
Automated GUI performance testing

Andrea Adamoli • Dmitrijs Zaparanuks • Milan Jovic •

Matthias Hauswirth

Published online: 3 April 2011
� Springer Science+Business Media, LLC 2011

Abstract A significant body of prior work has devised approaches for automating the

functional testing of interactive applications. However, little work exists for automatically

testing their performance. Performance testing imposes additional requirements upon GUI

test automation tools: the tools have to be able to replay complex interactive sessions, and

they have to avoid perturbing the application’s performance. We study the feasibility of

using five Java GUI capture and replay tools for GUI performance test automation. Besides

confirming the severity of the previously known GUI element identification problem, we

also describe a related problem, the temporal synchronization problem, which is of

increasing importance for GUI applications that use timer-driven activity. We find that

most of the tools we study have severe limitations when used for recording and replaying

realistic sessions of real-world Java applications and that all of them suffer from the

temporal synchronization problem. However, we find that the most reliable tool, Pounder,

causes only limited perturbation and thus can be used to automate performance testing.

Based on an investigation of Pounder’s approach, we further improve its robustness and

reduce its perturbation. Finally, we demonstrate in a set of case studies that the conclusions

about perceptible performance drawn from manual tests still hold when using automated

tests driven by Pounder. Besides the significance of our findings to GUI performance

testing, the results are also relevant to capture and replay-based functional GUI test

automation approaches.

This article is an extended version of our AST 2010 paper Jovic et al. (2010).

A. Adamoli (&) � D. Zaparanuks � M. Jovic � M. Hauswirth
Via Giuseppe Buffi 13, 6904 Lugano, Switzerland
e-mail: andrea.adamoli@usi.ch

D. Zaparanuks
e-mail: dmitrijs.zaparanuks@usi.ch

M. Jovic
e-mail: milan.jovic@usi.ch

M. Hauswirth
e-mail: matthias.hauswirth@usi.ch

123

Software Qual J (2011) 19:801–839
DOI 10.1007/s11219-011-9135-x

Keywords Performance testing � Graphical user interfaces � Test automation �
Perfomance analysis

1 Introduction

In this paper, we study whether it is practical to automatically test the performance of

interactive rich-client Java applications. For this, we need to address two issues: (1) we

need a metric and a measurement approach to quantify the performance of an interactive

application, and (2) we need a way to automatically perform realistic interactive sessions

on an application, without perturbing the measured performance.

We address the first issue by measuring the distribution of system response times to user

requests (Jovic and Matthias Hauswirth 2008). The second issue is the key problem we

study in this paper: Instead of employing human testers who repeatedly perform the same

interactions with the application, we evaluate different approaches to record an interactive

session once and to automatically replay it the required number of times.

GUI test automation is not a novel idea. However, we are not aware of any automatic GUI

performance testing approach that can evaluate the performance as perceived by the user.

This kind of GUI performance test automation has two key requirements that go beyond

traditional GUI test automation: (1) the need to replay realistically complex interactive

sessions and (2) the minimal perturbation of the measured performance by the tool.

First, many existing GUI test automation approaches and tools primarily focus on

functional testing and thus do not need to support the capturing and replaying of realis-

tically long interactive sessions. However, for performance testing, the use of realistic

interaction sequences is essential. The reasons for this are based on the problem that

applications interact with the underlying platform in non-functional ways and that these

interactions can significantly affect performance. For example, excessive object allocations

in one part of an application may indirectly trigger garbage collection during the execution

of a different part; or the first use of a class may trigger dynamic class loading, may cause

the language runtime to just-in-time compile and optimize application code, and may even

cause previously optimized code in a different class to be deoptimized. Finally, the size of

data structures (e.g., the documents edited by the user) directly affects performance (the

runtime of algorithms depends on data size), but it can also indirectly affect performance

(processing large data structures decreases memory locality and thus performance). To

observe these direct and indirect effects, which can be significant when programs are run

by real users, we need an approach that replays realistically complex interaction sequences.

Second, existing GUI test automation tools are not constrained in their impact on

performance. However, to allow GUI performance test automation, a tool must not sig-

nificantly perturb the application’s performance. Capture and replay tools can cause per-

turbation due to additional code being executed (e.g., to parse the file containing a recorded

session, or to find the component that is the target of an event), or additional memory being

allocated (e.g., to store the recorded session in memory). Thus, we need a capture and

replay approach that incurs little overhead while still being able to replay realistically

complex sessions.

In this paper, we evaluate capture and replay approaches as implemented in a set of

open-source Java GUI testing tools. We study the practicality of replaying complete

interactive sessions of real-world rich-client applications, and we quantify the perturbation
caused by the different tools.

802 Software Qual J (2011) 19:801–839

123

While we specifically focus on performance test automation, to the best of our

knowledge, our evaluation also constitutes the first comparative study of GUI test auto-

mation tools with respect to functional, not performance, testing.

The remainder of this paper is structured as follows. Section 2 provides the background

on the structure and behavior of interactive applications, in particular on GUI applications

written in Java. Section 3 surveys prior work on GUI testing. Section 4 introduces GUI

capture and replay tools. Section 5 presents our methodology for evaluating the fitness of

such tools for recording and replaying long, realistic event sequences. Section 6 applies

that methodology to evaluate five existing capture and replay tools. Section 7 discusses our

findings. Section 8 investigates the limitations of Pounder, the tool with the best evaluation

results, and it discusses how we improved Pounder as a result of our study. Section 9

provides five case studies to highlight use cases of GUI performance test automation.

Section 10 discusses threats to the validity of our study, Sect. 11 summarizes related work,

and Sect. 12 concludes.

2 Interactive applications

Interactive applications are event-based systems: they wait for and process a never-ending

sequence of user requests. Java’s AWT/Swing, like most GUI toolkits, represents user

requests as ‘‘events’’. In Java, an event is a normal Java object. Event classes are subtypes

of java.util.EventObject. Each event describes an action that applies to a specific

object. In most cases, this object affected by the event is a GUI component (e.g., a

MouseEvent may represent a mouse click on a JButton component).

While a GUI application is running, the toolkit creates an event object for each user

interaction with the keyboard or mouse (1 in Fig. 1), and it enqueues that event object into

an event queue. The event dispatch thread, the one thread in Java GUI applications that

executes all GUI-related code, dequeues one event object after the other, and dispatches it.

Dispatching an event object often means sending it (2) to the corresponding GUI com-

ponent (an object of a subtype of java.awt.Component).

Unfortunately, this simple model has many exceptions and boundary cases.

Fig. 1 Event dispatch model

Software Qual J (2011) 19:801–839 803

123

First, not all events are actually dispatched to components. For example, the dispatcher

handles events of type java.awt.ActiveEvent by invoking a dispatch method on the

event itself. Those events are not related to a GUI component at all. They represent

arbitrary actions that are to be executed in the GUI thread. Often they are used by back-

ground threads to cause the GUI thread to update the state of the GUI on their behalf.

Second, not all events are enqueued in the event queue; so-called semantic events may

originate in the application itself (3 and 4), often as a result (3) of low-level events. For

example, a user may press and release the mouse button (thereby causing two low-level

MouseEvents, one for the pressing and one for the releasing of the button) while the

mouse cursor is located over a GUI component that represents a text field. The text field,

listening to MouseEvents, may then create a CaretEvent and send it to its listeners.

The CaretEvent is a semantic event that represents the fact that the caret (text cursor)

has been moved. Semantic events like the CaretEvent in this example are usually not

sent through the event queue. Instead, they are directly sent to all CaretListeners
registered with the text field by invoking their caretUpdate(CaretEvent) methods.

Third, some parts of the GUI visible to the user are not reflected as objects in the Java

program. For example, the window decoration, including the title bar and the close or

maximize buttons, is directly drawn by the native window system. Mouse activities over

these areas are not sent to the Java application. Instead, the application only receives

certain semantic events (5), such as a WindowEvent when the user clicked the close

button.

3 Survey of automated GUI testing approaches

Figure 2 provides a high-level characterization of automated GUI testing approaches. In

this section, we use this characterization to classify a body of 50 research papers published

on this topic. We started our survey with the top-ranked papers by relevance in searches for

‘‘GUI testing’’ and ‘‘GUI capture replay’’ Memon (2008), Memon et al. (2005), Li et al.

(2007), Xie and Memon (2008), Nguyen et al. (2010), Yuan and Memon (2010), Brooks

and Memon (2007), Sun and Jones (2004), El Ariss et al. (2010) in the ACM digital

library. Given that most of this work was focusing on desktop applications, we added

further papers related to GUI testing of web applications. We then performed the transitive

closure over the relevant papers each paper cites.

3.1 Characterization of GUI testing automation

The graph in Fig. 2 outlines the GUI testing process. It consists of two kinds of nodes:

activities (elliptical) and data collections (rectangular), with each edge connecting an

activity and a data collection. A key goal of automated GUI testing is to eliminate the need

for a human user during testing, that is, to automatically run an interactive application (the

play activity), performing a given sequence of user interactions (event sequence data

collection). The surveyed approaches differ in which of the nodes of our figure they

address.

The common capture and replay approach to GUI testing includes the record process,

which records an event sequence while a user interacts with the application. However,

many GUI testing approaches use models to abstract away from concrete event sequences.

A model represents a set of possible event sequences. Given a model, approaches can

instantiate concrete event sequences, which they can then play. The model can consist of

804 Software Qual J (2011) 19:801–839

123

an event sequence abstraction, such as an event flow graph, state machine, or Markov

model. The model may include information about possible event types. It can involve

information about the GUI structure, which is usually represented as a forest where each

top-level window contains a tree of components. The model also may involve usage
frequencies, representing information about which components or events are most

important in practice. Finally, models may separate input data (such as the set of strings

that could be entered into text fields) from the event sequence abstraction.

A model can be created and maintained in different ways. An approach may abstract a

model from one or more concrete event sequences. Alternatively, a model may be created
manually, maybe even before the application exists. A model, or parts of a model (such as

the GUI structure), may be extracted from the application using static or dynamic

analysis. Finally, feedback-driven approaches update the model based on results of

playing back event sequences. The results may correspond to test failures, to crashes at

play time, or to outcomes of dynamic analyses performed during play time.

The results are not only used in model-based approaches. Even traditional capture and

replay approaches may use the results of running a sequence in order to fix that sequence.

Moreover, fixing a concrete event sequence may also use information from a model, for

example information about changes in a GUI structure between application versions.

3.2 Survey of prior work on GUI test automation

Table 1 classifies the 50 surveyed papers according to the above characterization. It

contains one column for each node in Fig. 2. The columns related to models are grouped in

the middle. The top part of the table consists of 18 papers that include the record activity,

while the 32 papers in the bottom part do not involve the recording of concrete event

sequences.

For the papers involving recording, the top 6 papers operate on concrete event

sequences and thus represent traditional capture and replay approaches, while the bottom

12 papers involve abstract models of user interactions. The last two of those 12 papers also

model

GUI
structure

event
types

event sequence
abstraction

instantiate

fix

usage
frequencies

input
data

event
sequence

play abstract

result

update

record

extract from
application

create
manually

Fig. 2 Characterization of GUI testing approaches

Software Qual J (2011) 19:801–839 805

123

T
a

b
le

1
S

u
rv

ey
o

f
G

U
I

te
st

in
g

ap
p

ro
ac

h
es

P
ap

er
M

o
d
el

R
ec

o
rd

E
v
en

t

se
q
u
en

ce

P
la

y
R

es
u
lt

U
p
d
at

e
A

b
st

ra
ct

ed
ev

en
t

se
q
u
en

ce

G
U

I

st
ru

ct
u
re

In
p
u
t

d
at

a

U
sa

g
e

fr
eq

u
en

ci
es

E
v
en

t

ty
p
es

C
re

at
e

m
an

u
al

ly

E
x
tr

ac
t

fr
o
m

ap
p
li

ca
ti

o
n

A
b
st

ra
ct

In
st

an
ti

at
e

F
ix

S
te

v
en

et
al

.
(2

0
0
0

)
X

X
X

L
o
w

el
l

an
d

S
te

ll
-

S
m

it
h

(2
0
0
3

)

X
X

X

M
es

za
ro

s
(2

0
0
3

)
X

X
X

L
i

an
d

M
en

g
q
i

W
u

(2
0
0
4

)

X
X

X

M
it

ch
el

l
an

d
P

o
w

er

(2
0
0
4

)

X
X

X

R
u
iz

an
d

P
ri

ce
(2

0
0
7

)
X

X
X

L
iu

et
al

.
(2

0
0
0
a)

X
X

X
X

X
X

L
iu

et
al

.
(2

0
0
0
b

)
X

X
X

X
X

X

M
em

o
n

et
al

.
(2

0
0
1
)

X
X

X
X

X
X

X
X

X

E
lb

au
m

et
al

.
(2

0
0
3
)

X
X

X
X

X
X

S
am

p
at

h
(2

0
0
4

)
X

X
X

X
X

X
X

E
lb

au
m

et
al

.
(2

0
0
5
)

X
X

X
X

X
X

X

B
ro

o
k
s

an
d

M
em

o
n

(2
0
0
7

)

X
X

X
X

X
X

X

A
ls

m
ad

i
(2

0
0
8

)
X

X
X

X
X

X
X

D
eu

rs
en

an
d

M
es

b
ah

(2
0
1
0

)

X
X

X
X

X
X

E
l

A
ri

ss
et

al
.

(2
0
1
0
)

X
X

X
X

X
X

X
X

X

K
as

ik
an

d
G

eo
rg

e

(1
9
9
6

)

X
X

X
X

X
X

X
X

X

M
em

o
n

(2
0
0
8
)

X
X

X
X

X
X

X
X

X
X

S
h
eh

ad
y

an
d

S
ie

w
io

re
k

(1
9
9
7
)

X
X

X
X

X
X

X

Y
an

g
et

al
.

(1
9
9
9
)

X
X

X
X

X
X

X
X

806 Software Qual J (2011) 19:801–839

123

T
a

b
le

1
co

n
ti

n
u

ed

P
ap

er
M

o
d
el

R
ec

o
rd

E
v
en

t

se
q
u
en

ce

P
la

y
R

es
u
lt

U
p
d
at

e
A

b
st

ra
ct

ed
ev

en
t

se
q
u
en

ce

G
U

I

st
ru

ct
u
re

In
p
u
t

d
at

a

U
sa

g
e

fr
eq

u
en

ci
es

E
v
en

t

ty
p
es

C
re

at
e

m
an

u
al

ly

E
x
tr

ac
t

fr
o
m

ap
p
li

ca
ti

o
n

A
b
st

ra
ct

In
st

an
ti

at
e

F
ix

W
h
it

e
an

d
A

lm
ez

en

(2
0
0
0

)

X
X

X
X

X
X

B
el

li
(2

0
0
1

)
X

X
X

X

R
ic

ca
an

d
P

ao
lo

T
o
n
el

la
(2

0
0
1
)

X
X

X
X

X
X

X
X

L
u
cc

a
et

al
.

(2
0
0
2
)

X
X

X
X

X

S
u
n

an
d

Jo
n
es

(2
0
0
4
)

X
X

X
X

X

M
em

o
n

an
d

Q
in

g
X

ie

(2
0
0
5

)

X
X

X
X

X
X

X

M
em

o
n

et
al

.
(2

0
0
5
)

X
X

X
X

X
X

X

X
ie

(2
0
0
6

)
X

X
X

X
X

X

G
re

ch
an

ik
et

al
.
(2

0
0
9
)

X
X

X
X

X

L
i

et
al

.
(2

0
0
7

)
X

X
X

X
X

X

M
ar

ch
et

to
et

al
.

(2
0
0
8
a)

X
X

X
X

X

M
ar

ch
et

to
et

al
.

(2
0
0
8
b

)

X
X

X
X

X

H
ac

k
n
er

an
d

M
em

o
n

(2
0
0
8

)

X
X

X
X

X

S
tr

ec
k
er

an
d

M
em

o
n

(2
0
0
8

)

X
X

X
X

X

B
ro

o
k
s

et
al

.
(2

0
0
9

)
X

X
X

X
X

C
h
in

n
ap

o
n
g
se

et
al

.

(2
0
0
9

)

X
X

X
X

X

M
cM

as
te

r
an

d
M

em
o
n

(2
0
0
9

)

X
X

X
X

X
X

X

M
es

b
ah

an
d

v
an

D
eu

rs
en

(2
0
0
9
)

X
X

X
X

X

Software Qual J (2011) 19:801–839 807

123

T
a

b
le

1
co

n
ti

n
u

ed

P
ap

er
M

o
d
el

R
ec

o
rd

E
v
en

t

se
q
u
en

ce

P
la

y
R

es
u
lt

U
p
d
at

e
A

b
st

ra
ct

ed
ev

en
t

se
q
u
en

ce

G
U

I

st
ru

ct
u
re

In
p
u
t

d
at

a

U
sa

g
e

fr
eq

u
en

ci
es

E
v
en

t

ty
p
es

C
re

at
e

m
an

u
al

ly

E
x
tr

ac
t

fr
o
m

ap
p
li

ca
ti

o
n

A
b
st

ra
ct

In
st

an
ti

at
e

F
ix

M
u

et
al

.
(2

0
0
9
)

X
X

X
X

X
X

X

S
il

v
a

et
al

.
(2

0
0
9
)

X
X

X
X

X

C
h
an

g
et

al
.

(2
0
1
0
)

X
X

X

N
g
u
y
en

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

L
in

d
v
al

l
et

al
.

(2
0
0
7

)
X

X
X

X
X

X
X

X
X

X
ie

an
d

M
em

o
n

(2
0
0
7

)

X
X

X
X

X
X

X

Y
u
an

an
d

M
em

o
n

(2
0
0
7

)

X
X

X
X

X
X

X

M
cM

as
te

r
an

d

M
em

o
n

(2
0
0
8
)

X
X

X
X

X
X

X
X

R
u
iz

an
d

P
ri

ce

(2
0
0
8

)

X
X

X
X

X
X

X
X

X
ie

an
d

M
em

o
n

(2
0
0
8

)

X
X

X
X

X
X

X

Y
u
an

et
al

.
(2

0
0
9
)

X
X

X
X

X
X

X

Y
u
an

an
d

M
em

o
n

(2
0
1
0

)

X
X

X
X

X
X

X
X

808 Software Qual J (2011) 19:801–839

123

include feedback, which means that the model or the sequence is updated based on results

of prior runs.

All the 32 papers that do not involve any recording represent model-based testing

approaches. Of those, the last 8 papers update their models based on feedback from prior

runs.

3.3 Fitness for GUI performance testing

To find performance problems in real applications, the length of the event sequences played

during testing is important. Sequences representing only one or two events are often used

for functional testing. They represent a form of unit test. Slightly longer sequences could

be considered integration tests, as they often cover some interactions between components.

To find performance problems, however, event sequences need to be significantly longer,

so that the underlying system can reach the steady-state behavior that is normal in real-

world usage. In our survey, we found that more than 50% (28) of the papers do not deal

with long sequences, thus their tests are not very suitable for performance testing.

A second problem of using GUI testing tools for performance testing is their use of

harnesses and mock objects. Those artifacts represent deviations from the real-world setup

and thus can affect the observed performance.

Out of the 50 related papers, 44 represent model-based approaches. The use of models

implies the automatic generation of event sequences (instantiation). Thus, model-based

approaches allow the generation of an arbitrary number of sequences of arbitrary lengths.

However, the surveyed model-based approaches did not primarily focus on producing

long and realistic sequences. Their main goal is to increase test coverage, according to

various coverage criteria. Many approaches aim at achieving high coverage while

keeping sequences as short as possible, especially given that exploring the model using

longer sequences can lead to a combinatorial explosion of the number of possible

sequences. Five approaches include usage frequencies in their models. While such

information could be used to generate more realistic event sequences, this is not the

focus of those papers.

Current work on GUI test automation does not explicitly focus on exercising applica-

tions using realistic, long event sequences. As a consequence, evaluations of that work

focus on other aspects, such as the reduction in testing time and the improvement of

coverage. In this paper, we fix this gap: we evaluate GUI test automation approaches, in

particular the more mature category of capture and replay tools, for their ability to handle

real-world usage sessions.

4 Capture and replay tools

GUI capture and replay tools have been developed as a mechanism for testing the cor-

rectness of interactive applications with graphical user interfaces. Using a capture and

replay tool, a quality assurance person can run an application and record the entire

interactive session. The tool records all the user’s events, such as the keys pressed or the

mouse movements, in a log file. Given that file, the tool can then automatically replay the

exact same interactive session any number of times without requiring a human user. By

replaying a given log file on a changed version of the application, capture and replay tools

thus support fully automatic regression testing of graphical user interfaces.

Software Qual J (2011) 19:801–839 809

123

4.1 Capturing interactions

The complexities inherent in interactive Java applications described in Sect. 2 make it

difficult to build a tool that can accurately capture all user interactions. A naive tool may

capture only low-level mouse and keyboard events, considering low-level events the root

causes of all behavior of the application (because semantic events are usually created as a

result of some low-level event). Such a tool will fail to capture user activity in parts outside

the application’s control (such as the window’s title bar). Moreover, mouse events that

include the coordinates of the mouse pointer are very fragile. The coordinates in a mouse

event are required to determine to which GUI component the MouseEvent needs to be

sent. If the layout of the GUI changes slightly (e.g., in a new version of the program or on a

platform with a different look-and-feel), the x and y coordinates may now represent a

location over a different component. For this reason, recording high-level semantic events

would be preferable over the use of low-level events.

Unfortunately, there is no complete set of semantic events. Applications may add their

own event classes (and they frequently do). Moreover, components may handle some

mouse events directly, without ever sending out higher level semantic events. Thus,

capture tools focusing exclusively on semantic events essentially will miss potentially

relevant user interactions.

4.2 Persisting interactions

Once a tool builder has decided how to capture user interactions, she has to decide how to

represent these interactions in a persistent form. A capture and replay tool has to persist

events between different executions of the application and virtual machine. The capture

tool serializes events to a log file, and the replay tool deserializes them from that file. Thus,

there is a question about how to represent events in persistent form.

Current tools generally use an XML-based file format to store events. Thus, the tools

map Java event objects to XML elements and the fields of the Java objects to attributes of

the XML elements. Most of the attributes of events are simple scalar values, such as the x

and y coordinates in a MouseEvent, the key code of the key pressed in a KeyEvent, or

the event’s type (often available as an int field in the event object). Unfortunately, one of

the most important attributes of events is an object reference: the target component to

which the event is to be dispatched. Serializing and deserializing that attribute is what

causes many of the problems in existing capture and replay tools (this is called the ‘‘GUI

Element Identification Problem’’ McMaster and Memon (2009)).

5 Evaluation methodology

In this section, we present a methodology1 for evaluating the fitness of GUI capture and

replay tools for automated GUI performance testing. While we focus on the tools’ fitness

for performance testing, the first two parts of our methodology are concerned with the

tools’ fitness for functional testing and are thus of more general use.

Approach. We first evaluate the tools’ functional accuracy using small test applications.

Our test applications are minimal GUI applications, each just exhibiting one specific GUI

1 The artifacts used in this methodology are available at http://www.sape.inf.usi.ch/pounder and will be
submitted to the Community Event-based Testing collection at http://www.comet.unl.edu/.

810 Software Qual J (2011) 19:801–839

123

http://www.sape.inf.usi.ch/pounder
http://www.comet.unl.edu/

feature. We use the tools to record a short user session on each application, and we check

that replaying that session leads to identical behavior. This part of the evaluation essen-

tially corresponds to unit testing the tools.

Second, we evaluate the tools’ functional accuracy using real-world applications.

Being able to record and replay sessions on realistic applications is harder: the tools need to

deal with the many intricacies of large programs, with complicated user interfaces and with

unconventional uses of GUI features, and they need to be able to record and replay

interactive sessions that are much longer than the few events occurring in the test appli-

cations. This second part of the evaluation corresponds to system testing the tools.

Finally, we evaluate the accuracy of performance measurements under the tool. This is

important because the use of the capture and replay tool affects the overall behavior of the

system, and this may significantly perturb the performance measurement. This last part of

the evaluation performs the same tasks on the same applications; however, it evaluates

performance accuracy instead of functional accuracy.

Measures. In all three of the above parts, we need some measure of fitness, or accuracy,

of the tool. For the two functional evaluations, this measure corresponds to an oracle that

can tell whether the behavior of the application during replay was identical to the behavior

during recording. Primarily, we act as oracles ourselves, observing the application during

capture, and checking for identical behavior during replay. However, we also use auto-

mated oracles: to determine the equivalence of capture and replay behavior, we profile both

executions and compare the profiles. We use two kinds of profiles. First, we count the

number of events of each distinct event type (e.g., mouse press, key release). Second, we

count the number of executions for each listener in the program (e.g., FileOpenAction or

InsertCharacterAtKeyPressListener).

For the performance evaluation, we measure perceptible performance in the form of the

cumulative latency distribution. We measure the latency of each event, and we compare

the distribution during replay to the latency distribution during manual operation.

5.1 Accuracy on test applications

Table 2 shows the nine test applications we developed for this purpose. They are divided

into three categories: four tests for keyboard and mouse input, four widget tests (compo-

nent events, scroll pane, file dialog, and combo box), and one timing test. Each test consists

of a minimal GUI application that exposes the specific feature we want to test. The last test

is special: it evaluates whether a capture and replay tool can faithfully maintain timing

Table 2 Test applications
Application Description

TextField Keyboard input in JTextField

MouseMove Mouse movements

MouseDrag Mouse drags (while button pressed)

MouseClick Mouse button clicks

Component Detection of component events

Scrolling Scrolling a JTextArea

FileDialog Navigating directory tree in JFileChooser

ComboBox Selecting item in JComboBox popup

Timing Synchronization of clicks with timer

Software Qual J (2011) 19:801–839 811

123

information. It provides a component that toggles between two colors, red and white, every

300 ms, driven by a timer. While recording, we click on the component only when it is red.

We then count how many clicks the replay tool correctly performs during red and how

many it incorrectly delivers during white periods. Replay tools that fail this test will have

difficulties replaying interactive sessions where users interact with animations (such as

computer games).

5.2 Accuracy on real-world applications

Table 3 shows the twelve real-world interactive applications we chose for our study. All

applications are open source Java programs based on the standard AWT/Swing GUI

toolkit. The table shows that our applications range in size from 34 classes to over 45000

classes (not including runtime library classes).

We chose applications from a wide range of application domains. We mostly focused on

programs that provide rich interaction styles, where the user interacts with a visual rep-

resentation (e.g., a diagram or a sound wave). These kinds of applications are often more

performance-critical than simple form-based programs where users just select menu items,

fill in text fields, and click buttons. We use CrosswordSage, FreeMind, and GanttProject

because they have been selected in experiments in prior work on GUI testing (Brooks and

Memon 2007).

5.2.1 Approach

To determine whether the different tools are able to capture and replay realistic interactions

on real-world applications, we conducted the following experiment for each combination of

\tool, application, os[, where os means either Windows or Mac OS X:

1. We studied the application to determine a realistic interaction script. The interaction

script is a human-readable set of notes we use so we can manually rerun the same

interactive session multiple times.

2. We ran the application under the capture tool to record the interaction.

Table 3 Real-world applications

Application Version Date Classes Description

Arabeske 2.0.1 (stable) \2004–04 222 Arabeske pattern editor

ArgoUML 0.28 2009–03 5,349 UML CASE tool

CrosswordSage 0.3.5 2005–10 34 Crossword puzzle editor

Euclide 0.5.2 2009–04 398 Geometry construction kit

FreeMind 0.8.1 2008–01 1,909 Mind mapping editor

GanttProject 2.0.9 2008–12 5,288 Gantt chart editor

jEdit 2.7pre3 2000–11 1,150 Programmer’s text editor

JFreeChart Time 1.0.13 2009–04 1,667 Chart library, temporal data

JHotDraw Draw 7.1 2008–03 1,146 Vector graphics editor

Jmol 11.6.21 2009–04 1,422 Chemical structure viewer

LAoE 0.6.03 2003–05 688 Audio sample editor

NetBeans Java SE 6.5.1 2009–05 45,367 IDE

812 Software Qual J (2011) 19:801–839

123

3. If the capture failed, we either modified our environment or adjusted the interaction

slightly and went back to step 2.

4. We used the replay tool to replay the recorded interaction.

5. If the replay failed, we either manually edited the recorded interaction log and went

back to step 4 or modified our environment or adjusted the interaction slightly and

went back to step 2.

5.2.2 Interactive sessions

We devised a realistic interactive session for each application and recorded it with each of

the capture tools. We had to do this separately on each platform (Mac OS X and Windows),

because we found that replaying a session on a platform different from where it was

recorded failed in many situations, because the GUI’s structure and layout between the two

platforms can differ significantly.

We avoided features that, based on the results from running the small test applications,

are not supported by the tools (e.g., double clicks on FileDialogs). Where possible, we

prepared documents of significant complexity (e.g., a drawing with 400 shapes for JHot-

Draw) ahead of time, and we opened and manipulated them during the sessions, using the

various features provided by the applications.

Table 4 shows our experimental setup for the chosen real-world applications. The event

sequences correspond to realistic user sessions. For each application, we recorded multiple

sequences, varying the size of the documents we edited in the application. With larger

document sizes, we were stressing the application more, which, in many cases, reflected on

the performance of the given application. This fact leads to increased execution time in

both manual and replayed sessions. The duration of sessions is reflected in two columns:

‘‘Testing Time’’ (average, in minutes) and ‘‘Sequence Length’’ (average number of events).

5.3 Performance perturbation

The fact that a tool can successfully record and replay an interactive session does not

necessarily mean that performance measurements on a session replayed with that tool

Table 4 Application sequences
Application Number of

sequences
Sequence
length

Testing
time [min]

Users
involved

Arabeske 4 1,560 5 2

ArgoUML 6 1,834 7 3

CrosswordSage 6 2,483 3 3

Euclide 6 1,632 3 3

FreeMind 4 2,161 5 2

GanttProject 6 1,346 6 3

jEdit 6 2,329 7 3

JFreeChart Time 6 1,658 5 3

JHotDraw Draw 3 2,364 9 3

Jmol 6 2,364 7 3

LAoE 6 1,821 5 3

NetBeans Java SE 4 3,421 7 2

Software Qual J (2011) 19:801–839 813

123

accurately reflect the performance of an interactive session with a human user. A capture

and replay tool might significantly perturb behavior in many ways: (1) the act of recording

might perturb the user’s or the system’s behavior and timing, (2) the fidelity of the recorded

interaction log might be limited, or (3) the act of replaying might perturb the timing.

To characterize the perceptible performance of interactive applications, we measure the

response time of user requests (episodes) by instrumenting the Java GUI toolkit’s event

dispatch code. The instrumentation measures the wall clock time it took the application to

handle the request. As research in human computer interaction has found, requests that are

shorter than a given threshold (around 100 ms (Jovic and Matthias Hauswirth 2008)) are

not perceptible by the user. Requests longer than 100 ms are perceptible and can nega-

tively affect user satisfaction and productivity. We thus collect a histogram of request

lengths, which we represent as cumulative latency distribution plots in this paper.

Figure 3 shows an example of such a plot. The x-axis represents the latency in milli-

seconds. The y-axis shows the number of episodes that take longer than the given x ms. A

vertical line at 100 ms represents the perceptibility threshold. Response times to the left of

that line are not perceptible. An ideal curve would be L-shaped, where the vertical part of

the L could lie anywhere between 0 and 100 ms, and the horizontal part should lie at 0, that

is, there would be 0 episodes that took longer than 100 ms.

Given that it is impossible to accurately repeat the same user interaction multiple times

with the exact same movements and timings, the cumulative latency distribution differs

slightly between runs. Figure 3 shows multiple curves. The five thin lines represent the

latency distributions for five runs of the same interactive session. The thick line represents

the mean over these five distributions. Finally, the hatched pattern represents the confi-

dence area for the mean. We computed the confidence area by computing a confidence

interval for each point along the x-axis: e.g., we computed a 95% confidence interval for

the five points at x = 400 ms, another one for the five points at x = 401 ms, and so on.

6 Evaluation

In this section, we follow the evaluation methodology we introduced in Sect. 5 to evaluate

the five capture and replay tools in Table 5. All these tools are written in pure Java and are

Fig. 3 Cumulative latency
distribution for characterizing
perceptible performance

814 Software Qual J (2011) 19:801–839

123

available as open-source. They are all capable of recording and replaying interactive

sessions of applications based on Java’s standard Swing GUI toolkit.

Abbot2 is a framework for GUI testing. Its basic functionality allows a developer to

write GUI unit tests in the form of Java methods which call into the Abbot framework to

drive an application’s GUI. Besides tests written in Java, Abbot also allows the specifi-

cation of tests in the form of XML test scripts. It provides a script editor, Costello, for

editing such scripts. Besides the manual editing of test scripts, Costello also supports the

recording of scripts by capturing the events occurring in a running application.

Jacareto3 is a GUI capture and replay tool supporting the creation of animated dem-

onstrations, the analysis of user behavior, as well as GUI test automation. Given this broad

spectrum of applications, Jacareto provides a number of extra features, such as the high-

lighting of specific components in the GUI, extension points to capture and replay

application-specific semantic events, or the embedding of Jacareto into the GUI application

for providing macro-record and replay functionality. Jacareto comes with two front-ends,

CleverPHL, a graphical tool with extensive support for recording, editing, and replaying

interaction scripts, and Picorder, the command-line capture and replay tool we use in this

paper.

Pounder4 is exclusively focused on capturing and replaying interactions for GUI testing.

It stores interaction scripts as XML files and is not intended to be used for manually writing

tests. Compared with Abbot and Jacareto, Pounder is a lightweight tool, as can be seen by

its narrow focus and its small size (number of classes in Table 5).

Marathon5 seems to be an open-source version of a more powerful commercial product.

Besides providing a recorder and a player, Marathon also comes with an extensive editor

for interaction scripts. Marathon records interaction logs as Python scripts.

JFCUnit6 is an extension that enables GUI testing based on the JUnit7 testing frame-

work. JFCUnit allows a developer to write Java GUI tests as JUnit test case methods. The

main focus of JFCUnit is the manual creation of GUI tests (following JUnit’s approach),

but a recording feature has been added in a recent version.

Platform. We ran our experiments on a MacBook Pro with a Core 2 Duo processor. We

used two different operating systems, Mac OS X and Windows. The version of OS X we

used was 10.5.7. On top of it, we ran Apple’s Java 1.5.0_19_137 VM. One of our

Table 5 Open-source java capture and replay tools evaluated in this study

Tool Version Date Status Classes

Abbot 1.0.2 2008–08 Active 577

Jacareto 0.7.12 2007–03 (Active) 1,085

Pounder 0.95 2007–03 Dead 156

Marathon 2.0b4 2009–01 Active 694

JFCUnit 2.08 2009–01 Dead 150

2 http://www.abbot.sourceforge.net/.
3 http://www.jacareto.sourceforge.net/.
4 http://www.pounder.sourceforge.net/.
5 http://www.marathontesting.com/.
6 http://www.jfcunit.sourceforge.net/.
7 http://www.junit.sourceforge.net/.

Software Qual J (2011) 19:801–839 815

123

http://www.abbot.sourceforge.net/
http://www.jacareto.sourceforge.net/
http://www.pounder.sourceforge.net/
http://www.marathontesting.com/
http://www.jfcunit.sourceforge.net/
http://www.junit.sourceforge.net/

applications required Java 1.6, so in that specific case we used Apple’s Java 1.6.0_13 VM.

For the Windows-based experiments, we used Windows 7 Beta 2, with Sun’s Java 1.5_0.16

resp. 1.6.0_07 VM. We used the client configuration (-client command-line option) of the

virtual machine, because this is the option that is supposed to provide the best interactive

performance.

6.1 Accuracy on test applications

Table 6 shows the results we obtained by running the five capture and replay tools on our

test suite. The U symbol means that the test was successful, U* means that a minor part

was failing, (U) means that about the 50% of the test didn’t work, but we could complete

our task, and an empty cell means that we could not accomplish our task.

TextField. Abbot, Jacareto, and Pounder correctly record interactions with a text field,

including entering and selecting text. JFCUnit and Marathon do not properly record text

selections with the mouse.

MouseMove. Unlike the other tools, JFCUnit and Marathon do not record any mouse

moves.

MouseDrag. Jacareto and Pounder properly record press, drag, and release events of a

drag gesture. Abbot only records the release event, JFCUnit replays a drag as a move,

and Marathon does not record drags at all.

MouseClick. Unlike the other tools, which fail to replay some buttons, Jacareto and

Pounder correctly replay clicks with any of the three mouse buttons.

Component. JFCUnit and Marathon cannot replay interactions with a top-level

component (a frame or a dialog). If a user moves or resizes a window, these actions

are lost.

Scrolling. Pounder is the only tool that supports auto-scrolling (selecting text with the

mouse and extending the selection past the viewport), scrolling using the mouse-wheel,

by dragging the scroll bar knob, and by clicking. Abbot and Jacareto do not record

mouse-wheel based scrolling. The other tools do not properly support scrolling.

FileDialog. Jacareto and Pounder do not support the selection of files with double-clicks.

Abbot and Marathon do not properly work with file dialogs. JFCUnit is the only tool that

supports all necessary operations.

Table 6 Test results

Tool

Abbot Jacareto Pounder JFC M.thon

TextField U U U

MouseMove U U U

MouseDrag (U) U U

MouseClick U U

Component U U U

Scrolling U* U* U

FileDialog (U) (U) U

ComboBox U U U U

Timing

816 Software Qual J (2011) 19:801–839

123

ComboBox. Abbot has problems with heavy-weight popup windows and was unable to

replay interactions with drop-down combo boxes.

Timing. None of the tools supports deterministic replay with respect to a timer.

Given the major limitations of JFCUnit and Marathon, we focus the remainder of the

evaluation on Abbot, Jacareto, and Pounder.

6.2 Accuracy on real-world application

We now show which tools were able to properly capture and replay our interactions with

real-world Java applications. Table 7 presents one column for each application and two

columns (Mac and Windows) for each tool. A check mark (U) means that we were able to

capture and replay the described interaction. A star (*) means we could record and replay a

brief session, but that either we were unable to record a more meaningful session or we

were unable to fix the recorded meaningful session so we could replay it. Finally, an empty

cell means that we were unable to record any session of that application with the given

tool.

The table shows that Abbot and Jacareto had considerable limitations. They were unable

to properly record and replay some of the required interactions. Moreover, Abbot does not

record timing information and thus is unable to replay a session log at the speed the user

originally recorded it. An advantage of Abbot and Jacareto that does not show in the table

is that they are relatively flexible in how they find the widgets to which they have to send

an event at replay time; they often can find a component even if its position has changed

between runs (e.g., they will click on the right file in a file dialog, even if a new file has

changed the layout of the list). However, overall, despite its relative simplicity, Pounder is

the most faithful tool with the broadest applicability, even with applications and on a

version of Swing developed well after Pounder’s last release in 2002.

Table 7 Tool applicability

Application Tool

Abbot Jacareto Pounder

Mac Win Mac Win Mac Win

Arabeske * U * U * U

ArgoUML * * * U

CrosswordSage * U U U U U

Euclide * * U U U U

FreeMind * * * U

GanttProject * U U U U U

jEdit U U U U

JFreeChart Time U U U U U U

JHotDraw Draw * U * U * U

Jmol * * U U U U

LAoE * * * * U U

NetBeans Java SE U U U U

Software Qual J (2011) 19:801–839 817

123

6.3 Performance perturbation

This section presents our results of evaluating the degree to which capture and replay tools

perturb the measurement of perceptible performance.

Figures 4 and 5 shows the cumulative latency distributions of our interactive sessions

(described in Sect. 5.2.2) with the twelve applications running on Windows. The results on

the Mac are similar. Each chart in the figures represents one application. The charts have

the same structure as the chart explained in Fig. 3: the x-axis shows the latency in mil-

liseconds and the y-axis represents the number of episodes that took at least x milliseconds.

Each line in a chart represents a tool. We consistently use the same line style for a given

tool. If a line for a tool is missing in an application’s chart, this means that we did not

manage to capture and replay that application’s session with that tool. In addition to a line

for each tool, each chart also includes a solid line to show the performance measured

without any tool. We gathered the data for that line by manually repeating the same

interactions multiple times. For that curve, we neither used a recording nor a replay tool

and thus this represents the unperturbed performance. For each curve (manual or tool

based), we measured the same interaction sequence five times. We then computed the

average latency distribution over all five runs, which we represent as the curve in the

charts, and we show the confidence range for that mean using a hatched pattern.

Focusing on the solid curves representing the unperturbed measurements, Figs. 4 and 5

show that almost every application has its own characteristic latency distribution: most of

the 12 solid curves have clearly different shapes and locations. For example, Euclide has a

smooth curve that bottoms out below 100 ms, Arabeske exhibits a stair step, but below the

100 ms perceptibility threshold, while Jmol shows a stair step that extends to 150 ms.

Overall, the curves of the different replay tools look similar to the solid lines. That is,

the performance measured during replay is relatively close to the performance measured

without tool (‘‘manual’’). However, there often is a statistically significant difference

between episode counts of a given latency, i.e., there is no overlap between the hatch

patterns of the different curves8. We now investigate the most striking differences in more

detail.

The Abbot curve on Jmol shows the biggest deviation from the manual latency dis-

tribution. Jmol seems to perform much faster when replayed with Abbot than when run

manually. The reason for this counter-intuitive result is that Abbot was unable to correctly

replay an essential event. It failed to replay a command in a popup menu that reconfigured

the visualization to cover the molecule with a difficult to compute surface. Consequently,

all the subsequent rendering became much faster, causing the latency distribution to look

almost optimal.

The JHotDraw Draw chart shows a significant difference between the manual and the

Pounder curves. These interaction sessions contain a large number of mouse drag events

(for moving shapes). The shift in the curves can have two reasons: a different number of

drag events or a different latency of those events. We wrote a small test and verified that

Pounder indeed correctly records and replays the total number of mouse drag events. The

reason for the shift in the curves is thus not the number of events, but the difference in

event latencies. Pounder replays most types of events by directly posting them into the Java

event queue. However, Pounder replays mouse drag events using the java.awt.Robot class,

which enqueues the events into the underlying native event queue. This approach causes

8 The confidence intervals are often so tight that the hatch patterns essentially disappear under the average
curve.

818 Software Qual J (2011) 19:801–839

123

the mouse cursor (rendered by the operating system) to move during drags, but it also adds

latency to each event.

The amount of perturbation clearly differs between tools. However, overall, we found

Pounder to be the tool that most closely matched the original latency distributions.

Fig. 4 Effect of tool on cumulative latency distributions (Part 1/2)

Software Qual J (2011) 19:801–839 819

123

7 Discussion

The limitations we identified in the five capture and replay tools fall into three different

categories. Note that while all of these limitations are important for GUI performance

testing, they also significantly affect functional GUI testing.

Fig. 5 Effect of tool on cumulative latency distributions (Part 2/2)

820 Software Qual J (2011) 19:801–839

123

7.1 Incomplete implementation

As our experiments have shown, many existing tools lack support of features used in

realistic applications, such as multiple mouse buttons, the use of common dialogs (e.g., to

open files), or events on the non-client area of windows (e.g., dragging a window by its

frame). This kind of limitation is not fundamental and can be overcome by implementing

the missing support.

However, the limitation is a direct consequence of the complexities involved in cap-

turing and replaying GUI events in Java. Java provides its own GUI toolkit (AWT/Swing)

that implements an abstraction layer that hides the underlying native GUI toolkit of the

operating system. While this provides the advantage of being able to write platform-

independent GUI applications, it significantly increases the complexity of properly

capturing and replaying GUI events.

7.2 GUI element identification problem

This problem, first identified by McMaster and Memon (McMaster and Memon 2009) in

the context of regression testing, even exists when replaying an interaction captured with

the same version of the application. Because GUI events are always targeted at specific

GUI components, the capture tool needs to store, for each captured event, some infor-

mation that identifies the target component of that event. At replay time, the replay tool

needs to find that component given the information stored by the capture tool. Given that

GUI components usually do not have persistent unique identifiers, the capture and replay

tools store information such as the component’s location, it’s class name, it’s path in the

component tree, or information about the component’s other properties (such as the text of

a label).

If an application does not behave fully deterministically, or if the environment in which

the application runs changes, then a component appearing in one run may not appear, may

appear somewhere else, or may appear in a different form, in another run. For example, a

game may use a random number generator to compute the computer’s next move, a

calendaring application may open a calendar on the current date, or a file dialog showing

the contents of a folder will show whatever files currently exist.

Moreover, despite Java’s platform independence, replaying a session recorded on a

different platform often fails, also because the different implementation of the GUI toolkit

(and the different look-and-feel) complicate GUI element identification.

Capture and replay tools partially overcome the GUI element identification problem

using more than one way to identify a component (e.g., using its path in the component tree

and also storing its class name and its label). This improves reliability of replay, but comes

at the cost of increasing the complexity of capture and replay, and possibly impacting the

performance which a performance testing approach is supposed to measure.

7.3 Temporal synchronization problem

This problem, which is related to GUI element identification, is a fundamental problem

without a simple solution. The issue is that interactive applications, while driven by a

user’s actions, can also be driven by the system’s timer-based actions. For example, a

movie player advances to the next movie frame 25 times per second, a clock moves the

hand once every second, or a game engine moves a sprite every 50 ms. When a user

Software Qual J (2011) 19:801–839 821

123

interacts with an animated component, the user’s and the system’s actions are synchro-

nized, and together are causing the overall behavior of the application.

However, a capture tool only captures the user’s actions. The system’s actions are

difficult to capture, because they are often not represented as GUI events and are thus not

visible to a GUI capture tool. When the user’s actions are replayed, they will not be

properly synchronized with the system’s timer-driven actions and thus will lead to a

different overall application behavior. For example, during capture, the user may drag the

hand of a clock to adjust time, however, at replay, the clock’s hand may be located at a

different position, and the drag action thus may not find the component (the hand).

With the increasing use of timer-driven animations in user interfaces, the temporal

synchronization problem will grow in importance. In theory, capture and replay tools

would have to record all timer-driven system actions in addition to user actions. This can

only happen, if developers of interactive applications use a GUI toolkit’s standard APIs to

perform their timer-driven activity, thereby allowing capture tools to observe all such timer

events. Alternatively, the capture and replay tools could capture all inputs (such as mouse,

keyboard, timer, file, and network activity) on a low level (Steven et al. 2000). However,

such an approach would risk to significantly perturb the performance we want to measure.

8 Improving Pounder

In the prior sections, we have shown that Pounder is the most appropriate of the existing

open-source capture and replay tools for Java. In this section, we study Pounder’s

implementation, and we describe improvements to overcome some of its limitations. We

implemented the proposed improvements and integrated them into the official Pounder

project9.

8.1 Pounder’s capture and replay approach

As outlined in Sect. 7.1, GUI event capture and replay is particularly challenging in Java

because of the involvement of two GUI toolkits: the Java AWT and the toolkit of the

underlying operating system. The Java AWT is not a complete GUI toolkit, it just provides

an abstraction layer over the underlying OS GUI toolkit. Both toolkits know the concept of

events and each toolkit maintains its own event queue. Events that originate from the user

(such as mouse or keyboard actions), flow through the OS event queue, are forwarded to

the Java event queue and finally are handled by the Java application.

One difficulty in the implementation of Java-based capture and replay tools is that they

cannot replay all events at the same level at which they capture them. To record events, a

tool has to hook into Java AWT’s event queue to track all events dispatched through that

queue. To replay the events, the tool sometimes has to post them to the OS event queue.

This second requirement is due to the fact that the OS also reacts to certain kinds of events

before forwarding them to Java. If the replay tool just replayed them through the Java event

queue, the OS would not know about them and would not update its state.

As a consequence, Java capture and replay tools need to use three different ways to

replay events, depending on the kind of event: (1) by posting an event into the Java event

9 Information about and links to our contributions to Pounder are available at http://www.sape.inf.
usi.ch/pounder.

822 Software Qual J (2011) 19:801–839

123

http://www.sape.inf.usi.ch/pounder
http://www.sape.inf.usi.ch/pounder

queue, (1) by posting an event into the operating system event queue, or (3) by invoking

AWT methods that call into the OS and ultimately cause an event to be posted.

Posting to the Java event queue works via EventQueue.postEvent(event),

where event can be any AWTEvent subtype (such as MouseEvent). Posting to the OS
event queue is supported via Java AWT’s Robot class. That class only understands a

small subset of events. Table 8 shows the corresponding ways for posting events to the

Java event queue versus the OS event queue. It lists all ways supported by Robot. Those

are related to either mouse or keyboard input. Robot does not support MOUSE_-

CLICKED or KEY_TYPED, because those ‘‘synthetic’’ events are indirectly triggered by

other events. Moreover, it does not support MOUSE_DRAGGED, because that event can

be generated with a Robot.mouseMove()* while a mouse button is pressed.

One example for the difference of posting to the OS versus the Java event queue is the

posting of mouse motion events. Posting a mouse motion event to the OS event queue

causes the mouse pointer (rendered by the OS, not by Java) to actually move on screen.

Posting the event to the Java event queue does not move the mouse pointer and only tells

the application about the movement. As this example shows, behaviors related to resources

under control of the OS (e.g., repositioning the screen representation of the mouse pointer,

or focusing a window) cannot be replayed just by posting to the Java event queue.

Unfortunately, the Robot class does not provide mechanisms for all possible kinds of

OS-relevant events. For this reason, a replay tool sometimes needs to call Java API

methods, instead of posting events, to tell the OS to perform a certain behavior. For

example, to cause a window to receive the focus, the WINDOW_GAINED_FOCUS event

observed at recording time is just a notification to the application that the window received

the focus (a state change in the operating system’s GUI toolkit). Posting that event to the

Java event queue would not cause the window to receive the focus (it would just make the

application believe that the window received the focus). Thus, the replay tool has to use

other Java AWT methods, such as Window.requestFocus(), to affect the state of OS

resources and cause events to be posted.

Pounder thus has to use all three approaches for replaying events. It favors the lighter-

weight Java event queue and only falls back on the Robot or other Java API methods in

certain situations. Table 9 lists all the events captured by Pounder, ordered by replay

approach (Java event queue, OS event queue, Java API method calls).

In general, Pounder only captures ‘‘user-generated’’ events. It does not capture ‘‘syn-

thetic’’ events that are generated by software. For example, it does not capture the synthetic

Table 8 Input event map-
ping between OS and java

Java AWT event Robot method to trigger
OS event

MouseEvent.MOUSE_PRESSED Robot.mousePress()

MouseEvent.MOUSE_RELEASED Robot.mouseRelease()

MouseEvent.MOUSE_CLICKED (None)

MouseEvent.MOUSE_MOVED Robot.mouseMove()

MouseEvent.MOUSE_DRAGGED Robot.mouseMove()*

MouseEvent.MOUSE_WHEEL Robot.mouseWheel()

KeyEvent.KEY_PRESSED Robot.keyPress()

KeyEvent.KEY_RELEASED Robot.keyReleased()

KeyEvent.KEY_TYPED (None)

Software Qual J (2011) 19:801–839 823

123

event representing a move of a non-Window component, because that movement is caused

by some other event (e.g., a mouse drag or the movement of the containing window).

Correctly determining the set of user-generated events is crucial for the correct functioning

of the tool. If the tool accidentally captures a synthetic event, that event will be replayed

twice: once by Pounder and once (correctly) by the system as a result of the replay of its

triggering event.

MOUSE_CLICKED in Table 9 is a synthetic event, and thus, Pounder neither captures

nor replays it (we only list it in this table to provide a complete list of all kinds of mouse

events). When the user presses down a mouse button, she creates a MOUSE_PRESSED

event. When she later releases the mouse button, she creates a MOUSE_RELEASED

event. Both of these events are user generated. The GUI toolkit, as a consequence of

observing a MOUSE_PRESSED followed by a MOUSE_RELEASED without any inter-

vening MOUSE_MOVED event or time delays, will then generate a synthetic MOU-

SE_CLICKED event. Thus, the user-generated MOUSE_RELEASED event may trigger a

synthetic MOUSE_CLICKED. Thus, Robot.mousePress() followed by

Robot.mouseRelease(), without any interleaved significant moves or time delays,

will trigger the GUI toolkit to generate a MOUSE_CLICKED event.

8.2 Improving robustness

While Pounder is the most robust tool we studied, using Pounder to capture and replay

realistically long sessions still often leads to errors during replay that require the re-

recording or manual editing of the trace. In this subsection, we study how to improve

Pounder’s robustness.

8.2.1 Retry of events that fail to play back

Pounder has a mechanism to repeatedly retry playing back an event if it fails. Failed

playbacks are related to the component identification and the temporal synchronization
problem: if Pounder cannot identify the target component of a given event, it will sleep

briefly and try again, until it can find the component or until it runs out of retries. Thus, to

study the effect of Pounder’s retry approach, we instrumented Pounder to count the number

of retries.

In our experiments, we found that if a playback failed then its retries never succeeded.

Either Pounder did not have to retry and succeeded in playing back the event at the first try

or it retried but failed in all of the retries.

While we did not implement this idea, one possibility to further improve Pounder’s (and

any GUI replay tool’s) robustness could be to retry to play back not just the currently

failing event, but also the previous N events before the failing event. Thus, if a retry failed

because some components were not set up correctly, replaying some of the preceding

events might correct that incomplete or incorrect setup (it might, however, also make

things worse).

8.2.2 Temporal synchronization

Studying the recorded Pounder sessions that failed to replay, we found an interesting

recurring problem: some mouse events, when replayed, were directed at components that

were no longer visible. The reason for this was that a preceding event was causing the

824 Software Qual J (2011) 19:801–839

123

component to become hidden; however, due to the asynchronous nature of some native

window system operations, the component did not get hidden immediately, but stayed

visible long enough for some additional mouse events to be recorded on it. If, at replay

time, the component was hidden more quickly, then Pounder could not associate the

subsequent mouse events with that component anymore.

After identifying that problem, we added a work-around to Pounder, so that it checks

whether the component is visible and if not makes it visible before playing back the event.

Table 9 Pounder’s capture and replay approach

Pounder item Recorded java event Replay approach

InputMethodItem InputMethodEvent. EventQueue.postEvent(

INPUT_METHOD_TEXT_CHANGED new InputMethodEvent());

InputMethodItem InputMethodEvent. EventQueue.postEvent(

CARET_POSITION_CHANGED new InputMethodEvent());

KeyItem KeyEvent. EventQueue.postEvent(

KEY_PRESSED new KeyEvent());

KeyItem KeyEvent. EventQueue.postEvent(

KEY_RELEASED new KeyEvent());

KeyItem KeyEvent. EventQueue.postEvent(

KEY_TYPED new KeyEvent());

MouseWheelItem MouseWheelEvent. EventQueue.postEvent(

MOUSE_WHEEL new MouseWheelEvent());

MouseMotionItem MouseEvent. EventQueue.postEvent(

MOUSE_ENTERED new MouseEvent());

MouseMotionItem MouseEvent. EventQueue.postEvent(

MOUSE_EXITED new MouseEvent());

MouseMotionItem MouseEvent. EventQueue.postEvent(

MOUSE_MOVED new MouseEvent());

MouseMotionItem MouseEvent. Robot.mouseMove();

MOUSE_DRAGGED

MouseClickItem MouseEvent. Robot.mouseMove();

MOUSE_PRESSED Robot.mousePress();

MouseClickItem MouseEvent. Robot.mouseMove();

MOUSE_RELEASED Robot.mouseRelease();

MouseClickItem MouseEvent. nothing

MOUSE_CLICKED

WindowGainedFocusItem WindowEvent. Window.requestFocus();

WINDOW_GAINED_FOCUS

WindowStateChangedItem WindowEvent. Frame.setExtendedState();

WINDOW_STATE_CHANGED

WindowMovedItem ComponentEvent. Window.setLocation();

COMPONENT_MOVED Window.repaint();

WindowSizeChangedItem ComponentEvent. Window.setSize();

COMPONENT_RESIZED Window.validate();

Software Qual J (2011) 19:801–839 825

123

This fix allowed us to play back many sessions that we previously were unable to replay

without manually fixing them.

8.2.3 Component identification

Another prevalent problem in Pounder was related with component identification. We

noticed that Pounder often wrongly replayed mouse clicks on some buttons of some

standard dialogs: it replayed the clicks, but it clicked the wrong button. For example, it

would click on the ‘‘Cancel’’ button even though during the recording we clicked the ‘‘Ok’’

button.

The cause for this incorrect behavior has to do with one of the three approaches to

component identification that Pounder uses. If a component has its ‘‘name’’ property set

(each subclass of java.awt.Component has such a name property, which a pro-

grammer can set to tag the component with some string), then Pounder will use that name

to find the component inside a given window. Unfortunately, for some standard dialogs,

multiple components have the same name. Thus, e.g., when the user clicks on the ‘‘Ok’’

button at recording time, Pounder stores that button’s name (say, ‘‘button’’) in its session

log. At replay time, it then looks for the first component with the name ‘‘button’’ and

happens to find the ‘‘Cancel’’ button.

To work-around this problem, we changed Pounder to test, whenever it tries to use the

name to identify a component, whether there are multiple components with that name in

the given window. In that case, we use a different component identification approach (the

path from the window to the component, represented by the sequence of each child

component’s index inside its parent component).

This simple fix eliminated the problem and allowed us to correctly replay many Pounder

sessions that previously failed.

8.3 Decreasing perturbation

While Figs. 4 and 5 have shown that latency distributions gathered while replaying a

session with Pounder are relatively close to the distributions collected when manually

performing the sessions, we still wanted to investigate whether we could further quantify

the perturbation due to Pounder.

8.3.1 Direct overhead of Pounder player

To determine whether Pounder directly caused a significant computational overhead, we

ran Pounder to replay the JHotDraw Draw session on top of a profiler. Our profiler, based

on JVMTI Sun Microsystems (2004), periodically samples the call stack of all threads in

the Java virtual machine. It thus can measure the approximate amount of time spent in the

application and in Pounder.

We used the Trevis (Adamoli and Hauswirth 2010) context tree visualization and

analysis framework to combine the collected stack samples into a calling context tree. We

found that less than 2% of call stack samples fell into the Pounder player (Pounder’s thread

that posts events at their appropriate times). Roughly 25% of the 2% overhead was due to

translating component-relative coordinates into absolute screen coordinates, which entails

a relatively expensive native call. Unfortunately ,that code is necessary, because, no matter

826 Software Qual J (2011) 19:801–839

123

whether mouse events are posted to the OS or the Java event queue, their coordinates have

to be translated.

8.3.2 Headless Pounder

Pounder provides a GUI to initiate, observe, and control recording and playback. The

presence of that GUI during playback can affect performance, because the GUI itself will,

like the application under test, cause GUI events to be dispatched.

We thus developed a command-line recording and replay front-end, which avoids this

overhead. However, we did not observe a significant difference in performance between

using Pounder’s GUI and our command-line front-end.

8.3.3 Asynchronous playback

When posting events to a queue, the events are not usually processed synchronously.

Moreover, when using the Robot to post events to the OS event queue, the OS or the Java

GUI toolkit might reorder, combine, drop, or insert additional events.

We thus instrumented the Pounder player to observe all requests being posted via the

Robot and to observe all events being dispatched from the Java event queue. Ideally,

every event being posted to the OS event queue would be forwarded to the Java event

queue and dispatched from there. In our experiment, we found that while most calls to the

Robot were paired with a subsequent event dispatch, there were some exceptions, which

we were unable to explain. We believe that these exceptions are responsible for some of

the performance difference we observed.

8.4 Discussion

In this section, we described our investigation into Pounder and the changes we made

based on those results. While our new version of Pounder clearly is an improvement over

the original tool, we obviously were not able to provide a general solution to component

identification, temporal synchronization, and perturbation. Those problems are funda-

mental, and we believe that there is no approach that can solve all three at once. However,

in many situations, for many applications, Pounder should now be robust enough, and its

perturbation should be low enough, to allow automated GUI performance tests with

actionable results.

9 Case studies

While GUI performance testing is relevant to ensuring the quality of interactive applica-

tions, practical and accurate GUI performance testing approaches can have a broader

impact, especially in evaluating the platforms and systems on top of which interactive

applications are built.

When the computer system community evaluates the performance improvements of

their innovations, such as novel compiler optimizations, garbage collection approaches,

and improvements to runtime environments, operating systems, or processor micro-

architectures, they have to evaluate whether their innovations indeed improve perfor-

mance. A considerable body of work in the systems community outlines pitfalls and

Software Qual J (2011) 19:801–839 827

123

shortcomings in such performance evaluations, such as issues in the statistical analysis of

performance measurements (Georges et al. 2007), bias due to ignoring important factors in

experimental setups (Mytkowicz et al. 2009), and bias in commonly used profilers

(Mytkowicz et al. 2010). Most importantly, Blackburn et al. (2006) point out that the

complex interaction between Java applications and the architecture, compiler, virtual

machine, and memory management requires more extensive performance evaluations than

what has been done traditionally with C, C??, and Fortran applications. They construct a

new suite of Java benchmark applications, called the Dacapo benchmarks, which is now

widely used in systems research evaluations. However, in the OOPSLA paper that intro-

duces their Dacapo suite, they write ‘‘we excluded GUI applications since they are difficult

to benchmark systematically’’. That statement explicitly expressed what must be a com-

mon sentiment in the community, because, to the best of our knowledge, none of the

widely used benchmark suites includes truly interactive applications.

Given that a large segment of computer systems (desktops, notebooks, tablets, cell

phones) are used by end users running interactive programs and given that interactive

applications significantly differ from traditional programs in terms of their structural and

behavioral characteristics (Zaparanuks and Hauswirth 2010; Brooks et al. (2009)), limiting

performance evaluations of systems innovations to non-interactive applications constitutes

a bias that may render conclusions drawn from such evaluations invalid. This issue was one

of the motivating factors for our work.

In this section, we will use our automatic GUI performance testing approach to study

the impact of various system features on perceptible performance. It is not our goal to

evaluate specific system features; a thorough study of the performance impact of even a

single system feature would require much more extensive experiments. Our goal in this

section is to demonstrate how systems researchers and designers can use our approach to

augment their benchmark suites with interactive applications and with a way to measure

performance as perceived by users. Moreover, in each experiment, we include measure-

ments taken manually, to verify to which degree the test automation infrastructure affects

measurement results. Unless otherwise stated, the platforms, applications, interactive

sessions, and inputs for the experiments in this section correspond to those we studied in

Sect. 6.

9.1 Operating system

On which operating system is a given GUI application more performant? This case study

shows how an automatic GUI performance testing approach can help to answer this kind of

question. We conducted experiments on two predominant operating systems used by users

of interactive applications, Microsoft Windows and Mac OS X. Figure 6 compares the

performance of these two systems when running Euclide and GanttProject. The solid lines

represent Windows, and the dashed lines represent Mac OS X. The thin lines represent the

mean performance during five replays with Pounder, and the thicker lines represent the

mean performance of five manually repeated sessions.

The graph for Euclide shows a significant difference between operating systems: the

perceptible performance is worse on the Mac. It is interesting to note that this difference is

the same no matter whether we repeat the interaction manually (thick curves) or whether

we record and replay a session with Pounder (thin curves). This means that in this case,

Pounder does not affect our conclusion that Euclide runs slower on the Mac than on

Windows.

828 Software Qual J (2011) 19:801–839

123

GanttProject shows a relatively small difference between the Mac and the Windows

curves. The interesting region around the knee between 100 and 200 ms shows that

GanttProject performs better on the Mac (dashed). Moreover, in that region, the Pounder

results (thin) agree quite closely with the manual (thick) results. However, in other

regions (e.g., from 250 to 750 ms), the Mac curve for Pounder deviates from the manual

curve. Nevertheless, even in this region, Pounder and manual measurements lead to the

same conclusion: GanttProject runs slightly faster on the Mac (dashed) than on Windows

(solid).

These cases show that the fact that we use Pounder to automatically drive the appli-

cation, instead of manually interacting with the application, affects the cumulative latency

distribution. However, this perturbation of the measurements does not change the con-

clusions we draw from comparing the distributions: Euclide runs faster on Windows, and

GanttProject runs slightly faster on the Mac.

9.2 Client versus server mode

How do virtual machine features affect the performance of interactive applications? This

case study provides an example of how a virtual machine researcher could use automated

GUI performance testing to evaluate the benefits of her innovations.

The HotSpot virtual machine that is part of Oracle’s and Apple’s Java distribution

includes two main configurations: client mode and server mode. The client mode is

optimized toward running interactive applications. Here, we use our approach to evaluate

whether we can see a difference in interactive performance between the two modes.

Figure 7 shows the performance of JHotDraw Draw and Jmol on the client and the

server virtual machine configuration. For JHotDraw Draw, we see little difference between

client (dashed) and server (solid) configuration. For Jmol, though, the experiment shows a

significant difference: the server configuration reduces the latency of a significant number

of events from roughly 350 to 250 ms. For both applications, the Pounder curves differ

from the manual curves. However, in both cases, the conclusions drawn from the Pounder

curves are the same as those drawn from the manual curves.

Fig. 6 Automated measurement of impact of operating system on perceptible performance

Software Qual J (2011) 19:801–839 829

123

9.3 Heap size

How does the memory management approach affect interactive performance? This case

study represents an example use of automatic GUI performance testing to show how the

size of the heap, a key parameter of any memory management approach, can affect

interactive performance.

Figure 8 shows the performance of JHotDraw Draw with different heap sizes (JHot-

Draw Draw with 40, 64, and 128 MB; Jmol with 50, 64, and 1,024 MB). In our scenarios,

the heap size does not significantly affect the perceptible performance. Again, Pounder and

manual replay lead to the same conclusion.

9.4 Input size

The previous three case studies represented examples of performance experiments of

interest to systems builders. This case study highlights a relevant parameter in any GUI

performance testing experiment: the size of the artifact (e.g., document, table, diagram, and

video) the user is manipulating in the application. Many interactive applications essentially

are viewers or editors for some kind of artifact. The size of the artifact can affect the

application’s perceptible performance in two ways: first, it affects the amount of memory

used by the application and thus the cost of memory management, and second, it affects the

amount of time needed by the application’s algorithms that operate on the artifact.

Figure 9 shows how the performance of JHotDraw Draw and Jmol depends on the size

of their inputs. We used inputs of two or three significantly different sizes. This approach is

common to performance benchmarking in batch applications. For JHotDraw, the inputs

represent realistically complex diagrams we created ourselves and for Jmol we used two

realistic molecules that are part of the Jmol distribution.

The three different inputs for JHotDraw Draw represent drawings with 400 shapes

(large), 200 shapes (medium), and 50 shapes (small). We automatically generated these

three drawings so that their structure allowed a single interaction script to meaningfully

operate on any of the three drawings. Figure 9 clearly shows that JHotDraw’s performance

Fig. 7 Automated measurement of impact of client versus server virtual machine on perceptible
performance

830 Software Qual J (2011) 19:801–839

123

on the large inputs (dashed lines) is worse than on the medium inputs (solid lines), which is

worse than the performance on the small inputs (dotted lines). This relationship is true no

matter whether we manually repeat the interaction (thick lines) or use Pounder for capture

and replay (thin lines).

Jmol visualizes and animates chemical molecules it loads from a file. We used an alpha

helix (20 kB file) as a small input and a hemoglobin molecule (548 kB) as a large input.

Figure 9 shows that visualizing the large molecule (dashed line) generally is slower.

However, between 90 and 140 ms, the small input curves stay above the large input curves.

The cause for this seemingly anomalous artifact is that the big molecule takes longer to

paint, which leads to a lower frame-rate during its animation. Thus, Jmol will perform

fewer repaints over the course of the interaction, which will shift the big molecule’s curve

down. Each of the repaints, however, will take longer. This will shift the big molecule’s

curve to the right. The downward shift of the big molecule’s curve is what causes the

crossover between 90 and 140 ms. The fact that this artifact shows up in both the manual

Fig. 8 Automated measurement of impact of heap size on perceptible performance

Fig. 9 Automated measurement of impact of input size on perceptible performance

Software Qual J (2011) 19:801–839 831

123

and the Pounder curves shows the faithfulness of Pounder-based performance

characterizations.

9.5 Program version

Our first three case studies used capture and replay tools for system performance evalu-

ation. In this case study, we focus on the more traditional use for such tools: the testing of

the performance of the actual interactive application. In particular, we show that our

approach can detect differences in performance between two versions of the same appli-

cation. Such differences can occur when developers introduce or fix a performance

regression. In a regression testing scenario, the performance of each new version of an

application is evaluated and compared with the prior version’s performance. Significant

performance degradations are considered performance bugs and will have to be fixed

before releasing the new version. Performance regression testing, like functional regression

testing, benefits from automation. To automate GUI performance regression testing,

though, we require the automation of user interactions. This is exactly what a GUI capture

and replay approach provides: we can record an interactive session once and automatically

replay it on subsequent versions of the application. We now demonstrate this use case on

two subsequent versions of JFreeChart. Note that it is not the goal of this case study to

show how to find the cause of a performance bug, we just want to show that capture and

replay approaches can be used to detect differences (in this scenario, an improvement due

to a bug fix) in perceptible performance across program versions.

Figure 10 shows the performance of the old (1.0.12, solid line) and new (1.0.13, dashed

line) version of JFreeChart. The curves show that the new version is faster than the old

version. This finding applies to the manually performed measurements (thick lines) as well

as the measurements using Pounder (thin) for record and replay.

The fact that there is a significant performance difference between these two versions of

JFreeChart is not a coincidence: we picked these versions because version 1.0.13 includes

a fix for a performance bug existing in prior versions. That bug significantly impacts the

responsiveness when rendering large time charts. It is one of the goals of performance

regression test automation to help detect such performance bugs.

Fig. 10 Automated
measurement of perceptible
performance across program
versions

832 Software Qual J (2011) 19:801–839

123

9.6 Discussion

In all the above case studies, we have seen that the conclusions drawn from measurements

based on automated replay with Pounder corresponded to the conclusions based on

repeated manual interactive sessions. While the use of Pounder clearly perturbed the

latency distributions, it did not affect any of the conclusions.

Moreover, as all the case study figures show, the confidence intervals of the manually

repeated runs (thick curves) are often much wider than the intervals of the runs replayed by

Pounder (thin curves). This is due to Pounder being more deterministic in replaying a

session than a human user who tries to repeat his interactions. Thus, besides saving time

(due to the automation of replay), this approach also improves the comparability of the

different runs.

10 Threats to validity

Our findings are based on the study of five open-source capture and replay tools. While the

results might differ for commercial GUI testing tools, we believe that some of the

described limitations, in particular the temporal synchronization problem, are fundamental

problems where any possible solution would significantly perturb performance.

A second threat to validity lies in the small number of Java applications we analyze.

However, we believe that the applications we picked represent a realistic sample of the

Java rich-client applications used in the field.

The biggest threat probably comes from our choice of interactive sessions, which are

necessarily time limited. Limiting session durations could prevent us from discovering

performance problems that only manifest themselves in long sessions, such as gradual

slowdowns due to memory leaks. Larger applications like NetBeans are so rich in func-

tionality that any realistic interaction covering all features would last many hours or even

days. We thus had to limit our sessions to what we considered the most relevant application

features. This problem of picking a representative ‘‘input’’ for an application is a general

issue in any quantification of performance.

Finally, our experiments focus on a single hardware platform, on only two operating

systems and on only one kind of virtual machine (HotSpot). Our performance measure-

ments are thus specific to these environments, and our finding that the use of Pounder does

not affect the conclusions drawn from performance measurements might not hold on other

platforms. However, the methodology we present in this paper provides a guideline that

researchers and developers can follow to evaluate system or application performance on

their own platforms. Moreover, our the improvements to the most practical GUI testing

tool, Pounder, increase its robustness no matter which platform it is running on.

11 Related work

In this section, we discuss related work that goes beyond the survey in Sect. 3. We focus on

work specifically discussing the problem of replaying user interactions and on work about

the general concept of deterministically replaying program executions.

Software Qual J (2011) 19:801–839 833

123

11.1 Replaying user interactions

Reliably capturing and replaying user interactions is difficult. McMaster and Memon

(2009) describe the GUI element identification problem in the context of GUI test case

maintenance and address the problem with a heuristics-based approach. We find that GUI

element identification can be a problem even when replaying a recorded interaction on the

same version of the application. Moreover, we identify the temporal synchronization
problem, which is growing in importance with the increasing use of animation in inter-

active applications.

JRapture (Steven et al. 2000) is a record/replay tool that attacks the GUI element

identification problem with an approach that differs from the tools we studied. It identifies

a GUI element by combining the identifier of the thread that created the element with a

running count of elements created by that thread. It also differs in that it stores a complete

trace of all input and output of the program run, allowing deterministic replay (except for

thread scheduling). We believe that storing all data a program reads and writes can sig-

nificantly perturb performance. JRapture is not available publicly, and we thus could not

include it in our study.

Grechanik et al. (2009) automatically identify which GUI components changed

between versions of an application and then annotate the old version of GUI test scripts

with warnings wherever a changed component is used. Their tool turns the cumbersome

manual evolution of interaction scripts into a semi-automatic approach, thereby greatly

reducing the cost of keeping test scripts in synch with evolving applications. Memon

(2008) describes a similar approach; however, instead of focusing on developer-created

test scripts, he focuses on the model-based test scripts generated by his GUITAR

infrastructure.

In this paper, we have found the interaction scripts generated by recording tools to be

quite brittle. In some situations, we could not directly replay a recorded script, even in the

same environment and on the same version of the application. We thus believe it would be

promising to use the above approaches also for the purpose of repairing interaction scripts

for performance testing.

11.2 Low-level record/replay approaches

Ronsse et al. (2003) provide a general description of using record/replay approaches for

non-deterministic program executions. Their view is informed by their prior work on

RecPlay (Ronsse and De Bosschere 1999), a record/replay tool for race detection in

concurrent programs, where they recorded all synchronization operations between threads.

They describe three high-level goals for record/replay approaches: (1) to replay the

recorded execution as accurately as possible, (2) to cause as little intrusion as possible, and

(3) to operate swiftly. Our evaluation of GUI capture and replay tools for performance

comparisons is based on the exact same goals.

Besides their use in race detection, replay approaches have also been used in other

domains, such as the live migration of virtual machines (Liu et al. 2009), postmortem

debugging (Narayanasamy et al. 2005), and intrusion detection (de Oliveira et al. 2006).

All these approaches operate on a much lower level of abstraction, recording architectural

events about program execution. The higher abstraction level of GUI capture and replay

approaches leads to less perturbation, and it adds the possibility of replaying a session on a

slightly different platform or on a slightly different version of an application.

834 Software Qual J (2011) 19:801–839

123

12 Conclusions

Today most users interact with computers through applications with graphical–user

interfaces. Testing the performance of such applications is difficult, because any interactive

session necessarily involves users and their non-deterministic behavior.

In this paper, we propose an approach for automatically testing the perceptible per-

formance of such applications. We do so by using capture and replay tools. Such tools can

record an interactive session with an application and later replay it any number of times.

Our approach allows comparative studies of perceptible performance, for example by

comparing the application’s latency distribution when running on different operating

systems or when using different inputs. It also enables automated performance regression

testing, the comparison of performance over different versions of an interactive

application.

We evaluate different capture and replay tools in terms of their ability to faithfully

record and replay interactive sessions, and we find that many such tools are unable to

capture realistic interactions with real-world applications. We study the perturbation of the

three most promising tools, by comparing the perceptible performance of automatically

replayed application sessions with application sessions driven by real users. We find that

the most reliable test automation tool, Pounder, produces performance measurement results

that are close to the performance of manually performed interactions. We have improved

Pounder’s reliability and decreased its perturbation based on our investigations.

Finally, our five case studies show that Pounder, even though it slightly perturbs per-

formance measurements, does not affect the conclusions based on those measurements and

thus is a valuable tool for reducing the cost of performance testing.

Acknowledgments This work has been conducted in the context of the Binary Translation and Virtual-
ization cluster of the EU HiPEAC Network of Excellence. It has been funded by the Swiss National Science
Foundation under grant number 125259.

References

Adamoli, A., & Hauswirth, M. (2010). Trevis: A context tree visualization & analysis framework and its use
for classifying performance failure reports. In SoftVis ’10: Proceedings of the ACM symposium on
software visualization.

Alsmadi, I. (2008). The utilization of user sessions in testing. In ICIS ’08: Proceedings of the seventh IEEE/
ACIS international conference on computer and information science (icis 2008) (pp. 581–585).
Washington, DC, USA: IEEE Computer Society.

Belli, F. (2001). Finite-state testing and analysis of graphical user interfaces. Software reliability engi-
neering, international symposium on, 0:34.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., et al. (2006). The
dacapo benchmarks: Java benchmarking development and analysis. In OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on object-oriented programming systems, languages, and
applications (pp. 169–190). New York, NY, USA: ACM.

Brooks, P. A., & Memon, A. M. (2007). Automated gui testing guided by usage profiles. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on Automated software engi-
neering (pp. 333–342). New York, NY, USA: ACM.

Brooks, P. A., Robinson, B. P., & Memon, A. M. (2009). An initial characterization of industrial graphical
user interface systems. Software testing, verification, and validation, 2008 international conference on,
0:11–20.

Chang, T.-H., Yeh, T., & Miller, R. C. (2010). Gui testing using computer vision. In Proceedings of the 28th
international conference on human factors in computing systems, CHI ’10 (pp. 1535–1544). New
York, NY, USA: ACM.

Software Qual J (2011) 19:801–839 835

123

Chinnapongse, V., Lee, I., Sokolsky, O., Wang, S., & Jones, P. L. (2009). Model-based testing of gui-driven
applications. In Proceedings of the 7th IFIP WG 10.2 international workshop on software technologies
for embedded and ubiquitous systems, SEUS ’09 (pp. 203–214). Berlin, Heidelberg: Springer-Verlag.

de Oliveira, D. A. S., Crandall, J. R., Wassermann, G., Felix Wu, S., Su, Z., & Chong, F. T. (2006).
Execrecorder: Vm-based full-system replay for attack analysis and system recovery. In ASID ’06:
Proceedings of the 1st workshop on architectural and system support for improving software
dependability (pp. 66–71). New York, NY, USA: ACM.

Deursen, A.,, & Mesbah, A. (2010). Research issues in the automated testing of ajax applications. In
Proceedings of the 36th conference on current trends in theory and practice of computer science,
SOFSEM ’10 (pp. 16–28). Berlin, Heidelberg: Springer-Verlag.

El Ariss, O., Xu, D., Dandey, S., Vender, B., McClean, P., & Slator, B. (2010). A systematic capture and
replay strategy for testing complex gui based java applications. In Proceedings of the 2010 seventh
international conference on information technology: New generations, ITNG ’10 (pp. 1038–1043).
Washington, DC, USA: IEEE Computer Society.

Elbaum, S., Karre, S., & Rothermel, G. (2003). Improving web application testing with user session data. In
Proceedings of the 25th international conference on software engineering, ICSE ’03 (pp. 49–59).
Washington, DC, USA: IEEE Computer Society.

Elbaum, S., Rothermel, G., Karre, S., & Fisher, M., II. (2005). Leveraging user-session data to support web
application testing. IEEE Transactions on Software Engineering, 31, 187–202.

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java performance evaluation. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on object-oriented pro-
gramming systems and applications (pp. 57–76). New York, NY, USA: ACM.

Grechanik, M., Xie, Q., Fu, C. (2009). Maintaining and evolving gui-directed test scripts. In ICSE ’09:
Proceedings of the 2009 IEEE 31st international conference on software engineering (pp. 408–418).
Washington, DC, USA: IEEE Computer Society.

Hackner, D. R., & Memon, A. M. (2008). Test case generator for guitar. In Companion of the 30th
international conference on software engineering, ICSE Companion ’08 (pp. 959–960). New York,
NY, USA: ACM.

Jovic, M., Adamoli, A., Zaparanuks, D., & Hauswirth, M. (2010) Automating performance testing of
interactive java applications. In: AST ’10: Proceedings of the 5th Workshop on Automation of Software
Test, pp. 8–15, New York, NY, USA, 2010. ACM.

Jovic, M., & Hauswirth, M. (2008). Measuring the performance of interactive applications with listener
latency profiling. In: PPPJ ’08: Proceedings of the 6th international symposium on principles and
practice of programming in java (pp. 137–146). New York, NY, USA: ACM.

Kasik, D. J., & George, H. G. (1996). Toward automatic generation of novice user test scripts. In Pro-
ceedings of the SIGCHI conference on human factors in computing systems: Common ground, CHI ’96
(pp. 244–251). New York, NY, USA: ACM.

Li, P., Huynh, T., Reformat, M., & Miller, J. (2007). A practical approach to testing gui systems. Empirical
Software Engineering, 12, 331–357.

Li, K., Wu, M. (2004). Effective GUI testing automation: Developing an automated GUI testing tool.
Alameda, CA, USA: SYBEX Inc.

Lindvall, M., Rus, I., Donzelli, P., Memon, A., Zelkowitz, M., Betin-Can, A, et al. (2007). Experimenting
with software testbeds for evaluating new technologies. Empirical Software Engineering: An Inter-
national Journal, 12(4), 417–444.

Liu, H., Jin, H., Liao, X., Hu, L., & Yu, C. (2009). Live migration of virtual machine based on full system
trace and replay. In HPDC ’09: Proceedings of the 18th ACM international symposium on high
performance distributed computing (pp. 101–110). New York, NY, USA: ACM.

Liu, C.-H., Kung, D. C., Hsia, P., Hsu, C.-T. (2000a). Object-based data flow testing of web applications. In
Proceedings of the the first Asia-Pacific conference on quality software (APAQS’00), APAQS ’00 (pp.
7–16). Washington, DC, USA: IEEE Computer Society.

Liu, C.-H., Kung, D. C., Hsia, P., & Hsu, C.-T. (2000b). Structural testing of web applications. In Pro-
ceedings of the 11th international symposium on software reliability engineering (pp. 84–96).
Washington, DC, USA: IEEE Computer Society.

Lowell, C., & Stell-Smith, J. (2003) Successful automation of gui driven acceptance testing. In Proceedings
of the 4th international conference on extreme programming and agile processes in software engi-
neering, XP’03 (pp. 331–333). Berlin, Heidelberg: Springer-Verlag.

Lucca, G. D., Fasolino, A., & Faralli, F. (2002). Testing web applications. In Proceedings of the interna-
tional conference on software maintenance (ICSM’02) (pp. 310–319). Washington, DC, USA: IEEE
Computer Society.

836 Software Qual J (2011) 19:801–839

123

Marchetto, A., Ricca, F., & Tonella, P. (2008a). A case study-based comparison of web testing techniques
applied to ajax web applications. International Journal of Software Tools and Technology Transac-
tions, 10, 477–492.

Marchetto, A., Tonella, P., & Ricca, F. (2008b). State-based testing of ajax web applications. In ICST (pp.
121–130). IEEE Computer Society.

McMaster, S., & Memon, A. (2008). Call-stack coverage for gui test suite reduction. ACM Transactions of
Software Engineering, 34, 99–115.

McMaster, S., & Memon, A. M. (2009). An extensible heuristic-based framework for gui test case main-
tenance. In TESTBEDS ’09: Proceedings of the first international workshop on TESTing techniques &
experimentation benchmarks for event-driven software.

Memon, A. M. (2008). Automatically repairing event sequence-based gui test suites for regression testing.
ACM Transactions of Software Engineering Methodology, 18(2), 1–36.

Memon, A. M., Pollack, M. E., & Soffa, M. L. (2001) Hierarchical gui test case generation using automated
planning. IEEE Transactions of Software Engineering, 27, 144–155.

Memon, A., Nagarajan, A., & Xie, Q. (2005). Automating regression testing for evolving gui software.
Journal of Software Maintenance, 17, 27–64.

Memon, A. M., & Xie, Q. (2005). Studying the fault-detection effectiveness of gui test cases for rapidly
evolving software. IEEE Transactions of Software Engineering, 31, 884–896.

Mesbah, A. , & van Deursen, A. (2009). Invariant-based automatic testing of ajax user interfaces. In
Proceedings of the 31st international conference on software engineering, ICSE ’09 (pp. 210–220).
Washington, DC, USA: IEEE Computer Society.

Meszaros, G. (2003). Agile regression testing using record & playback. In Companion of the 18th annual
ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications,
OOPSLA ’03 (pp. 353–360). New York, NY, USA: ACM.

Mitchell, A., & James F. Power. An approach to quantifying the run-time behaviour of java gui applications.
In: WISICT ’04: Proceedings of the winter international symposium on Information and communi-
cation technologies, pp. 1–6. Trinity College Dublin, 2004.

Mu, B, Zhan, M., & Hu, L. (2009). Design and implementation of gui automated testing framework based on
xml. In Proceedings of the 2009 WRI world congress on software engineering—Vol. 04, WCSE ’09
(pp. 194–199). Washington, DC, USA: IEEE Computer Society.

Mytkowicz, T., Diwan, A., Hauswirth, M., & Sweeney, P. F. (2009). Producing wrong data without doing
anything obviously wrong! In: ASPLOS ’09: Proceeding of the 14th international conference on
architectural support for programming languages and operating systems (pp. 265–276). New York,
NY, USA: ACM.

Mytkowicz, T., Diwan, A., Hauswirth, M., & Sweeney, P. F. (2010). Evaluating the accuracy of java
profilers. In PLDI ’10: Proceedings of the 2010 ACM SIGPLAN conference on programming language
design and implementation (pp. 187–197). New York, NY, USA: ACM.

Narayanasamy, S., Pokam, G., & Calder, B. (2005). Bugnet: Continuously recording program execution for
deterministic replay debugging. In ISCA ’05: Proceedings of the 32nd annual international symposium
on computer architecture (pp. 284–295). Washington, DC, USA: IEEE Computer Society.

Nguyen, D. H., Strooper, P., & Suess, J. G. (2010). Model-based testing of multiple gui variants using the
gui test generator. In Proceedings of the 5th workshop on automation of software test, AST ’10 (pp.
24–30). New York, NY, USA: ACM.

Ricca, F., & Tonella, P. (2001). Analysis and testing of web applications. In Proceedings of the 23rd
international conference on software engineering, ICSE ’01 (pp. 25–34). Washington, DC, USA: IEEE
Computer Society.

Ronsse, M., & Bosschere, K. D. (1999). Recplay: a fully integrated practical record/replay system. ACM
Transactions on Computer System, 17(2), 133–152.

Ronsse, M., De Bosschere, K., Christiaens, M., de Kergommeaux, J. C., & Kranzlmüller, D. (2003). Record/
replay for nondeterministic program executions. Commun. ACM, 46(9):62–67.

Ruiz, A., & Price, Y. W. (2007). Test-driven gui development with testng and abbot. IEEE Software, 24,
51–57.

Ruiz, A., & Price, Y. W. (2008). Gui testing made easy. In Proceedings of the testing: Academic &
industrial conference—practice and research techniques (pp. 99–103). Washington, DC, USA: IEEE
Computer Society.

Sampath, S. (2004). Towards defining and exploiting similarities in web application use cases through user
session analysis. In Proceedings of the second international workshop on dynamic analysis.

Shehady, R. K., & Siewiorek, D. P. (1997). A method to automate user interface testing using variable finite
state machines. In Proceedings of the 27th international symposium on fault-tolerant computing (FTCS
’97), FTCS ’97 (p. 80). Washington, DC, USA: IEEE Computer Society.

Software Qual J (2011) 19:801–839 837

123

Steven, J., Chandra, P., Fleck, B., & Podgurski, A. (2000). jRapture: A Capture/Replay tool for observation-
based testing. SIGSOFT Software Engineering Notes, 25(5), 158–167.

Strecker, J., & Memon, A. M. (2008). Relationships between test suites, faults, and fault detection in gui
testing. In ICST ’08: Proceedings of the first international conference on software testing, verification,
and validation. Washington, DC, USA: IEEE Computer Society.

Sun, Y., & Jones, E. L. (2004). Specification-driven automated testing of gui-based java programs. In
Proceedings of the 42nd annual Southeast regional conference, ACM-SE 42 (pp. 140–145). New York,
NY, USA: ACM.

Sun Microsystems. (2004). Java Virtual Machine Tool Interface (JVMTI), http://www.java.sun.com/j2se/
1.5.0/docs/guide/jvmti.

Silva, J. C., Saraiva, J., & Campos, J. C. (2009). A generic library for gui reasoning and testing. In
Proceedings of the 2009 ACM symposium on applied computing, SAC ’09 (pp. 121–128). New York,
NY, USA: ACM.

White, L., & Almezen, H. (2000). Generating test cases for gui responsibilities using complete interaction
sequences. Software reliability engineering, international symposium on, 0:110.

Xie, Q. (2006). Developing cost-effective model-based techniques for gui testing. In Proceedings of the 28th
international conference on software engineering, ICSE ’06 (pp. 997–1000), New York, NY, USA:
ACM.

Xie, Q., & Memon, A. M. (2007). Designing and comparing automated test oracles for gui-based software
applications. ACM Transactions of Software Engineering Methodology.

Xie, Q., & Memon, A. M. (2008) Using a pilot study to derive a gui model for automated testing. ACM
Transactions of Software Engineering Methodology, 18, 7:1–7:35.

Yuan, X., Cohen, M. B., & Memon, A. M. (2009). Towards dynamic adaptive automated test generation for
graphical user interfaces. In Proceedings of the IEEE international conference on software testing,
verification, and validation workshops (pp. 263–266). Washington, DC, USA, 2009. IEEE Computer
Society.

Yang, J.-T., Huang, J.-L., Wang, F.-J., & Chu, W. C. (1999). An object-oriented architecture supporting web
application testing. In 23rd international computer software and applications conference, COMPSAC
’99 (pp. 122–127). Washington, DC, USA: IEEE Computer Society.

Yuan, X., & Memon, A. M. (2007). Using GUI run-time state as feedback to generate test cases. In ICSE
’07: Proceedings of the 29th international conference on software engineering (pp. 396–405).
Washington, DC, USA: IEEE Computer Society.

Yuan, X., & Memon, A. M. (2010). Generating event sequence-based test cases using gui runtime state
feedback. IEEE Transactions on Software Engineering, 36, 81–95.

Zaparanuks, D., & Hauswirth, M. (2010). Characterizing the design and performance of interactive java
applications. In ISPASS (pp. 23–32). IEEE Computer Society.

Author Biographies

Andrea Adamoli is a Ph.D. student at the Faculty of Informatics at
the University of Lugano. His research mostly focuses on performance
benchmarking and analysis. Adamoli received his Master of Science in
Embbeded Systems Design from the ALaRI Institute located at the
University of Lugano and affiliated with ETH Zürich and Politecnico
of Milan.

838 Software Qual J (2011) 19:801–839

123

http://www.java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://www.java.sun.com/j2se/1.5.0/docs/guide/jvmti

Dmitrijs Zaparanuks is a Ph.D. student at the Faculty of Informatics
at the University of Lugano. His research combines performance
measurements and design analysis of a program. Zaparanuks received
his Master of Science in Embbeded Systems Design from the ALaRI
Institute located at the University of Lugano and affiliated with ETH
Zürich and Politecnico of Milan.

Milan Jovic is a Ph.D. student at Faculty of Informatics at the Uni-
versity of Lugano. His research is mostly focused on interactive
application performance analysis. Jovic received his Masters degree
from the Faculty of Electrical Engineering at the University of Nis in
Serbia.

Matthias Hauswirth is an assistant professor at the Faculty of
Informatics at the University of Lugano. He is interested in perfor-
mance measurement, understanding, and optimization. Hauswirth
received his Ph.D. from the University of Colorado at Boulder.

Software Qual J (2011) 19:801–839 839

123

	Automated GUI performance testing
	Abstract
	Introduction
	Interactive applications
	Survey of automated GUI testing approaches
	Characterization of GUI testing automation
	Survey of prior work on GUI test automation
	Fitness for GUI performance testing

	Capture and replay tools
	Capturing interactions
	Persisting interactions

	Evaluation methodology
	Accuracy on test applications
	Accuracy on real-world applications
	Approach
	Interactive sessions

	Performance perturbation

	Evaluation
	Accuracy on test applications
	Accuracy on real-world application
	Performance perturbation

	Discussion
	Incomplete implementation
	GUI element identification problem
	Temporal synchronization problem

	Improving Pounder
	Pounder’s capture and replay approach
	Improving robustness
	Retry of events that fail to play back
	Temporal synchronization
	Component identification

	Decreasing perturbation
	Direct overhead of Pounder player
	Headless Pounder
	Asynchronous playback

	Discussion

	Case studies
	Operating system
	Client versus server mode
	Heap size
	Input size
	Program version
	Discussion

	Threats to validity
	Related work
	Replaying user interactions
	Low-level record/replay approaches

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

