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Abstract: In this paper, we rigorously justify Bohr’s frequency condition in atomic
spectroscopy. Moreover, we construct an algorithm enabling us to calculate the transi-
tion amplitudes for Rayleigh scattering of light at an atom, up to a remainder term of
arbitrarily high order in the finestructure constant. Our algorithm is constructive and
circumvents the infrared divergences that invalidate standard perturbation theory.

I. Description of the Problem and Summary of Main Results

In this paper, we present a mathematical justification of Bohr’s frequency condition in
atomic spectroscopy. Since the physical value, α ∼= 1/137, of the finestructure constant
is very small, it suffices to expand scattering amplitudes for Rayleigh scattering of light
at an atom to leading order in α in order to reach a precise understanding of Bohr’s
frequency condition. We accomplish more than that: We provide a constructive algo-
rithm enabling us to calculate the scattering amplitudes up to (finite) remainder terms
of arbitrarily high order in the finestructure constant. For two reasons, this is a non-
trivial result. The rate of convergence of the interpolating electromagnetic field to the
asymptotic field crucially enters the control of the Duhamel expansion of propagators
appearing in reduction formulae for the scattering matrix elements. It is therefore not
obvious, a priori, that one can construct an algorithm to determine these matrix elements
to arbitrarily high order in α. Infrared divergences invalidate a straightforward Taylor
expansion of the groundstate and the groundstate energy. Since the scattering amplitudes
for Rayleigh scattering depend on the atomic groundstate and the groundstate energy,
it is thus far from obvious how to calculate these amplitudes to arbitrarily high order in
α. The convergence to the asymptotic field is sufficiently rapid (faster than any inverse
power of time t) to allow for a complete control of the expansion of the propagator in
powers of α, provided some technical subtleties, connected to the vector nature of the
interaction in QED, are properly taken into account. The expansion of the groundstate
is a more delicate issue. In fact, we require an iterative construction (see [1, 2]), based
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on a multiscale analysis, to remove an infrared cut-off in photon momentum space in
our construction of the atomic groundstate. As a result of our analysis, we have a mathe-
matical tool to calculate contributions to the scattering amplitudes up to finite remainder
terms of arbitrarily high order in α. Because of the infrared features of the theory, naive
perturbation theory is infrared divergent at some finite order in α. But if the finestructure
constant were not as small as it is in nature experimental data could only be reproduced
accurately by the theory if radiative corrections of very high order in α were taken into
account. We therefore construct an algorithm to calculate such corrections.

In the following, an atom is described as a quantum-mechanical bound state con-
sisting of a static, positively charged, pointlike nucleus surrounded by electrons. The
electrons are described as nonrelativistic, pointlike quantum-mechanical particles with
electric charge −e and spin 1

2 , as originally proposed by Pauli. They are bound to the
nucleus by the electrostatic Coulomb force, and they interact with the transverse soft
modes of the quantized electromagnetic field. We eliminate ultraviolet divergences by
imposing an ultraviolet cutoff on the interaction term.

To keep our exposition as simple as possible, we consider a hydrogen atom consisting
of a single, static proton of charge e accompanied by only one electron. The spin of the
electron then turns out to be an inessential complication. We neglect the coupling of
the magnetic moment of the electron to the quantized magnetic field. It is, however, not
difficult to include the Zeeman term in our analysis. Throughout our paper we follow
the notation and conventions of [1]. Next, we recall the mathematical definition of our
model system.

The Hilbert space of pure state vectors is given by

H := Hel ⊗ F , (I.1)

where Hel = L2(R3) is the Hilbert space appropriate to describe states of a single
electron (neglecting its spin), and F is the Fock space used to describe the states of
the transverse modes of the quantized electromagnetic field, i.e., the photons. More
explicitly,

F :=
∞⊕

N=0

F (N ), F (0) = C�, (I.2)

where � is the vacuum vector (i.e., the state of the electromagnetic field without any
excited field modes), and

F (N ) := SN

N⊗

j=1

h, N ≥ 1, (I.3)

where the Hilbert space, h, of state vectors of a single photon is given by

h := L2[R3 × Z2]. (I.4)

In (I.4), R
3 is the photon momentum space, and Z2 accounts for the two independent

transverse polarizations, or helicities, of a photon. In Eq. (I.3), SN denotes the orthogonal
projection onto the subspace of

⊗N
j=1 h of totally symmetric N -photon wave functions,

in accordance with the fact that photons satisfy Bose-Einstein statistics. Thus, F (N ) is
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the subspace of F of state vectors of configurations of exactly N photons. It is convenient
to represent the Hilbert space H as the space of square-integrable wave functions on
electron position space, R

3, with values in the photon Fock space F , i.e.,

H ∼= L2[
R

3 ; F
]
. (I.5)

The dynamics of the system is generated by the Hamiltonian

H := (− i �∇�x + α3/2 �A�(α�x)
)2 − V (�x) + Ȟ , V (�x) := 1

|�x | . (I.6)

Here, �∇�x denotes the gradient with respect to the electron position variable �x ∈ R
3,

α ∼= 1/137 is the finestructure constant, �A�(�x) denotes the vector potential of the
transverse modes of the quantized electromagnetic field in the Coulomb gauge,

�∇�x · �A�(�x) = 0, (I.7)

and with an ultraviolet cutoff imposed on the high-frequency modes, V is the Coulomb
potential of electrostatic attraction of the electron to the nucleus. A general class of
potentials, V , for which our analysis can be carried out, is characterized in the following
hypothesis. We define the atomic Hamiltonian, Hel , by

Hel := −��x − V (�x), (I.8)

where ��x is the Laplacian.

Hypothesis 1. The form domain of V includes the form domain, H1(R3), of the
Laplacian −�, and, for any ε > 0, there exists a constant bε <∞, such that

±V ≤ ε (−�) + bε · 1 (I.9)

on H1(R3). Moreover, lim|�x |→∞ V (�x) = 0, and

eel := inf σ(Hel) < 0 is an isolated eigenvalue of multiplicity
one, with corresponding normalized eigenvector ϕel ∈ Hel .

(I.10)

In Eq. (I.6), Ȟ is the Hamiltonian of the quantized, free electromagnetic field. This
operator is given by

Ȟ :=
∑

λ=±

∫
d3k a∗(�k, λ) |�k| a(�k, λ), (I.11)

where a∗(�k, λ) and a(�k, λ) are the usual photon creation- and annihilation operators
obeying the canonical commutation relations

[a∗(�k, λ) , a∗(�k′, λ′)] = [a(�k, λ) , a(�k′, λ′)] = 0, (I.12)

[a(�k, λ) , a∗(�k′, λ′)] = δλλ′ δ(�k − �k′), (I.13)

a(�k, λ)� = 0, (I.14)

for all �k, �k′ ∈ R
3 and λ, λ′ ∈ Z2 ≡ {±}.
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The regularized vector potential in the Coulomb gauge is given by

�A�(�x) :=
1

(2π)3/2
∑

λ=±

∫
d3k√
2 |�k|

�(�k) {�ε(�k, λ)e−i �k·�x a∗(�k, λ) + �ε(�k, λ)∗ei �k·�x a(�k, λ)}, (I.15)

where�(�k) is the characteristic function of the ball {�k ∈ R
3 | |�k| ≤ κ} (or a nonnegative,

smooth approximation thereof), and �ε(�k,+), �ε(�k,−) are photon polarization vectors, i.e.,
two unit vectors in C⊗ R

3 satisfying

�ε(�k, λ)∗ · �ε(�k, µ) = δλµ, �k · �ε(�k, λ) = 0, (I.16)

for λ,µ = ±. The equation �k · �ε(�k, λ) = 0 expresses the Coulomb gauge condition.
The function �(�k) ensures that modes of the electromagnetic field corresponding to

wave vectors �k with |�k| ≥ κ do not interact with the electron; i.e., � is an ultraviolet
cutoff that will be kept fixed throughout our analysis.

Next, we recall some well known properties of the Hamiltonian H and of its spectrum
used in the following sections. For sufficiently small values of α, the Hamiltonian H is
selfadjoint on its domain, D(H) = D(H0), where D(H0) is the domain of the selfadjoint
operator

H0 := −��x − V (�x) + Ȟ . (I.17)

The operator H is bounded from below, and the infimum of the spectrum is a non-degen-
erate eigenvalue, the groundstate energy, Egs , corresponding to a unique eigenvector,
φgs . There is an ionization threshold ,  > Egs , above which the spectrum is abso-
lutely continuous and the electron is not bound to the nucleus, anymore. For an analysis
of resonances corresponding to the eigenstates of the Hamiltonian H0 with energy in the
interval (Egs, ), we refer the reader to [4] and references given there.

Next, we summarize the organization and the main results of this paper.
In Sect. II, we construct asymptotic electromagnetic field operators applied to vectors

in the spectral subspace,

H−δ := χ(H <  − δ)H, (I.18)

of the Hamiltonian corresponding to energies below  − δ, where  is the ionization
threshold and δ > 0 is arbitrarily small. We exploit the fact that, in such states, the elec-
tron is (exponentially) well localized near the nucleus, which yields an estimate of the
rate of convergence of the interpolating field operators to the asymptotic field operators.

In Sect. III, we rigorously establish general reduction formulae (see [5]) for the
S-matrix elements of Rayleigh scattering in our model, i.e., for the matrix elements

Sm′,m
α ({ �fi }, { �h j }) :=

( m′∏

i=1

�Aout [ �fi ]φgs,

m∏

j=1

�Ain[�h j ]φgs

)
, (I.19)

where the asymptotic states, on the right side of (I.19), are constructed in Sect. II and
are assumed to belong to H−δ . The vector-valued functions { �fi }m′i=1 and { �h j }mj=1 in
(I.19) are positive energy solutions of the free wave equation whose Fourier transforms
are smooth and vanish at the origin of momentum space. The reduction process amounts
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to expressing the scalar product (I.19) in terms of integrals of expectation values of time-
ordered products of interpolating fields. A precise formulation of our result is given in
Proposition III.2 (see Sect. III).

In Sect. IV, starting from the general expressions in Proposition III.2, we develop
a modified reduction procedure useful to calculate the S−matrix elements (I.19), up
to a remainder of arbitrarily high order in α. Our algorithm for calculating the matrix
elements (I.19) uses, as an ingredient, the infrared-finite algorithm developed in [1, 2],
for the construction and re-expansion of the groundstate φgs and the groundstate energy
Egs . In Sect. IV.2, we provide a rather detailed outline of the re-expansion procedure for
φgs and Egs that enables us to circumvent infrared divergences appearing in standard
perturbation theory. Our analysis culminates in the following results for the connected
parts of the S−matrix elements Sm′,m

α ({ �fi }, { �h j }).
Main Result. For α ≤ ᾱ, with ᾱ ≡ ᾱN small enough and N-dependent, the S-matrix
elements Sm′,m

α ({ �fi }, {�h j }), with ( fi , h j ) = 0 ∀i, j , have expansions of the form

Sm′,m
α ({ �fi }, {�h j })conn =

2N∑

�=3(m+m′)
Sm′,m

l ({ �fi }, {�h j };α)α �
2 + o(αN ) (I.20)

with

lim
α→0

αδ|Sm′,m
l ({ �fi }, {�h j };α)| = 0, for arbitrary δ > 0, (I.21)

for N = 3, 4, 5, . . . and N ≥ 3
2 (m + m′). The coefficients Sm′,m

l ({ �fi }, {�h j };α) are
computable in terms of finitely many convergent integrals, for arbitrary l < ∞ (with
l ≥ 3(m + m′) ≥ 6).

The point of Expansion (I.20) is that Eq. (I.21) accounts for the possible appearance
of powers of ln[1/α] (“infrared logarithms”). We expect that infrared logarithms are
not an artefact of our algorithm, but are an expression of infrared divergences in naive
perturbation theory for the groundstate φgs and the groundstate energy Egs .

In the last section of our paper, Sect. V, we calculate the scattering amplitude corre-
sponding to a process where an incoming photon excites the atom from the groundstate to
an excited (resonance) state, whereupon the atom relaxes to the groundstate by emitting
one outgoing photon. As has been known since the birth of quantum electrodynamics,
the lowest order contribution to the transition amplitude is significantly different from
zero only for photon energies close to the difference of the energy, En , of an excited
bound state and the groundstate energy, E0, of H0. In particular, when the wave func-
tions of the incoming and of the outgoing photon coincide, the imaginary part of the
matrix element of the operator T := i(S − 1) (where S is the scattering matrix and 1 is
the identity operator) is not zero, in leading order, only if the photon wave function does
not vanish for energies corresponding to {En − E0 ; n ∈ N}, {En} being the energy levels
of the Coulomb system. Only the imaginary part of this matrix element matters in the
computation of the total cross section for the given incoming photon state. We provide
a recipe to calculate higher order corrections of the scattering amplitudes. Our results
represent a rigorous justification of Bohr’s frequency condition.

To our knowledge, a mathematically controlled expansion, accurate to an arbitrary
order in the finestructure constant α, with a finite remainder term, of the scattering ampli-
tudes for Rayleigh scattering of light at an atom in nonrelativistic QED has not been
provided in the literature before. The novelty of our results is that they turn infrared
divergences in naive perturbation theory into powers of ln[ 1

α
].
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II. Asymptotic Fields

Positive energy solutions, ft , of the free wave equation

�∇�y · �∇�y ft (�y)− ∂
2 ft (�y)
∂t2 = 0, (II.1)

of fast decay in |�y|, for fixed t , are given by

ft (�y) :=
∫

f̂ (�k)e−i |k|t+i �k·�y d3k

(2π)3/2
√

2|k| (II.2)

with f̂ (�k) ∈ C∞0 (R3\{0}). We construct a vector of test functions

�ft (�y) :=
∑

λ=±

∫
�ε(�k, λ)∗ f̂ λ(�k)e−i |k|t+i �k·�y d3k

(2π)3/2
√

2|k| (II.3)

satisfying the wave equation (II.1), with

∑

λ=±
�ε(�k, λ)∗ f̂ λ(�k) =: �̂f (�k) ∈ C∞0 (R3\{0};C3).

An asymptotic vector potential is constructed as an LSZ (t →±∞) limit of interpolating
field operators

�A[ �ft , t] := i
∫ ( �A(�y, t) · ∂ �ft (�y)

∂t
− ∂ �A(�y, t)

∂t
· �ft (�y)

)
d3 y, (II.4)

�A[− �ft , t] := −i
∫ ( �A(�y, t) · ∂ �ft (�y)

∂t
− ∂ �A(�y, t)

∂t
· �ft (�y)

)
d3 y,

with �ft as in (II.3) and

�A(�y, t) := ei Ht �A(�y)e−i Ht , �A := �A�≡1. (II.5)

If the photon were a massive particle, the smeared field operator (II.4) would converge
strongly, as t →∞, on a dense linear subspace of the Hilbert space of the system. For
massless photons, convergence of (II.4) has only been proven on a subspace of vectors
in the Hilbert space whose maximal energy is so small that the propagation speed of
the electron is strictly below the speed of light, e.g., on the space H , see [7, 11]. The
existence of strong limits of the smeared field operators in Eq. (II.4), as t → ±∞,
implies the existence of asymptotic creation- and annihilation operators

{a∗out/ in(
�k, λ) , aout/ in(�k, µ)}, (II.6)

defined on a dense subspace of H (see (I.18)) and obeying the canonical commutation
relations. In fact, the limits of the operators in (II.4), as t →±∞, correspond to

�Aout/ in[ �f ] := lim
t→±∞

�A[ �ft , t] =
∑

λ=±

∫
a∗out/ in(

�k, λ) f̂ λ(�k)d3k =: a∗out/ in( f ) (II.7)
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and, similarly,

�Aout/ in[− �̄f ] := lim
t→±∞

�A[− �ft , t] =
∑

λ=±

∫
aout/ in(�k, λ) f̂ λ(�k)d3k =: aout/ in( f ).

(II.8)

Using estimates proven in [7] and in Lemma II.1, below, one can prove that, for f̂ λ(�k),
ĥλ(�k) ∈ L2

(
R

3; (1 + |�k|−1
)d3k

)
the following relations hold in the sense of quadratic

forms, on H :

i)

[aout/ in( f ), a∗out/ in(h)] = ( f, h) =
∑

λ=±

∫
f̂ λ(�k)ĥλ(�k)d3k, (II.9)

[aout/ in( f ), aout/ in(h)] = [a∗out/ in( f ), a∗out/ in(h)] = 0;
ii)

eit H a∗out/ in(h)e
−i t H = a∗out/ in(e

itωh) ,

eit H aout/ in(h)e
−i t H = aout/ in(e

−i tωh) (II.10)

where the Fourier transform of each component of eitωh is obtained from the ones
of h by multiplying by eitω(�k), ω(�k) := |�k|.

Since, in this paper, we are interested in Rayleigh scattering, we restrict our atten-
tion to the construction of asymptotic states describing an atom below the ionization
threshold, . (They have spectral support strictly below the ionization threshold.) For
such states, the position of the electron remains close to the one of the proton for all
times. More precisely, such states exhibit exponential decay in the distance between the
electron and the nucleus. This implies that the convergence of (II.4), as time t →±∞,
is faster than any inverse power of time t . This implies that when applied to vectors in
H−δ the operators defined in (II.4) converge faster than any inverse power of time t ,
as t → ∞. This has important consequences for the expansion of Rayleigh scattering
amplitudes in the finestructure constant.

In the following, we make use of the field equation

�∇�y · �∇�y �A(�y, t)− ∂
2 �A(�y, t)

∂t2 = − �J tr (�y, t), (II.11)

where

�J tr (�y, t) := − α3/2

(2π)3
∑

λ=±

∫
(�v(t) · �ε(�k, λ)∗)�ε(�k, λ)�(|�k|)e−i �k·(�y−α�x(t))d3k + h.c.

(II.12)

with �v(t) = ei Ht �ve−i Ht = ei Ht (−i �∇�x + α
3
2 �A�(α�x))e−i Ht and �x(t) = ei Ht �xe−i Ht .

Equation (II.11) is meaningful as an equation between densely defined operator-valued
distributions.

By Cook’s argument, the existence of the limits

lim
t→±∞

�A[ �ft , t]ψ, (II.13)
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for ψ ∈ H , follows from the existence of the integral
∫ ±∞

0

∂

∂t
�A[ �ft , t]ψdt

=
∫ ±∞

0
i
∫

∂

∂t

(
�A(�y, t) · ∂ �ft (�y)

∂t
− ∂ �A(�y, t)

∂t
· �ft (�y)

)
d3 yψdt (II.14)

=
∫ ±∞

0
i
∫ [(

�∇�y · �∇�y �A(�y, t)− ∂
2 �A(�y, t)

∂t2

)
· �ft (�y)

]
d3 yψdt, (II.15)

where, in passing from (II.14) to (II.15), we use the wave equation (II.1), and, taking
into account the rapid spatial decay of �ft (�y), we then integrate by parts twice in �y.

Introducing the notation

�J tr [ �ft , t] :=
∫
�J tr (�y, t) · �ft (�y)dy, (II.16)

and using the field equation (II.11), we may rewrite (II.14) as follows:
∫ ±∞

0

∂

∂t

�A[ �ft , t]ψdt = −i
∫ ±∞

0

�J tr [ �ft , t]ψdt. (II.17)

The following lemma guarantees the convergence of the integral over time t on the right
side of Eq. (II.17).

Lemma II.1. Let ψ be a vector belonging to the subspace H−δ defined in (I.18). For
∑
λ=± �ε(�k, λ)∗ f̂ λ(�k) = �̂f (�k) ∈ C∞0 (R3\{0};C3) the following estimate holds:

‖ �J tr [ �ft , t]ψ‖ ≤ Cm

1 + |t |m , (II.18)

for any m ∈ N, where Cm is a finite constant (depending on m).

Proof. We write the identity operator in electron position space as

1 = χ(〈�x〉 − β|t |) + χc(〈�x〉 − β|t |), 〈�x〉 := (�x · �x + 1)
1
2 (II.19)

for 0 < β < 1, where the functionχ(y)(= 1−χc(y)) is a non-negative C∞(R)-function
equal to 1, for y < −1, and equal to 0, for y > 1. The operator �J tr [ �ft , t] is given by

�J tr [ �ft , t] =
3∑

l=1

gl
t (α�x(t))vl(t), (II.20)

where the vector function �gt is as in Eq. (II.3). We use the partition of unity (II.19) to
obtain the inequality

∥∥
3∑

l=1

gl
t (α�x(t))vl(t)ψ

∥∥ ≤
3∑

l=1

‖gl
t (α�x(t))vl(t)χ(〈�x(t)〉 − β|t |)ψ‖ (II.21)

+
3∑

l=1

‖gl
t (α�x(t))vl(t)χc(〈�x(t)〉 − β|t |)ψ‖. (II.22)
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We treat each term in the two sums in Eqs. (II.21) and in (II.22) separately. To bound
the terms in (II.21), the following norm inequality suffices:

‖gl
t (α�x(t))vl(t)χ(〈�x(t)〉 − β|t |)ψ‖
≤ ‖gl

t (α�x(t))
∂χ(〈�x(t)〉 − β|t |)

∂xl(t)
ψ‖ (II.23)

+ ‖gl
t (α�x(t))χ(〈�x(t)〉 − β|t |)‖ · ‖vl(t)ψ‖. (II.24)

Similarly

‖gl
t (α�x(t))vl(t)χc(〈�x(t)〉 − β|t |)ψ‖ (II.25)

≤ ‖gl
t (α�x(t))

∂(χc(〈�x(t)〉 − β|t |)〈�x(t)〉−m)

∂xl(t)
‖ · ‖〈�x(t)〉mψ‖ (II.26)

+ ‖gl
t (α�x(t))χc(〈�x(t)〉 − β|t |)〈�x(t)〉−m‖ · ‖vl(t)〈�x(t)〉mψ‖. (II.27)

In order to prove (II.18), it is enough to notice that

i) the norms ‖vl(t)ψ‖ and ‖vl(t)〈�x(t)〉mψ‖ are bounded, uniformly in time, because
ψ ∈ H−δ , see, e.g., [9];

ii) the bound on the right side of Eq. (II.18) holds for sup|�y|<β|t | |gl
t (�y)|, see, e.g.,

[12]. ��

III. Reduction Formulae for S-Matrix Elements

In this section we rigorously derive reduction formulae for the S-matrix elements cor-
responding to Rayleigh scattering. We study scattering processes, where the incoming
state and the outgoing state describe a finite number of incoming and outgoing photons,
respectively, and a hydrogen atom in its groundstate. Thus, we consider amplitudes of
the form

( m′∏

i=1

�Aout [ �fi ]φgs,

m∏

j=1

�Ain[�h j ]φgs
)
, (III.1)

where { �fi }, {�h j } are vector test functions as in (II.3). In order to be able to apply the
results of the previous section, we must impose the following condition on the supports
of the test functions { �fi }, {�h j }:

χ(H ≥  − δ)
m′∏

i=1

�Aout [ �fi ]φgs = 0,

χ(H ≥  − δ)
m∏

j=1

�Ain[�h j ]φgs = 0

(III.2)

for an arbitrary δ > 0, where χ(H ≥  − δ) is the spectral projector on values larger
than or equal to  − δ.
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Let

ω′i := sup{|�k| | �k ∈ supp �̂f i (
�k)}, (III.3)

ω j := sup{|�k| | �k ∈ supp �̂h j (�k)}. (III.4)

Then (III.2) and (II.10) imply that

Egs +
m′∑

i=1

ω′i ≤  − δ (III.5)

and

Egs +
m∑

j=1

ω j ≤  − δ. (III.6)

Assumption (III.2) implies that the states

ψout
m′ :=

m′∏

i=1

�Aout [ �fi ]φgs (III.7)

and

ψ in
m :=

m∏

j=1

�Ain[�h j ]φgs (III.8)

exhibit exponential decay in the distance between the electron and the proton. Hence
by Lemma II.1, one further asymptotic creation operator can be applied to ψout

m′ , ψ in
m ,

respectively.
In the presence of an arbitrarily small infrared cutoff in the interaction term of the

Hamiltonian, asymptotic completeness of Rayleigh scattering has been proven in [8];
the first result about asymptotic completeness has been proven in [6], for massive scalar
bosons. This implies that states ψout

m′ and ψ in
m , as in Eqs. (III.7), (III.8), respectively,

satisfying (III.2), with δ = 0, span the space H . It is expected, but not proven, that this
result remains true when the infrared cutoff is removed.

The reduction formulae enable us to express the matrix elements in Eq. (III.1) in
terms of (integrals of) time-ordered products of interpolating fields. These formulae will
serve as a starting point to derive an infrared-convergent algorithm to explicitly calculate
the scattering amplitudes, up to a remainder term of arbitrarily high order in α.

We first explain the reduction procedure for a matrix element describing a process
with only one incoming photon in a wave function �h and one outgoing photon in a wave
function �f , i.e., for

〈 �Aout [− �̄f ] �Ain[�h]〉φgs , (III.9)

where 〈·〉φgs denotes the expectation value with respect to the groundstate φgs .
Exploiting Eq. (II.17), we find that

〈 �Aout [− �̄f ] �Ain[�h]〉φgs (III.10)
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= 〈 �Aout [− �̄f ] �Aout [�h]〉φgs + 〈 �Aout [− �̄f ]( �Ain[�h] − �Aout [�h])〉φgs (III.11)

= ( f, h) + i
∫ +∞

−∞
〈 �Aout [− �̄f ] �J tr [�hs, s]〉φgs ds (III.12)

− i
∫ +∞

−∞
〈 �J tr [�hs, s] �Ain[− �̄f ]〉φgs ds,

where the third term in (III.12) can be added for free, because it actually vanishes. This
is seen by noticing that the groundstate is a vacuum for the asymptotic annihilation
operators; see, e.g., [8]. Now, using again Eq. (II.17), we get

〈 �Aout [− �̄f ] �Ain[�h]〉φgs = (III.13)

= ( f, h)−
∫ +∞

−∞

∫ +∞

−∞

∫ ∫
�ft (�z)〈T ( �J tr (�z, t) �J tr (�y, s)〉φgs

�hs(�y)d3 yd3zdsdt

+ i
∫ +∞

−∞
〈[ �A[− �̄f s, s], �J tr [�hs, s]]〉φgs ds, (III.14)

where T is the time ordered product. A scalar product between vector quantities depend-
ing on the same position variables is understood, here and in the following.

The equal time commutator in Eq. (III.14) corresponds to

−
∫ ∫

�fs(�z)
[∂ �A(�z, s)

∂s
, �J tr (�y, s)

]�hs(�y)d3 yd3z (III.15)

that is, in general, a non-vanishing function of the electron position.
In order to get a more symmetrical expression that can be easily generalized to

scattering amplitudes with an arbitrary finite number of photons, starting from the expres-
sion in Eq. (III.12) we follow the standard reduction formulae procedure. Due to the
results achieved in the previous sections, we can control the mathematical quantities
that will be derived.

First we choose a smooth real function, ξ , of the time variable s with the following
properties:

ξ(s) = 1, for −α−ε +
R

2
≤ s ≤ α−ε − R

2
, (III.16)

ξ(s) = 0, for s ≤ −α−ε − R

2
and s ≥ α−ε +

R

2
, (III.17)

where 0 < ε � 1 and R > 0 is an α-independent number.

Remark. This is a crucial step for the expansion in α we are going to carry out. Because
of the fast convergence proved in Lemma II.1, we can choose a “short” time scale, α−ε ,
as a time cutoff, provided the cutoff-function ξ is smooth, uniformly in α.

It follows from Lemma II.1, Inequality (II.18), that

i
∫ +∞

−∞
〈 �Aout [− �̄f ] �J tr [�hs, s]〉φgs ds (III.18)

can be approximated by

i
∫ +∞

−∞
〈 �Aout [− �̄f ] �J tr [�hs, s]〉φgs ξ(s)ds, (III.19)



468 V. Bach, J. Fröhlich, A. Pizzo

up to an error term of order o(αN ), for any N ∈ N. After some integrations by parts, we
end up with

i
∫ +∞

−∞

∫
〈 �Aout [− �̄f ] �A(�y, s)〉φgs �(�hs(�y)ξ(s))d3 yds. (III.20)

Similarly

−i
∫ +∞

−∞
〈 �J tr [�hs, s] �Ain[− �̄f ]〉φgs ds (III.21)

is approximated by

−i
∫ +∞

−∞

∫
〈 �A(�y, s) �Ain[− �̄f ]〉φgs �(�hs(�y)ξ(s))d3 yds, (III.22)

up to an error term of order o(αN ). We propose to express the sum of the two quantities
(III.18) and (III.21) as the integral of a time-ordered product of the fields. For general
S-matrix elements, we will basically apply the two operations i) and ii) explained below.

i) The sum of the two terms (III.18) and (III.21) is given by

−limt→+∞i2
∫ +∞

−∞

∫ ∫
〈( �Aθ̂t,s

(�z, t)
←→
∂ �ft (�z)) �A(�y, s)〉φgs (III.23)

×�(�hs(�y)ξ(s))d3zd3 yds

+ limt→−∞i2
∫ +∞

−∞

∫ ∫
〈 �A(�y, s)( �Aθ̂s,t

(�z, t)
←→
∂ �ft (�z))〉φgs (III.24)

×�(�hs(�y)ξ(s))d3zd3 yds,

where

�Aθ̂t,s
(�z, t) := �A(�z, t)θ̂(t − s), (III.25)

�Aθ̂t,s
(�z, t)
←→
∂t �ft (�z) := �Aθ̂t,s

(�z, t)
∂ �ft (�z)
∂t
− ∂
�Aθ̂t,s

(�z, t)

∂t
�ft (�z), (III.26)

and θ̂t,s = θ̂ (t − s) is a non-negative, α-independent, C∞ approximation of the
Heaviside step function. We apply the fundamental theorem of calculus to (III.23),
(III.24). From the derivative with respect to t of the expression

�Aθ̂t,s
(�z, t)
←→
∂ �ft (�z), (III.27)

with |t | large enough, we get a current, �J tr [ �ft , t] applied to the groundstate; (an
integration by parts in the �z−coordinates is involved here). Thanks to Estimate
(II.18) in Lemma II.1, we can choose the function ξ(t) in order to cutoff the t-inte-
gration. This introduces an error of order o(αN ), for an arbitrarily large N .

ii) Since the groundstate vector φgs is in the domain of the fields �Aθ̂t,s
(�z, t) and

∂t �Aθ̂t,s
(�z, t) when smeared out in space, we can rewrite the difference of the two

limits (III.23) and (III.24) as
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−i2
∫ +∞

−∞

∫ +∞

−∞

∫ ∫
dtdsd3zd3 yξ(t)×

× ∂
∂t

{〈 �Aθ̂t,s
(�z, t)
←→
∂t �ft (�z) �A(�y, s)〉φgs �(�hs(�y)ξ(s))

+ 〈 �A(�y, s) �Aθ̂s,t
(�z, t)
←→
∂t �ft (�z)〉φgs �(�hs(�y)ξ(s))

}

(III.28)

up to an error term of arbitrarily high order in α. After integrations by part, we finally
conclude that if ( f, h) = 0 the expression in Eq. (III.9) is given by

i2
∫ +∞

−∞

∫ +∞

−∞

∫ ∫
�( �ft (�z)ξ(t))〈T θ̂ ( �A(�z, t) �A(�y, s))〉φgs �(�hs(�y)ξ(s))d3 yd3zdsdt,

(III.29)

up to an error of order o(αN ), for any N ∈ N, where T θ̂ denotes the smooth time-ordered
product obtained when replacing the Heaviside function by the smooth function θ̂ .

In order to generalize this result to an arbitrary, finite number of asymptotic photons,
we have to control the norm of vectors of the form

∫ +∞

−∞
· ·

∫ +∞

−∞

∫
· ·

∫
T θ̂ ( �A(�y1, s1) · · · �A(�yn, sn))φgs ×

×
n∏

i=1

�(�hi,si (�yi )ξ(si ))

n∏

i=1

d3 yi dsi . (III.30)

Some operator domain problems might, in principle, arise, because the vector potential
(smeared in space) is an unbounded operator. However, because of the time integrations,
and because the groundstate belongs to D(Hm), for any m ∈ N, the vector in Eq. (III.30)
turns out to be well defined, and its norm is bounded uniformly in α.

Lemma III.1. Let the function ξ be smooth and of compact support and such that
sups∈R| d

mξ(s)
dsm | is α−independent, for any m ∈ N. Let {�hl(�yl , sl) =: �hl,sl (�yl)|l =

1, . . . , n} be smooth solutions of the free wave equation with properties as in Eq. (II.3).
Then the following operator is bounded in the operator norm, uniformly in α:

∫ +∞

−∞
· · ·

∫ +∞

−∞

∫
· · ·

∫
T θ̂ ( �X(�y1, s1) · · · �X(�yn, sn))×

×
n∏

l=1

�(�hl,sl (�yl)ξ(sl))

n∏

l=1

d3 yldsl
1

(H + i)n
, (III.31)

where �X(�y, s) is either �A(�y, s) or �̇A(�y, s) and

T θ̂ ( �X(�y1, s1) · · · �X(�yn, sn)) :=
=

∑

p∈Pn

�X(�yp(1), sp(1)) · · · �X(�yp(n), sp(n))×

× θ̂ (sp(1) − sp(2)) · · · θ̂ (sp(n−1) − sp(n)),

(III.32)

Pn being the group of permutations of n elements.



470 V. Bach, J. Fröhlich, A. Pizzo

Proof. The proof is by induction in n. Given the permutation (p(1), . . . , p( j)), we
assume that, for 1 ≤ j ≤ n − 1, the following statements are true:
H1) The operator

∫ +∞

−∞
· ·

∫ +∞

−∞

∫
· ·

∫
�X(�yp(1), sp(1)) · · · �X(�yp( j), sp( j))×

×
j−1∏

l=1

θ̂ (sp(l) − sp(l+1))

j∏

l=1

�(�h p(l),sp(l) (�yp(l))ξ(sp(l)))

j∏

l=1

d3 yp(l)dsp(l)
1

(H + i) j

(III.33)

is bounded uniformly in α;

H2) For u ∈ R, and for functions ζ , �g belonging to the families { dkξ(sl )

dsk
l
|l = 1, .., n ; k =

1, 2, 3, · · ·} and { ∂k �hl (�yl ,sl )

∂sk
l
|l = 1, .., n ; k = 1, 2, 3, · · ·}, respectively, the operator

∫ +∞

−∞

∫
(H + i) j−1 �X(�y, s)θ̂ (u − s)�gs(�y)ζ(s)d3 yds

1

(H + i) j
(III.34)

is bounded, uniformly in u and in α.
We first prove that H2) holds when j is replaced by j +1. For this purpose we consider

the scalar product

(
ψ,

∫ +∞

−∞

∫
(H + i) j �X(�y, s)θ̂ (u − s)�gs(�y)ζ(s)d3 yds

1

(H + i) j+1φ

)
, (III.35)

where ψ ∈ D(Hm), for any m ∈ N, and φ is an arbitrary vector. The expression in
Eq. (III.35) can be written as (recall θ̂u,s = θ̂ (u − s))

∫ +∞

−∞

∫
(ψ, (H + i) j−1 �X(�y, s)θ̂u,s �gs(�y)ζ(s) 1

(H + i) j
φ)d3 yds (III.36)

− i
∫ +∞

−∞

∫
(ψ, (H + i) j−1 ∂

�X(�y, s)

∂s
θ̂u,s �gs(�y)ζ(s) 1

(H + i) j+1φ)d
3 yds. (III.37)

Integrating by parts in the time variable s, the expression in Eq. (III.37) is seen to be
given by

i
∫ +∞

−∞

∫
(ψ, (H + i) j−1 �X(�y, s)

∂

∂s

(
θ̂u,s �gs(�y)ζ(s)

) 1

(H + i) j+1φ)d
3 yds. (III.38)

By the induction hypothesis H2), we conclude that the absolute value of the scalar
product (III.37) is bounded by

C‖ψ‖‖φ‖, (III.39)

where C is a positive constant independent ofψ and φ. Due to Riesz’ Lemma, the opera-
tor in (III.35) is bounded. Because of our assumptions on θ̂u−s, �gs(�y), ζ(s), the constant
C can be chosen to be independent of α and u.
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Turning to H1), we first introduce a shorthand notation: Expression (III.33) is abbre-
viated by X (p(1), . . . , p( j)), and the expression in Eq. (III.34) by Au(�g, ζ ). Because
of property H2), for j + 1, and assuming H1) holds for j , the following inequality

‖X (p(1), . . . , p( j + 1))‖
≤ 2‖X (p(1), . . . , p( j))‖supsp( j)

∥∥Asp( j)

(∂ �h p( j+1)(�yp( j+1), sp( j+1))

∂sp( j+1)
,

dξ(sp( j+1))

dsp( j+1)

)∥∥

+ ‖X (p(1), . . . , p( j))‖supsp( j)

∥∥Asp( j)

(�h p( j+1),
d2ξ(sp( j+1))

ds2
p( j+1)

)∥∥ (III.40)

implies that H1) holds for j + 1, too. Since H1) and H2) are obviously true for j = 1,
they hold for any j ≤ n. Lemma III.1 follows from H1) and H2). ��

In our derivation of reduction formulae we neglect forward scattering, i.e., we assume
that ( fi , h j ) = 0, for arbitrary i, j . The general case can easily be derived from the result
below, at the price of more complicated expressions.

Proposition III.2. Under the assumptions in Eq. (III.2) and of Lemma III.1 on {�h j },
{ �f p} and ξ , and if ( f p, h j ) = 0, for all p and j , the S-matrix element

( m′∏

p=1

�Aout [ �f p]φgs,

m∏

j=1

�Ain[�h j ]φgs
)

(III.41)

is given by

im+m′
∫ +∞

−∞
· ·

∫ +∞

−∞

∫
· ·

∫
〈T θ̂

( m′∏

p=1

�A(�z p, tp)

m∏

j=1

�A(�y j , s j )〉φgs

×
m′∏

p=1

�( �f p,tp (�z p)ξ(tp)
) m∏

j=1

�(�h j,s j (�y j )ξ(s j ))

m′∏

p=1

d3z pdtp

m∏

j=1

d3 y j ds j ,

(III.42)

up to an error term of arbitrarily high order in α.

Proof. The proof is by induction. If there are only one incoming and one outgoing
photon, we have proven this result at the beginning of the section. Notice that, using
the same arguments, we can eliminate one incoming and one outgoing photon from
the asymptotic states in the scalar product (III.41). The inductive assumption is that
l + l ′ = n − 1(< m + m′) photons can be eliminated yielding the expression

∫ ( m′−l ′∏

p=1

�Aout [ �f p]φgs, T θ̂
( m′∏

p=m′−l ′+1

�A(�z p, tp)

m∏

j=m−l+1

�A(�y j , s j )
)×

×
m−l∏

j=1

�Ain[�h j ]φgs
) m′∏

p=m′−l ′+1

�( �f p,tp (�zi )ξ(tp))×

×
m∏

j=m−l+1

�(�h j,s j (�y j )ξ(s j ))

m′∏

p=m′−l ′+1

d3z pdtp

m∏

j=m−l+1

d3 y j ds j ,

(III.43)
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up to an error term of arbitrarily high order in α. To prove (III.43) for l + l ′ + 1 = n,
another photon, for example an outgoing photon, must be eliminated from the outgoing
state in Expression (III.41), with l + l ′ = n − 1. This can be accomplished by repeating
operations i) and ii) at the beginning of this section, with the following modifications:

a) The counterpart of the expectation value in (III.23) is given by:

(
ψout

m′−l ′−1, T θ̂ ( �A(�zm′ , tm′) · · �A(�zm′−l ′ , tm′−l ′)
←→
∂ �fm′−l ′,tm′−l′ (�zm′−l ′)

· · �A(�ym−l+1, sm−l+1)ψ
in
m−l

)
, (III.44)

where

ψout
m′−l ′−1 :=

m′−l ′−1∏

p=1

�Aout [ �f p]φgs, (III.45)

ψ in
m−l :=

m−l∏

j=1

�Ain[�h j ]φgs; (III.46)

b) As before, using Lemma III.1, we may cutoff the integration over tm′−l ′ by intro-
ducing the smooth function of compact support (see (III.16),(III.17)), ξ(tm′−l ′), up
to an error of, at most, order o(αN ). We then integrate by parts, which is legitimate
because of Lemma III.1, applied to the product of l + l ′ = n − 1 fields. ��

IV. Asymptotic Expansion of the Scattering Amplitudes

The expression in Eq. (III.42) derived in the previous section must be evaluated in terms
of explicit convergent integrals, up to an error term that, as we will prove, can be chosen
to be of arbitrarily high order in the finestructure constant α.

The reduction formulae derived in the previous section are not a particularly conve-
nient starting point to develop an algorithm for calculating S-matrix elements. However,
with a slight modification that depends on the desired order, o(αN ), N = 1, 2, 3, ..,
of accuracy of the algorithm, we can, in essence, repeat the reduction procedure in
Proposition III.2. This procedure gives rise to time-ordered products. Our modified ver-
sion of the reduction procedure does not rely on Lemma III.1, and, more importantly, it
will yield an expression that can be expanded up to error terms of o(αN ), by making use
of the Duhamel expansion of the propagators and the infrared-finite algorithm developed
in [2] for the calculation of the groundstate and the groundstate energy.

IV.1. A modified reduction procedure. Let o(αN ) be the desired order of the error term in
the calculation of the scattering amplitude (III.41). Since the leading order is α

3
2 (m+m′),

we may assume that N ≥ 3
2 (m + m′). The N−dependent, modified reduction procedure

differs from the usual one in the following way: Before eliminating a photon from one
of the asymptotic states, e.g. from the incoming state

ψ in
m =

m∏

j=1

�Ain[�h j ]φgs, (IV.1)
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we apply the operator (H + i)n+1, n = [N − 3
2 (m + m′) + 1] (where [·] is the integer

part) to obtain

n+1∑

p=1

(
n + 1

p

)
(Egs + i)n+1−p

m∑

l1=1

m∑

l2=1

· · ·
m∑

l p=1

m∏

j=1

�Ain[�h(l1,l2,··,l p)

j ]φgs

+ (Egs + i)n+1
m∏

j=1

�Ain[�h j ]φgs, (IV.2)

where

�h(l1,l2,··,l p)

j (�y) :=
∑

λ=±

∫
�ε(�k, λ)∗|�k|(

∑p
q=1 δlq , j )ĥλj (�k)e+i �k·�y d3k

(2π)3/2
√

2|�k|
, (IV.3)

where δlq , j is Kronecker’s symbol. The original vector can be written as

ψ in
m =

= (H + i)−n−1
n+1∑

p=1

(
n + 1

p

)
(Egs + i)n+1−p × (IV.4)

×
m∑

l1=1

· ·
m∑

l p=1

m∏

j=1

�Ain[�h(l1,l2,··,l p)

j ]φgs

+ (H + i)−n−1(Egs + i)n+1
m∏

j=1

�Ain[�h j ]φgs . (IV.5)

We now eliminate the mth photon from the state in Eq. (IV.2), using the procedure already
employed in Proposition III.2. The same manipulations must be repeated for each pho-
ton. The final expression consists of finitely many terms similar to the expression in
Eq. (III.42) except that

1) the test functions are the ones obtained in Eqs. (IV.2),(IV.3); and
2) the time-ordered product is given by

T θ̂
N

( m′∏

l=1

�A(�zl , tl)
m∏

j=1

�A(�yi , si )
) : = (IV.6)

= T θ̂
( m′∏

l=1

{ �A(�zl , tl)
1

(H + i)n+1

} m∏

j=1

{ 1

(H + i)n+1
�A(�y j , s j )

})
. (IV.7)

The operation T θ̂
N in (IV.6) can be expanded in α. In fact, a factor of 1

(H+i) can be put next

to each field operator �A(�zl , 0), and a factor of 1
(H+i)n remains next to each propagator

e−i H(tl−tl+1). Then we use the Duhamel expansion
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1

(H + i)n
ei Ht = (IV.8)

= 1

(H + i)n
ei H0t +

i

(H + i)n−1

∫ t

0
ei H0τ1

1

(H + i)
HI e−i H0τ1 dτ1ei H0t

· · · · · · · · · · · · · · · · · · · · · ·
+

in−1

(H + i)

∫ t

0

( n−2∏

l=1

∫ τl

0

) n−1∏

j=1

(
ei H0τn− j

1

(H + i)
HI e−i H0τn− j

)×

×dτn−1 · · · dτ1ei H0t

+ in
∫ t

0

( n−1∏

l=1

∫ τl

0

)
ei Hτn

1

(H + i)
HI e−i H0τn × (IV.9)

×
n−1∏

j=1

(
ei H0τn− j

1

(H + i)
HI e−i H0τn− j

)
dτn · · · dτ1 ei H0t ,

where H0 has been defined in Eq. (I.17), and HI := H−H0. We then apply the Neumann
series expansion of the resolvent

1

(H + i)
=

n−1∑

j=0

[ 1

(H0 + i)

(− HI
1

(H0 + i)

) j ] (IV.10)

+
1

(H + i)

(− HI
1

(H0 + i)

)n
, (IV.11)

and we exploit the α-independence on the norm bounds of the operators

α−
3
2

1

(H0 + i)
1
2

HI
1

(H0 + i)
1
2

, α−
3
2

1

(H + i)
1
2

HI
1

(H0 + i)
1
2

(IV.12)

∫
�A(�zl , 0) �fl(�zl , 0)d3zl

1

(H0 + i)
1
2

,

∫
�A(�zl , 0) �fl(�zl , 0)d3zl

1

(H + i)
1
2

. (IV.13)

Using the fact that the time-integrations extend over intervals of length proportional to
α−ε , we conclude that the remainder term (IV.9) in the Duhamel expansion is bounded by

const ·αn( 3
2−ε). Therefore the operator (IV.6) can be approximated, up to an error term of

o(αN ), by finitely many expressions only involving the propagator and the resolvent of
the Hamiltonian H0, besides the groundstate φgs and the groundstate energy Egs . These
latter quantities can be calculated using the algorithm developed in [2] and outlined in
the next section. We can therefore state the main result of the paper:

Theorem IV.1. For α ≤ ᾱ, with ᾱ ≡ ᾱN small enough, the S-matrix elements Sm′,m
α

({ �fi }, {�h j }), where ( fi , h j ) = 0, have expansions of the form

Sm′,m
α ({ �fi }, {�h j })conn =

2N∑

�=3(m+m′)
Sm′,m

l ({ �fi }, {�h j };α)α �
2 + o(αN ) (IV.14)

with

lim
α→0

αδ|Sm′,m
l ({ �fi }, {�h j };α)| = 0, for arbitrary δ > 0, (IV.15)
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for N = 3, 4, 5, . . . and N ≥ 3
2 (m + m′). The coefficients Sm′,m

l ({ �fi }, {�h j };α) are
computable in terms of finitely many convergent integrals, for arbitrary l < ∞ (with
l ≥ 3(m + m′) ≥ 6).

IV.2. Expansion of the groundstate and the groundstate energy. The final and techni-
cally most subtle step in the calculation of the S-matrix elements concerns the calcu-
lation of the groundstate and the groundstate energy. Because of infrared divergences,
which invalidate a straightforward Taylor expansion, an iterative construction must be
employed to remove an infrared cutoff in photon momentum space and to devise a con-
vergent algorithm. Such a construction has been developed in [2] on the basis of results
in [10] and [1]. In the following, we describe the results of [2] without providing proofs;
but see [1, 2] and [10]. The main ideas underlying the construction of the groundstate
will be discussed, and the strategy of the re-expansion will be outlined.

IV.2.1. Notation. In the following part of this section, we simplify our notation by setting

k := (�k, λ), ω(k) ≡ |k| := |�k|, and
∫

f (k) dk :=
∑

λ=±

∫
f (�k, λ) d3k,

for any integrable functions f (·, λ), λ = ±. Given an operator-valued function F :R3×
Z2 → B(Hel), we write

a∗(F) :=
∫

F(k)⊗ a∗(k)dk, (IV.16)

a(F) :=
∫

F(k)∗ ⊗ a(k)dk. (IV.17)

This allows us to write the velocity operator �v (rescaled by 2) as

�v := −i �∇x + a∗( �G) + a( �G), (IV.18)

where �G : R3 × Z2 → B(Hel)
3 are the multiplication operators defined by

�G(k) := α3/2

(2π)3/2
�(k)√
2 |k| e−iα�k·�x �ε(k). (IV.19)

In terms of the velocity operator, the Hamiltonian assumes the simple form

H = �v 2 − V (�x) + Ȟ . (IV.20)

We define a decreasing sequence, (σn)
∞
n=0, of energy scales by setting

σn := κ αn . (IV.21)

Because of the assumptions on α (small enough) discussed in [1, 2], for all n ∈ N0 :=
N ∪ {0}, we have that σn+1 ≤ κα < 1. To cut the interaction Hamiltonian into slices
corresponding to ever lower energy scales, we make use of the operators

�Gn(k) := 1
(
σn ≤ |k|

) �G(k), and �Gm
n (k) := 1

(
σn ≤ |k| < σm

) �G(k), (IV.22)
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for all k ∈ R
3 × Z2 and m, n ∈ N0, with m < n. Note that �G = ∑∞

n=0
�Gn

n+1 and that
�Gn is the coupling function of the interaction Hamiltonian cutoff in the infrared region,
|k| ≤ σn . We factorize Fock space F = F(h) into tensor products by introducing suit-
able subspaces corresponding to the one-photon Hilbert space corresponding to different
energy scales:

hn := L2[Kn
]

and hm
n := L2[Km

n

]
, (IV.23)

where,

for 0 ≤ n ≤ ∞, Kn :=
{
(�k, τ ) ∈ R

3 × Z2
∣∣ σn ≤ ω(�k)

}
, (IV.24)

for 0 ≤ m < n ≤ ∞, Km
n :=

{
(�k, τ ) ∈ R

3 × Z2
∣∣ σn ≤ ω(�k) < σm

}
. (IV.25)

Note that K0
n ⊂ Kn is a proper subset. For integers 1 ≤ m < n < � ≤ ∞, we have the

disjoint decomposition K� = Km ∪Km
n ∪Kn

� , and hence the direct sum

h� ∼= hm ⊕ hm
n ⊕ hn

� , (IV.26)

which gives rise to the isomorphism

F� ∼= Fm ⊗ Fm
n ⊗ Fn

� , (IV.27)

with Fn := F(hn) and Fm
n := F(hm

n ). In particular, for any n ∈ N,

F = F∞ ∼= Fn ⊗ Fn
n+1 ⊗ Fn+1∞ . (IV.28)

We set

Hn := Hel ⊗ Fn and Hm
n := Hel ⊗ Fm

n . (IV.29)

For energy-scale indices m, n ∈ N0, with m < n, we define the velocity operator �vn , the
field-energy operators Ȟn , Ȟm

n , and the Hamiltonian Hn by

�vn := −i �∇x + a∗( �Gn) + a( �Gn), (IV.30)

Ȟn :=
∫

1(σn ≤ |k|) ω(k) a∗(k)a(k) dk, (IV.31)

Ȟm
n :=

∫
1(σn ≤ |k| < σm) ω(k) a∗(k)a(k) dk, (IV.32)

Hn := �v 2
n − V (�x) + Ȟn, (IV.33)

as operators on Hn and Hm
n , respectively. We introduce the groundstate energy at scale

n and groundstate energy differences

En := inf σ(Hn) and Em
n := Em − En . (IV.34)

To compare Hamiltonians, Hn and Hn+1, at successive energy scales, it is convenient to
define positive operators H+

n and H̃+
n on Hn and Hn+1, respectively, by

H+
n := Hn − En, (IV.35)

H̃+
n := H+

n ⊗ 1n
n+1 + 1n ⊗ Ȟn

n+1, (IV.36)
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where we denote the identity operator on Hn and on Fm
n by 1n and 1m

n , respectively. We
identify �vn with �vn ⊗ 1n

n+1 acting on Hn+1. Note that, for n ∈ N0,

�vn+1 = �vn + a∗( �Gn
n+1) + a( �Gn

n+1). (IV.37)

Similarly, given ψn ∈ Hn , we define a vector

ψ̃n := ψn ⊗�n
n+1 ∈ Hn+1, (IV.38)

where �n and �m
n denote the vacuum vectors in Fn and Fm

n , respectively. With these
notations, we have that

H+
n+1 = H̃+

n + W n
n+1 + En

n+1, (IV.39)

where

W n
n+1 := (�vn+1)

2 − (�vn)
2

= 2 a∗( �Gn
n+1) · �vn + 2 �vn · a( �Gn

n+1) +
(
a∗( �Gn

n+1) + a( �Gn
n+1)

)2

= 2 a∗( �Gn
n+1) · �vn + 2 �vn · a( �Gn

n+1) + a∗( �Gn
n+1) · a∗( �Gn

n+1)

+ a( �Gn
n+1) · a( �Gn

n+1) + 2 a∗( �Gn
n+1) · a( �Gn

n+1) +
∥∥ �Gn

n+1

∥∥2
, (IV.40)

with
∥∥ �Gn

n+1

∥∥2 := ∫ | �Gn
n+1(k)|2 dk. In Eq. (IV.40), we make use of the Coulomb gauge

condition �∇ · �A(x) = 0, which implies that

a∗( �Gn
n+1) · �vn = �vn · a∗( �Gn

n+1) and a( �Gn
n+1) · �vn = �vn · a( �Gn

n+1). (IV.41)

IV.2.2. Preliminary results and outline of strategy. Here we describe some results
derived in [1], concerning the construction of the groundstate of H , that will be used
again and again in the re-expansion procedure. A key ingredient used in our construction
of the groundstate of H is the simple identity

2 �v = i [H , �x], (IV.42)

which implies that the interaction term in H , which is marginal in the infrared region
(in the sense of power counting), is actually infrared-irrelevant on the subspace of all
those states where the electron is bound to the nucleus.

Proposition IV.2. Assume Hypothesis 1. Then there exist constants 0 < C ′ ≤ C, C ≥ 4
such that, for all α < 1

2C , En is an eigenvalue of multiplicity one. Moreover

inf
[
σ(H+

n ) \ {0}
] =: gapn ≥

[
1− 3

4
Cα

]
σn, (IV.43)

inf
[
σ(H̃+

n ) \ {0}
] =: g̃apn = σn+1, (IV.44)

and

sup
z∈�n+1

∥∥∥
( 1

H̃+
n − z

)1/2(−W n
n+1

)( 1

H̃+
n − z

)1/2 ∥∥∥ ≤ C α, (IV.45)
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where �n+1 := { 14σn+1eiϑ ∈ C|ϑ ∈ [0, 2π)}. The spectral projections P̃n := |φ̃n〉〈φ̃n|
and Pn+1 := |φn+1〉〈φn+1|, where φ̃n and φn+1 are groundstates of H̃n and Hn+1, respec-
tively, correspond to

P̃n = −1

2π i

∫

�n+1

dzn+1

H̃+
n − zn+1

, (IV.46)

and

Pn+1 = −1

2π i

∫

�n+1

dzn+1

Hn+1 − En+1 − zn+1
, (IV.47)

respectively, with �n := { 14σneiϑ ∈ C|ϑ ∈ [0, 2π)}. Their difference has a norm
convergent series expansion

Pn+1 − P̃n = −1

2π i

∞∑

ν=1

∫

�n+1

(−1)ν Y (ν)n+1(zn+1) dzn+1, (IV.48)

where

Y (ν)n+1(z) :=
1

H̃+
n − z

(
W n

n+1
1

H̃+
n − z

)ν
, (IV.49)

and

‖Pn+1 − P̃n‖ ≤ C ′ α(n+2)/2. (IV.50)

The eigenvalue E∞ ≡ Egs is non-degenerate.

If we are interested in deriving an explicit expression for φgs up to a remainder term
of order o(αN ), we may as well consider the vector φ2N−1, because

‖φ2N−1 − φgs‖ ≤ o(αN ). (IV.51)

The bound (IV.51) follows from Proposition IV.2. Up to normalization, the vector φ2N−1
is given by the product P2N−1 P2N−2 · · · P1 of the projections {P2N−1, . . . ., P1} applied
to the groundstate, φ0, of the bare Hamiltonian H+

0 , i.e.

φ2N−1 ∝ P2N−1 · · · ·P1φ0. (IV.52)

For a more precise version of Formula (IV.52), see [2]. From Proposition IV.2, more
precisely from estimate (IV.45), we infer that the expansion (IV.48) can be truncated at
a finite order in such a way that the remainder term is o(αN ).
Thus, the vector

PT
2N−1 · · · ·PT

1 φ0, (IV.53)

where

(Pm)
T := − 1

2π i

N∑

j=0

∫

�m

dzm
1

H̃+
m−1 − zm

[
(−W m−1

m )
1

H̃+
m−1 − zm

] j
, (IV.54)

is an approximate expression for φgs , up to a remainder term o(αN ) and up to a normal-
ization factor. The truncation in the definition of PT

m only depends on N .
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From now on, we focus our attention on the analysis of the finitely many resolvents
appearing on the right side of (IV.54), for m = 2N − 1.

Our derivation of explicit finite expressions for the vector (IV.53) relies on three
operations to be iterated a finite number of times:

i) The photon creation- and annihilation operators are Wick-ordered, shell by shell;
ii) the identity operator, 1n , in the space Hn is decomposed into the sum Pn + P⊥n ;

iii) two slightly different, truncated Neumann expansions, which we call A and B, are
used to re-expand the contributions associated with P⊥n coming from operation ii).

Re-expansion procedure. As a first step, we expand the resolvents

1

H̃+
2N−2 − z2N−1

(IV.55)

appearing in the truncated projection PT
2N−1 in Expression (IV.53) until only resolvents

of the Hamiltonian H+
2N−3 are left. We then put the expressions obtained in a form that

enables us to iterate the operation, until only resolvents of the bare Hamiltonian H+
0 are

left.
This can be accomplished if we take into account that the operator in Eq. (IV.55) is

applied to a vector containing only a finite, N -dependent, but α-independent, number
of photons with momenta in the shell K2N−2

2N−1, thanks to the truncation in PT
2N−1. After

Wick-ordering of the photon operators in the shell K2N−2
2N−1, the original resolvent (IV.55)

is replaced by a finite, N -dependent number of resolvents of the form

1

H+
2N−2 − z2N−1 +

∑
j |k j | (IV.56)

applied to a vector in H2N−2, where the sum,
∑

j |k j |, of energies |k j |, {k j : σ2N−1 ≤
|k j | ≤ σ2N−2} is finite and depends only on N . The key idea underlying the re-expansion
of φgs is to split the operator (IV.56) into two pieces,

1

H+
2N−2 − z2N−1 +

∑
j |k j | P2N−2 and

1

H+
2N−2 − z2N−1 +

∑
j |k j | P

⊥
2N−2.

(IV.57)

The first one is proportional to the projection P2N−2, the factor of proportionality being
an explicit number. Up to a remainder term of order o(αN ), P2N−2 can be expanded by
using Eq. (IV.48) and then truncated as in Eq. (IV.54).

The second term in (IV.57) is analyzed by using the Neumann expansion below,
which we call of type A:

P⊥2N−2
1

H̃+
2N−3 − z2N−1 +

∑
j |k j |

P⊥2N−2

+ P⊥2N−2
1

H̃+
2N−3 − z2N−1 +

∑
j |k j |

P⊥2N−2 ×

×
∞∑

j=1

[
(−W 2N−3

2N−2 − E2N−3
2N−2

) 1

H̃+
2N−3 − z2N−1 +

∑
j |k j |

P⊥2N−2

] j

. (IV.58)
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This expansion converges, because the absolute value of the energy shift E2N−3
2N−2 is very

small, namely of order O(α2N ); and
the expression

1

H̃+
2N−3 − z2N−1 +

∑
j |k j |

P⊥2N−2 (IV.59)

is bounded in norm by σ−1
2N−2, because of the orthogonal projection P⊥2N−2. The expan-

sion in Eq. (IV.58) yields additional powers of α. It can therefore be truncated at some
N−dependent order. Finally, P⊥2N−2 = 12N−2 − P2N−2 has to be expanded and trun-
cated similarly to P2N−2. As a result of the previous operations (decomposition (IV.57),
and Neumann expansion A), the resolvent (IV.56) is represented by a polynomial in the
following operators:

• the resolvents

1

H̃+
2N−3 − z2N−1 +

∑
j |k j |

,
1

H̃+
2N−3 − z2N−2

; (IV.60)

• the slice interaction W 2N−3
2N−2 ;

• and the energy shift E2N−3
2N−2 .

Returning to the expression (IV.53), we then Wick-order the photon operators corre-
sponding to photon momenta in the shell K2N−3

2N−2. This yields finitely many terms, and
the resolvents in Eq. (IV.60) are replaced by resolvents of the form

1

H+
2N−3 − z2N−1 +

∑
j |k j | + ∑

i |qi | ,
1

H+
2N−3 − z2N−2 +

∑
i |qi | , (IV.61)

where the photon momenta qi all belong to the shell K2N−3
2N−2, and the number of terms

in the sum
∑

i |qi | is bounded by an N−dependent number, thanks to the truncation
in PT

2N−2. As before, we decompose the resolvents into two pieces, using the projec-
tions P2N−3 and P⊥2N−3. This yields terms proportional to the projection P2N−3, with
an explicit factor of proportionality, and terms of the form

1

H+
2N−3 − z2N−2 +

∑
i |qi | P

⊥
2N−3,

1

H+
2N−3 − z2N−1 +

∑
j |k j | + ∑

i |qi | P
⊥
2N−3.

(IV.62)

The first term in Eq. (IV.62) is analyzed by using the Neumann expansion of type A,
see (IV.58), with 2N − 2 replaced by 2N − 3. The second term in Eq. (IV.62) is treated
by applying the following expansion, which we call of type B:

P⊥2N−3
1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3

+ P⊥2N−3
1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3 × (IV.63)

×
N∑

j=1

[(−W 2N−4
2N−3 − E2N−4

2N−3)
1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3
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+
(
z2N−1 − z2N−2 −

∑

j

|k j |
) 1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3

] j

+
1

H+
2N−3 − z2N−1 +

∑
i |qi | + ∑

j |k j | P
⊥
2N−3 ×

×[(−W 2N−4
2N−3 − E2N−4

2N−3)
1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3

+
(
z2N−1 − z2N−2 −

∑

j

|k j |
) 1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

P⊥2N−3

]N+1
. (IV.64)

In this truncated expansion, the remainder term (IV.64) is proven to be of order o(αN )

with respect to the original expression in (IV.62). To see this, we use the bounds on the
shift of the integration variable, z2N−1−z2N−2, and on the sum

∑
j |k j |: Both quantities

are of order σ2N−2, the first one by definition of z2N−2 and z2N−1, and the second one
because of the fact that the number of terms in

∑
j |k j | is finite and α-independent.

The new features of our expansion of type B, as compared to an expansion of type
A, are as follows:

The replacement of the integration variable z2N−1 by the variable z2N−2 is possible
because of Estimate (IV.44) on the spectral gap: One then expands in the energies |k j |,
which are bounded by const · σ2N−2.

The norm of the remaining resolvents is bounded by const · σ−1
2N−3. Finally we trun-

cate P⊥2N−3.
Hence, starting with a resolvent of the form given in Eq. (IV.56), and then performing

the operations just described, we end up with a polynomial in the following operators:

∗ Resolvents,

1

H̃+
2N−4 − z2N−2 +

∑
i |qi |

,
1

H̃+
2N−4 − z2N−3

; (IV.65)

∗ slice interactions W 2N−4
2N−3 ;

∗ energy shifts E2N−4
2N−3 , difference of integration variables, z2N−1− z2N−2, and energy

sums,
∑

j |k j |.
We proceed by Wick-ordering the photon creation- and annihilation operators in the

shell K2N−4
2N−3 in every term obtained so far, starting from the vector in Eq. (IV.53), using

(IV.54), for m = 2N − 1, and then expanding the resolvents as described above. Two
types of resolvents result:

1

H+
2N−4 − z2N−2 +

∑
i |qi | + ∑

i ′ |q ′i ′ |
,

1

H+
2N−4 − z2N−3 +

∑
i ′ |q ′i ′ |

; (IV.66)

where the new sum,
∑′

i |q ′i ′ |, corresponds to photon momenta, q ′i ′ , in the shell K2N−4
2N−3,

and the number of terms is bounded by an N -dependent, but α-independent integer.
After inserting the partition of unity, 12N−4 = P2N−4+P⊥2N−4, we arrive at the expres-

sions in (IV.62), but with 2N−3 replaced by 2N−4. Thus , our re-expansion procedure,
based on truncated Neumann expansions of type A and B and on Wick-ordering, can be
iterated.
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By applying the re-expansion procedure, scale by scale, to all the resolvents appearing in
the truncated projections of Expression (IV.53), we eventually end up with an expansion
of (IV.53) involving only “bare” resolvents, i.e., resolvents of the form

1

H+
0 − z2 +

∑
i |qi | + ∑

i ′ |q ′i ′ |
,

1

H+
0 − z1 +

∑
i ′ |q ′i ′ |

, (IV.67)

with momenta {qi }, {q ′i ′ } belonging to the shells K1
2 and K0

1, respectively.
The arguments described above represent the essential ingredients in the re-expansion

procedure developed in [2], where the mathematical details are presented.
The main difficulty in the inductive proof of convergence of the re-expansion pro-

cedure is related to determining the energy shifts En
m more explicitly. In re-expanding

φ2N−1, all the energy shifts up to scale 2N − 2 appear in our formulas. The energy
shifts can be expressed in terms of the groundstate vectors on scales up to 2N − 3.
Explicit expressions for the energy shifts En

m are obtained from the re-expansions of
{φi |i = 1, . . . , 2N − 2}, up to remainder terms of o(αN ). The result of the re-expansion
of the groundstate and the groundstate energy presented in [2] is:
For α ≤ ᾱ, with ᾱ ≡ ᾱN small enough, the groundstate energy Egs ≡ Egs(α) and the

groundstate φgs ≡ φgs(α
1
2 ) have expansions of the form

Egs(α) = E0 +
N∑

�=3

ε� (α) α
� + o(αN ), (IV.68)

φgs(α
1
2 ) = φ0 +

2N∑

�=3

ϕ�(α) α
�/2 + o(αN ), (IV.69)

with

lim
α→0

αδ|ε� (α)| = 0 ∀δ > 0, (IV.70)

and

lim
α→0

αδ‖ϕ� (α)‖ = 0 ∀δ > 0, (IV.71)

for arbitrary N = 3, 4, 5, . . . . The coefficients ε�(α) and ϕ�(α) are computable in terms
of finitely many convergent integrals, for any 3 ≤ � <∞.

Equations (IV.70), (IV.71) account for the possible appearance of powers of ln[1/α]
(“infrared logarithms”). We expect that infrared logarithms are not an artefact of our
algorithm, but are an expression of infrared divergences in naive perturbation theory:

The quantities Egs(α) and φgs(α
1
2 ) are not analytic, nor even smooth, at α = 0; rather,

derivatives in α
1
2 of sufficiently high order of these quantities diverge, as α→ 0.

By combining the expansion of the modified reduction formulae developed in
Sect. IV.1 with Expressions (IV.68) and (IV.69), Expansion (I.20) for the S-matrix ele-
ments of Rayleigh scattering is established.

V. Bohr’s Frequency Condition

In this last section, we explicitly compute the scattering amplitude in Eq. (III.9) to leading
order in α.
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In Sect. III, Eq. (III.13), we have derived that

i〈 �Aout [− �̄f ] �Ain[�h]〉φgs − i( f, h) =: ( f, T h) (V.1)

corresponds to

−i
∫ +∞

−∞

∫ +∞

−∞

∫ ∫
ft (�z)〈T ( �J tr (�z, t) �J tr (�y, s)〉φgs

�hs(�y)d3 yd3zdsdt (V.2)

−
∫ +∞

−∞
〈[ �A[− �̄f s, s], �J tr [�hs, s]]〉φgs ds, (V.3)

where we have used the standard definition for T , the T-matrix operator. The leading
order term is of order α3 and arises from the expression in Eq. (V.2). In fact, due to
one power of α multiplying the electron position operator, �x , in the transverse current,
the term in Eq. (V.3) is of order α4. In computing the leading term, we first rewrite the
integrand in Expression (V.2) as

ei Egs (t−s) �ft (�z)〈 �J tr (�z, 0)e−i H(t−s) �J tr (�y, 0)〉φgs θ(t − s)�hs(�y) (V.4)

+ ei Egs (s−t) �ft (�z)〈 �J tr (�y, 0)e−i H(s−t) �J tr (�z, 0)〉φgs θ(s − t)�hs(�y). (V.5)

Then we approximate �J tr (�y, 0) by

− α3/2

(2π)3
∑

λ=±

∫
( �p · �ε(�k, λ)∗)�ε(�k, λ)�(|�k|)e−i �k·�yd3k + h.c., (V.6)

where �p := −i �∇�x , and we approximate φgs by ϕel ⊗ �, ψ0 = ϕel being the ground
state of the atomic system alone with corresponding Hamiltonian

Hel := −��x − V (�x). (V.7)

Finally, we replace the propagator e−i H(t−s) by e−i H0(t−s), and we rewrite the identity
operator between the two currents as a sum of projections onto eigenstates (and gener-
alized eigenstates) of the Hamiltonian Hel tensor the vacuum state �. To compute the
contribution of order α3 to the transition amplitudes corresponding to an intermediate
eigenstate ψn of the Hamiltonian Hel , we first analyze the contribution of the term in
Eq. (V.4) to order α3, by using the identity �p = i

2 [Hel , �x]:

−i
1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ ∫
(�nE)2

∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)× (V.8)

×e−i(En−E0−|�k|)t e−i(−En+E0+|�q|)sθ(t − s)
f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3kd3qdsdt,

where �nE := En − E0 and En is the energy of the eigenstate ψn ; in passing from
Eq. (V.4) to Eq. (V.8), we have also approximated Egs by E0. Introducing the variable
u := t − s > 0, the integral in Eq. (V.8) can be written as
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i
1

(2π)3

∫ +∞

−∞

∫ +∞

0

∫ ∫
(�nE)2

∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)×

× ei(|�k|−|�q|)t ei(−En+E0+|�q|)u f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3kd3qdudt. (V.9)

We insert regularizing factors e−ε|t |, ε > 0, and e−µ|u|, µ > 0, and then pass to the
limits ε → 0 and µ→ 0 of

i
1

(2π)3

∫ +∞

−∞

∫ +∞

0

∫ ∫
(�nE)2

∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)×

×ei(|�k|−|�q|)t e−ε|t |ei(−En+E0+|�q|)ue−µu f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3kd3qdudt.

(V.10)

An explicit calculation gives

lim
ε→0

lim
µ→0

i
1

(2π)3

∫ ∫
(�En)

2
∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)×

(V.11)

× 2ε

(|�k| − |�q|)2 + ε2
· i

E0 − En + |�q|+iµ

f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3kd3q =

= i
1

(2π)3

∫ ∫
(�nE)2

∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)× (V.12)

× 2π2δ(|�k| − |�q|)δ(E0 − En + |�q|) f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3qd3k

− P
∫

d3q
1

E0 − En + |�q|
∫

d3k(�nE)2 × (V.13)

×
∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)×

× (2π)−2δ(|�k| − |�q|) f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

,
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where P stands for the principal part of 1
E0−En+|�q| . By similar calculations we see that

the contribution in Eq. (V.5) gives:

i
1

(2π)3

∫ ∫
(�nE)2

∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)× (V.14)

× 2π2δ(|�k| − |�q|)δ(−E0 + En + |�q|) f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

d3qd3k

−
∫

d3q
1

−E0 + En + |�q|
∫

d3k(�nE)2 × (V.15)

×
∑

λ,λ′
(ψ0, �x · �ε(�k, λ)ψn)(ψn, �x · �ε(�q, λ′)∗ψ0)×

× (2π)−2δ(|�k| − |�q|) f̂ λ(�k)√
|�k|

ĥλ
′
(�q)√|�q|

�(|�k|)�(|�q|)
2

.

We observe that the real part of a (connected) scattering amplitude of the type calcu-
lated above, with f = h, is different from zero, in leading order, only if the photon wave
function does not vanish for photon energies corresponding to a difference, En − E0, of
the energy En of an excited boundstate and the groundstate energy E0. In fact, it is given
by Expression (V.12). Assuming the validity of the optical theorem, the total cross sec-
tion for an incoming photon with wave function f is proportional to the imaginary part
of ( f, T f ). Therefore, in leading order, the total cross section for an incoming photon
with wave function f vanishes if f (�q) = 0 when |�q| = En − E0, for arbitrary n. This
is Bohr’s frequency condition! Since we have assumed that the spectral support, with
respect to H , of the initial (and the final) state is strictly below the ionization threshold
, transitions corresponding to intermediate states in the continuous spectrum do not
contribute to the total cross section to leading order in α.
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