm induced by a scalar product)

We are again in the setting of Proposition 1 and we assume that the norm is
induced by a scalar product, i.e. ‖x‖2 = 〈x, x〉.
We can write the function F(s) from the proof of Proposition 1 as

F(s) = (〈h(x)+ sv, h(x)+ sv〉) 1
2 = (‖h(x)‖2 + 2s〈h(x), v〉 + s2‖v‖2) 1

2 .

By quadratic extension we get

F(s) =
(
‖v‖2

(
s + 〈h(x), v〉

‖v‖2
)2

+ ‖h(x)‖2 − 〈h(x), v〉2
‖v‖2

) 1
2
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and therefore

s = −〈h(x), v〉
‖v‖2 , F(s) =

(
‖h(x)‖2 − 〈h(x), v〉2

‖v‖2
) 1

2

,

where s is the unique global minimalpoint of F(s).
We compute the continuous function s(τ ) : [0, τmax] → [0, s], s(τ ) ∈ C0,1

([0, τmax), R) from the proof of Proposition 1, with τmax defined as in the proof
of corollary 2,
i.e. τmax = F(s)−‖h(x)‖

−‖h(x)‖ and

s(τ ) = F−1((1− τ)‖h(x)‖)

= −2〈h(x), v〉 − (4〈h(x), v〉2 − 4‖v‖2(‖h(x)‖2 − (1− τ)2‖h(x)‖2)) 1
2

2‖v‖2 .

(We used the solution formula for quadratic equations).

2.3 Global convergence

After the discussion above about premature termination we can now state our main
(global) convergence theorem. As mentioned in the introduction, we are not so much
interested in conditions assuring the feasibility of the algorithm. We rather ask us what
kind of points we calculate, when we do not have premature termination.

Theorem 2 (Global convergence) Let the sequence {xk}k∈N be generated by the
nonmonotone path-search algorithm in Sect. 2.1. We define l(k) as an integer, such
that

k − m(k) ≤ l(k) ≤ k and ‖h(xl(k))‖ = max
0≤ j≤m(k)

‖h(xk− j )‖

holds for every k ∈ N, where m(k) is defined in (4).
Then it holds that every accumulation point x∗ of {xl(k)}k∈N is a zero of h ∈C0,1

(X, Y ), if the following (technical) condition (8) is fulfilled.

lim
k∈K , k→∞

‖h(pl(k)−1(σ
il(k)−1−1τ l(k)−1))− h(xl(k)−1)− vl(k)−1‖

σ il(k)−1−1τ l(k)−1
= 0 (8)

holds for all convergent subsequences {xl(k)}k∈K of {xl(k)}k∈N with limk∈K , k→∞
σ il(k)−1−1τ l(k)−1 = 0, where

vl(k)−1 ∈ Gh(xl(k)−1, pl(k)−1(σ
il(k)−1−1τ l(k)−1)− xl(k)−1)

is a solution of the intersection in (*) from the algorithm’s step 3.
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Remark 2 Condition (8) implies that the path pl(k)−1(·) is well defined at the point
σ il(k)−1−1. Therefore il(k)−1 has to be bigger than one at least for large k’s.

Proof Since m(k) is bounded, it follows that l(k) is unbounded and by definition it
holds m(k + 1) ≤ m(k)+ 1 for every k ∈ N.
In step 3 of the algorithm we get

‖h(xl(k+1))‖ = max
0≤ j≤m(k+1)

‖h(xk+1− j )‖
≤ max

0≤ j≤m(k)+1
‖h(xk+1− j )‖

= max[‖h(xl(k))‖, ‖h(xk+1)‖] = ‖h(xl(k))‖ ∀k ∈ N,

i.e. {‖h(xl(k))‖} is monotone decreasing and hence convergent.
We consider two cases:

1. limk→∞ ‖h(xl(k))‖ = 0, then the assertion follows.
2. limk→∞ ‖h(xl(k))‖ = η > 0

Then it holds νk = σ il(k)−1τ l(k)−1 → 0, otherwise there would be ε ∈ (0, 1) and a
subsequence {νki }i∈N of {νk}k∈N with νki ≥ ε > 0, ∀ i ∈ N.
⇒ (1− γ νki ) ≤ (1− γ ε) ∀ i ∈ N

⇒ ‖h(xl(ki ))‖ ≤ (1− γ νki )‖h(xl(l(ki )−1))‖ ≤ (1− γ ε)‖h(xl(l(ki )−1))‖ ∀ i ∈ N,
Since {l(ki )}i∈N is unbounded, it follows ‖h(xl(k))‖ → 0 as k goes to infinity and

we get a contradiction.
Therefore it holds limk→∞ νk = 0 and consequently

ν̃k = νk

σ
= σ il(k)−1−1τ l(k)−1 −→

k→∞ 0.

Accordant the algorithm’s step 3 we can make the following estimates:

(1− γ ν̃k)‖h(xl(l(k)−1))‖ (∗∗)
< ‖h(pl(k)−1(ν̃k))‖

= ‖h(xl(k)−1)+ vl(k)−1 + h(pl(k)−1(ν̃k))− h(xl(k)−1)− vl(k)−1‖
(∗)≤ (1− ν̃k)‖h(xl(k)−1)‖ + ‖h(pl(k)−1(ν̃k))− h(xl(k)−1)− vl(k)−1‖
≤ (1− ν̃k)‖h(xl(l(k)−1))‖ + ‖h(pl(k)−1(ν̃k))− h(xl(k)−1)− vl(k)−1‖,

where vl(k)−1 ∈ Gh(xl(k)−1, pl(k)−1(ν̃k)− xl(k)−1) is a solution of the intersection in
(*) of the algorithm’s step 3.

Hence it holds

σ il(k)−1−1τ l(k)−1(1− γ )‖h(xl(l(k)−1))‖
≤ ‖h(pl(k)−1(σ

il(k)−1−1τ l(k)−1))− h(xl(k)−1)− vl(k)−1‖.

After dividing both sides by σ il(k)−1−1τ l(k)−1 and passing to the limit we get by
assumption (8) that (1− γ )η ≤ 0 holds. The choice of γ ∈ (0, 1) implies η ≤ 0. This
contradicts the assumption of case 2 and the assertion follows. �
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For a illustration and remarks on assumption (8) we refer to the Sects. 3 and 4.

Corollary 4 Under the assumptions of Theorem 2, it holds that every accumulation
point x∗ of {xk}k∈N is a zero of h ∈ C0,1(X, Y ).

Proof We already know from the proof of Theorem 2 that {‖h(xl(k))‖}k∈N converges
to zero. By definition we get

‖h(xl(k))‖ ≥ ‖h(xk)‖ ∀k ∈ N.

Therefore we have for any convergent subsequence {xki }i∈N of {xk}k∈N with limit x∗

0 ≤ ‖h(x∗)‖ = lim
i→∞‖h(xki )‖ ≤ lim

i→∞‖h(xl(ki ))‖ = 0

�

2.4 Superlinear and quadratic convergence

We are interested in the fast local convergence. As usual in this field we expect a
transition to full step length, when we are close enough to zero.

We prove this part in two steps. First we show that there exists a path with minimal
path length, when the iteration point is close enough to a feasible zero x∗ of h. Then
we show that the sequence converges at least at linear rate, when all accumulation
points are feasible.

Lemma 2 (Minimal path length) Let x∗ be a zero of h ∈ C0,1(X, Y ) and let the triple
(h, Gh, x∗) fulfil the conditions (CI) and (CA).

Then there exist for every γ in (0, 1) a triple (ε, α, r) with ε ∈ (0, 1), α > 0 and
r > 0, so that whenever x ∈ x∗ + rB holds and Gh(x, ·) is positive homogeneous,
we find a path

p(τ ) : [0, τ ] → X, wi th p(0) = x and 1 ≥ τ ≥ (1− α),

which fulfils the conditions (*) from the algorithm’s step 3. Moreover it holds

‖h(p(τ ))‖ ≤ (1− γ τ)‖h(x)‖, (9)

i.e. τ is accepted by the descent condition (**) from the algorithm’s step 3.

Proof We first prove the existence of a path.
From Theorem 1 (i) we know that there exists a triple (ε, α, r), such that we find

u ∈ X with

∅ �= α‖h(x)‖B ∩ [h(x)+ Gh(x, u)],

whenever ‖x − x∗‖ ≤ r holds.
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By Proposition 1 we deduce the existence of a path p(τ ) : [0, τ ] → X, p(0) = x
and α ≥ (1 − τ) ≥ 0, which fulfils the conditions (*) from the algorithm’s step 3.
This proves the first part.

For the second part we choose (ε, α, r) such that

ε ∈ (0, 1), α ∈ (0, 1
2 cεL−1], and let r ∈ (0, δ] be small enough

such that o(x − x∗) ≤ min{ 12 c, 1
2αc} · ‖x − x∗‖, ∀ x ∈ x∗ + rB,

(10)

where δ and o(·) stem from the definition of the conditions (CA) and (CI). Note that
with this choice all the assertions of Theorem 1 hold true.
The conditions (1) and (CA) show that for x ∈ x∗+rB there exists v ∈ Gh(x, x∗− x)

and s ∈ B with

v = h(x∗)− h(x)+ o(x − x∗)s.

Together with the condition (CI) and (10) we deduce

c‖x − x∗‖ ≤ ‖v‖ ≤ ‖h(x∗)− h(x)‖ + 1

2
c‖x − x∗‖

and therefore c

2
‖x − x∗‖ ≤ ‖h(x∗)− h(x)‖. (11)

From (11) and the Lipschitz continuity of h we get also c
2 ≤ L and by the choice of

α in (10) α ≤ ε.
Finally using Theorem 1 (ii), (iii) and (10), it follows

‖h(p(τ ))‖ ≤ L‖p(τ )− x∗‖ ≤ Lε‖x − x∗‖ ≤ 2Lεc−1‖h(x)‖.

So it suffices for showing (9) that there exists a triple (ε, α, r) fulfilling besides (10)
also

(1− γ τ) ≥ 2Lεc−1 or equivalently, (12)

γ ≤ 1− 2Lεc−1

τ
≤ 1− 2Lεc−1

1− ε
, (13)

where the last inequality follows from ε ≥ α ≥ (1− τ). Since

lim
ε↓0

(
1− 2Lεc−1

1− ε

)
= 1 and γ < 1

holds, the existence of a triple (ε, α, r) fulfilling (10) and (12) is shown. �
Theorem 3 (Local convergence II) Let {xk}k∈N be generated by the path search
algorithm in Sect. 2.1 and assume that one accumulation point x of {xk}k∈N is a
zero of h and the triple (h, Gh, x) fulfils the conditions (CI) and (CA).
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Consider for the point x a triple (ε, α, r) chosen according to Lemma 2.
If the algorithm chooses in step 3 for any iteration point xk ∈ x + rB a path

pk(τ ) : [0, τ k] → X, pk(0) = xk with 1 ≥ τ k ≥ (1 − α), then the following
statements hold.

1. The sequence {xk}k∈N converges to x, i.e. x is the only accumulation point.
2. The sequence {xk}k∈N converges with linear rate

‖xk+1 − x‖ ≤ ε‖xk − x‖.

3. If there exists k′ ∈ N so that τ k = 1 for all k ≥ k′, we get superlinear convergence

‖xk+1 − x‖ ≤ c−1o(xk − x)

with the function o(·) from the condition (CA) and the constant c from (CI).
If additionally o(x−x∗) ≤ q‖x−x∗‖2, q > 0, holds for all x with ‖x−x∗‖ ≤ r1,
r1 > 0, we get quadratic convergence

‖xk+1 − x∗‖ ≤ c−1q‖xk − x∗‖2

for all k sufficient large.

Proof Let xk be the first iterate in x + rB. Since (1− τ k) ≤ α holds, we get

∅ �= α‖h(xk)‖B ∩ [h(xk)+ Gh(xk, pk(τ k)− xk)],

i.e. (pk(τ k)− xk) is a solution of the intersection (2).
In the foregoing Lemma 2 we showed that τ k is accepted by the nonmonotone

descent condition (**) in step 3 of the algorithm. The next iterate xk+1 is therefore
given by

xk+1 = pk(τ k) = xk + (pk(τ k)− xk).

Comparing with the local process (2) we see that the path search algorithm produces the
same iterates like the local Newton method. The assertions 1, 2, and 3 from Theorem
3 follow from Theorem 1 and from Corollary 1. �
Remark 3 One situation, where we can guarantee the minimal path length τ k ≥ (1−α)

as claimed in Theorem 3, is the following.
From Lemma 2 we know the existence of a path with path length τ k ≥ (1 − α)

whenever xk ∈ x∗ + rB holds. If we assume that in every iteration point xk ∈ x∗ + rB

we can find the global solution of the minimization problem

min{‖h(xk)+ v‖ | v ∈ Gh(xk, u), u ∈ X} (14)

then due to Lemma 2 the optimal value of (14) has to be smaller than α‖h(xk)‖. Using
Proposition 1 we get the existence of a path with the desired minimal path length.

In Sect. 3 we give an application, where we are able to solve (14).
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3 Application to nonlinear complementarity problems

We understand about a nonlinear complementarity problem the following.
Given local Lipschitz functions a, b: R

n → R
n , one has to find x such that

a(x) ≥ 0, b(x) ≥ 0 and 〈a(x), b(x)〉 = 0.

With y ∈ R
n , we rewrite the conditions as a(x) = y+, b(x) = −y−, which yields the

equation

F(x, y) = 0, where F1(x, y) = a(x)− y+, F2(x, y) = −b(x)− y−, (15)

where y+i = max{0, yi }, y−i = min{0, yi }.
F(x, y) has the form of a so-called generalized Kojima function, for more details see
Klatte and Kummer (2002). In the rest of the article a(x), b(x) will always be one
time continuously differentiable. We take F(x, y): R

2n → R
2n as our model local

Lipschitz function. Notice that F(x, y) is nonsmooth even if a(x) and b(x) are smooth.
The function F(x, y) has a special structure, which allows a product representation

F(x, y) = M(x)N (y), where

M(x) =
(

a(x) −E 0
−b(x) 0 −E

)
is a (2n × (2n + 1))-matrix,

E is the (n × n) identity matrix and N (y) = (1, y+, y−)T ∈ R
1+2n .

The product structure of F(x, y) admits to compute the (standard) directional deriv-
ative F′((x, y); (u, v)) at the point (x, y) in direction (u, v) defined by

F ′((x, y); (u, v)) = lim
t↓0

F((x, y)+ t (u, v))− F(x, y)

t
.

We apply the following product rule to F(x, y).

Proposition 4 (Product rule) (Klatte and Kummer 2002, Corollary 6.10 Let F(x, y) =
M(x)N (y) be the Kojima function (15). Then the product rule of differentiation holds
for F ′((x, y); (u, v)), i.e.

F ′((x, y); (u, v)) = [DM(x)(u)]N (y)+ M(x)[N ′(y; v)], (16)

where DM(x) is the Jacobian of M(x).
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Using the product rule (16) we get the following representation of F ′((x, y); (u, v)),

F ′((x, y); (u, v)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎝

Da1(x)u −r1v1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

Dan(x)u 0 · · · −rnvn
−Db1(x)u −(1− r1)v1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

−Dbn(x)u 0 · · · −(1− rn)vn

⎞

⎟⎟⎟⎟⎟⎟⎠
| r ∈ R(y, v)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where the set R(y, v)

R(y, v) =
{

r ∈ {0, 1}n
∣∣∣∣
ri = 1, if yi > 0 or if yi = 0, vi ≥ 0;
ri = 0, if yi < 0 or if yi = 0, vi < 0

}

stems from the directional derivative of the functions y+i and y−i .
For practical reason we transform this representation. We set

αi = rivi and βi = (1− ri )vi

and arrive at

F ′((x, y); (u, α + β)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎝

Da1(x)u −α1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

Dan(x)u 0 · · · −αn
−Db1(x)u −β1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

−Dbn(x)u 0 · · · −βn

⎞

⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣

βi = 0, if yi > 0,

αi = 0, if yi < 0,

αi ≥ 0 ≥ βi , if yi = 0,

αi βi ≥ 0, if yi = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

For further calculation details we refer to Klatte and Kummer (2002) and Ponomarenko
(2003).

In the light of the convergence Theorem 3 we are interested in a path with maximal
path length. Proposition 1 together with the formulas for F ′((x, y); (u, v)) above show
that we can reduce this problem to the following optimization problem (see also (14)).
At the current iteration point (x, y) we are looking in the algorithm’s step 3 for the
global solution of

minu,α,β

∥∥∥∥∥∥
F(x, y)+

(
Da(x) −E 0
−Db(x) 0 −E

) ⎛

⎝
u
α

β

⎞

⎠

∥∥∥∥∥∥

2

2
s.t. βi = 0, if yi > 0

αi = 0, if yi < 0
αi ≥ 0 ≥ βi , if yi = 0

αiβi ≥ 0, if yi = 0,

(17)

where ‖ · ‖2 denotes the Euclidean norm.
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Therefore we have to solve an optimization problem with convex quadratic objective
and linear complementarity constraints in every Newton step. If the number of zero
components of the variable y is small, the problem (17) could be solved effectively by
either complete enumeration Pang et al. (1991) (see references there too) or a branch
and bound scheme (Liu and Zhang 2002; Pang et al. 1991; Zhang and Liu 2001). In
general, the Newton step problem (17) is potentially much simpler than the original
problem (15) and seems to be a reasonable subproblem.

By using similar techniques as in Pang (1991) and Xiao and Harker (1994) we are
able to prove that Theorem 2 holds without the technical condition (8) if we assume
that the Lipschitz constants Lk of the paths pk(τ ) : [0, σ ik−1τ k] → X stay bounded.
In contrast to Pang (1991) and Xiao and Harker (1994) we do not need the existence
of exact solutions of (2) for omitting (8). We do not give the proof here because it goes
beyond the scope of this article.

4 Summary and conclusions

In this paper, we have presented a globalizing framework for a nonsmooth Newton
method introduced by Kummer (1988, 1992). It was possible to extend the abstract
framework of the local method with the help of a path search algorithm. We have
established global and local superlinear respectively quadratic convergence under
adjusted assumptions. We discussed the causes for premature termination, worked
out the calculation of a path for specific situations and gave an interesting application
of the framework to nonlinear complementarity problems.

The future research will deal with applications to specific optimization problems
presentable as nonsmooth equations (as in Sect. 3) and numerical experiments.

We want to close the paper with a short comparison of our method to two known
approaches from the literature.

Our method is similar to the work of Ralph (1994) (see also Facchinei and Pang
2003). He also uses the idea of searching along a path instead of a line segment as
a natural way to handle the difficulties of nonsmooth equations. The main difference
lies in (*) from the algorithm’s step 3. Ralph asks a much stronger condition on the
path, namely

h(xk)+ Gh(xk, pk(τ )− xk) = (1− τ)h(xk) ∀τ ∈ [0, τ̄k], (18)

where we allow any descent of our local model of h into the ball with radius
‖(1 − τ)h(xk)‖. This strong condition (18) on the path p(τ ) reflects in the assump-
tions on the multifunction Gh(x, u). In order to fulfill the Eq. (18) Ralph assumes
that Gh(x, u) is a nonsingular uniform Newton approximation on X for h (see again
Ralph 1994; Facchinei and Pang 2003). It is easy to see that in this case our technical
assumption (8) is fulfilled too. Therefore our convergence theory is less restrictive in
its assumptions, which do not guarantee the existence of a solution a priori.

In addition we provide in Proposition 1 and example (iii) in Sect. 2.2 a method to
compute a path in a general setting. Ralph uses a modification of Lemke’s Algorithm
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for this. Our method still have to prove its numerical robustness against what Ralph’s
approach is implemented in the PATH-Solver (Dirkse and Ferris 1995).

Line search damping of general Newton methods for nonsmooth equations is an-
other approach and considered by many authors e.g. Han et al. (1992), Pang (1991)
and Pang et al. (1991). A detailed treatment of the collected work in this field is given
in Facchinei and Pang (2003).

Line search methods are based on applying a routine to minimize a nonnegative
merit function Θ(x) that satisfies:

Θ(x) = 0⇔ h(x) = 0

Θ(x) is assumed to be in C0,1(X, R). In general these methods are looking for any
descent direction d, where the Dini derivative Θ D(x; u) is negative and reduce the
merit function on the linear path x + τu with a Armijo search. In Facchinei and Pang
(2003) and Pang et al. (1991) the descent direction is computed with the help of the
minimizing problem

min

{
Θ D(x; u)+ 1

2
uT Hu | u ∈ X

}
, (19)

where H is a symmetric, positive definite matrix. Under a technical assumption similar
to our condition (8) it can be shown that every accumulation point is a Dini stationary
point of Θ(x).

In Han et al. (1992) and Pang (1991) they apply this general line search procedure
to a nonsmooth Newton method. Θ(x) is there the square of the Euclidean norm.
Gh(x, u) : R

n × R
n → R is a function, which stands for a generalized derivative.

They assume that they can solve the Newton equation

h(x)+ Gh(x, u) = 0 (20)

in every step and receive the descent direction u out of it. Again under technical assum-
ptions comparable to our condition (8) they now can show that every accumulation
point is a zero of h. In Pang (1991) and Xiao and Harker (1994) they have been able
to omit the technical condition in the special case of Gh(x, u) = h′(x; u), where h is
a nonsmooth reformulation of the stationary points condition of a nonlinear program
or a variational inequality with the help of the min-operator. We could omit the tech-
nical condition (8) for the nonlinear complementarity problem too if we make use of
the directional derivative (see also the remark at the end of Sect. 3). Furthermore we
believe that we can omit the technical condition (8) for any generalized Kojima func-
tion F(x, y) = M(x)N (y) (Klatte and Kummer 2002), when M(x) is continuously
differentiable.

Let us point out the differences to our approach. Comparing (17) and (*) in the
algorithm’s step 3 to (19) and (20) we work in general with a different descent direction
u, e.g. we do not assume the solvability of (20). Additionally we try in (**) to minimize
the merit function Θ(x) along a possible nonlinear path p(τ ), which we think is
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appropriate in this setting. The clear transition to the local method and the local
convergence properties shown in Theorem 3 sustains this belief.
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