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Abstract Collection selection is a crucial function, central to the effectiveness and

efficiency of a federated information retrieval system. A variety of solutions have been

proposed for collection selection adapting proven techniques used in centralised retrieval.

This paper defines a new approach to collection selection that models the topical distri-

bution in each collection. We describe an extended version of latent Dirichlet allocation

that uses a hierarchical hyperprior to enable the different topical distributions found in each

collection to be modelled. Under the model, resources are ranked based on the topical

relationship between query and collection. By modelling collections in a low dimensional

topic space, we can implicitly smooth their term-based characterisation with appropriate

terms from topically related samples, thereby dealing with the problem of missing

vocabulary within the samples. An important advantage of adopting this hierarchical model

over current approaches is that the model generalises well to unseen documents given

small samples of each collection. The latent structure of each collection can therefore be

estimated well despite imperfect information for each collection such as sampled docu-

ments obtained through query-based sampling. Experiments demonstrate that this new,

fully integrated topical model is more robust than current state of the art collection

selection algorithms.

Keyword Distributed information retrieval � Topic models � Retrieval �
Collection selection

1 Introduction

Distributed information retrieval (DIR) encompasses a body of research investigating

solutions for searching online content which cannot be discovered using the standard Web
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crawling techniques (Callan 2000). This content is often referred to as the deep (Madhavan

et al. 2008) or hidden Web (Price and Sherman 2001), since it lies buried behind Web

forms and text search interfaces.1 The hidden Web contains a wide variety of content from

academic research libraries to online retail Web sites, whose content is often generated

dynamically in response to user queries.

The aim of a DIR system (also known as federated search (Avrahami et al. 2006) or

selective meta-search (Craswell et al. 2004)), is to retrieve documents from a set of dis-

tributed collections through a centralised broker. To enable retrieval, the broker maintains

a representative description of the content held in each collection. When cooperation with a

particular collection is possible, content statistics can be accessed through a shared pro-

tocol (Gravano et al. 1997; Paepcke et al. 2000). Typically cooperation cannot be guar-

anteed and techniques such as query-based sampling (Callan and Connell 2001) or focused
probing (Gravano et al. 2003) are used to obtain a representative sample of documents

from the collection. Sampling is terminated when it is believed a sufficiently good rep-

resentation of the underlying collection has been acquired that facilitates effective retrieval

(Avrahami et al. 2006). The index maintained by the broker is required for both collection

selection and results merging. The form it takes depends on the underlying retrieval model

used for collection selection, with potential index representations including the big doc-
ument model (basic term statistics across the whole sample) (Xu and Croft 1999; Si et al.

2002), the small document model (term statistics for each document in the sample) (Si and

Callan 2003), or a hierarchical topical summary (where the sample is classified into a

subject category from a hand-crafted taxonomy) (Gravano et al. 2003) or the full collection

index (Callan 2000).

In this paper we address the problem of collection selection using a principled hierar-

chical Bayesian modelling approach commonly referred to as topic modelling (Blei et al.

2003; Griffiths and Steyvers 2004; Wei and Croft 2006; Wallach 2008). We introduce a

new model for collection selection which combines the best features of all three indexing

approaches, namely the ability to calculate robust term statistics across a sample of doc-

uments, the ability to use all information (including document boundaries) within the

sample, and the ability to leverage term statistics from other topically-related samples from

other collections. We do this by estimating the parameters of a multiple collection latent

topic model of text. This generative process enables us to model the latent topic structure

(major themes) between documents both within and across collections. Modelling the

hidden thematic structure within each collection and leveraging it for collection selection

has a number of distinct advantages over simpler approaches:

– By recovering the topic distribution for each collection, we can estimate which

collection is most likely to contain documents that are relevant to the topic of the query

(rather than the collection is most likely to contain documents with the same terms as

the query).

– The parameters of the generative model are estimated based on the co-occurrence of

words across documents and collections. Thus the term statistics for each sample are

implicitly smoothed using the statistics of topically related samples, making the

prediction robust to small sample sizes. Moreover, the use of co-occurrence

1 An online deep-web resource is an information collection that is searchable. This could be a free-text or
Boolean search system, relational database, etc. We only make the assumption that a site will have a
discoverable search text box. Therefore, solutions such as sampling via queries submitted to a interface are
adopted for indexing deep-web content rather than crawling (Madhavan et al. 2008; Callan and Connell
2001; Ipeirotis et al. 2006; Bar-Yossef and Gurevich 2006).
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information addresses to a certain extent problems of synonymy and polysemy (Blei

et al. 2003; Griffiths and Steyvers 2004). We note that synonymy, polysemy and

missing vocabulary are particularly important problems for federated search because of

the small samples of documents that are used to represent very large collections.

– The generative modelling approach results in a collection selection algorithm that in

theory requires no parameter tuning, since all parameters (including hyperparamters) of

the generative process can be chosen so as to maximise model fit on the sampled

documents. This is in contrast to some state-of-the-art approaches, e.g. that of Shokouhi

(2007), which contain arbitrary parameter settings that need to be chosen based on

training data (a query log and relevance judgements).

– The Bayesian framework allows us to include additional information such as a

collection size estimate into the ranking function in a consistent and coherent manner.

– The topic-based characterisation of each collection can be used to find important terms

for query-based sampling of collections or to compare different collections in terms of

topic prevalence. The latter being important for visualising the content of different

collections.

The paper is structured as follows. In the next section we review the current state-of-the-

art centralised-index-based collection selection algorithms and investigate further moti-

vations for our topic modelling approach. We then introduce two topic models, latent

Dirichlet allocation (LDA) and a hierarchical extension designed to take document

groupings (i.e. collections) into account and discuss how these models can be used for

collection selection. We evaluate this new approach to collection selection, comparing

performance with a number of existing methods. Finally, we discuss the implications of

this study before concluding the paper and outlining future work directions.

2 Previous approaches to collection selection

Collection selection is a critical function of a DIR system in which the broker attempts to

route queries only to those collections which (potentially) contain relevant information.

Collection selection can be summarised into two phases: the first phase ranks collections

with respect to the user query, where the ordering reflects how likely a collection is to

contain relevant information (the expected density of relevant documents in the collection).

Depending on this ranking, the second phase determines which collections to route the

query to and how many documents to retrieve from each. After this second phase, the

retrieved documents from all searched collections are merged into a single coherent ranked

list to present to the user. Typical merging strategies involve the normalisation of local

collection relevance scores from the retrieved documents (Callan et al. 1995; Si and Callan

2003).

A number of solutions have been proposed for collection selection, which can be broadly

grouped into two categories: big-document and centralised sample index approaches. The

first category is so called because collections are represented by a large virtual document

which is the concatenation of the acquired set of representative sampled documents.

Analogous to standard document retrieval, the collection-representative documents can be

ranked with respect to a query using a retrieval algorithm. Therefore big-document

approaches essentially differ by how the resource descriptions are ranked, for example,

using a bayesian inference network (CORI) (Callan et al. 1995), the vector space model

(vGlOSS) (Gravano et al. 1999), or language models (Xu and Croft 1999; Si et al. 2002).
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The decision to remove document boundaries within the representation set of docu-

ments is thought to impact on collection selection performance (Xu and Croft 1999), with a

number of recent empirical studies supporting this claim (Si and Callan 2003; Hawking

and Thomas 2005; Thomas and Hawking 2009). As a consequence, a new group of

techniques called centralised sample index algorithms have been proposed which retain

document boundaries (Si and Callan 2003; Hawking and Thomas 2005; Shokouhi 2007).

The sampled documents obtained from each collection are indexed centrally at the broker

to form a partial centralised index, which is an approximation of the global virtual col-

lection index. Thus, given a user query, documents in the sampled index are first ranked.

This document ranking is then used to predict which collections have the largest number of

relevant documents, informing the decision process for selecting the subset of collections

to search.

We note that the problem of collection selection is a critical function not only for DIR

but also arises in a number of other contexts including expert search (Balog 2008) (where

each ‘‘collection’’ contains documents regarding a particular person), and in blog search

(Elsas et al. 2008) (where blog posts are considered to be a sample of the documents that a

blog author could write). A fundamental goal for any collection selection algorithm is to

rank collections, experts or blogs by the expected density of relevant documents.

2.1 Language modelling framework

We will now discuss in more detail state-of-the-art approaches to resource selection,

introducing the formulae that we will both compare with as a baselines and extend using

our topic modelling approach. We base our explanation on the language modelling

framework for IR (Manning et al. 2008), since it allows for ease of comprehension and

because many collection selection algorithms can be easily reformulated in the Bayesian

setting. In this framework, collections are ranked according to their likelihood given a

query. The likelihood of a collection c given a query q can be calculated using Bayes rule

as follows:

PðcjqÞ ¼ PðqjcÞPðcÞ
PðqÞ / PðqjcÞPðcÞ ð1Þ

where P(q|c) is the likelihood that collection c generates query q, P(c) is the (query

independent) prior probability of retrieving a document from the collection and P(q) is a

normalising constant (the collection-independent query prior) which can be dropped from

the calculation without effecting the overall ranking of collections. Assuming all docu-

ments are equally likely, we can estimate the value collection prior using the relative size

of the collection:

PðcÞ ¼ D̂c
PC

c¼1 D̂c

/ D̂c ð2Þ

where D̂c is the estimated size (in documents) of collection c. In uncooperative environ-

ments the collection size is estimated using population estimation techniques such as

sampling-resampling (Si and Callan 2003). Larger collections are assigned more weight

prior to ranking resources making explicit the assumption that bigger collections are more

likely to contain relevant information. Alternatively, the collection prior can be calculated

based on the expected prior usefulness of the collection, which can be estimated

from training data. Other sources of evidence that could be leveraged for calculating
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query-independent priors for collections include hyper-link and anchor text evidence when

it is available (Hawking and Thomas 2005).

Combining (1) and (2) gives the following simple ranking function, where the query

likelihood for each collection still needs to be specified.

PðcjqÞ / D̂cPðqjcÞ ð3Þ

2.2 Big-document approaches

In the big-document approach, the set of sampled documents from a collection are con-

catenated to form a large virtual document. The query likelihood can then be approximated

using term statistics for this large document by applying the Naive Bayes conditional

independence assumption:

P̂ðqjcÞ ¼
Y

w2q

PðwjcÞ ð4Þ

where P(w|c) denotes the probability of word w in collection c. Simple approximations of

P(w|c) include the relative term frequency in the big document or the relative document

frequency in the sample. Usually the maximum likelihood estimates are smoothed in order

to deal with the zero probability problem for example using Jelinek-Mercer smoothing

against a background distribution containing the union of all samples (Si et al. 2002).

P̂ðwjcÞ ¼ kPMLðwjcÞ þ ð1� kÞPMLðwj [i ciÞ ð5Þ

where PML denotes a maximum likelihood estimate and k is a smoothing parameter.

Ipeirotis and Gravano (2008) noted that according to Zipf’s law, a sample of a collection

sample will fail to recover a large proportion of terms which occur less frequently in the

collection than the sampling rate, but may nonetheless be important terms for defining the

topics present in the collection. As a consequence, short queries or queries containing

infrequent terms not represented in the sample, but important to a collection, will affect

retrieval performance. Thus smoothing techniques have been explored which attempt to

exploit the observation that similar (potentially topically related) collections share similar

vocabularies.

For example, Xu and Croft (1999) smoothed the term distribution of topically grouped

documents using Laplace smoothing. Topics were generated by first clustering documents.

Topics were then represented by a smoothed language model (i.e. P(w|c)) where a small

constant probability mass was assigned to terms not occurring in the cluster set of docu-

ments for a topic.

Ipeirotis and Gravano (2008) applied shrinkage to estimate P(w|c) by first classifying

collections into a topical hierarchy. Collections are then smoothed based on this topical

hierarchy. Shrinkage over a topic hierarchy smoothes the collection estimate not with a

global collection but with a set of topically related collections in a classification T:

P̂ðwjcÞ ¼ k0PMLðwjTcÞ þ
Xm

i¼1

kiPMLðwjTiÞ ð6Þ

such that
Pm

i¼0 ki ¼ 1. Instead of a fixed smoothing weight, the ki mixture weights are

estimated by expectation-maximisation over training data.

Despite the elegance of their approach, there are three obvious disadvantages of their

smoothing method, which are not shared by our topic modelling approach to collection
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selection, namely: (1) that a hierarchy of content areas must be defined in advance; (2) that

each collection may only belong to a single topic node in the hierarchy; and (3) that both

the topic assignments and smoothing weights must be learnt from training data.

2.3 Small-document approaches

In the small document approach, exemplified by the ReDDE (Si and Callan 2003) algo-

rithm, the sampled documents from each collection are not concatenated but indexed

individually along with documents sampled from other collections to form a ‘‘centralised

sample index’’ that approximates the unified index over all documents in the different

collections. The documents in the sample index are ranked for each query, and based on

this ranking density of relevant documents in each collection is estimated.

From a Bayesian perspective, estimating the likelihood of relevant documents in each

collection is equivalent to marginalising over the documents in the sample. Thus the small

document model can be written as (Elsas et al. 2008):

P̂ðqjcÞ ¼
X

d2c

PðqjdÞPðdjcÞ ð7Þ

Here P(q|d) denotes the likelihood of a query given a document, which is essentially the

‘‘retrieval score’’ for the document and could be estimated using standard language

modelling smoothing techniques. P(d|c) is the probability of a document in a collection. It

can either be set to the uniform distribution (P̂ðdjcÞ ¼ 1=Dc) or be estimated as a measure

of the representativeness of a document in a collection, for example using the geometric

mean of a term in a collection (Elsas et al. 2008). (The latter has been shown to provide a

robust model for ranking blogs.) For ease of comparison with other methods we will

assume a uniform distribution over documents in the sample.

The likelihood of the query given the document P(q|d) can be estimated using a variety

of smoothing methods including Jelinek-Mercer smoothing:

P̂ðqjdÞ ¼
Y

w2q

ðk1PMLðwjdÞ þ k2PMLðwjcÞ þ k3PMLðwj [i ciÞÞ ð8Þ

where PMLðwjdÞ is the relative frequency of term w in document d;PMLðwjcÞ is the relative

frequency across all documents in collection c, and ki is a smoothing parameter such thatP
iki = 1.

The original ReDDE algorithm (Si and Callan 2003) involved a different estimate for

P(q|d), which they denoted P(rel|d), meaning the probability of relevance of a particular

document. We include their original estimate for comparison purposes and use it as an

additional baseline for the experiments. In this case, the query likelihood is estimated by

ranking all the documents contained in the centralised sample index using a document

retrieval algorithm such as a vector space, InQuery, BM25 or language model.

P̂ðqjdÞ / 1 if rankðdÞ\nD=D̂
0 otherwise

�

: ð9Þ

where n is the desired number of relevant documents that should be found, D is the total

number of documents across all samples in the index and D̂ is the estimated size of all

collections combined.

Recently, a central-rank based collection selection (CRCS) algorithm has been proposed

by Shokouhi (2007). As with ReDDE, first documents in the sample are ranked using a
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document retrieval model. CRCS then measures the proportion of documents from each

collection that are highly ranked in the centralised sample index with respect to the query

and uses it to estimate of the proportion of relevant documents likely to be held in each

collection. Two CRCS formulas have been shown, empirically, to improve performance

over ReDDE on a number of testbeds. The CRCS algorithms can be seen simply as two

different estimates for the query likelihood that rely on a document’s rank within the index

rather than its retrieval score. The first estimate is dependent on the negated rank:

P̂ðqjdÞ / c� rankðdÞ if rankðdÞ\c
0 otherwise

�

ð10Þ

While the second is dependent on a weighted exponent of the negated rank:

P̂ðqjdÞ / expð�b rankðdÞÞ ð11Þ

The parameters c and b need to be tuned on labeled training data (relevance judgements)

during an initial training phase. We will refer to these estimates in the experiments as

CRCS(l) and CRCS(e), respectively.

2.4 Recap and motivation

After reviewing the existing approaches to collection selection we have identified a number

key desirable properties a collection selection algorithm should consider as well as a

number of limitations with prior research: (1) a model should be able to account for

incomplete information, term disambiguation and vocabulary smoothing under a single

framework; (2) model coherence, i.e. the approach should model the problem at hand

directly; (3) the model should estimate the topical relatedness of collection. Previous work

required an ontology and labelled collections for training the classifiers for this purpose

(Ipeirotis and Gravano, 2008). However, in this paper we want to infer any possible

structure from the data itself; and (4) prior information, the approach should be able to

include other evidence sources. In the following section we define a new model for col-

lection selection based on latent topic modelling.

3 Latent topic models

Topic modelling (Griffiths and Steyvers 2004) is an active area of research which com-

bines ideas from dimensionality reduction techniques like Latent Semantic Indexing (LSI)

and its probabilistic reformulation Probabilistic Latent Semantic Indexing (PLSI) (Hof-

mann 1999) with generative modelling techniques using Bayesian Networks approaches

(Buntine 1994). In topic modelling, documents are represented by a distribution over a

semantic topic space where each topic is characterized by a distribution over words. The

reliance on Bayesian techniques for developing these models prevents them from over-

fitting the data and allows them to generalise well to unseen documents. These techniques

have recently been applied to a number of problems in IR including the modelling and

tracking of scientific publications (Griffiths and Steyvers 2004) and document retrieval

(Wei and Croft 2006).

There are a number of different ways that the topics of a collection could be estimated

including the use of document clustering techniques (Manning et al. 2008) and Probabi-

listic Latent Semantic Indexing (PLSI) (Hofmann 1999). We examine in this paper
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methods based on probabilistic topic models (Griffiths and Steyvers 2004). Latent

Dirichlet allocation (LDA) (Blei et al. 2003) is the most frequently used topic model. It is a

probabilistic generative model for documents within a collection, where each document is

modelled as a mixture of topics and each topic is a distribution over terms. More spe-

cifically, LDA is a Bayesian reformulation of PLSI where Dirichlet prior probability

distributions over model parameters (distributions over topics for each document and

distributions over terms for each topic) are used to prevent over-fitting of the model to the

data, and thereby allow for good generalisation to unseen documents. The ability of LDA

to generalise well to unseen documents is critical for the application to collection selection,

where the description of each resource must be induced from a small sample of the

documents present in the whole collection (Fig. 1).

LDA has been applied to the problem of modelling topics in text corpora, including

modelling and tracking the development of scientific topics (Griffiths and Steyvers 2004);

classification, collaborative filtering (Blei et al. 2003), and retrieval (Wei and Croft 2006)

amongst others. The LDA model specifies how a document may have been generated, the

underlying assumption being that documents are mixture of (sub-)topics. Representing

concepts as probabilistic topics enables each topic to be interpretable and thereby pre-

sentable to the user.

In the following section we will briefly describe LDA as it pertains to the current work.

We will follow the formulation of LDA given by Griffiths and Steyvers (2004) and the

notation used by Wallach (2008). A list of the notation used throughout the paper is given

in Table 1. In Sect. 3.2 we will outline a multi-collection topic model which models the

latent topical relationship of documents in and across collections.

3.1 Latent Dirichlet allocation

Figure 2 shows LDA as a graphical model2 using plate notation (Buntine 1994). In the

generative model each document is modeled as a distribution over topics hd that is used to

Fig. 1 Main notation used
in this paper

2 Graphical models are used to represent the dependence between random variables in a statistical model
(such as a Bayesian Network). Random variables are shown as labeled circles and arrows denote depen-
dence between them. Shaded circles represent observed variables, while unshaded circles represent latent
variables. A box denotes a repeated structure, where the value in the bottom right of the box is the
cardinality of the repetition.
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choose the words in the document according to a distribution over terms for each topic /z.

The probability that a particular topic z will be emitted by a document d is denoted hz|d and

the probability that a vocabulary word w will chosen for a topic z is denoted /w|z.

According to the generative model, the likelihood of a corpus of documents, denoted

w = hw1,…,wNi (which consists of all documents concatenated together) and an assign-

ment of values to the hidden topic variables z = hz1,…,zNi, given the model parameters

U ¼ f/zgZ
z¼1 and H ¼ fhdgD

d¼1, is then given by:

Pðw; zjU;HÞ ¼
YN

i¼1

/wi jzi
hzijdi

ð12Þ

where N is the length of the corpus (in word occurrences) and di is the document associated

with the ith position in the corpus. Z and D denote the number of topics and documents,

respectively.

Fig. 2 Graphical model for latent Dirichlet allocation. Variable wi [ {1,…,V} represents the ith word in the
corpus (all documents concatenated together), where V is the vocabulary of the collection. Nd is the length of
the dth document, d [ {1,…,D}. Variable zi [ {1,…,Z} denotes the hidden topic assignment of the ith word.
For each document, we have a variable hd that defines the probability distribution over topics {1,…,Z} from
which the values zi are chosen. For each topic, /z gives a probability distribution over terms in the
vocabulary {1,…,V}, according to which wi is chosen. The distributions hd and /z are selected using a
Dirichlet distribution with parameters am and bn, where m and n are uniform distributions over Z and V,
respectively. The hyperparameters a and b determine to what extent the sampled distributions vary from the
uniform prior

Table 1 The most likely terms in three generated topics of a MCTM model

Topic 2 Topic 7 Topic 30

Crime 0.028 Economic 0.017 Fish 0.025

Law 0.018 Development 0.015 Fishery 0.024

Court 0.015 Government 0.011 Species 0.023

Attorney 0.014 System 0.009 Marine 0.022

Enforce 0.014 Increase 0.008 Vessel 0.014

Criminal 0.013 Policy 0.008 Action 0.012

Violence 0.012 Economy 0.007 Permit 0.011

Victim 0.012 Change 0.007 Management 0.010

Justice 0.011 Country 0.007 Service 0.010

Prison 0.011 Nation 0.007 Population 0.010
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In LDA, the model parameters /z (the topic term distribution) and hd (the document

topic distribution) are themselves chosen according to a Dirichlet distribution:

/z�DirichletðbnÞ ð13Þ

hd �DirichletðamÞ ð14Þ

where n and m are uniform distributions over words and topics, respectively. Thus, ni ¼ 1
V

and mi ¼ 1
Z, where V is the size of the vocabulary and Z is the number of topics. The

posterior estimate given the data (the corpus w and topic assignments z) for the model

parameter /w|z (the probability of topic z producing word w) is:

/̂wjz ¼
Nw;z þ b1

V

Nz þ b
ð15Þ

where Nw,z is the number of occurrences of vocabulary word w for topic z and Nz denotes

the number of times topic z occurs in the corpus as a whole. Similarly, the posterior

estimate given the data for the model parameter hz|d (the probability of document d emit-

ting topic z) is given by:

ĥzjd ¼
Nz;d þ a1

Z

Nd þ a
ð16Þ

where Nz,d is the number of occurrences of topic z in document d and Nd is the length of the

document.

For an accurate estimation of the coverage of topics in a sample with respect to the

collection, a good representation of the collection is required using LDA. As exact

inference using LDA is intractable, we use the approximate inference approach defined by

Griffiths and Steyvers (2004) which uses Gibbs sampling to approximate the posterior

distribution.

The Gibbs sampling procedure involves first generating a random assignment of values

for the topic vector z = hz1,…,zNi. This is followed by repeated steps of re-estimating all

the values in the vector. At each iteration, the values for individual topic variables zi are

updated in turn by sampling a value from the conditional probability distribution for zi

given the word wi, using estimates for /w|z and hz|d based on current assignments to all the

other topic variables z:i ¼ hz1; . . .; zi�1; ziþ1; . . .; zNi. The estimate for the conditional

probability of topic variable assignment zi = z is given by:

P̂ðzi ¼ zjwi ¼ w; d;w; z:iÞ ¼
/̂wjzĥzjd
P

z /̂wjzĥzjd
ð17Þ

The procedure is usually repeated until a preset number of iterations have been reached.

The stopping criterion could also be a threshold on the delta improvement in the model

Likelihood (given in (12)).

We will discuss how the LDA model can be used to rank resources for collection

selection in Sect. 3.3

3.2 A multi-collection latent topic model

For the problem of collection selection, we are interested in investigating the latent topical

structure within and across different resources. In its current form, LDA does not take
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document groupings (collections) into account and thus is not necessarily learning the best

model for this task. We now investigate a more expressive model capable of dealing with

document groupings in the form of multiple collections within the one corpus of docu-

ments. In particular we describe a hierarchical extension to latent Dirichlet allocation with

observed document collections, that was first introduced by Wallach (2008). In this model,

each document is assigned to a particular collection and the statistics of document gen-

eration (in terms of the relative frequencies of different topics) are different for the dif-

ferent collections. Figure 3 provides a graphical representation of the model with

document groupings.

In the new model, the prior over document topic distributions is no longer constant

across the whole corpus but depends on the collection that the document comes from. More

specifically, the topic distribution for each document hd is generated by a Dirichlet dis-

tribution conditioned on a collection specific topic distribution wc (the mean of the topic

distributions in the collection). Moreover, the collection specific distribution is generated

by a second Dirichlet distribution, conditioned on a corpus level topic distribution

m. Finally, the corpus level parameter is itself dependent on a uniform Dirichlet prior. This

multi-collection topic model (MCTM) is defined as follows:

hd �Dirichletða2wcÞ ð18Þ

wc�Dirichletða1mÞ ð19Þ

m�Dirichletða0uÞ ð20Þ

This new model has four hyperparameters a0, a1, a2 and b as opposed to LDA’s two. The

most interesting of the new parameters is a1, which controls the amount to which the topic

descriptions wc for different collections can vary from each other. The third Dirichlet

distribution (20) facilitates the modelling of collections within the corpus. The extra level

Fig. 3 Graphical model for hierarchical latent Dirichlet allocation where documents are grouped into
collections. There are C collections in the corpus and Dc documents in collection c. The variable wc denotes
a probability distribution over topics {1,…,Z}, which characterizes the collection c by defining the mean of
the Dirichlet distribution that generates a document topic distribution hd for each document. The
hyperparameter a2 determines the amount by which the document topic distributions vary from wc. The
variable m is now the mean of the distributions over topics for the corpus as a whole and the hyperparameter
a1 determines the extent to which the different collections vary from one another. Finally, u is a uniform
distribution over topics, and a0 regulates how far the corpus deviates from uniform
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of hierarchy in the model allows for more flexibility and result in a better model fit by

allowing different topics in the corpus to have quite different relative frequencies from one

another (determined by the parameter m).

The posterior estimate for the document level topic distribution is then computed as

follows:

ĥzjd ¼
Nz;d þ a2ŵzjc

Nd þ a2

ð21Þ

where ŵzjc ¼
Nz;c þ a1m̂z

Nc þ a1

ð22Þ

where m̂z ¼
Nz þ a0

1
Z

N þ a0

ð23Þ

Here Nz,c denotes the total number of occurrences of topic z in the documents of collection

c and Nc is the length (in words) of collection c. Using this new estimate, the Gibbs

sampling algorithm for estimating model parameters is the same for MCTM as it was for

LDA, (see Wallach (2008) for a derivation).

One of the advantages of MCTM over LDA when applied to the problem of collection

selection is that ŵzjc provides an estimate of the prevalence of a topic in the collection

c. For example, Figure 4 illustrates the topical distribution of two collections estimated by

a 50 topic MCTM model. The topical distribution in each collection differs significantly

indicating that the topical distribution induced from each sample may provide a good

representation for the differing contents of the collections. Table 1 indicates the most

likely terms (and associated probability) from the prevalent topics in collection 1 (i.e. topic

2) and collection 2 (i.e. topic 30), as well as a topic with equal weight in both collections

(i.e. topic 7). From these topic distributions we can gain an insight into the content held in

each collection, where the two most prevalent topics appear to have very different semantic

associations of law (topic 2) and aquaculture (topic 30), while both collections share a

similar prevalence of a topic related to economic policy (topic 7). We can therefore utilise

this information to rank collections based on a user query as well as potentially leverage

the topical distributions for further query-based sampling of a collection (Callan and

Connell 2001).

Fig. 4 An example of the
distribution of topic prevalence
for two distributed collections
modelled by MCTM, (best
viewed in colour). We see that
the two collections differ greatly
in terms of their topic-based
characterisation with few
common topics of non-neglibile
probability
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3.3 Topic-based collection selection

By modelling the sampled set of resource descriptions using topic models we are able to

estimate the likelihood that each collection model would generate a document containing

the query terms. We can then rank collections according to their likelihood given the query

using (3). In other words, we will rank collections according to the number of relevant

documents we expect to see in each collection, given the generative model we have learnt

for each collection.

Given a trained LDA model, we derive the ranking function as follows. We first cal-

culate the likelihood of a word w being emitted by a document d. This is calculated by

summing over all topics the likelihood of that word and topic given the document:

P̂ðwjdÞ ¼
XZ

z¼1

/̂wjzĥzjd ð24Þ

The likelihood of a query given a document is then simply the product of word prob-

abilities for all terms in the query:

P̂ðqjdÞ ¼
Y

w2q

P̂ðwjdÞ ð25Þ

We can calculate the query likelihood given the collection by simply averaging the

likelihood over all the documents in the collection as was done for the small document

model:

P̂ðqjcÞ ¼
X

d2c

P̂ðqjdÞP̂ðdjcÞ ¼ 1

Dc

X

d2c

P̂ðqjdÞ ð26Þ

Here Dc is the number of documents in (our sample of) the collection c. Note that we could

have used a more complicated estimate for likelihood of a document given a collection

rather than the uniform distribution PðdjcÞ ¼ 1
Dc

, to deal with the fact that some documents

are more ‘‘central’’ to the themes of the collection sample than others. Finally we combine

(26) and (3) to rank collections for the LDA model according to:

P̂ðcjqÞ / D̂c

Dc

X

d2c

Y

w2q

XZ

z¼1

/̂wjzĥzjd ð27Þ

For the hierarchical MCTM model the estimation is much simpler. We use the posterior

estimate for the model parameter wc (the collection level topic distribution) to calculate the

query likelihood and multiply the latter by the estimated collection size to rank collections

according to their likelihood:

P̂ðcjqÞ / D̂c

Y

w2q

XZ

z¼1

/̂wjzŵzjc ð28Þ

We note that query processing for the MCTM model is faster than for the LDA model

since a single probability distribution wc, the collection level distribution, is used to rep-

resent the collection rather than a set of distributions for each document in the collection

sample.

The astute reader may question what appears to be a ‘‘big document’’ approach for

MCTM, since we are generating a single representation of each collection (in the topic
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space) that we compare with the query. We note however, that this collection description is

in fact learnt from a topic model that takes the co-occurance of words across documents

within (and across) each collection sample into account. Said in another way, the

dimensions of the latent topic space depend on the document boundary information within

each sample. Were we to throw away that information, and start with a ‘‘big document’’

representation of each sample, it would indeed be impossible to learn a topic based

representation of collection.3

4 Experiments

We now describe a series of experiments comparing the MCTM model with a number of

baseline collection selection algorithms.

4.1 Baseline models

ReDDE, ReDDE-LM, CRCS(l) and CRCS(e) as well as LDA were used as a comparison to

the new model. To provide consistency with previous evaluations of these baselines, the

internal retrieval model used for both ReDDE and CRCS was the standard InQuery model

included within the Lemur framework.4 ReDDE-LM represents the language modelling

version of ReDDE. All models used the same collection prior with complete information as

a control when comparing models.

4.2 Testbeds

The collection selection algorithms were compared over a number of standard DIR test-

beds5: Trec123-100col-bysource, Trec4-100col-bysource, Trec4-100col-global, Trec6-

100col-bysource and Trec6-100col-global testbeds (Xu and Croft 1999). Each testbed

holds a set of 100 collections with documents grouped either by the source and date

(bysource) or by topical similarity (global). The bysource test beds have approximately

equal sized, overlapping homogeneous collections, while the global test beds represent a

more varied distinct and diverse set of heterogeneous collections. Each collection was

represented by 300 sampled documents obtained through query-based sampling using

uniform term selection, retrieving 4 documents per query submitted (Callan and Connell

2001). A centralised sampled index was generated from the resource descriptions for each

testbed. The resource descriptions were stemmed using the Porter stemmer and all stop-

words were removed.

4.3 Measurements

All models were compared using short title queries. Collection selection accuracy was

measured using two metrics, the first being the recall-based Rk metric. Rk is a measure of

3 In (28) we ignore the individual document topic distributions contained in the H matrix when ranking
collections according to the MCTM model. There may be ways to use this information to improve ranking
performance. We leave that investigation to future work.
4 http://www.lemurproject.org/lemur/.
5 The testbeds are accessible at http://boston.lti.cs.cmu.edu/callan/Data/.
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the overall percentage of relevant documents contained in the top k collections searched

(Callan and Connell 2001).

Rk ¼
Pk

i¼1 Ei
Pk

i¼1 Bi

ð29Þ

where Ei is the number of relevant documents in collection i ranked by a collection

selection algorithm, while Bi is the number of relevant documents in collection i ranked by

a perfect, oracle based ranking. In accordance with previous studies (Si and Callan 2003;

Shokouhi 2007), we present the Rk value for the first 20 collections searched.

We also compared systems to an oracle baseline (Shokouhi et al. 2007; Puppin et al.

2010), which we will refer to as relative precision. The performance of each collection

selection method was analysed using a centralised system with a complete index of all

documents from all collections. The aim of this evaluation is to determine how well the

collection selection models compare to the centralised approach. The ranking provided by

the centralised model for the test query set is used as pseudo-relevance judgements. For the

oracle baseline we used InQuery, which is also used for the document retrieval model with

ReDDE and CRCS. Systems were compared using relative Pk@10 (Puppin et al. 2010):

Pk@10 ¼ 1

10
jTop10 \ Top10kj ð30Þ

where Top10 denotes the 10 most relevant documents (as ranked by InQuery) for a par-

ticular query over all the collections, while Top10k denotes the 10 most relevant documents

over the k highest ranking collections.

We calculate the mean and standard error for both Rk and relative Pk@10 over the topic

set. Mean results are reported and a 95% confidence interval (CI) with Bonferroni cor-

rection6 for multiple comparisons are displayed where possible to provide an indication of

statistical precision and variance. However, for clarity of presentation we avoid displaying

a CI for all models and indicate significant differences in the text when appropriate.

4.4 Model parameters

We set the model hyperparameters for LDA and MCTM using previous literature (Griffiths

and Steyvers 2004). We set the a and b parameters to 0.1. Future work will investigate

estimating the hyperparameters directly from the available data, for example, using a Gibbs

Expectation-Maximisation approach to parameter learning (Wallach 2008).

We estimated the number of topics Z using a discriminative approach. Using the task of

collection selection directly, we evaluated a number of topic sizes using a training set of

data, observing the effect of varying Z on collection selection performance. For example,

Figure 5 illustrates the effect of increasing Z from 100 to 500 topics on the Trec6-100col-

global testbed. Results indicated that setting Z = 500 provided stable performance across

all testbeds, although the variation in performance was minimal across this range. Future

work will investigate alternative approaches to estimating Z through modelling using

hierarchical Dirichlet processes (Teh et al. 2006), where a non-parametric prior is placed

on Z allowing for the number of topics to be estimated directly from the data.

6 The Bonferroni correction is used when we are testing multiple hypotheses at the same time. It involves
using a significance level of a/n instead of a where n is the number of hypotheses being tested (i.e. the
number of systems being compared).
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5 Results

5.1 Homogenous testbeds

Figures 6, 7 and 8 display the results over the three homogenous bysource testbeds using

both metrics. The general trend across this set of testbeds was that CRCS(e), ReDDE-LM

and MCTM performed consistently better than the remaining methods. MCTM observed

comparable performance with CRCS(e) and ReDDE-LM, indicating better mean perfor-

mance at later cut-off k values, while CRCS(e) reported better early precision. The

experiments over the bysource testbeds also indicated that MCTM was better for the task

of collection selection than using non hierarchical LDA. Other trends include that ReDDE-

LM was on average more consistent than ReDDE, and CRCS(e) was more stable than

CRCS(l).

5.2 Heterogeneous testbeds

Figure 9 and 10 present the results of the two heterogeneous global testbeds. Again

comparable performance was comparable between the MCTM, CRCS(e) and ReDDE-LM

models. ReDDE-LM and CRCS(e) performed better at lower cut-offs for k while MCTM

improved over both models at higher cut-offs.

5.3 Performance across test beds

We also examined the consistency of techniques across test beds. To do so, we stand-

ardised the performance scores using the technique outlined by Webber et al. (2008). This

is a standard statistical technique used in meta-analysis, where the performance scores for

1

Fig. 5 Estimating the number of topics for MCTM model on the Trec6-100col-global testbed
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each method is transformed into a standard Normal distribution with mean zero and unit

variance, producing a dimensionless quantity irrespective of topic or testbed. The trans-

formed scores are also known as a ‘z’ or standard score. The standardised scores are then

converted onto a [0,1] scale as probabilities through cumulative density function for the

standard Normal distribution. The final transformed performance scores are therefore

comparable across testbeds. By adopting these technique we are able to analyse the con-

sistency of each method across the different test beds.

Figures 11 and 12 present the output of such an analysis for the R-value and relative

P@10 metrics, respectively. To simplify the analysis, we evaluated each technique at a

single cut off point of ten collections selected. Figure 11 and 12 (top) presents the nor-

malised scores from each test bed for all methods. Figures 11 and 12 (bottom) presents

the combined normalised scores across collections, allowing for an approximate

Fig. 6 Comparison over the TREC123-100col-bysource using the Rk (left) and the relative Pk@10 (right)
metrics

Fig. 7 Comparison over the TREC4-bysource testbed using the Rk (left) and the relative Pk@10 (right)
metrics
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comparison of all methods. We also indicate variability in this average standardised score

using a 95% confidence interval for the mean.

These results reiterate the findings from the analysis across the individual testbeds.

Focusing on the R-value metric, the MCTM and CRCS(e) methods are consistently the

better performing approaches. Although no significant different was observed between

both methods, MCTM indicated less variable performance than CRCS(e) as illustrated by

the smaller confidence interval around the average performance (see Fig. 11 (bottom)).

Both ReDDE methods recorded more variable retrieval performance, while LDA adapted

for collection selection was the worse performing method. Focusing on the relative P@10

metric, Figure 12, both MCTM and CRCS(e) again were the best performing methods

along with the ReDDE-LM approach.

Fig. 8 Comparison over the TREC6-bysource testbeds using the Rk (left) and the relative Pk@10 (right)
metrics

Fig. 9 Comparison over the Trec4-100col-global testbed

Inf Retrieval (2011) 14:390–412 407

123



Fig. 10 Comparison over the Trec6-100col-global testbed

Fig. 11 Standardised R value at ten collections selected. The top plot reports the standardised scores for
each technique and the bottom plot is the mean performance score across all collections. The 95%
confidence interval for the mean is also presented
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6 Discussion

In general we observed that no single technique dominates performance across the dif-

ferent testbeds. This indicates that there is a certain amount of variance in the performance

of state-of-the-art approaches depending on the test corpus.7 Moreover, the fact that

MCTM performed well (albeit not always the best) across the different collections pro-

vides strong indication of the quality of the technique. For example, although the approach

did not provide statistically significant improvements in comparison to CRCS(e), the

variability (or uncertainty) of performance was found to be smaller when using MCTM.

The results indicated that MCTM consistently outperforms the non-hierarchical LDA

approach. Showing that the additional modelling complexity results in a better estimation

for the likelihood of a query given the collection P(q|c). The results also indicated a trend

that MCTM improved at larger cut-off values. In other words, MCTM performed better as

more servers were selected. This suggests that using information from topically related

collections does improve the representation of collections. CRCS(e) and ReDDE-LM, by

Fig. 12 Standardised relative P@10 value at ten collections selected. The top plot reports the standardised
scores for each technique and the bottom plot is the mean performance score across all collections. The 95%
confidence interval for the mean is also presented

7 The variance in selection performance across different test collections has been observed previously by
researchers in DIR including French et al. (1998).
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design, perform well at lower cut-off values. This is because if a collection sample already

contains one or more relevant documents for the query, these documents are more likely to

be ranked high in the centralised sample index resulting in high precision. However, if a

collection representation does not contain a relevant document then that collection is less

likely to be ranked highly. The results would indicate that the MCTM model could be

addressing this limitation by implicitly smoothing collection representations with infor-

mation from other topically related collections.

Finally, it is possible that a combination of different techniques (in particular a mixture

of topic modelling and the simple language modelling used in ReDDE-LM) might result in

more robust performance across different testbeds. A fusion approach to collection

selection may result in significant gains combining a mixture of different strategies.

7 Conclusions

In this paper we have introduced a topic modelling approach to collection selection based

on a hierarchical latent Dirichlet allocation (MCTM) model with document groupings. We

have shown with extensive experiments that the topic model performs comparably with

state-of-the-art collection selection approaches and that it outperforms a non-hierarchical

topic modelling approach, LDA, when applied to this problem.

We note that while the MCTM model contains a number of parameters (four smoothing

parameters and a topics count), good or optimal values can be chosen for these parameters

based on model fit, by maximising the likelihood of the sampled documents. Thus the

parameter values are selected in a way that is independent of the collection selection

problem itself. Since the model parameters can be chosen to best fit the data and not to

maximise collection selection performance on training data, we can consider the MCTM

based resource ranking algorithm to be an unsupervised learning technique. Thus our

approach is somewhat different from that of central-rank-based collection selection (CRCS)

and other collection selection algorithms, where the parameters of the algorithm need to be

tuned using a set of test queries and relevance judgements for best performance on a new set

of resources. This tuning requires considerable effort in generating representative sets of

queries, and labelling relevant documents. Although estimating the MCTM is computa-

tionally intensive in comparison to other models, this is an off-line task and parameter

estimation can be parallelized (Asuncion et al. 2008). It is important to note, however, that

at retrieval time the model is comparable to existing collection selection models.

Topic modelling approaches such as LDA can deal to a certain extent with problems of

synonymy and polysemy due to the fact that topics are defined and discovered by the

co-occurrence of words across documents. Synonymy and polysemy are particularly

important problems for federated search and collection selection in particular because of

the small samples of documents that are often used to represent large collections. Thus

LDA and MCTM may offer a principled way of dealing with this problem. One of the

biggest problems with query-based sampling (QBS) of uncooperative collections is

missing vocabulary in the sample. The MCTM model may be capable of dealing with this

problem by ‘‘inferring’’ the presence in each sample of additional vocabulary terms from

high density topics, since the term distributions for those topics are estimated across the

samples from the different collections.

The usefulness of the MCTM model is not limited to collection selection. Once a model

has been learnt using samples of each collection, the model can be used for a number of

different purposes, including predicting the source of a document, assigning new
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documents to collections, determining the similarity between collections (based on their

topic representation), visualizing the contents of collections (e.g. using the topical

equivalent of a ‘‘tag cloud’’), and facilitating navigation through different collections.

Future work includes investigating more complicated collection models which allow for

correlation between topics within individual documents, such as correlated topic models

(Blei and Lafferty 2007) or Pachinko allocation (Li and McCallum 2006), to see if col-

lection ‘‘aware’’ versions of these models can be developed and adapted to the collection

selection problem. A second interesting direction would be to investigate hyperparameter

estimation (Wallach 2008) as well as non parametric topic modelling techniques based on

Dirichlet processes (Teh et al. 2006), where the optimal number of topics for the model is

discovered during model estimation.
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