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Abstract We discuss time-dependent factorial cumulants
in interacting nano-scale systems. Recent theoretical work
has shown that the full counting statistics of non-interacting
electrons in a two-terminal conductor is always general-
ized binomial and the zeros of the generating function are
consequently real and negative. However, as interactions
are introduced in the transport, the zeros of the generating
function may become complex. This has measurable con-
sequences: With the zeros of the generating function mov-
ing away from the real-axis, the high-order factorial cumu-
lants of the transport become oscillatory functions of time.
Here we demonstrate this phenomenon on a model of charge
transport through coherently coupled quantum dots attached
to voltage-biased electrodes. Without interactions, the fac-
torial cumulants are monotonic functions of the observation
time. In contrast, as interactions are introduced, the facto-
rial cumulants oscillate strongly as functions of time. We
comment on possible measurements of oscillating factorial
cumulants and outline several avenues for further investiga-
tions.

Keywords Full counting statistics · Noise · Factorial
cumulants · Interactions · Generalized master equations

1 Introduction

The full counting statistics (FCS) of charge transfers in sub-
micron electrical conductors has become an active field of
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research [1–3]. Initially, investigations of FCS were primar-
ily of theoretical interest, but several experiments [4–19]
have now clearly demonstrated that measurements of FCS
are achievable and much progress has been made: Non-
Gaussian voltage and current fluctuations have been mea-
sured in tunnel junctions [4, 6, 12] and quantum point con-
tacts [13], and the fourth and fifth current cumulants have
been detected in an avalanche diode [15]. Additionally, real-
time electron detection techniques [5, 7] have paved the way
for measurements of the FCS of charge transport in sin-
gle [9–11, 16–19] and double quantum dots [8, 14]. Follow-
ing the initial measurements of the third cumulant of trans-
port through quantum dots [8, 9], a series of experiments
have addressed the conditional FCS [11], the transient high-
order cumulants [16–18], and the finite-frequency FCS [19]
in quantum dot systems. The works on transient high-order
cumulants showed that high-order cumulants generically os-
cillate as functions of basically any system parameter as well
as the observation time [16].

Investigations of FCS are motivated by the expecta-
tion that more information about the fundamental transport
mechanisms can be extracted from the full statistical dis-
tribution of transferred charges than from the mean current
and shot noise only [1–3]. However, the fact that high-order
cumulants generically oscillate makes it less clear exactly
what information the high-order cumulants contain? In a re-
cent work [20], we have been drawing attention to the use
of factorial cumulants to characterize the FCS of charge
transport in nano-scale electrical conductors. So far, facto-
rial cumulants have only received limited attention in meso-
scopic physics (but see Refs. [21–24]). However, as we have
shown, the factorial cumulants never oscillate (unlike the or-
dinary cumulants) for non-interacting two-terminal scatter-
ing problems. This result is based on the recent finding that
the FCS for non-interacting electrons in a two-terminal scat-
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tering setup is always generalized binomial and the zeros of
the generating function for the FCS consequently are real
and negative [25, 26]; see Ref. [27] for a discussion of multi-
terminal conductors. In contrast, as interactions are intro-
duced in the transport, the zeros of the generating function
may become complex and the factorial cumulants start to
oscillate [20]. This indicates that factorial cumulants may be
useful to detect interactions among charges passing through
a nano-sized electrical conductor. As such we address the
fundamental question concerning FCS, namely what we can
learn about a physical system by measuring the transport
statistics beyond the mean current and the noise.

The purpose of this work is to illustrate these ideas on
a model of transport through coherently coupled quantum
dots. In previous work [20, 28], we considered systems de-
scribed by classical master equations. We now turn to a sit-
uation, where the quantum coherent coupling between two
parts of the conductor is important. The system we consider
is a double quantum dot (DQD) attached to external source
and drain electrodes. We employ a generalized master equa-
tion (GME) approach which allows us to treat strong cou-
pling to the leads together with the coherent evolution of
electrons inside the DQD. We treat two cases of particular
interest: In the non-interacting regime, the DQD can accom-
modate zero, one, or two electrons at a time, without addi-
tional charging energy required for the second electron. We
show that the factorial cumulants in this case do not oscillate
as functions of the observation time and from the high-order
factorial cumulants we extract the zeros of the generating
function which are real and negative. Next, we consider the
strongly interacting case, where double-occupation of the
DQD is excluded. In this case, the time-dependent factorial
cumulants oscillate—a clear signature of interactions in the
transport—and the zeros of the generating function are com-
plex.

In the interacting case, we find that the Fano factor F ,
i.e. the ratio of the shot noise over the mean current,
may either be super-Poissonian (F > 1) or sub-Poissonian
(F < 1). Super-Poissonian noise is typically taken as a sig-
nature of interactions in the transport [2], while no clear
conclusion can be drawn from a sub-Poissonian Fano fac-
tor. Interestingly, we find that the factorial cumulants may
oscillate in both situations, showing that the factorial cu-
mulants can provide a clear signature of interactions even
when the current fluctuations are sub-Poissonian. We con-
clude our theoretical investigations of factorial cumulants
by examining the influence of dephasing of electrons pass-
ing through the DQD [29, 30], for instance due to a nearby
charge detector.

The paper is organized as follows: in Sect. 2 we introduce
the essential terminology used in FCS and provide the basic
definitions with a special emphasis on factorial cumulants
and the concept of generalized binomial statistics. In Sect. 3

we then turn to the asymptotic behavior of high-order cu-
mulants (both ordinary and factorial cumulants) and show
why the high-order factorial cumulants do not oscillate for
transport of non-interacting electrons in a two-terminal con-
ductor. In Sect. 4 we introduce a model of electron trans-
port through a DQD described by a Markovian GME, while
Sect. 5 is devoted to the details of our calculations of time-
dependent factorial cumulants. In Sect. 6 we demonstrate
how interactions on the DQD give rise to clear oscillations of
the high-order factorial cumulants with the zeros of the gen-
erating function moving away from the negative real-axis
and into the complex plane. Finally, Sect. 7 is dedicated to a
summary of the work as well as our concluding remarks.

2 Full counting statistics & factorial cumulants

Full counting statistics concerns the quantum statistical
process of electron transport in mesoscopic conductors
[1–3, 20, 25–50]. The full counting statistics (FCS) is the
probability P(n, t) that n electrons have traversed a conduc-
tor during a time span [0, t] of duration t . The information
contained in the probability distribution may equally well be
encoded in the generating function (GF) defined as

G (z, t) =
∑

n

P (n, t)zn. (1)

The normalization condition for the probabilities,∑
n P (n, t) = 1, implies for the GF that G (z = 1, t) = 1.

Important information about the charge transport can be ob-
tained from the GF: If the transport process consists of sev-
eral independent sub-processes, the GF factors into a prod-
uct of the GFs corresponding to each of these sub-processes,
similarly to how the partition function in statistical mechan-
ics may be written as a product of the partition functions
for each independent sub-system. Elementary transport pro-
cesses can thus be identified by factorizing the GF. In the
case of transport of noninteracting electrons through a two-
terminal conductor, Abanov and Ivanov have shown recently
that the GF can be factorized into single-particle events of
binomial form [25, 26] (also see [45, 46]). Such distribu-
tions have been dubbed generalized binomial statistics [25,
26, 47], which will be of central importance in this work.

Several useful statistical functions and quantities can be
obtained from the GF. First, we can define a moment gener-
ating function (MGF)

M (z, t) = G
(
ez, t

)
, (2)

which generates the statistical moments of n by differentia-
tion with respect to the counting field z at z = 0

〈
nm

〉
(t) = ∂m

z M (z, t)|z→0 =
∑

n

nmP (n, t). (3)
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The MGF of a transport process composed of several inde-
pendent processes factors into a product of the correspond-
ing MGFs. However, the moments of the full process are
not related to the moments of the individual sub-processes
in a simple way. This motivates the definition of cumulants,
also known as irreducible moments. The cumulant generat-
ing function (CGF) is defined as the logarithm of the MGF

S (z, t) = log
[
M (z, t)

] = log
[
G

(
ez, t

)]
, (4)

which again delivers the cumulants of n by differentiation
with respect to z at z = 0:
〈〈
nm

〉〉
(t) = ∂m

z S (z, t)|z→0. (5)

The first cumulant is the mean of n, 〈〈n〉〉 = 〈n〉, the second
cumulant is the variance, 〈〈n〉〉 = 〈n2〉− 〈n〉2, and the third is
the skewness, 〈〈n3〉〉 = 〈(n−〈n〉)3〉. It is easy to show that the
cumulants of a transport process are simply the sum of the
cumulants corresponding to each independent sub-process.
Moreover, for a Gauss distribution only the first and second
cumulants are non-zero, while all higher cumulants vanish.
In this respect, one may use cumulants of a distribution as a
measure of (non-)Gaussianity.

The conventional moments and cumulants, as defined
above, have been investigated intensively in the field of FCS
[3]. The zero-frequency cumulants of the current are given
by the long-time limit of the cumulants of n as

〈〈
Im

〉〉 ≡ lim
t→∞

〈〈nm〉〉
t

. (6)

The current is treated as a continuous variable and continu-
ous variables are typically characterized by their cumulants.
However, another interesting class of statistical quantities
exists, which has received much less attention in FCS. These
are the factorial moments and the factorial cumulants, which
are mostly discussed in the context of discrete variables [51,
52]. The number of counted electrons n is obviously a dis-
crete variable, and it is natural to ask if the current cumu-
lants, as defined in Eq. (6), carry signatures of this discrete-
ness?

The factorial moments are again generated by a factorial
MGF, which can be defined based on the GF in Eq. (1). The
factorial MGF is defined as

MF (z, t) = G (z + 1, t) (7)

and the corresponding factorial moments read

〈
nm

〉
F
(t) ≡ ∂m

z MF (z, t)|z→0 = 〈
n(n − 1) · · · (n − m + 1)

〉

(8)

in terms of the ordinary moments. In analogy with the con-
ventional CGF, the factorial CGF is defined as

SF (z, t) = log
[
MF (z, t)

] = log
[
G (z + 1, t)

]
(9)

and the corresponding factorial cumulants read

〈〈
nm

〉〉
F
(t) ≡ ∂m

z SF (z, t)|z→0 = 〈〈
n(n− 1) · · · (n−m+ 1)

〉〉
.

(10)

As mentioned above, factorial moments and factorial cumu-
lants are of particular interest when considering probability
distributions of discrete variables. For example, for a Pois-
son process with rate Γ , which is the physical limit of rare
events, the FCS is well-known and reads

P(n, t) = (Γ t)n

n! e−Γ t . (11)

The corresponding GF then becomes

G (z, t) = eΓ t(z−1), (Poisson process) (12)

from which it is easy to show that the cumulants are

〈〈
nm

〉〉
(t) = Γ t, (Poisson process) (13)

for all m = 1,2, . . . . In contrast, the first factorial cumulant
reads

〈〈n〉〉F (t) = Γ t, (Poisson process), (14)

while all higher factorial cumulants are zero

〈〈
nm

〉〉
F
(t) = 0, m > 1 (Poisson process). (15)

Thus, similarly to how ordinary cumulants are useful as
measures of (non-)Gaussianity, we may use factorial cumu-
lants to characterize deviations of a distribution from Pois-
son statistics. It is also clear that a factorial cumulant of a
given order is the sum of the factorial cumulants of all in-
dependent sub-processes, in the same way as for the cumu-
lants.

Throughout this work we will rely on an important re-
sult by Abanov and Ivanov, who have shown that the FCS of
non-interacting electrons in a two-terminal scattering prob-
lem is always generalized binomial [25, 26]. In this case, the
GF takes the special form

G (z, t)
generalized=

binomial
z−Q

∏

i

(1 − pi + piz), (16)

where the (time-dependent) pi ’s are real with 0 ≤ pi ≤ 1.
Each factor in the product can be interpreted as a single bi-
nomial charge transfer event occurring with probability pi .
The factor in front, z−Q, corresponds to a deterministic
background charge transfer

Q =
∑

i

pi − 〈n〉 ≥ 0 (17)
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opposite to the positive direction of the mean current. For
uni-directional transport,

∑
i pi = 〈n〉 and Q = 0, whereas

Q is non-zero for bi-directional transport due to thermal
fluctuations for example. For uni-directional transport, the
(time-dependent) Fano factor then reads

F(t) ≡ 〈〈n2〉〉(t)
〈n〉(t)

generalized=
binomial

=
∑

i pi(1 − pi)∑
i pi

, (18)

which is always smaller than unity, corresponding to a Pois-
son process. Following this reasoning, a super-Poissonian
Fano factor, F > 1, can be taken as a sign of interactions.
Super-Poissonian noise was recently measured in an exper-
iment on transport of interacting electrons through a dou-
ble quantum dot [53]. Still, the noise may also be sub-
Poissonian, F < 1, in the presence of interactions.

3 High (factorial) cumulants

In this section we are interested in the generic behavior of
high-order (factorial) cumulants. To this end, we first discuss
an approximation of high derivatives [54, 55] and then show
how these ideas can be applied in the context of FCS.

In the following, we consider a generic (factorial) CGF
S(F ) and assume that it has a number of singularities zj in
the complex plane. Close to each of these singularities, we
may approximate the (factorial) CGF as

S(F )(z, t) 	 Aj

(zj − z)μj
, for z 	 zj (19)

for some constants Aj and μj . Here, the constant μj is
determined by the nature of the singularity, for instance
μj = − 1

2 corresponds to a square-root branch point, while
an integer value of μj would correspond to the order of a
pole at z = zj . Using the first Darboux approximation [16,
54, 55], we may now evaluate the (factorial) cumulant of or-
der m by differentiating the expression in Eq. (19) m times
with respect to z at z = 0 and sum over the contributions
from all singularities as

〈〈
nm

〉〉
(F )

	
∑

j

AjBm,μj

|zj |m+μj
e−i(m+μj ) arg zj . (20)

Here we have introduced the polar notation zj = |zj |ei arg zj

together with the factors

Bm,μj
≡ μj (μj + 1) · · · (μj + m − 1). (21)

Equation (20) is particularly useful if the sum can be re-
duced to only a few terms. For high orders, the singular-
ities closest to z = 0 dominate the sum, which leads to a
considerable simplification. For example, if a single com-
plex conjugate pair of singularities, z0 = |z0|i arg[z0] and

z∗
0 = |z0|−i arg[z0], are closest to z = 0, the high-order (fac-

torial) cumulants can be approximated as

〈〈
nm

〉〉
(F )

	 2|A0|Bm,μ0

|z0|m+μ0
cos

[
(m+μ0) arg z0 −argA0

]
. (22)

This result shows that the absolute value of the (factorial)
cumulants generically grows factorially with the cumulant
order m, due to the factors Bm,μ0 , and that they tend to os-
cillate as a function of any parameter, including time t , that
changes arg z0. Such universal oscillations have been ob-
served experimentally in electron transport through a quan-
tum dot [16–18].

In contrast, in the particular situation, where there is just
a single dominant singularity z0 on the real-axis, the high-
order (factorial) cumulants can be approximated as

〈〈
nm

〉〉
(F )

	 (−1)m+μ0
A0Bm,μ0

|z0|m+μ0
. (23)

In this case, the factorial growth with the order persists, but
no oscillations are expected as long as the dominant singu-
larity z0 stays on the real-axis.

Let us now consider non-interacting electrons in a two-
terminal conductor. As shown by Abanov and Ivanov [25,
26], the statistics is generalized binomial in this situation
and the GF takes on the form given by Eq. (16). The corre-
sponding cumulants are complicated functions of the proba-
bilities pi . In contrast, the factorial cumulants are simply

〈〈
nm

〉〉
F

generalized=
binomial

(−1)m−1(m − 1)!
[∑

i

pm
i − Q

]
. (24)

For uni-directional transport (Q = 0), the largest probability
pmax will dominate the high factorial cumulants, which can
be approximated as
〈〈
nm

〉〉
F

	 (−1)m−1(m − 1)!pm
max. (25)

This expression can also be understood from Eq. (20) by
noting that the factorial CGF has logarithmic singularities
at values of the counting field z, where the factorial MGF is
zero. Combining Eqs. (7) and (16), we easily see that the fac-
torial MGF has zeros at zj = −1/pj ≤ −1. Moreover, the
zero corresponding to the largest probability pmax is closest
to z = 0 and will dominate the high factorial cumulants as
seen in Eq. (25).

We have seen above that high-order cumulants tend to
oscillate as functions of basically any parameter, with or
without interactions. In contrast, as our analysis also shows,
the high-order factorial cumulants never oscillate for non-
interacting electrons in a two-terminal scattering problem.
This behavior can be traced back to the factorization of the
GF in Eq. (16), which implies that the singularities of the
factorial CGF are always real and negative. This makes fac-
torial cumulants promising candidates for the detection of
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interactions in FCS. In particular, oscillating factorial cumu-
lants must be due to interactions. In our previous work [20],
we employed these ideas to incoherent electron transport
through a single quantum dot. We showed how interactions
may cause the singularities of the factorial CGF to move
away from the real-axis and into the complex plane, making
the high-order factorial cumulants oscillate.

In the following we apply these ideas to electron transport
through a DQD, where the electrons may oscillate quan-
tum coherently between the two quantum dots. In contrast
to our previous work [20], we consider not only the time-
dependent factorial cumulants of the transferred charge, but
also the zero-frequency factorial cumulants of the current.

4 Coulomb blockade quantum dots

We consider two-terminal nano-scale conductors connected
to source and drain electrodes. Charge transport is described
using a generalized master equation (GME) for the reduced
density matrix ρ̂ of the conductor obtained by tracing out the
electronic leads. The GME accounts for the coherent evolu-
tion of charges inside the conductor as well as the transfer
of electrons between the conductor and the leads. To evalu-
ate the FCS, it is convenient to unravel the reduced density
matrix with respect to the number of electrons n that have
been collected in the drain electrode during the time span
[0, t] [56, 57]. With this n-resolved density matrix ρ̂(n, t) at
hand, the FCS is obtained by tracing over the states of the
conductor

P(n, t) = Tr
[
ρ̂(n, t)

]
. (26)

Similarly, we recover the original reduced density matrix by
summing over n, i.e.

ρ̂(t) =
∑

n

ρ̂(n, t). (27)

From these definitions, the GF reads

G (z, t) =
∑

n

Tr
[
ρ̂(n, t)

]
zn = Tr

[
ρ̂(z, t)

]
, (28)

where we have introduced the z-dependent reduced density
matrix

ρ̂(z, t) =
∑

n

ρ̂(n, t)zn. (29)

The particular conductor we now discuss consists of two
quantum dots in series attached to source and drain elec-
trodes. A schematic of the system is shown in Fig. 1. The
inter-dot Coulomb interaction can be tuned, so that both
regimes of noninteracting and interacting electrons can be

Fig. 1 Double quantum dot (DQD) coupled to a QPC charge detec-
tor. The upper panel shows the DQD. The tunnel coupling between
the quantum dots is denoted as Ω and EL and ER are the single-par-
ticle levels of the two quantum dots with detuning ε ≡ ER − EL. The
tunneling rate from (to) the right (left) quantum dot to (from) the right
(left) reservoir dot is denoted as ΓR(L). The lower panel shows the QPC
charge detector, which measures the charge occupation of the DQD.
The QPC may couple asymmetrically to the DQD such that the charge
occupation of the individual quantum dots can be resolved

realized and compared. Disregarding the electronic spin de-
gree of freedom (for example due to a strong magnetic field),
the double quantum dot can be occupied by either zero, one,
or two (additional) electrons. Experimentally, the charge on
the quantum dots can be measured using a nearby quantum
point contact (QPC), whose conductance is sensitive to the
occupations of the individual quantum dots [9, 14]. This
charge detection protocol makes it possible to deduce the
number of electrons that have passed through the DQD in
a given time span. If the QPC is not sensitive to the charge
occupations of the individual quantum dots, but only to the
total charge, the measurement is not expected to destroy
the coherent oscillations between the quantum dots. On the
other hand, if the QPC measures the charge states of the in-
dividual quantum dots, it introduces decoherence in the dy-
namics of electrons inside the DQD [58, 59].

The full many-body Hamiltonian of our system reads

Ĥ = ĤDQD + Ĥleads + ĤT + ĤQPC + ĤDQD−QPC. (30)

It consists of the Hamiltonian of the DQD

ĤDQD = ELâ
†
LâL+ERâ

†
RâR +Ω

(
â

†
LâR + â

†
RâL

)+Un̂Ln̂R,

where the operators â
†
L and â

†
R create an electron on the left

and right quantum dot level with energy EL or ER , respec-
tively. The tunnel coupling between the levels is denoted as
Ω and n̂α = â†

αâα = 0,1, α = L,R is the occupation num-
ber operator of each quantum dot. The inter-dot Coulomb
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interaction is denoted as U . The electrons in the leads are
treated as non-interacting and are given by the Hamiltonian

Ĥleads =
∑

k,α=L,R

εkαâ
†
kαâkα, (31)

where the operators â
†
kα create an electron in lead α = L,R

with momentum k and energy εkα . The coupling between
the DQD and the leads is accounted for by the standard
Hamiltonian

ĤT =
∑

k,α=L,R

(
tkαâ

†
kαâα + t∗kαâ†

αâkα

)
, (32)

which connects the left (right) lead to the left (right) quan-
tum dot. Finally, the QPC is modeled as a tunnel barrier

ĤQPC =
∑

k,α=L,R

ε̄kαc
†
kαc

†
kα +

∑

k,k′

(
t̄kk′ ĉ†

kLĉk′R + t̄∗kk′ ĉ
†
kRĉk′L

)
,

where the first sum corresponds to the electronic reservoirs
on the left (α = L) and right side (α = R) of the QPC and
the second sum describes the coupling of states in different
leads with tunnel coupling t̄kk′ .

If the QPC only couples to the total charge of the DQD,
the charge detection is not expected to cause decoherence of
the coherent oscillations of electrons inside the DQD. It is,
however, interesting to investigate how an asymmetrically
coupled QPC will affect the transport in the DQD. To this
end, we assume that the QPC, besides the coupling to the
total charge, has an additional capacitive coupling to the left
quantum dot only. The charge occupation of the left quan-
tum dot modulates the transparency of the QPC according
to the Hamiltonian

ĤDQD−QPC =
∑

k,k′
n̂L

(
δt̄kk′ ĉ†

kLĉk′R + δt̄∗kk′ ĉ
†
kRĉk′L

)
. (33)

Here δt̄kk′ is the change of the QPC tunnel coupling in re-
sponse to an (additional) electron occupying the left quan-
tum dot.

We now follow Gurvitz in deriving a Markovian GME
for the reduced density matrix ρ̂DQD of the DQD obtained
by tracing out the electronic leads and the QPC. The de-
tails of the derivation can be found in Refs. [58, 59]. We
assume that a large bias is applied between the electronic
leads, such that electron transport is uni-directional from the
left to the right electrode. The electronic reservoirs have a
continuous density of states and the discrete levels of the
DQD are situated well inside the transport window. Under
these assumptions, we may formulate a Markovian GME for
the n-resolved reduced density matrix ρ̂DQD(n, t). Its diag-
onal elements are the probabilities for the DQD to be either
empty, having only left or right quantum dot occupied, or to
be doubly-occupied, while n electrons have been collected
in the right lead during the measuring time t .

The diagonal elements of ρ̂DQD(n, t) are denoted as
ρ0(n, t), ρL(n, t), ρR(n, t), and ρd(n, t). Additionally, we
need the coherences between the left and the right quan-
tum dot levels, denoted as ρLR(n, t) and ρRL(n, t). Coher-
ences between states with different charge occupations are
excluded. Since the off-diagonal elements fulfil ρRL(n, t) =
ρ∗

LR(n, t), it suffices to consider the real and imaginary parts
of ρLR(n, t). The elements of the reduced density matrix can
then be collected in the vector

∣∣ρ(n, t)
〉〉 ≡ [

ρ0, ρL,ρR,�[ρLR],[ρLR], ρd

]T
(n, t). (34)

The corresponding z-dependent reduced density matrix fol-
lows from the definition in Eq. (29) and reads

∣∣ρ(z, t)
〉〉 ≡

∑

n

∣∣ρ(n, t)
〉〉
zn. (35)

The Markovian GME then takes the form

∂t

∣∣ρ(z, t)
〉〉 = M(z)

∣∣ρ(z, t)
〉〉
, (36)

with the rate matrix reading

M(z) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−ΓL 0 zΓR 0 0 0
ΓL 0 0 0 −2Ω zΓ̃R

0 0 −ΓR − Γ̃L 0 2Ω 0
0 0 0 −Γ −ε 0
0 Ω −Ω ε −Γ 0
0 0 Γ̃L 0 0 −Γ̃R

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(37)

where ε ≡ ER −EL is the energy detuning of the two quan-
tum dot levels. Additionally, the rate

Γ = 1

2
(ΓR + Γ̃L + γ ) (38)

determines the decay of the off-diagonal elements of
ρ̂DQD(n, t) and the broadening of the electronic levels. The
electronic tunneling rates depend on the charge occupation
of the DQD and read

Γα = 2π

�
Dα(Eα)|tkα|2, α = L,R (39)

and

Γ̃α = 2π

�
Dα(Eα + U)|tkα|2, α = L,R, (40)

where Dα denotes the density of states in lead α = L,R, and
the tunneling amplitudes tkα are assumed to be
k-independent. Here, ΓL is the tunneling rate from the left
lead onto the left quantum dot, if the DQD is empty initially.
On the other hand, if the right quantum dot is already occu-
pied, electrons tunnel into the left quantum dot at rate Γ̃L.
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Similarly, electrons tunnel from the right quantum dot into
the right lead with rate ΓR , if the left quantum dot is empty,
and with rate Γ̃R , if the left quantum dot is occupied. With-
out inter-dot interactions, U = 0, we have ΓL(R) = Γ̃L(R).
Factors of z have been included in the off-diagonal elements
of M(z) corresponding to charge transfers from the right
quantum dot to the right lead.

Finally, the decoherence rate introduced by the QPC is
given by [59]

γ = eVd

2π�
(
√

T −
√

T̃ )2, (41)

where Vd is the bias applied across the QPC. The transmis-
sion probability for electrons to tunnel through the QPC is

T = (2π)2|t̄k,k′ |2DLDR, (42)

when the left quantum dot is empty. In contrast, when the
left quantum dot is occupied, the QPC transmission reads

T̃ = (2π)2|t̄k,k′ + δt̄k,k′ |2DLDR. (43)

Above, the symbols DL(R) denote the density of states in
the left (right) lead of the QPC.

5 Calculations

We now evaluate the FCS by formally solving Eq. (36). We
consider fluctuations in the stationary state, which we sup-
pose has been reached at t = 0, when we start counting
charges. The stationary state is denoted as |0〉〉 and is ob-
tained by solving M(z = 1)|0〉〉 = 0 with the normalization
condition 〈〈0̃|0〉〉 = 1, where 〈〈0̃| = [1,1,1,0,0,1]. From
Eq. (36), the GF can now be written as

G (z, t) = 〈〈0̃|eM(z)t |0〉〉. (44)

It is easy to verify that this expression fulfils the condition
G (z = 1, t) = 1 for the GF. It is a general, formally exact
result, which yields the complete FCS at any time given
the matrix M(z). However, in practice the expression may
be difficult to evaluate due to the matrix exponentiation, in
particular if the aim is to calculate the high (factorial) mo-
ments or (factorial) cumulants. In our recent work [20], we
developed a simple method to evaluate the high-order, time-
dependent statistics for these types of problems and we will
also be using this method here. For details of the method,
we refer the interested reader to Appendix A of Ref. [20].

In addition to the finite-time FCS, it is interesting to in-
vestigate the GF at long times. In this limit, the GF takes on
a large-deviation form

G (z, t) ∝ etΘ(z), (45)

where the rate of change is determined by the eigenvalue of
M(z) with the largest real-part, i.e.

Θ(z) = max
j

{
λj (z)

}
. (46)

From Θ(z) we may obtain the (factorial) CGF for the zero-
frequency cumulants of the current. The zero-frequency cu-
mulants of the current are

〈〈
Im

〉〉 = ∂m
z Θ

(
ez

) ∣∣
z→0, (47)

while the corresponding factorial cumulants read

〈〈
Im

〉〉
F

= ∂m
z Θ(z + 1)|z→0. (48)

In general, we can assume that the matrix M(z) at z = 1 has
a single eigenvalue equal to zero, i.e. λ0(1) = 0, correspond-
ing to the (unique) stationary state, while all other eigenval-
ues have negative real-parts, ensuring relaxation toward the
stationary state. For values of z close to unity, we expect
that λ0(z) develops adiabatically from 0 and still determines
Θ(z) such that Θ(z) = λ0(z) for z 	 1. The derivatives of
λ0(z) with respect to z at z = 1 then determines the (fac-
torial) cumulants of the current according to Eqs. (47) and
(48).

Again, for large matrices M(z), it might not be viable
to directly calculate the eigenvalue λ0(z) and its derivatives
with respect to z at z = 1. This problem may be circum-
vented by considering the calculation of λ0(z) as a per-
turbation problem around z = 1. The matrix M(z) is writ-
ten as M(z) = M(1) + δM(z), where M(1) is the unper-
turbed matrix with eigenvalue λ0(z = 1) = 0 and δM(z) =
M(z) − M(1) is the perturbation. The eigenvalue λ0(z) can
then be calculated order by order in z using the recursive
perturbation method developed in Refs. [41, 42, 60]. This
method yields the (factorial) cumulants of the current and
will be used below.

Finally, it is important to understand the connection be-
tween the FCS at finite times and in the long-time limit. As
discussed in the previous section, the high (factorial) cumu-
lants are related to the singularities of the (factorial) CGF in
the complex plane of z. At finite times, the (factorial) CGF
has logarithmic singularities at values of z, where the (facto-
rial) MGF is zero. In contrast, in the long-time limit, the sin-
gularities of the (factorial) CGF are determined by the singu-
larities of the eigenvalues of M(z). Typically, the eigenval-
ues have square-root branch points at the degeneracy points,
where two eigenvalues are equal, i.e. λ0(zc) = λ1(zc) for
some zc . Considering now the GF at finite times close to
such a degeneracy point, we may approximate the GF in
Eq. (44) as

G (z, t) =
∑

j

cj (z)e
λj (z)t 	 c0(z)e

λ0(z)t + c1(z)e
λ1(z)t ,

(49)



338 J Comput Electron (2013) 12:331–342

Fig. 2 Fano factor versus the energy detuning ε. Results are shown
with (U �= 0) and without (U = 0) strong Coulomb interactions on the
DQD. With strong Coulomb interactions, only 0 or 1 electrons can
occupy the DQD. In contrast, without Coulomb interactions the DQD
may also be doubly occupied. The QPC is coupled symmetrically to the
DQD (γ = 0). The other parameters are ΓR = 1

3 ΓL and Ω = �ΓL. The
squares and stars mark ε = 0.8Ω and ε = 2.2Ω , respectively (Color
figure online)

where the coefficients cj (z) depend on the initial condition
and only the contributions from the two largest eigenvalues
have been included. Solving for the zeros of G (z, t), we ob-
tain the equations

λ0(z) = λ1(z) + log{c1(z)/c0(z)} + iπ(2n + 1)

t
, (50)

where n is an integer. Importantly, we see that the second
term on the right hand side vanishes in the limit t → ∞. This
analysis shows that the zeros of the GF as functions of time
move towards the solutions of the equation λ0(z) = λ1(z),
which also determines the branch-point singularities in the
long-time limit cf. the discussion above. This connects the
finite-time FCS with its long-time behavior.

6 Results

We are now ready to illustrate the use of factorial cumu-
lants on the concrete example of charge transport through
a DQD. We analyze several different parameter regimes of
the system which are discussed in turn. To begin with, it is
instructive to consider the Fano factor F of the transport in
the long-time limit

F = 〈〈n2〉〉(t)
〈n〉(t)

∣∣∣∣
t→∞

= 〈〈I 2〉〉
〈I 〉 (51)

given as the ratio of the zero-frequency current noise over
the mean current. Figure 2 shows the Fano factor as a func-
tion of the energy dealignment ε without any decoherence
due to the QPC, γ = 0. We present results with (U �= 0) and
without interactions (U = 0). For the non-interacting case,

Fig. 3 Time-dependent factorial cumulants without interactions
(U = 0). The factorial cumulants 〈〈nm〉〉(t) of order m = 11 through
m = 14 are shown as functions of time. The results correspond to the
point marked with a red star in Fig. 2. The factorial cumulants do not
oscillate, as expected without interactions. The full lines indicate nu-
merical results, while circles show the approximation given by Eq. (25)
(Color figure online)

the Fano factor is never super-Poissonian (F > 1) as ex-
pected for uni-directional transport with generalized bino-
mial statistics. In contrast, for the interacting case there are
certain ranges of the dealignment, where the noise becomes
super-Poissonian. However, there is also a range of dealign-
ments around ε = 0, where the noise is sub-Poissonian
(F < 1), and in this regime a measurement of the Fano fac-
tor would not give any clear evidence of interactions. We
note that recent noise measurements on transport through
vertically coupled quantum dots are in qualitative agreement
with the results shown for the interacting case [53, 61, 62].

We mark two points on the curves corresponding to val-
ues of the dealignment, where the noise in the interacting
case is either sub-Poissonian (squares) or super-Poissonian
(stars). As we demonstrate now, the factorial cumulants give
clear signatures of the interactions even in the cases with
sub-Poissonian noise, where no conclusions can be drawn
from the Fano factor alone. (We note that we also find os-
cillating factorial cumulants with symmetric rates ΓL = ΓR ,
where the noise is always sub-Poissonian.)

In Fig. 3 we show the time-dependent factorial cumu-
lants for the non-interacting case, corresponding to the point
marked with a star in Fig. 2. For the point marked with a
square similar results are obtained. Without interactions, the
FCS is generalized binomial and the factorial cumulants are
expected to follow Eqs. (24) and (25), which predict no os-
cillations of the factorial cumulants as functions of time or
any other parameter. This prediction is confirmed by Fig. 3,
where a clearly monotonic behavior is found as a function of
time. Moreover, from the calculated factorial cumulants, we
may extract pmax in Eq. (25) as a function of time. Insert-
ing pmax back into Eq. (25), we can compare this expression
with the numerical results for the high-order factorial cumu-
lants. In Fig. 3, the predicted behavior based on Eq. (25) is
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Fig. 4 Time-dependent factorial cumulants with strong Coulomb in-
teractions. The factorial cumulants 〈〈nm〉〉F (t) of order m = 11 through
m = 14 are shown as functions of time. The panels correspond to the
points marked with a blue square (a) and a blue star (b) in Fig. 2. The
curves are shifted for clarity. We show the logarithm of the absolute

value of the factorial cumulants such that downwards-pointing spikes
correspond to a factorial cumulant going through zero. Full lines are
numerical results, whereas empty circles correspond to the approxima-
tion given by Eq. (22) (Color figure online)

shown with circles and is seen to be in very good agreement
with the full numerics.

Next, we turn to the time-dependent factorial cumulants
in the interacting case. In Fig. 4 we show the high-order
factorial cumulants corresponding to the two dealignments
marked with stars and squares in Fig. 2. In this case, the
factorial cumulants oscillate as functions of time in con-
trast to the non-interacting situation, where no oscillations
are observed. To best visualize the oscillations, we show the
logarithm of the absolute value of the factorial cumulants.
Downwards-pointing spikes then correspond to the factorial
cumulants passing through zero and changing sign. The os-
cillating factorial cumulants are a clear signature of inter-
actions in the transport and they show that the FCS for this
system is not generalized binomial, neither when the noise
is sub-Poissonian (square) nor super-Poissonian (star).

Again, we can understand the high-order factorial cumu-
lants using the expressions from Sect. 3. In this case, when
the FCS is not generalized binomial, the high-order facto-
rial cumulants are expected to follow Eq. (22), which as-
sumes that the factorial CGF has a complex-conjugate pair
of singularities. At finite times, the factorial FCS has loga-
rithmic singularities corresponding to the zeros of the facto-
rial MGF. With only a single dominant pair of singularities,
z0 and z∗

0, the expression for the high-order factorial cumu-
lants, Eq. (22) simplifies for finite times to [16, 20]

〈〈
nm

〉〉
(F )

	 −2(m − 1)!
|z0|m cos

(
m arg[z0]

)
. (52)

From four consecutive high-order factorial cumulants, we
can solve this relation for the dominant pair of singular-
ities as functions of time using the methods described in
Refs. [20, 42, 63] (see e.g. Appendix B of Ref. [20]). Insert-
ing the solution back into Eq. (52), we can benchmark the

Fig. 5 Motion of the dominant singularities with time. The singular-
ities have been extracted from the high order factorial cumulants in
Figs. 3, 4 and 6. The blue stars and squares are complex singularities
corresponding to the oscillations of the factorial cumulants in Fig. 4.
The red stars and squares are real singularities corresponding to the
non-interacting case considered e.g. in Fig. 3. The encircled points cor-
respond to the long-time limits considered in Fig. 6. The time is varied
from ti = �/Ω to tf = 50�/Ω in steps of t = �/Ω (Color figure
online)

approximation against the numerical results. The approxi-
mation is shown with circles in Fig. 4 and is seen to be in
excellent agreement with the full numerics.

Having extracted the dominant singularities as functions
of time in the non-interacting and interacting cases, we may
investigate their motion in the complex plane. In Fig. 5 we
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show the dominant singularities as they move with time. In
the non-interacting case (U = 0), corresponding to the fac-
torial cumulants shown in Fig. 3, the dominant singularity
(marked with a red star) moves along the negative real-axis
as expected for generalized binomial statistics. This behav-
ior should be contrasted with the interacting case (U > 0),
corresponding to the factorial cumulants shown in Fig. 4.
In this case, the dominant singularities (marked with blue
squares and stars) are no longer real and they now move
in the complex plane as functions of time. We stress that
this behavior cannot occur for a non-interacting system and
should thus be taken as a signature of interactions.

In Fig. 5, we also indicate the points in the complex plane
to which the dominant singularities move in the long-time
limit (encircled points). As discussed in the previous sec-
tion, these points correspond to the dominant singularities
of the factorial CGF for the zero-frequency factorial cumu-
lants of the current. We extract the position of these singu-
larities by calculating the high order factorial cumulants of
the current 〈〈Im〉〉F using the recursive scheme developed in
Ref. [42], here adapted to the calculation of factorial cumu-
lants. The results for the factorial cumulants of the current
are shown in Fig. 6 as functions of the order m. Together
with the numerical results, we show the approximation in
Eq. (22) with full lines. From four consecutive high-order
factorial cumulants we have extracted the parameters enter-
ing Eq. (22) using the method proposed in Ref. [42]. Typi-
cally, in the long-time limit, the singularities are square-root
branch points such that μj = −1/2 in Eq. (22). Figure 6
shows that Eq. (22) provides an excellent approximation of
the numerical results and it allows us to extract the dom-
inant singularities in the long-time limit (encircled points)
in Fig. 5. As anticipated, the dominant singularities at finite
times move towards the long-time singularities. In the long-
time limit, the singularities cease to move with time and the
high-order (factorial) cumulants will no longer oscillate as
function of time (but still as functions of other parameters).

Finally, we turn to the influence of detector-induced de-
phasing. In Fig. 7 we consider the situation where the QPC
charge detector is asymmetrically coupled to the two quan-
tum dots, thereby causing dephasing of electrons passing
through the DQD. Due to strong Coulomb interactions,
the DQD can only be either empty or occupied by one
(additional) electron at a time. Without detector-dephasing
(γ = 0), clear oscillations of the tenth factorial cumulant of
the current are observed as a function of the energy dealign-
ment ε. However, as the dephasing rate is increased, the os-
cillations are gradually washed out and they essentially van-
ish in the strong dephasing limit with γ = 0.4Ω/�. Thus, in
this case, dephasing of the coherent oscillations of electrons
inside the DQD seems to reduce the signatures of interac-
tions in the FCS.

Fig. 6 Factorial cumulants 〈〈Im〉〉F of the current as functions of their
order m. We compare numerical results (marked with symbols) and the
approximation (full line) given by Eq. (22). Panel (a) corresponds to
the point marked with a blue square in Fig. 2. Panel (b) corresponds
to the point marked with a blue star. The corresponding dominant sin-
gularities extracted from the numerical results are encircled in Fig. 5
(Color figure online)

Fig. 7 Factorial current cumulants with detector-induced dephasing.
The parameters are Ω = �ΓL and ΓR = (1/3)ΓL and γ = 0 (black),
0.1Ω/� (red), 0.2Ω/� (purple), 0.4Ω/� (blue). The curves are shifted
for clarity (Color figure online)

7 Conclusions

We have discussed our recent proposal to detect interactions
among electrons passing through a nano-scale conductor by
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measuring time-dependent high-order factorial cumulants.
For non-interacting electrons in a two-terminal scattering
problem, the full counting statistics is always generalized bi-
nomial, the zeros of the generating function are real and neg-
ative, and consequently the factorial cumulants do not oscil-
late as functions of the observation time or any other system
parameter. In contrast, oscillating factorial cumulants must
be due to interactions in the charge transport. In cases where
the factorial cumulants oscillate, the zeros of the generating
function have moved away from the real-axis and into the
complex plane. As we have shown, the motion of the dom-
inant zeros of the generating function can be deduced from
the oscillations of the high order factorial cumulants.

Here, we have illustrated these ideas with a system con-
sisting of two coherently coupled quantum dots attached to
voltage-biased electronic leads. The dynamics of the DQD
was described using a Markovian generalized master equa-
tion which allowed us to treat strong coupling to the leads
together with the coherent evolution of electrons inside the
DQD. Interestingly, we found that even in cases where the
Fano factor of the transport is sub-Poissonian, the high-
order factorial cumulants still enable us to detect interac-
tions among the charges passing through the DQD. Finally,
we discussed the influence of detector-induced dephasing on
the FCS and found that, for this model, such dephasing pro-
cesses may reduce the oscillations of the high order factorial
cumulants.

Our work leaves several open questions for future re-
search. It is still not clear exactly under what conditions in-
teractions cause oscillations of the factorial cumulants. This
will require further careful investigations of the singularities
of generating functions in FCS, for example as in the recent
work on singularities in FCS for molecular junctions [64].
The answer to this question may moreover come from future
measurements of oscillating factorial cumulants in interact-
ing nano-scale conductors. In this work, we have focused
on Markovian master equations, and it would be interesting
to investigate similar phenomena for non-Markovian sys-
tems [40–44]. Finally, a new and promising direction of re-
search combines the zeros of generating functions and high
order statistics with dynamical phase transitions in stochas-
tic many-body systems [65–67].
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des, T., Haug, R.J.: Proc. Natl. Acad. Sci. USA 106, 10116 (2009)
17. Fricke, C., Hohls, F., Flindt, C., Haug, R.J.: Physica E 42, 848

(2010)
18. Fricke, C., Hohls, F., Sethubalasubramanian, N., Fricke, L., Haug,

R.J.: Appl. Phys. Lett. 96, 202103 (2010)
19. Ubbelohde, N., Fricke, C., Flindt, C., Hohls, F., Haug, R.J.: Nat.

Commun. 3, 612 (2012)
20. Kambly, D., Flindt, C., Büttiker, M.: Phys. Rev. B 83, 075432

(2011)
21. Beenakker, C.W.J., Schomerus, H.: Phys. Rev. Lett. 93, 096801

(2004)
22. Song, H.F., Flindt, C., Rachel, S., Klich, I., Le Hur, K.: Phys.

Rev. B 83, 161408(R) (2011)
23. Song, H.F., Rachel, S., Flindt, C., Klich, I., Laflorencie, N., Le

Hur, K.: Phys. Rev. B 85, 035409 (2012)
24. Komijani, Y., Choi, T., Nichele, F., Ensslin, K., Ihn, T., Reuter, D.,

Wieck, A.D.: (2013). arXiv:1302.2200
25. Abanov, A.G., Ivanov, D.A.: Phys. Rev. Lett. 100, 086602 (2008)
26. Abanov, A.G., Ivanov, D.A.: Phys. Rev. B 79, 205315 (2009)
27. Kambly, D., Ivanov, D.A.: Phys. Rev. B 80, 193306 (2009)
28. Kambly, D., Flindt, C., Büttiker, M.: J. Phys. Conf. Ser. 400,

042026 (2012)
29. Kießlich, G., Samuelsson, P., Wacker, A., Scholl, E.: Phys. Rev. B

73, 033312 (2006)
30. Braggio, A., Flindt, C., Novotný, T.: J. Stat. Mech. 2009, P01048

(2009)
31. Ivanov, D.A., Levitov, L.S.: Pis’ma Zh. Eksp. Teor. Fiz. 58, 450

(1993)
32. Ivanov, D.A., Levitov, L.S.: JETP Lett. 58, 461 (1993)
33. Levitov, L.S., Lee, H., Lesovik, G.B.: J. Math. Phys. 37, 4845

(1996)
34. Nazarov, Y.V., Bagrets, D.A.: Phys. Rev. Lett. 88, 196801 (2002)
35. Pilgram, S., Jordan, A.N., Sukhorukov, E.V., Büttiker, M.: Phys.

Rev. Lett. 90, 206801 (2003)
36. Nagaev, K.E., Pilgram, S., Büttiker, M.: Phys. Rev. Lett. 92,

176804 (2004)
37. Bagrets, D.A., Nazarov, Y.V.: Phys. Rev. B 67, 085316 (2003)
38. Emary, C., Marcos, D., Aguado, R., Brandes, T.: Phys. Rev. B 76,

161404 (2007)
39. Marcos, D., Emary, C., Brandes, T., Aguado, R.: New J. Phys. 12,

123009 (2010)
40. Braggio, A., König, J., Fazio, R.: Phys. Rev. Lett. 96, 026805

(2006)

http://arxiv.org/abs/arXiv:1302.2200


342 J Comput Electron (2013) 12:331–342

41. Flindt, C., Novotný, T., Braggio, A., Sassetti, M., Jauho, A.P.:
Phys. Rev. Lett. 100, 150601 (2008)

42. Flindt, C., Novotný, T., Braggio, A., Jauho, A.P.: Phys. Rev. B 82,
155407 (2010)

43. Marcos, D., Emary, C., Brandes, T., Aguado, R.: Phys. Rev. B 83,
125426 (2011)

44. Emary, C., Aguado, R.: Phys. Rev. B 84, 085425 (2011)
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