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Abstract Fibrosis is considered as a central factor in the
loss of renal function in chronic kidney diseases. The
origin of fibroblasts and myofibroblasts that accumulate
in the interstitium of the diseased kidney is still a matter
of debate. It has been shown that accumulation of
myofibroblasts in inflamed and fibrotic kidneys is asso-
ciated with upregulation of fibroblast-specific protein 1
(FSP1, S100A4), not only in the renal interstitium but
also in the injured renal epithelia. The tubular expres-
sion of FSP1 has been taken as evidence of myofibro-
blast formation by epithelial–mesenchymal transition
(EMT). The identity of FSP1/S100A4 cells has not been
defined in detail. We originally intended to use FSP1/
S100A4 as a marker of putative EMT in a model of
distal tubular injury. However, since the immunoreac-
tivity of FSP1 did not seem to fit with the distribution
and shape of fibroblasts or myofibroblasts, we under-
took the characterization of FSP1/S100A4-expressing
cells in the interstitium of rodent kidneys. We performed
immunolabeling for FSP1/S100A4 on thin cryostat sec-
tions of perfusion-fixed rat and mouse kidneys with
peritubular inflammation, induced by thiazides and
glomerulonephritis, respectively, in combination with
ecto-5¢-nucleotidase (5¢NT), recognizing local cortical

peritubular fibroblasts, with CD45, MHC class II, CD3,
CD4 and Thy 1, recognizing mononuclear cells, with
alpha smooth muscle actin (aSMA), as marker for
myofibroblasts, and vimentin for intracellular interme-
diate filaments in cells of mesenchymal origin. In the
healthy interstitium of rodents the rare FSP1/S100A4+
cells consistently co-expressed CD45 or lymphocyte
surface molecules. Around the injured distal tubules of
rats treated for 3–4 days with thiazides, FSP1+/
S100A4+, 5¢NT+, aSMA+, CD45+ and MHC clas-
s II+ cells accumulated. FSP1+/S100A4+ cells con-
sistently co-expressed CD45. In the inflamed regions,
aSMA was co-expressed by 5¢NT+ cells. In glomeru-
lonephritic mice, FSP1+/S100A4+ cells co-expressed
Thy 1, CD4 or CD3. Thus, in the inflamed interstitium
around distal tubules of rats and of glomerulonephritic
mice, the majority of FSP1+ cells express markers of
mononuclear cells. Consequently, the usefulness of
FSP1/S100A4 as a tool for detection of (myo)fibroblasts
in inflamed kidneys and of EMT in vivo is put into
question. In the given rat model the consistent co-
expression of aSMA and 5¢NT suggests that myofibro-
blasts originate from resident peritubular fibroblasts.
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Introduction

In the kidney, inflammatory and fibrotic lesions are
characterized by the occurrence of myofibroblasts in the
peritubular interstitium. Myofibroblasts are absent from
healthy kidneys. They differ from fibroblasts (Bulger and
Nagle 1973; Kaissling et al. 1996; Lemley and Kriz 1991)
by their high production of extracellular matrix (ECM)
and expression of vimentin as well as a smooth muscle
actin (aSMA). The latter is usually regarded as a
molecular marker for myofibroblasts (Desmouliere et al.
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2003). The accumulation of myofibroblasts in a diseased
kidney is considered as an important factor in the
development of chronic renal failure (Abbate et al. 2002;
El-Nahas 2003; Strutz and Neilson 2003; Zeisberg et al.
2001).

It is widely accepted that, under the stimulus of
inflammatory cytokines, local fibroblasts are trans-
formed to myofibroblasts (Desmouliere et al. 2003;
Diamond et al. 1995; Phan 2002; Sartore et al. 2001;
Short et al. 2004). For the kidney, however, an attractive
and provocative alternative hypothesis has been put
forward, that of ‘‘epithelial mesenchymal transition’’
(EMT). During embryonic development EMT is vital
for morphogenesis, whereas, in adults, it is linked to
tumor metastasis and tissue repair (Kang and Massague
2004). During the process of EMT, epithelial cells loose
their cell polarity and cell–cell contacts and undergo
dramatic remodeling of the cytoskeleton (Thiery 2002).
The cells acquire expression of mesenchymal compo-
nents (e.g., aSMA, vimentin) and manifest a migratory
phenotype (Kang and Massague 2004). The EMT pro-
gram also includes the acquisition of mesenchymal
functions (Thiery 2002). Because renal epithelia develop
by mesenchymal–epithelial transformation from the
mesenchymal metanephrogenic blastema, a reversal of
this pathway, from epithelia back to cells with mesen-
chymal properties, seems conceivable (Herzlinger 2002).

In inflamed and fibrotic kidneys the coincidence of
upregulation of ‘‘fibroblast-specific protein 1’’ (FSP1) in
the interstitium and in injured tubular epithelia has been
taken as crucial evidence of tubular epithelial cells
undergoing EMT and their subsequent colonization of
the interstitial space as (myo)fibroblasts (Iwano and
Neilson 2004; Kalluri and Neilson 2003; Liu 2004; Strutz
and Neilson 2003). In healthy kidneys, antibodies
against FSP1 are bound to very few interstitial cells. By
contrast, in inflamed kidneys, the number of FSP1-po-
sitive cells in the peritubular space is markedly increased,
and the structurally altered tubular cells reveal a diffuse
cytoplasmatic binding of the antibody, suggesting EMT.
Therefore, the FSP1 protein is used as a tool in order to
disclose EMT and to detect myofibroblasts in diseased
kidneys (Iwano and Neilson 2004; Kalluri and Neilson
2003). Outside the field of renal pathology the protein is
mostly known as S100A4 (Barraclough 1998; Maz-
zucchelli 2002).

We had previously observed that treatment of rats
with the thiazide diuretic metolazone provokes a very
specific and reproducible pattern of injury in the early
portion of the distal convoluted tubule (DCT) (Loffing
et al. 1996). On the third day of treatment the tubular
cells seemed to loose their epithelial characteristics. At
the same time the interstitium surrounding the damaged
tubules became inflamed and cells with the morphology
of myofibroblasts could be found. The simultaneity of
the dedifferentiation of the epithelium and of the
appearance of myofibroblast-like cells suggested that
EMT might take place. In the present study we under-
took a characterization of the interstitial cells in that

model of distal tubular injury. We used antibodies
against FSP1 in order to disclose a possible transdiffer-
entiation of distal tubular cells into (myo)fibroblasts.

Our data show that FSP1 is consistently associated
with a subpopulation of mononuclear cells but not with
fibroblasts or myofibroblasts. Thus, FSP1 is not qual-
ified for detection of fibroblasts and myofibroblasts,
and the conclusions of several studies on the role of
EMT in the genesis of myofibroblasts must be put into
question.

Material and methods

Experimental models for peritubular inflammation

We used the formerly described experimental model of
thiazide treatment in rats (Loffing et al. 1996), which
provokes massive injury of epithelial cells in the DCT
exclusively. The lesion of the DCT epithelium is
accompanied by a peritubular inflammatory reaction.

Briefly, we applied to male rats (�160 g) by osmotic
minipump (Alzet 2ML1) a daily dose of 4 mg metolaz-
one/kg body weight (ICN Biomedicals, Aurora, Ohio,
USA), dissolved in PEG 300. In controls, the pumps
contained PEG 300 only. All animals had free access to
food and the choice between tap water and an electrolyte
solution (0.8% NaCl+0.1% KCl).

In addition, we used perfusion-fixed kidneys of
healthy and of glomerulonephritic mice, as described
formerly (Le Hir et al. 2001). Briefly, for induction of
glomerulonephritis, mice were immunized against rabbit
immunoglobulins on day 0. On day 6 they received an
i.v. injection of rabbit antiglomerular basement mem-
brane serum. They were perfusion-fixed 6 days later.

The experimental protocols were approved by the
Cantonal Veterinary Office of Zurich.

Fixation and tissue treatment

After 3–4 days of treatment three control and five
metolazone-treated rats were anesthetized by an i.p.
injection of pentobarbital (100 mg/kg body weight) and
fixed by vascular perfusion (Dawson et al. 1989). The
fixative contained 3% paraformaldehyde (PFA), 0.01%
glutardialdehyde (GA) and 0.5% picric acid. The fixa-
tives were dissolved in a 3:2 mixture of 0.1 M cacodylate
buffer (pH 7.4, added with sucrose, final osmolality
300 mosmol) and 4% hydroxyl ethyl starch (HES;
Fresenius) in 0.9% NaCl. The kidneys were fixed for
5 min and then rinsed by vascular perfusion with 0.1 M
cacodylate buffer for 5 min.

Some tissue slices were post-fixed for at least 24 h by
immersion in the above fixative supplemented with 0.5%
glutardialdehyde, and embedded in epoxy resin accord-
ing to routine procedures. One-micrometer sections were
studied by light microscopy.
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The remaining kidney tissue was used for immuno-
fluorescence studies. Two-millimeter-thick coronal slices
of kidney were frozen in liquid propane cooled by liquid
nitrogen and cut into 4-lm-thick cryostat sections. For
preparation of semi-thin (1 lm) cryostat sections small
tissue pieces were infiltrated with PVP-sucrose prior to
being frozen in liquid propane.

Immunostaining

After pretreatment in 10% normal goat serum in PBS,
the cryostat sections were incubated overnight in a
humidified chamber at 4�C with the primary antibodies
(listed in Table 1), diluted in PBS-1% BSA.

Binding sites of the primary antibodies were revealed
with Cy3-conjugated donkey-anti-rabbit IgG or fluo-
rescein isothiocyanate (FITC)-conjugated swine anti-
rabbit, with a FITC-conjugated goat-anti-mouse IgG or
Cy3-conjugated rat anti-mouse IgG (all Jackson Im-
muno Research Laboratories, West Grove, Pa., USA).
For nuclear staining, 4¢,6-diamidino-2-phenylindole
(DAPI; Sigma, St. Louis, Mo., USA) was added to the
working dilution of the second antibodies. Double
labeling was performed using cocktails of mouse and
rabbit or rat and rabbit primary antibodies and of the
respective second antibodies.

Cover slips were applied to the sections, using
DAKO-Glycergel (Dakopatts) to which 2.5% 1,4-diaz-
abicyclo[2,2,2]octane (DABCO; Sigma) was added as
fading retardant.

The specificity of all primary antibodies had been
established previously (Dawson et al. 1989; Gandhi et al.
1990; Strutz et al. 1995). For control of unspecific
binding of secondary antibodies we did control incuba-
tions by omitting the primary antibody. These control
experiments were negative. Sections were studied by
epifluorescence with a Polyvar microscope (Reichert
Jung, Vienna, Austria). Images were acquired with a
charge-coupled device camera (Visicam 1280, Visitron
Systems, Puching, Germany) and processed by Image-
Pro and Photoshop software.

Results

The peritubular interstitium is the narrow space between
the basement membranes of tubules and capillaries. Fi-
broblasts constitute its cellular scaffolding. They are
attached to the basement membranes of capillaries and
tubules. Their fine interconnected processes form a
complex meshwork extending through the cortex and
narrowly enwrap cells of the immune system (Kaissling
et al. 1996; Kaissling and Le Hir 1994). In convention-
ally immersion-fixed renal tissue, the capillaries and the
interstitial space are collapsed. Thus, due to cellular
superposition the various cell types (endothelial cells,
fibroblasts, and dendritic and mononuclear cells) are
merely distinguishable from each other. In the present
study we circumvented these problems by using vascular
perfusion fixation, resulting in patent tubular and cap-
illary lumina and in preservation of the interstitial space.
In addition, when needed, we used thin cryosections
(1 lm) in order to increase the spatial resolution.

Focal peritubular inflammation associated with injured
distal tubules in thiazide-treated rats

In rats, treatment with the thiazide-like diuretic meto-
lazone provokes massive cell injury in the early portion
of the DCT (Loffing et al. 1996). After 3 days the DCT
cells lose their usual organization and their polarization
with respect to plasma membrane proteins (Loffing et al.
1996). The tubular lumen is often occluded, and the
epithelial lining contains frequent apoptotic cells
(Fig. 1a). After 4 days most DCT profiles are lined by
flat cells with a light cytoplasm, sparse cell organelles
and large nuclei. Epithelial cells desquamating into the
tubular lumen are seen (Fig. 1b). The damaged tubules
are enveloped by thick layers of cells comprising
mononuclear cells, fibroblasts (Fig. 1a), and cells with
fusiform profiles probably representing myofibroblasts
(Fig. 1 a, b). In overviews diseased DCT profiles are
obvious by the prominent accumulation of vimentin
(fig 1c) and aSMA (Fig. 1d) in the adjacent interstitium.

Table 1 List of primary antibodies

Primary antibodies Host Source Reference

Fibroblast specific antigen 1 (FSP1) Rabbit Courtesy F. Strutz Strutz et al. (1995)
S100A4 Rabbit Dako, Glostrup, Denmark
Ecto-5¢nucleotidase (5¢NT) Rabbit M. Le Hir Dawson et al. (1989)
Ecto-5¢nucleotidase (5¢NT) Mouse BD Biosciences, Franklin Lakes, N.J., USA Gandhi et al.(1990)
Alpha smooth muscle actin (aSMA) Mouse Dako, Glostrup, Denmark
Vimentin Mouse Chemicon, Single Oak Drive, USA
Common leucocyte antigen CD 45 Mouse Readysystem, Bad Zurzach, Switzerland
CD3 Rat Clone KT3
CD4 Rat Clone GK1.5
Thy 1 Rat Clone 30-H12
Rat MHC class II Mouse Clone OX 6
Mouse MHC class II Rat Clone M5/114.15.2
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The inflamed peritubular interstitium contains
myofibroblasts

Myofibroblasts differ from peritubular fibroblasts in
healthy kidneys among others by upregulation of the
intermediate filament protein vimentin and of aSMA
(Fig. 2).

The intermediate filament protein vimentin is
regarded as a marker for cells of mesenchymal origin
and is expressed in migrating cells, including mononu-
clear cells. Stromal cells in the kidneys of newborn rats

express both vimentin and aSMA (Marxer-Meier et al.
1998). Both proteins become undetectable in peritubular
stromal cells during the first two postnatal weeks,
whereas 5¢NT-expression in their plasma membrane
progressively appears (Marxer-Meier et al. 1998).

After 3 days of thiazide treatment (Fig. 2a) the
cytoplasm of 5¢NT-positive cells close to injured tubules
showed weak-to-moderate immunoreactivity for vi-
mentin. Small oval and round, heavily vimentin-positive
(but 5¢NT negative) cell profiles were frequently seen in
intimate contact with 5¢NT-positive fibroblasts. They
probably represented mononuclear cells. The damaged
epithelium of the DCT also revealed very weak, diffuse
staining for vimentin.

After 4 days of treatment (Fig. 2b) the cells around
diseased distal tubules formed multi-layered sheaths of
fusiform cells, outlined by 5¢NT, and with weak, but
distinct, cytoplasmic staining for vimentin. Stellate
5¢NT-positive cells in the periphery of the sheaths ex-
pressed vimentin as well. Vimentin is well apparent also
in the now low DCT cells, mainly along their basolateral
plasma membranes (Fig. 2b).

Alpha SMA is regarded as a molecular marker for
myofibroblasts (Desmouliere et al. 2003; Kalluri and
Neilson 2003). After 4 days of treatment with thiazide,
aSMA-positive cells closely surrounded injured DCTs
(Fig. 2c). The plasmalemma of the aSMA-positive cells
displayed 5¢NT (Fig. 2c insert).

The presence of vimentin and aSMA in 5¢NT-positive
cells, together with their morphology, identified these

Fig. 1 Focal peritubular inflammation associated with injured
distal tubules in thiazide-treated rats. a, b 1-lm Epon sections,
c, d cryostat sections. a DCT profile after 3 days of thiazide-
treatment. Disorganized epithelial cells fill the tubular lumen; one
of the apoptotic cells within the tubular lumen is indicated by a
white arrowhead; the tubular profile is surrounded by enlarged
fibroblasts (asterisk), fusiform cells (arrows), and small mononu-
clear cells. b DCT profile after 4 days of thiazide-treatment. The
tubular lumen is lined by simple flat cells with large, light cell
nuclei; epithelial cells desquamate into the tubular lumen; peritu-
bular cells adjacent to the diseased tubule reveal fusiform profiles
(arrows). The asterisk indicates an enlarged fibroblast; bars a, b
�10 lm. c Three days of treatment: overview of renal cortex;
immunofluorescence for vimentin (Vim); injured DCT profiles
(asterisks) are revealed by the focal peritubular accumulations of
vimentin-positive cells. G glomeruli, bar �100 lm. d Three days of
treatment: immunofluorescence for aSMA. Injured distal tubular
profiles (asterisks) display thickened epithelial lining and are
surrounded by thick layers of aSMA; arteriole a with aSMA-
positive wall. Insert higher magnification of the area outlined in the
figure, showing a peritubular aSMA-positive cell in anaphase of
mitosis, bar �50 lm
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cells as (myo)fibroblasts. The 5¢NT-positive cells close to
damaged DCTs frequently revealed mitoses (Fig. 2d).

In order to assess a possible contribution of trans-
differentiation of DCT cells to the genesis of myofibro-
blasts we investigated the distribution of FSP1. Indeed,
the induction of FSP1 in injured proximal tubules has
been taken as evidence of EMT (Chai et al. 2003; Ito
et al. 2004; Iwano et al. 2002; Okada et al. 2000; Strutz
and Neilson 2003). In addition to the antibodies against
FSP1 (Strutz and Neilson 2003), willingly provided by
F. Strutz, we also used a commercial antibody against
S100A4. Of note is the fact that FSP1 and S100A4 are
two names for the same protein (Barraclough 1998;
Mazzucchelli 2002).

Anti-mouse FSP1 and anti-human S100A4 have
identical binding patterns

In rats and mice both antibodies strongly bound to
the cytoplasm of a subpopulation of peritubular cells,
as well as to cells within the lumen of capillaries and
venules (Fig. 3). In mice, FSP1/S100A4 consistently
also stained endothelial cells of glomerular arterioles
and of vasa recta. The anti-FSP1 antibody in rats and
mice yielded markedly higher cytoplasmic background
staining than the anti-S100A4 antibody. Moreover, in
rats, some tubular luminal membranes were
labeled with anti-FSP1 but not with antiS100A4 (not
shown).

Fig. 2 The inflamed peritubular
interstitium contains
myofibroblasts. 1-lm cryostat
sections, double
immunofluorescence for
vimentin and 5¢NT (a, b), for
aSMA and 5¢NT (c), and for
5¢NT and DNA, stained by
DAPI (d). a Three days of
thiazide treatment: vimentin is
apparent in enlarged 5¢NT-
outlined cell profiles (arrows) in
the vicinity of injured DCTs
(asterisk). Heavy vimentin
expression is detected in the
cytoplasm of 5¢NT-negative
small, rounded cells (+)
adjacent to the injured tubule.
The epithelial cells reveal weak,
diffuse, cytoplasmic staining for
vimentin; bar �20 lm.
b Four days of thiazide
treatment: vimentin is seen in
fusiform cell profiles (arrow),
closely adjacent to the diseased
tubule and in 5¢NT-outlined
large stellate cell profiles
(arrowhead). The epithelial cells
are low and display vimentin
along the basolateral plasma
membranes and in the
cytoplasm; bar �20 lm.
c Four days of thiazide
treatment: aSMA in 5¢NT-
positive interstitial cells: the
cells, co-expressing aSMA and
5¢NT, completely and narrowly
ensheath the injured tubules;
bar �20 lm. Insert higher
magnification of a 5¢NT/
aSMA-positive cell; bar �5 lm.
d In the vicinity of diseased
tubules pericarya of 5¢NT-
labeled fibroblasts rather
frequently reveal mitotic
figures, left arrow prophase,
right arrow metaphase; bar
�10 lm
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FSP1/S100A4and 5¢NT are located in separate cells

In healthy kidneys and healthy regions of treated rats
FSP1/S100A4-positive cells are sparse (Fig. 4a). After 3–
4 days of treatment FSP1/S100A4-positive cells had
accumulated in the peritubular space adjacent to injured
distal tubular profiles (Fig. 4a). The pericaryon of FSP1/
S100A4-positive cells showed an oval profile with a few
processes close to healthy (Fig. 4b) and diseased
(Fig. 4c) tubules. The pericaryon of fibroblasts in heal-
thy cortical interstitium (Fig. 4b) has a characteristic
sharp outline, and the delicate 5¢NT-outlined fibroblast
processes extend throughout the interstitial spaces
(Fig. 4a,b).

After 3 days (Fig. 4c) the 5¢NT-labeled cells reveal
large, angular outlines, and fusiform profiles after
4 days (Fig. 4d) of treatment. In healthy as well as in
diseased peritubular areas, 5¢NT and FSP1/S100A4
were found in very close spatial association. However,
they were consistently and clearly located in separate
cells.

FSP1/S100A4 but not aSMA is detected in injured
DCTs; FSP1/S100A4 and aSMA are located
in separate peritubular cells

In 5-lm sections the damaged DCT epithelium reveals,
after 3 days of treatment, faint immunostaining for
FSP1/S100A4 but not for aSMA-(Fig. 5a). FSP1/
S100A4-positive cells and aSMA-positive cells are
accumulated around diseased DCTs. In 1-lm cryostat
sections (Fig. 5b) the different identities of FSP1/
S100A4-positive and aSMA-positive cells are evident.
Thus, in the present model of inflammation, FSP1/
S100A4 was not co-localized with aSMA and was not
detected either in fibroblasts or in myofibroblasts.

FSP1/S100A4 recognizes mononuclear cells in the rat
kidney

In order to disclose the nature of the FSP1/S100A4-
positive cells in the peritubular space we made costain-
ings for FSP1/S100A4 and markers for mononuclear
cells. Under inflammatory conditions these cells migrate
from the vasculature to the site of tubular lesion (Fig. 6).

In rats the frequency of cells expressing the common
leukocyte antigen CD45 was markedly increased in the
surroundings of diseased tubules (Fig. 6a). The large
majority of FSP1/S100A4-positive cells in the interstitial
space, as well as in the blood vessels (Fig. 6b), displayed
CD45 in their plasma membrane (Table 2).

We also performed double labeling for FSP1/S100A4
and MHC class II. The latter is highly up-regulated in
interstitial dendritic cells under peritubular inflamma-
tion, and their architecture (e.g., long cellular processes)
slightly resembles that of peritubular fibroblasts. In the
rat, FSP1/S100A4 and MHC class II were seldom seen
in the same cells (not shown).

The data show that, in the rat, FSP1/S100A4 is ex-
pressed by a subclass of mononuclear cells within the
vasculature as well as within the peritubular interstitium.

FSP1/S100A4 is expressed in lymphocytes in healthy
and inflamed renal interstitium in mice

The claim that FSP1/S100A4 in renal tissue is specific
for fibroblasts/myofibroblasts is grounded on studies in
mice. Thus, it was mandatory to control whether the
association of FSP1/S100A4 with mononuclear cells
might be rat-specific. Therefore, we included in our
study kidneys of untreated mice and of mice with
glomerulonephritis. We carried out double labeling
of FSP1/S100A4 with MHC class II, expressed in

Fig. 3 Binding patterns of anti-
FSP1 and anti-S100A4 are
identical. Consecutive cryostat
sections of mouse (a, b) and rat
(c, d) kidney cortex. The
distribution pattern of proteins,
recognized by the antibodies, is
identical. In both species the
antibodies reveal interstitial
cells (arrows in a, b) and
mononuclear cells within the
lumen of blood vessels (c, d;
identical cells are indicated by
arrows). In the mouse (a, b)
both antibodies label
glomerular arterioles. aa
afferent arteriole, ea efferent
arteriole). Immunolabeling with
FSP1 (a, c) yields rather coarse
background staining over all
epithelia and interstitial cells.
Bar �10 lm
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macrophages, dendritic cells and B cells, or with the
T cell-specific antigens CD3, CD4 and Thy 1 (CD90). It
must be noted that the pan-T cell marker Thy 1 can be

expressed in fibroblasts (Haeryfar and Hoskin 2004).
However, the morphology of Thy 1-positive cells in
mouse kidneys was incompatible with their identification
as fibroblasts (Fig. 6). FSP1/S100A4 co-localized to
various extents with the four leukocyte markers
(Table 2, Fig. 7).

These data show that in mice, as in rats, at least a
large fraction of the FSP1/S100A4-expressing cells are
cells of the immune system rather than fibroblasts.

Discussion

The original aim of the present study was to investigate
the interstitial inflammation and fibrosis in a model of
distal tubular injury. Antibodies against ‘‘fibroblast
specific protein 1’’ (FSP1/S100A4) were used in order to
reveal whether EMT occurs in that model. We observed
discrepancies between the immunofluorescence pattern
of FSP1/S100A4 and the known shape and distribution
of fibroblasts in the kidney. Since FSP1/S100A4 is used
for the identification of fibroblasts in tissue sections (see
below) and for targeting of fibroblasts in transgenic

Fig. 4 FSP1/S100A4 and interstitial 5¢NT are expressed by
separate cell populations. a Cryostat sections, b–d 1-lm-thick
cryostat sections of renal cortex after thiazide treatment; double
immunofluorescence for FSP1/S100A4 and 5¢NT; nuclei in b and d
are stained by DAPI. a Overview, showing healthy and diseased
cortical regions after 4 days of thiazide treatment. In healthy
regions, interstitial FSP1/S100A4-positive cells are scarce; in the
vicinity of injured DCTs (asterisk) their frequency is increased.
Peritubular 5¢NT-positive cells are present throughout the cortex;
bar �50 lm. b Higher magnification of a FSP1/S100A4-positive
cell (arrowhead) and a 5¢NT-positive peritubular cell (arrow) in
healthy interstitium. FSP1/S100A4 is weakly detectable in the
nucleus and strongly in the cytoplasm of the pericaryon and the few
processes. 5¢NT labels the plasma membrane of stellate cells and
their extensive, delicate processes, extending between tubules and
capillaries. c Three days of thiazide treatment: the pericarya of
5¢NT-positive cells (arrow) surrounding diseased distal tubules
(asterisk) display simplified outlines; their processes enclose FSP1/
S100A4-positive cells. There is no cellular co-localization of FSP1/
S100A4 and 5¢NT. d Four days of thiazide-treatment: the 5¢NT-
labeled cells (arrow) adjacent to the diseased tubule reveal fusiform
profiles; their processes narrowly enclose FSP1/S100A4-positive
cells (arrowhead); bars (b–d) �10 lm
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manipulations (Bhowmick et al. 2004; Lawson et al.
2004; Okada et al. 2003) it appeared crucial to better
characterize the cells that express that protein in the
renal interstitium.

Treatment of rats with thiazide diuretics, which in-
hibit specifically the Na-Cl co-transporter in the DCT
(Reilly and Ellison 2000), induces, within 3 days,
dedifferentiation and degeneration of the DCT exclu-
sively. We had previously observed that this tubular
injury was accompanied by infiltration of inflammatory
cells and accumulation of fibroblasts in the direct
vicinity of the DCT (Loffing et al. 1996). This was

confirmed in the present study. In addition we identified,
in the inflamed area, myofibroblasts, on account of their
expression of aSMA and vimentin. Together, these
structural alterations constitute early signs of interstitial
nephropathy.

The epithelial organization of the DCT appears to be
largely lost during the first days of thiazide treatment.
This is particularly striking on day 3 and goes along
with the formation of sheaths of fibroblasts around the
DCT. These observations prompted us to consider the
possibility that epithelial cells might be transformed into
fibroblasts or myofibroblasts. Indeed, recent studies

Fig. 5 FSP1/S100A4, but not
aSMA, is detected in injured
DCTs. Peritubular aSMA is not
co-localized with FSP1/
S100A4. a Cryostat section,
b 1-lm-thick cryostat section;
double immunofluorescence for
FSP1/S100A4A and aSMA,
3 days of thiazide treatment.
a the diseased distal tubules
(asterisks) reveal diffuse
cytoplasmic staining for FSP1/
S100A4 and are surrounded by
interstitial aSMA-positive cells,
among which FSP1/S100A4-
positive cells are interspersed.
a Arteriole with aSMA-positive
wall; bar �60 lm. b Higher
resolution in a 1-lm-thick
section clearly shows the
separate cellular locations of
FSP1/S100A4A and aSMA; bar
�30 lm

Fig. 6 FSP1/S100A4 recognizes
mononuclear cells in rat kidney
cryostat sections; double
fluorescence for FSP1/S100A4
and CD45. a FSP1/S100A4-
positive interstitial cells,
accumulated around diseased
distal tubules (asterisks),
display CD45 in their plasma
membrane; in a few CD45-
positive cells FSP1/S100A4 was
not detected. b Mononuclear
cells within a capillary lumen;
the two FSP1/S100A4-labeled
cells are labeled by CD45 as
well; bars a �50 lm, b �10 lm
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suggest that transformation of epithelial cells into
fibroblasts/myofibroblasts contributes decisively to
fibrosis in various renal diseases (Iwano and Neilson
2004; Iwano et al. 2002; Jinde et al. 2001; Kalluri and
Neilson 2003; Liu 2004; Ng et al. 1998; Okada et al.
2000; Strutz and Neilson 2003; Yang and Liu 2002).

The present model offers several advantages over
other models of interstitial inflammation. First, the time
of onset is determined precisely, and the time course of
histological alterations is very reproducible. Second, the
DCT is affected specifically. Because the fractional cor-
tical volume of the DCT is less than 10% (Kaissling
et al. 1985), the inflammation associated with DCT in-
jury is focally restricted, in contrast to interstitial
changes associated with primary proximal tubular in-
jury. The fractional tubular volume of proximal tubules
in the cortex is 70%–80% (Pfaller 1982). The focal

restriction of interstitial changes allows comparisons
with unaffected areas within the same kidney section,
which is particularly helpful for the correct assessment
of immunostaining. Third, the injury is not accompanied
by a systemic disease like uremia or hypertension.
Fourth, the tubular injury is fully reversible within days
of discontinuation of metolazone administration
(unpublished data).

Because expression of FSP1/S100A4 in injured tu-
bules has been considered as a hallmark of EMT in
kidney disease (Chai et al. 2003; Ito et al. 2004; Iwano
et al. 2002; Okada et al. 2000; Strutz and Neilson 2003),
we used anti-FSP1/S100A4 antibodies in order to detect
EMT in our model of distal tubule-associated interstitial
inflammation. Our protocol of fixation by vascular
perfusion provides patent interstitial spaces and enables
clear distinction between peritubular cells. Furthermore,
where needed, we improved the spatial resolution by
using thin (1 lm) cryostat sections, allowing unequivo-
cal attribution of a given labeling to a single cell or a cell
process.

With this model we observed an accumulation of
FSP1/S100A4-positive cells in the peritubular intersti-
tium surrounding injured DCT profiles. To our surprise
however, the antibody did not appear to label fibroblasts
or myofibroblasts, since it did not co-localize in the same
cells with 5¢NT, recognizing cortical peritubular fibro-
blasts (Kaissling and Le Hir 1994), or with aSMA,

Table 2 Quantification of expression of leukocyte markers in
FSP1-positive cells. The percentages of leukocyte marker-express-
ing cells within the FSP1-positive population are given. At least 80
FSP1-positive cells were evaluated in each of two rats and two
mice. The rats were perfused on day 4 of metolazone treatment, the
mice on day 6, after induction of glomerulonephritis

CD45/FSP1
Rat

CD3/FSP1
Mouse

Thy-1/FSP1
Mouse

CD4/FSP1
Mouse

MHC II/FSP1
Mouse

91% 55% 66% 54% 26%

Fig. 7 FSP1/S100A4 is
expressed in lymphocytes in
healthy and inflamed renal
interstitium in mice. Cryostat
sections of mouse kidneys
from healthy (a) and
glomerulonephritic (b) mice.
a Double immunofluorescence
for FSP1/S100A4 and Thy 1;
the present FSP1/S100A4-
positive interstitial cells reveal
Thy 1. FSP1/S100A4 is also
detected in endothelial cells of
arterioles (a); bar �20 lm.
b Double immunofluorescence
showing a high level of co-
localization of FSP1/S100A4
and CD4; bar �10 lm
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considered as molecular marker for myofibroblasts
(Alpers et al. 1994; Desmouliere, et al. 2003; Kalluri and
Neilson 2003; Pichler et al. 1996). The vast majority of
FSP1/S100A4-positive cells were identified as leucocytes
on the basis of three criteria: (1) in healthy as well as in
inflamed areas some FSP1/S100A4+ cells were found in
the lumen of peritubular blood vessels; (2) their mor-
phology within the vascular as well as within the inter-
stitial space was reminiscent of mononuclear cells and
different from that of fibroblasts and myofibroblasts,
and (3) in rats almost all FSP1/S100A4-positive cells
displayed CD45, a surface molecule of mononuclear
cells, in their plasma membrane. In kidneys of
healthy and of glomerulonephritic mice (Le Hir and
Besse-Eschmann 2003) roughly half of the FSP1/
S100A4+ cells expressed CD3, CD4 or Thy 1, three
T cell-specific proteins, and a few expressed MHC
class II, which is found in B cells and macrophages.

The immunoreactivity for FSP1/S100A4 in leuco-
cytes in the present study is compatible with previously
published data. S100A4 is a calcium-binding protein
that associates with the cytoskeleton and might play a
role in cell motility (Barraclough 1998; Mazzucchelli
2002). It has been detected in lymphocytes, macrophages
and granulocytes (Barraclough 1998; Mazzucchelli 2002;
Taylor et al. 2002). A fraction of the FSP1/S100A4-
positive cells in the kidney of rats after ureteral
obstruction were identified as inflammatory cells
according to their morphology (Ito et al. 2004). The low
incidence of FSP1/S100A4+ cells in the healthy renal
interstitium, and their increase in inflammatory lesions,
is explained by the fact that leukocytes are rare in
healthy kidneys but frequent in diseased ones.

Besides leukocytes, FSP1/S100A4 has been found in
osteoblasts (Duarte et al. 2003), in chondrocytes (Maz-
zetti et al. 2004) and in subpopulations of glial cells and
neurons (Sandelin et al. 2004) as well as in various tu-
mors (Barraclough 1998; Mazzucchelli 2002; Taylor
et al. 2002). Thus, whereas it has been found in fibro-
blasts in the regenerating cornea (Ryan et al. 2003) and
in the inflamed synovia (Masuda et al. 2002), FSP1/
S100A4 is clearly not a fibroblast-specific protein, as
suggested by its name.

Fibroblasts of the peritubular interstitium of the rat
kidney express 5¢NT (Dawson et al. 1989; Gandhi et al.
1990; Kaissling et al. 1996; Kaissling and Le Hir 1994;
Le Hir and Kaissling 1989). The lack of cellular co-
localization of 5¢NT and FSP1/S100A4, as well as the
different morphologies of the 5¢NT-labeled and FSP1/
S100A4-labeled cells in the renal peritubular intersti-
tium, show that rodent kidney fibroblasts in vivo are not
recognized by the FSP1/S100A4 antibodies. Likewise, in
the present study, the aSMA-expressing and vimentin-
expressing myofibroblasts, which accumulate in the in-
flamed renal interstitium, display 5¢NT.

Previous conclusions about the incidence of fibro-
blasts in the kidney on the basis of immunolabeling with
anti-FSP1 (Chai et al. 2003; Ito et al. 2004; Iwano et al.
2002; Okada et al. 2000; Spurgeon et al. 2004; Vielhauer

et al. 2004) or anti-S100A4 (Ito et al. 2004; Basile et al.
2005) must be reconsidered. The scarcity of FSP1-posi-
tive cells in the normal kidney has been interpreted as
indication of a low incidence of fibroblasts (Iwano et al.
2002; Okada et al. 2000; Strutz and Neilson 2003).
However, morphological studies had unequivocally
established the widespread and regular occurrence of
fibroblasts in the peritubular interstitium of the healthy
kidney (Bulger and Nagle 1973; Kaissling and Le Hir
1994; Lemley and Kriz 1991). The functional roles of
fibroblasts within the peritubular space of healthy kid-
neys are, among many others, the production of extra-
cellular matrix in the form of fibers (Lemley and Kriz
1991) and, in cortical peritubular fibroblasts, the syn-
thesis of renal erythropoietin (Bachmann et al. 1993).
Owing to their strategic position between tubules and
vessels and their extensive contact with all other inter-
stitial cells, the peritubular fibroblasts may receive sig-
nals from all tissue components and respond to them in
an integrative manner, e.g., in the case of fibrogenic
signals they may produce increased amounts of matrix
and become transformed to myofibroblasts.

At present it is difficult to speculate on the signifi-
cance of the immunoreactivity for FSP1/S100A4 in tu-
bules in some renal diseases. Indeed, a variety of
functions has been attributed to this protein (Barrac-
lough 1998; Mazzucchelli 2002; Taylor et al. 2002).
Moreover, in inflammatory environments, tubular cells
can up-regulate a variety of proteins that are normally
found in cells of the immune system, for instance, MHC
class II (Takei et al. 2000), B7 (Niemann-Masanek et al.
2002), CD14 (Fearns et al. 1995; Morrissey et al. 2000),
CD44 (Wuthrich 1992) and CD40 (Hong et al. 2002; van
Kooten et al. 2000). Also, cytoskeletal proteins, such as
vimentin, may be up-regulated in regenerating renal
epithelial cells (Witzgall et al. 1994; Zhu et al. 1996).
This up-regulation might be associated with cell
spreading and cell motility along denuded basement
membrane after epithelial desquamation (Zhu et al.
1996). Interestingly, S100A4 plays a role in the induction
of cell motility (Barraclough 1998; Mazzucchelli 2002).

Expression of aSMA in tubular cells has been used as
more evidence of EMT in renal diseases (Jinde et al.
2001; Li et al. 2003; Ng et al. 1998; Yang and Liu 2001;
Yang and Liu 2002). In the present study, aSMA was
not detected in tubular cells. In view of the present data,
it is likely that myofibroblasts in the inflamed regions
originated from resident interstitial fibroblasts. The fact
that, in this early stage of interstitial disease, all aSMA-
positive interstitial cells were 5¢NT-positive, like the
peritubular fibroblasts, is in agreement with this pro-
posal. The high frequency of mitotic figures in fibro-
blasts and myofibroblasts in the periphery of injured
DCTs corroborates the former suggestions that local
proliferation accounts for the accumulation of these cells
(Desmouliere et al. 2003).

In conclusion, FSP1 is not a ‘‘fibroblast-specific
antigen’’ as suggested by its name. Hence, immunola-
beling for FSP1 does not provide information about the
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contribution of EMT to the accumulation of (myo)fi-
broblasts in inflamed areas of the renal interstitium. Our
data suggest that, in a model of distal tubular injury,
fibroblasts are transformed into myofibroblasts and that
both cell types proliferate.
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