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Abstract Gravity driven flows on inclines can be caused by cold, saline or turbid inflows
into water bodies. Another example are cold downslope winds, which are caused by cooling
of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Turner
(ET) investigated such flows by making use of earlier work on free shear flows by Morton,
Taylor and Turner (MTT). Their entrainment relation is compared here with a spread relation
based on a diffusion model for jets by Prandtl. This diffusion approach is suitable for forced
plumes on an incline, but only when the channel topography is uniform, and the flow remains
supercritical. A second aspect considered here is that the structure of ET’s entrainment rela-
tion, and their shallow water equations, agrees with the one for open channel flows, but their
depth and velocity scales are those for free shear flows, and derived from the velocity field.
Conversely, the depth of an open channel flow is the vertical extent of the excess mass of the
liquid phase, and the average velocity is the (known) discharge divided by the depth. As an
alternative to ET’s parameterization, two sets of flow scales similar to those of open channel
flows are outlined for gravity currents in unstratified environments. The common feature of
the two sets is that the velocity scale is derived by dividing the buoyancy flux by the excess
pressure at the bottom. The difference between them is the way the volume flux is accounted
for, which—unlike in open channel flows—generally increases in the streamwise direction.
The relations between the three sets of scales are established here for gravity currents by
allowing for a constant co-flow in the upper layer. The actual ratios of the three width, veloc-
ity, and buoyancy scales are evaluated from available experimental data on gravity currents,
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and from field data on katabatic winds. A corresponding study for free shear flows is referred
to. Finally, a comparison of mass-based scales with a number of other flow scales is carried
out for available data on a two-layer flow over an obstacle. Mass-based flow scales can also
be used for other types of flows, such as self-aerated flows on spillways, water jets in air, or
bubble plumes.

Keywords Top-hat scales · Flow scales · Gravity currents · Two-layer flow · Entrainment ·
Katabatic winds

1 Introduction

The width and velocity of nonbuoyant jets and wakes has traditionally been specified in terms
of the maximum velocity anomaly uem at the center of the flow, and the half-width bu at which
the anomaly decays to one-half of the maximum value. Both of these scales are thus based
on local properties of the velocity distribution. By invoking the concept of self-preservation,
velocity distributions were computed on the basis of the mixing length, eddy viscosity, and
related concepts. The predictions were compared with measured distributions, often with
little concern about the agreement of predicted and measured fluxes of volume and momen-
tum. A diffusion model for the streamwise widening rate of such flows was proposed by
Prandtl [1] (see also [2,3]). His basic concept is that the outward drift of turbulent structures
advected downstream with the main flow is proportional to their excess velocity relative to
the ambient fluid, which implies that Dbu/Dt is proportional to uem . For jet-like flows in
calm ambients uem is the maximum velocity um , and with Dbu/Dt = dbu/dxum , this leads
to dbu/dx = const. Whenever needed, the half-width bc of the distribution of a passive tracer,
or of a stratifying agent in buoyant plumes, was related to the velocity half-width as bc = λbu ,
with λ being a coefficient of proportionality. When the velocity distribution is determined
from experiments only, the resulting fluxes of volume and momentum can be related to the
two local flow scales by integration constants [4].

A different type of flow scales, derived from integrals over the velocity distribution, has
been used for boundary layers, which lack in self-preservation. Examples are the displace-
ment and momentum thicknesses. The main feature of these flow scales is that the integration
over the velocity distribution is carried to a region outside the boundary layer, where the shear
stress vanishes. Their advantage is that they do not hinge on a particular shape of the pro-
files, and thus provide an additional basis for comparisons of different experiments, even
for self-preserving flows. Another set of such flow scales are the ones proposed by Morton,
Taylor and Turner [5] (MTT), who studied jets and plumes by allowing for the presence of an
ambient stratification. Flows in stratified surroundings lack in self-similarity as well, and the
scales for width and velocity were derived from the fluxes of volume and momentum instead
of using local flow scales. Similarly, the buoyancy scale was based on the buoyancy flux. To
simplify previous analyses they also assumed Gaussian distributions of velocity and buoy-
ancy. The variation of the fluxes of volume and buoyancy was accounted for by introducing
the entrainment principle, which implies that the velocity of ambient fluid flowing through
the boundary of the flow is proportional to the average streamwise velocity. The constant of
proportionality is called the entrainment constant.

The entrainment constants were compared with the widening rates for steady jet-like flows
[6–9], as well as for thermals and puffs, for which the diffusion and entrainment approaches
are consistent with each other [10]. For calm and unstratified ambient fluids, both of these
models predict a constant spatial widening rate for all of these flows. The main difference
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is that the widening rates can be derived from the diffusion model without making use of
the momentum equation. Unlike the entrainment constants, these rates also agree quite well
for nonbuoyant and buoyant flows on one hand, and for plane and axisymmetric shear flows
on the other [11]. We noticed that the origin of the diffusion approach appears to be getting
lost, Patel [4] already referred to Abramovich [3] as attributing it to Prandtl. In this study
we show that the diffusion model is particularly suitable for forced plumes flowing down an
incline. In the aquatic environment such flows can arise when the flow is released into an
aquifer under some pressure to enhance dilution.

Ellison and Turner [12] (ET) applied the MTT approach to gravity currents in deep
water, which generally also lack in self-preservation due to changes in slope and bottom
roughness. An entrainment function which depends on the Richardson number of the flow
then replaces the entrainment constant, and two shape factors, S1 and S2, are required to relate
the top-hat scales to gravitational terms in the momentum equation. The ET approach has
been used to describe gravity and turbidity currents in lakes and marine environments [13–
17]. Manins and Sawford [18] used them for a field study on katabatic (downslope) winds in
a stratified atmosphere. Numerical predictions are required for more complex topographies,
stratified environments, and gravity currents impeded by obstacles. Numerical simulations
are especially useful when supported by field or laboratory data [19,20].

Ellison and Turner noted that their shallow water equations for gravity currents agree
with the Bresse equations for open channel flows. Whereas the structure of the two sets is
indeed the same, their depth and velocity scales are those of MTT for free shear flows. The
two types of scales differ because the width of free shear flows is derived from the velocity
distribution, whereas the depth h of open channel flows is the vertical extent of the excess
mass of the liquid phase. This extent can be determined visually, or by means of floats. Floats
are supported by the jump in density across this interface, which represents a local property
of the vertical density distribution. Since the liquid density ρ is constant, and having g as the
gravitational acceleration, the depth can also be determined from the excess pressure ρgh at
the bottom, or from the excess pressure force ρgh2/2, which reflect integral properties of
the density distribution. When there are no lateral inflows, the discharge is conserved, and
the mean velocity is the discharge divided by the depth. A slightly different picture emerges
when open channel flows are considered as a special case of two-layer flows. In this view the
buoyancy flux ρguh in the liquid layer is conserved, and the mean velocity u is the buoyancy
flux divided by the excess pressure at the bottom. For normal flows the velocity distribution
remains self-preserving, and the momentum flux is related to the velocity and depth scales
by a shape factor, the momentum coefficient β, which accounts for the nonuniformity of the
velocity distribution.

To reconcile the approaches for free shear flows, gravity currents, and open channel flows,
the same mass-based velocity scale u can also be used for all of them. In contrast to open
channel flows, however, the distribution of excess density in gravity currents is generally
not uniform across their depth. As a consequence, both the excess flow force and the excess
bottom pressure have to be determined to derive scales for the mean buoyancy g′ and the
depth h of the flow. Unlike in open channel flows, the volume flux in gravity current gen-
erally increases in the flow direction. This requires an additional shape coefficient γ , which
accommodates this flux, and thus distinguishes the extent h of the excess mass, from the
total depth γ h of moving fluid. Finally, the momentum flux is accounted for by modifying
the streamwise velocity by a momentum coefficient analogous to the one for open channel
flows. The corresponding mass-based flow scales and shape factors were derived by Buhler
and Schlaepfer [21].
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Noh and Fernando [22] proposed scales which are intermediate between those of ET and
fully mass-based ones. They also derived the flow velocity from the buoyancy flux and the
bottom pressure, but retained the volume flux to determine their only depth scale, which
corresponds to γ h.

In Sect. 2 of the present contribution, ET’s shallow water equations are outlined by con-
sidering the presence of ambient co-flows in the upper layer, and their entrainment relation is
compared with a diffusion model by Bühler et al. [9]. In Sect. 3 the limitations of the ET scales
are illustrated, and their relation with the two sets of mass-based flow scales is established for
gravity currents in co-flowing ambient fluids. To illustrate the difference between the three
parameterizations, corresponding values of the scales, and shape factors, are evaluated from
available laboratory data on gravity currents and free shear flows in Sect. 4. Field data on
katabatic winds of Princevac et al. [23] are evaluated in the same way in Sect. 5, followed by
laboratory data on two-layer flows over an obstacle in Sect. 6. Conclusions are drawn in the
final section.

2 Velocity-based width scales for free shear flows and gravity currents

In this section traditional flow scales for self-preserving jet-like flows are outlined, and the
top-hat flow scales of ET are examined for gravity currents in co-flows, sketched in Fig. 1. The
motivation for including co-flows was provided by a study on katabatic winds in October
2000, the Vertical Transport and Mixing Experiment (VTMX) in Salt Lake City [23]. By
invoking the boundary layer approximations, the excess momentum of a gravity current in a
co-flow of velocity ua can be stated as

d

dx

[∫
ū(ρu − ρaua)dy + g cos ϕ

∫
(ρ − ρa) ydy

]

= −d(ρaua)

dx

(∫
(u − ua) dy + uaha

)
+ g sin ϕ

∫
(ρ − ρa)dy − τb (1)

and buoyancy is conserved when

g
d

dx

∫ (
(ρ − ρa) u + ρ′u′

)
dy = 0. (2)

The index a refers to the ambient (i.e. upper) layer, which is considered as being unbounded
and unstratified, x and y are the streamwise and transverse coordinates, and ϕ is the slope
angle. The mean local density ρ is often determined by relating it to the concentration c
of the stratifying agent, and u is the mean local velocity. The turbulent contribution ρ′u′ to
the buoyancy flux is included here, as this flux is generally the only one which can be truly
conserved, τb is the shear stress at the bottom, and ha is a depth scale to be determined.
The contribution of the excess mass to the momentum flux is accounted for to retain the
connection with open channel flows. The integration is carried from the bottom to some
level in the uniform ambient layer at which du/dy, the excess density, and the corresponding
fluctuations, can be neglected.

The two equations can also be applied to free jets and plumes, for which the shear stress
at the center plane y = 0 vanish. For these flows the traditional approach for simplifying (1)
and (2) is then to express the integrals in terms of the maximum excess velocity uem and the
jet half-width bu , by assuming the profiles to be self-preserving, i.e. geometrically similar.
A shape function for the velocity profiles, such as a Gaussian, and a closure relation for the
widening rate are then required.
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Fig. 1 Definition sketch for a gravity currents emerging from a duct into unstratified and deep water. Depth
scales H and h are based on the distributions of velocity ū and excess mass ρ̄ − ρa , respectively, c̄ is the
concentration of the stratifying agent; q0 the initial discharge per unit width. Subscript a refers to the ambient
values

Gravity currents are generally not self-preserving due to changes in topography, and ET
used MTT’s concept to describe them. By including the case of ambient co-flows, they
represented the integrals in (1) in terms of top-hat scales for the depth H, the excess velocity
U according to

UH =
∫

(u − ua)dy (3)

U 2 H =
∫

(u − ua)2dy (4)

A buoyancy scale � was derived from the buoyancy flux specified in (2) as

(U + ua)�H = g
∫

(ρ − ρa) u + ρ′u′
ρa

dy = �0q0 (5)

where q0 is the source flow rate and �0 is the buoyancy at the source. ET neglected the tur-
bulent flux in their formulation, but in their experiments they also determined � by dividing
the known buoyancy flux at the source by the measured volume flux.

To account for the effect of the slope angle and ambient velocity, they modified the entrain-
ment approach of MTT by proposing an entrainment relation of the form

d

dx
[(U + ua)H ] = EU, (6)

where E(Rie) is an entrainment function which depends on the Richardson number Rie =
�H cos ϕ/U 2.

After dividing them by ρa , the momentum and buoyancy equations (1) and (2) can then
be restated for dilute flows as

d

dx

[
U (U + ua)H + S1

2
�H2 cos ϕ

]

= −dua

dx
(U + ua)H + S2�H sin ϕ − CD(ua + U )2 (7)

and

d

dx
[�(U + ua)H ] = 0. (8)
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By following ET, the bottom shear stress is expressed in terms of a Chezy-type drag coef-
ficient CD , and the depth ha , which determines the contribution uaha of the ambient flow to
the volume flux in (1), is set equal to H in (6), (7) and (8). The contribution of the ambient
flow to the flux of volume, and to the buoyancy �, thus depend on this definition of ha ,
whereas the contribution to the momentum flux vanishes when dua/dx = 0. Wright [24]
used the corresponding approach for axisymmetric jets in co-flows.

The shape factors S1 and S2 of ET relate the excess bottom pressure and the excess pressure
force to the flow scales, i.e.

S1�H2 = 2g
∫

(ρ − ρa)

ρa
ydy

S2�H = g
∫

(ρ − ρa)

ρa
dy (9)

An important result of ET for flows with dua/dx = 0 is that an equilibrium state is
reached at some distance from the source, in which the velocity U , as well as the Richardson
number Ri = �H(U + ua) cos ϕ, and dH/dx become constant. ET also carried out a series
of experiments for ua = 0, and determined the entrainment function for a number of slope
angles. The shape constant S1 varied in the range from 0.2 to 0.3, S2 from 0.6 to 0.9. They
also performed experiments for a surface layer of fresh water flowing over a stagnant layer
of salt water to determine the limit of approximately Ri = 0.83, at which the entrainment
ceases. Higher limiting values up to Ri = 23 were found by Fernandez and Imberger [17]
in field experiments. These authors also provided a survey of entrainment relations which
modify the one by ET, and were proposed by later investigators.

As an estimate for the value of E for wall jets and wall plumes (Ri = Rie = 0) ET
adopted a value of E = 0.075 for free jets [25], which corresponds to dH/dx = 2E = 0.15.
They already noted that the value of E for free plumes, which would be more appropriate
for buoyant flows, appeared to be higher, but thought that insufficient data were available
to make definite conclusions. More recent experiments show that E = dH/dx for free
plumes is about 0.15 [11]. Results for wall jets in a uniform stream by Patel [4] indicate that
dH/dx = 0.091 for these flows. Similar to what is found for free shear flows, this widening
rate is again in excellent agreement with the value of E = dH/dx = 0.095 ± 0.005 for wall
plumes obtained by Grella and Faeth [26]. To account for this, Bühler et al. [9] suggested
using a formulation DH/Dt = DU in the spirit of Prandtl’s approach, where D is a diffusion
function, or

dH

dx
= D

U

U + ua
, (10)

for forced plumes on an incline, and similar developing gravity currents. For equilibrium
flows this relation agrees with (6) and D(Rie) ≡ E(Rie). As the modifications of ET’s
entrainment relation by later investigators listed in [17] are also for equilibrium flows, these
models for E can be used as well. The diffusion relation (10) can thus be expected to work
for developing gravity currents if D(0) is increased from 0.075 to about 0.093. As this
relation is not consistent with the entrainment relation (6), it is limited to flows on uni-
form topography, i.e. when depth changes are not related to variations in slope or flow
cross-section. Similar limitations related to changes in topography apply for an entrainment
relation d(HU )/dx = E ′U , which Princevac et al. [23] proposed for katabatic winds in
co-flows. For equilibrium flows their relation reduces to dH/dx = E ′.
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3 Mass-based width scales for gravity currents and open-channel flows

The difference between the flow scales of ET and those for open channel flows is that they
are derived from the velocity distribution, whereas the depth of flows with a free surface is
the vertical extent of the excess mass. A consequence is that when the ET scales are applied
to gravity currents in co-flows, the value of � depends on ua according to (5). The shape
factors S1 and S2 then also depend on ua , instead of reflecting the nonuniformity of the excess
velocity and buoyancy profiles only. These limitations can be avoided for entraining gravity
currents in deep and unstratified water by noting that the integrals over the buoyancy distri-
bution in (9) are available for replacing the fluxes of volume and momentum as a basis for
deriving flow scales. The resulting scales are then associated with the distribution of excess
mass and vorticity, and consistent with those for open channel flows.

A first option is to make use of (5), and both integrals in (9), and to derive all three flow
scales, instead of only one, from the flux and distribution of buoyancy. This is leads to scales
for velocity u, buoyancy g′ and depth h given by

g′h = g
∫

(ρ − ρa)

ρ0
dy

g′h2 = 2g
∫

(ρ − ρa)

ρ0
ydy (11)

g′hu = g
∫

(ρ − ρa) u + ρ′u′
ρ0

dy

which can be used for both dilute and dense gravity currents. For open channel
flows ρa → 0, g′ = g, and ρ = ρ0.

The excess fluxes of mass and momentum in (1) and (2) can then be specified as

me =
∫

(ρu − ρaua) dy = [
ρ + (γ − 1) ρa

]
uh − γρauah

= (ρ − ρa) uh + γρa (u − ua) h,

Me =
∫

u (ρu − ρaua)dy = [
ρ + (γ − 1) ρa

]
βu2h − γρauauh

= β (ρ − ρa) u2h + γρa (βu − ua) uh (12)

The velocity scale u in this parameterization of me is associated both with the mass flux
ρuh of the dense layer of depth h, as well as with the flux of ambient fluid in a superim-
posed layer of depth (γ − 1)h. As we shall see, the total depth γ h generally exceeds h in
gravity currents. The purpose of γ is similar to that of the turbulent Schmidt number, 1/λ,
in free shear flows. The present approach is also related to the one for thermals and puffs,
the extent of which has been determined by means of flow visualization. The factor (γ − 1)

corresponds to the virtual mass coefficient of these unsteady flows, and accounts for the
momentum associated with ambient fluid [27].

The excess momentum flux in (12) is accounted for by modifying the square of the flow
velocity by a single momentum coefficient β, which was introduced by Boussinesq [28] for
open channel flows. The terms in ρa , which are associated with the excess mass flux in the
gaseous upper layer, can be neglected for these flows. The momentum coefficient β is also
used for flows in ducts, and accounts for the nonuniformity of the velocity profile. It ranges
from 1.03 to 1.33 in open channel flows; the values for a linear laminar profile are 1.33, and
1.2 for a parabolic one [29]. The corresponding ET scales would be H = h/β, U = βu, and
can thus differ considerably from the depth h and the mean velocity u of the liquid layer.
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For dilute flows, the remaining integrals in (1) and (2) can be expressed as

d

dx

[
γ (βu − ua)uh + 1

2
g′h2 cos ϕ

]
= −dua

dx
γ uh + g′h sin ϕ − C∗

Du2 (13)

and

d

dx
(g′uh) = 0. (14)

The star in C∗
D denotes definitions in terms of mass-based scales. An analogous approach can

be used for the energy equation of gravity currents [30], which leads to an energy coefficient
similar to the Coriolis coefficient for open channel flows [29].

The scales, and the shape factors for dilute flows are related to those of ET by

g′h2 = S1�H2, g′h = S2�H, g′hu = �(U + ua)H

γ (u − ua)h = U H, γ (βu − ua)uh = U (U + ua)H (15)

and a continuity equation patterned after (6) is

d

dx
(hu) = E∗ue (16)

where ue = u − ua . The entrainment function E∗(Ri∗e ) is related to Ri∗e = g′h cos ϕ/

(u − ua)2. Note that the entrainment rate is stated in terms of the depth h and velocity u
associated with the flux and distribution of buoyancy. As a consequence, E∗ can be deter-
mined based on density measurements alone according to (11) when this flux, and ua , are
known. Equation (16) also reduces to the continuity equation for open channel flows when
E∗ vanishes. Equations (6), (7), and (8) can then be stated in terms of mass-based scales as

dh

dx
= E∗(1 − ur )

(
γ (2β − ur ) − 1

2 Ri∗
) − Ri∗ tan ϕ + C∗

D

βγ − Ri∗
(17)

h

3Ri∗
dRi∗

dx
= E∗(1 − ur )

(
γ (β − ur ) + 1

2 Ri∗
) − Ri∗ tan ϕ + C∗

D

βγ − Ri∗
(18)

where Ri∗ = g′
0q0 cos ϕ/u3, ur = ua/u = ua

(
Ri∗/g′

0q0 cos ϕ
)1/3, and Ri∗e = Ri∗/

(1 − ur )
2. The above equations are written in terms of Ri∗ to facilitate comparisons with

ET’s parameterization; another suitable option for co-flows is to normalize ua, u, and ue with
the cube root of the buoyancy flux.

The structure of (17) and (18) is the same as that of the corresponding relations derived
by ET, except that their shape factors S1 and S2 modify Ri and Ri tan ϕ, respectively, and
that the velocity ratio ur was zero in the case they examined. For deep ambient layers the
interfacial long wave speed is related to the Richardson number Ri∗ = g′h cos ϕ/u2 based
on the velocity u relative to the solid boundary, and it does not depend on ua . With the present
definition of β and γ the denominator in (18) then vanishes when the flow is critical, as it
does in open channel flows. ET obtained the corresponding result by using the shape factor S1

to relate the pressure force, and Ri, to their velocity-based flow scales. Conversely, it can be
shown by writing (18) in terms of the ET scales, and by making use of the diffusion function
(10) instead of (6), the denominator vanishes at Ri close to 4 for ua = 0 [9]. This is again due
to the fact that (10) is not a continuity equation. The same holds when mass-based scales are
used. The corresponding parameterizations can thus be expected to hold for developing flows
on uniform topography only, and when the resulting equilibrium flow remains supercritical.
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The relation between the flow parameters of ET and those for mass-based scales can be
obtained from (15) as

h = S1
S2

H, g′ = S2
2

S1
�, u = U+ua

S2
, ue = U+ua(1−S2)

S2

β = S2

(
1 + ua(1−S2)

U+ua

)
, γ = S2

2
S1

U
U+ua(1−S2)

E∗ = E S1
S2

U
U+ua(1−S2)

, Ri∗e = Rie S3
2

U 2

(U+ua(1−S2))2

Ri∗ = S3
2 Ri

(19)

The values of the shape factors reported by ET for their experiments in calm water allow for
a first physical interpretation of the above relations. The ranges are given as 0.2 < S1 < 0.3,
and 0.6 < S2 < 0.9. The first one of relations (19) then indicates that H is larger than h for
gravity currents, as sketched in Fig. 1. As a consequence, the buoyancy g′ exceeds �, and
u > U . The momentum coefficient β appears to be smaller than unity, whereas it is slightly
larger than one in free surface and ducted flows [29]. The shape factor γ exceeds unity in grav-
ity currents because the vertical diffusion of buoyancy within the layer is hindered by gravity.

An advantage of mass-based scales is that it is easier to determine the distribution of buoy-
ancy, a scalar, than the velocity field. Fully mass-based scales are especially useful when the
buoyancy flux is known, and conserved, as g′, h, and u can then be determined from density
measurements alone by making use of (11); [31]. This is possible regardless of whether an
ambient flow is present or not. When ua is known, this also holds for the determination of the
entrainment function E∗ in (16). Conversely, the determination of the velocity-based scales
in jet-like flows, even in calm ambient fluids, is often hampered by induced flows with a
streamwise component [32]. Another aspect is that the momentum flux is nonlinear in the
velocity, and contains turbulent quantities as well as a pressure anomaly, which are often
ignored. In view of these uncertainties it seems preferable to account for the momentum flux
by a shape coefficient instead of deriving flow scales from it. The problems related to the
velocity measurements then affect the shape coefficients β and γ in the momentum Eq. (13),
but not the determination of the flow scales and of the entrainment function E∗. A further
advantage of mass-based flow scales is that the shape factor γ allows for a geometrical inter-
pretation, and the value of β for comparisons with open channel and ducted flows, whereas
S1 and S2 are not easily interpretable.

The most significant difference between the flow scales of ET, and fully mass-based ones
is the one between g′ and �, as specified by the second relation in (19). Whereas g′ is deter-
mined from the two moments of the transverse buoyancy distribution, the buoyancy � in (5)
is obtained by dividing the flux of buoyancy by the volume flux. In line with this procedure,
�0/� or (U + ua)H/q0 is called the average dilution. The concept of dilution has been
widely used for studies dealing with the fate of pollutants discharged into the atmosphere or
surface waters. This difference between velocity and mass-based scales is especially rele-
vant in the presence of co-flows. As mentioned earlier, the contribution ua H of the ambient
flow to the volume flux in (6), and to the dilution, depends on the definition of H. ET’s
experimental results, for example, indicate that H is larger than the corresponding total flow
depth, as γ h = S2 H . In terms of the present scales this flux is γ uah, but it is unrelated to
g′, and the “dilution” g′

0/g′ = hu/q0, which is derived from the distribution of buoyancy
alone. Specifically, the determination of g′ neither depends on the velocity distribution, nor
on whether ambient flows are present. For ET’s gravity currents g′ is considerably larger
than �. The difference between the two scales can be important when the stratifying agent
contains a pollutant.
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A related set of top-hat scales which is also consistent with those of open channel flows
was proposed by Noh and Fernando [22]; (NF). They retained ET’s volume flux as a basis of
their set, and only used the excess bottom pressure in (9) to replace the momentum flux. In
analogy to the approach by ET, their buoyancy scale is also derived by dividing the buoyancy
flux by the flux of volume, and is thus consistent with the concept of dilution. As their set
is intermediate between the one of ET and fully mass-based scales, it will be denoted by the
index i . In the spirit of their approach, the excess fluxes of momentum and mass for dense
gravity currents in co-flows can be expressed as

me =
∫

(ρu − ρaua)dy = (ρi ui − ρaua) hi

= (ρi − ρa) ui hi + ρa (ui − ua) hi ,

Me =
∫

u (ρu − ρaua)dy = (βiρi ui − ρaua) ui hi

= βi (ρi − ρa) u2
i hi + ρa (βi ui − ua) ui hi (20)

For open channel flows the terms in ρa can again be neglected, so that ρi , ui , and hi

correspond to the conventional scales ρ, u, and h; βi again corresponds to the Boussinesq
coefficient. For gravity currents the relations between the two sets of scales can be obtained
by comparing individual terms in (12) and (20). For dilute flows they are

hi = γ h, g′
i = g′/γ, ui = u, βi = β

Rii = Ri, Riie = Ri∗e , Ei = γ E∗ . (21)

The flow velocity thus corresponds to u, and the shape factors β and γ again account for
the excess fluxes of momentum and volume, but these authors distinguish only the single
depth scale hi = γ h. The buoyancy g′, which was confined to a depth h, is thus spread out
uniformly over the entire depth hi , such that g′

i hi = g′h. Equations (17) and (18) are then
also valid in terms of the NF scales, when h on the LHS is replaced by hi/γ , and E∗ by
Ei/γ .

4 Experimental results for gravity currents and free shear flows

Altinakar [33] determined mass-based scales, as well as those of ET for a series of exper-
iments on saline gravity currents and turbidity currents in a 0.5 m wide channel with a test
section of 12 m length. For the 12 experiments on gravity currents the slope angle ϕ was
varied between 0.6◦ and 1.9◦, and the buoyancy flux ranged from 0.82 to 3.09 · 10−4m3/s3.
At a station 4 m from the source S1 varied from 0.48 to 1.11, S2 = β from 0.92 to 1.11, and
Ri from 0.23 to 0.79 for all but one experiment (Salt 10). These values of β are similar to
those in ducts or open channels from which gravity currents often enter a water body (Fig. 1).
The corresponding range of γ was between 1.10 and 1.86, and the one of Ri∗ between 0.19
and 0.68.

This author also presented figures showing the velocity and density distribution at 2, 4
and 8 m downstream from the source. They differed only slightly when they were normalized
with the scales according to ET, but more significantly when mass-based scales h, u, and g′
were used instead. A significant difference to ET’s scales is, however, that the total depth
γ h of the excess motion can be distinguished from the depth h of the buoyancy distribution.
Considering that the value of γ can increase from a value of one at the source, to 1.86 further
downstream, a better fit might be expected by making the velocities dimensionless with γ h.
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This streamwise variation of γ is an example for the general lack of self-preservation of
such flows. One reason is that the water depth is often limited. Another problem can be that
the length of the test section is insufficient, especially when the slope, and the entrainment
are small. Parker et al. [13] recommended values of 0.99 and 1 for S1 and S2, respectively,
to obtain estimates for the evolution of gravity currents, but a rather wide range of values
for S1 and S2 have been reported by other authors. Determinations of the shape factor γ ,
which allows for a geometrical interpretation, and of β, which can be compared with the
momentum coefficient in open channel flows, will hopefully help to shed some more light
on the picture.

Fully mass-based and intermediate top-hat scales can also be used for free axisymmetric
plumes. For nonbuoyant jets the scales can be derived from the concentration c and the flux
coq0 of a passive tracer contained in the discharge, although they no longer reflect gravity
forces. The spreading rates, and the decay rates for velocity and concentration for these
jet-like flows can be converted into the corresponding values for mass-based scales [34]. A
noteworthy result from recent sources is that the ratio γ of the total width of flow, and the
extent of the excess mass or tracer carried along in it, is between 0.96 and 0.99 for plane and
axisymmetric jets and plumes. This value is quite different from the ratio 1/λ of the corre-
sponding half widths of about 0.77 for these flows. The good agreement of the lateral extent
h of the buoyancy or tracer distribution with the entraining interface at hi = γ h also implies
that both fully mass-based and intermediate flow scales are consistent with the concept of
dilution. It also provides a basis for the use of a passive tracer to determine mass-based flow
scales, and the dilution, along free shear flows in stratified environments. The intermediate
NF scales could be applied to determine the dilution in corresponding experiments on gravity
currents.

A further application of mass-based scales could be the determination of the depth h,
velocity u and mean density ρ in aerated spillways. Such flows were examined by Wood
[35], and the scales could be obtained from the discharge of water, and from pressure mea-
surements on a sidewall as well as on the bottom of the channel. Analogous scales could
be derived from the discharge and the concentration distribution of the dispersed phase in
bubble plumes or water jets in air. The corresponding scales in the continuous phase can be
obtained by adding some dye to it near the source of the flow.

5 Field observations

To provide another example for the relation between the top hat scales of ET, outlined in
Sect. 2, and the two mass-based sets in Sect. 3, they were determined from field data on kat-
abatic winds on the slope of a mountain in Utah. The data were obtained by a tethersonde
system deployed during the Vertical Transport and Mixing Experiment (VTMX) sponsored
by US Department of Energy. Details of the field campaign are given in Doran et al. [36].
Data collected by the Pacific Northwest National laboratory (PNNL) team at the Slope Site
was used. The Slope Site is characterized by a gentle (ϕ = 1.58◦) and very smooth (aerody-
namic roughness length ∼0.1 m) slope. Typical measured profiles of wind speed and potential
temperature (density) are shown in Fig. 2.

The profiles of wind speed and potential temperature show that the excess density distribu-
tions obtained at different times are less contorted and more consistent with each other than
the corresponding velocity profiles, which have an inversion point and are strongly influenced
by the no-slip condition at the bottom. This indicates that the density distribution could be a
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Fig. 2 Distribution of wind speed and potential temperature in katabatic winds down a slope, at different
times. Heights are above ground level (from Princevac et al. [23])

more reliable basis for deriving flow scales than the velocity distribution. Apart from what
looks like a small residual ambient stratification in the ascent to 450 m, the reference density
in the upper layer is also more easily estimated than ua . The range of the resulting scales and
shape factors were computed by setting the integration limit at 200 m in all cases to minimize
the remaining shear at the upper boundary. Turbulent fluctuations of velocity and density
were not determined, and the corresponding contribution to the buoyancy flux could not be
included. The results are listed in Table 1.

A comparison of the flow depths in the first three columns shows that h < H < hi . The
fact that H/h exceeds unity also agrees with ET’s results, and with the greater width of
the velocity distributions in Fig. 2. As can be expected, the corresponding buoyancy scales
follow the opposite trend, i.e. g′ > � > g′

i . As mentioned earlier, the fact that the mean
value of g′ is almost twice as large as that of � and g′

i can be especially relevant in case
the stratifying agent contains a pollutant. The flows are supercritical (including the one with
Ri∗ = 1.20, as βγ = 1.23 for this case), and the entrainment is small, as Rie and Ri∗e
are generally larger than the limit of Rie = 0.83 established by ET. It should be noted,
however, that the entrainment relation E of ET was determined for calm upper layers; Princ-
evac et al. [23] evaluated the entrainment rates for these field data and found higher values.
Work is underway to determine the corresponding rates for mass-based flow scales. The
shape factors S1 and S2 are somewhat higher than those measured by ET. The factor β is
within the range of the momentum coefficient in open channel flows, and it agrees well
with S2.

An aspect which tends to support the choice of mass-based flow scales is that the range
of γ is considerably smaller than that of S1. Nevertheless, γ is close to unity for free
jets and plumes [34], but up to 2.7 for the flows under consideration. This considerable
range suggests that a separate model of the form γ = γ (Ri∗e ) might be needed to describe
the variation of γ due to the dampening effect of gravity on the transverse diffusion of
buoyancy.
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Table 1 Measured flow scales for katabatic winds

H [m] h[m] hi = γ h[m] ua [m/s] U [m/s] ue[m/s] u[m/s]

Min 47 14 49 0.6 0.6 1.4 2.3

Max 112 95 133 2.4 2.7 2.3 3.8

Mean 69 44 82 1.7 1.9 1.8 3.3

Median 67 41 78 2.0 2.1 1.8 3.5

�(m/s2) g′(m/s2) g′
i = g′/γ Ri Ri∗ Rie Ri∗e

Min 0.02 0.07 0.05 0.19 0.2 0.7 0.8

Max 0.14 0.76 0.08 0.56 1.2 1.8 2.8

Mean 0.08 0.20 0.07 0.37 0.5 1.1 1.7

Median 0.07 0.12 0.07 0.40 0.4 0.9 1.7

S1 S2 γ β h/H hi /H ue/U

Min 0.3 1.0 1.0 1.01 0.3 1.0 0.71

Max 1.8 1.3 2.7 1.23 0.7 1.4 0.99

Mean 0.7 1.1 1.8 1.08 0.5 1.2 0.87

Median 0.7 1.1 1.7 1.03 0.6 1.1 0.84

6 Comparison of top-hat and other scales for nonentraining flows

Width scales based on local properties of the buoyancy distribution have extensively been
used for weakly entraining flows on small slopes. Examples of such local width scales are
the width δv determined by flow visualization, the half-width of the buoyancy distribution,
and the height of the maximum gradient of the density distribution [17]. For flows on a hor-
izontal bed the term in sin ϕ in (1), and the entrainment due to gravitational forces, vanish,
and a boundary layer develops at the interface between the two layers. It is then of interest
to determine the relation between local and top-hat depth scales of the lower layer.

When the velocity ul and buoyancy g′
l below the interfacial boundary layer are uniform,

and the upper layer flows with a constant velocity ua , the interface can be chosen at the height
yb at which the local buoyancy g′ is g′

l/2. This height is generally close to the center of shear
[37]. Provided that the profiles of velocity and buoyancy are symmetrical to that location it
can be easily shown that the NF scales hi , uei = ue, and g′

i are the same as for a flow with
a sharp interface at yb, and a uniform distribution of velocity and density above and below
that level. In contrast, the vertical extent h = hi/γ of the excess mass, depends on the shape
of the buoyancy distribution. For a distribution according to

g′ = g′
l

2
{1 − tanh[2(y − yb)/δb]} (22)

[37], where δb is the width of the boundary layer, the ratio h/yb = 1/γ is approximately

h

yb
� 1 + (πδb/yb)

2

48
, (yb � δb). (23)
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For nonentraining flows h thus exceeds hi = yb, i.e. the vertical extent of the excess mass
exceeds the flow depth of the lower layer. This is not a problem as long as a net entrainment
of fluid through the interface at yb is disallowed, and the shallow water equations can again
be stated either in terms of mass-based or intermediate flow scales.

A special case of flows with negligible entrainment are arrested saline wedges, in which
the fluxes of volume and buoyancy both vanish by definition, and for which ua is the relevant
velocity. The excess fluxes of volume and buoyancy are then −uaγ h = −uahi and −ua g′h.
The excess momentum flux can be expressed in terms of a momentum coefficient βw as
Me = ρu2

a(βw − 1)hi . The depth hi then corresponds to the displacement thickness, and
βwhi to the momentum thickness.

When the upper layer is not deep, the dynamics of the two layers can be coupled, and an
interface needs to be defined. One option is to assign the interface to a location at near the
center of shear, at which the velocity gradient is highest. Another one is to locate the inter-
face near the upper edge of the buoyant shear layer to include most of the buoyancy, and to
avoid the region of high shear [38,39]. Depending on the choice of the interface location, the
streamwise extent of the flow, and its complexity, a shear stress is introduced at the interface.

After choosing a suitable interface, integral flow scales can be derived by carrying volume
and momentum flux integrals in (1) to the height of the interface, and the momentum flux
can again be accounted for by a momentum coefficient. The remaining integrals in (1) and
(2) can be left unbounded to derive an integral buoyancy scale, and shape factors, in analogy
to ET’s approach. By choosing a depth δ as the interface height, the result is

δuδ =
δ∫

0

udy, βδu2
δδ =

δ∫
0

u2dy, �δuδδ = g′hu (24)

S1δ�δδ
2 = g′h2, S2δ�δδ = g′h, Riδ = �δδ cos ϕ/u2

δ (25)

The entire buoyancy is thus assigned to the lower layer, as indicated by the corresponding
mass-based scales. Analogous relations can be obtained for other depth scales.

The time-averaged visual layer depth δv is difficult to determine when the flow is strongly
entraining, and the interface unsteady [38]. Moreover, width scales like yu and δv derived
from local properties of the velocity and buoyancy distributions are not intimately associated
with forces acting on a flow unless it is self-preserving. Considering the substantial improve-
ment of measuring and data processing techniques in the last few decades, an alternative
option is to choose width scales related to integral properties of the distributions.

An integral width scale which can be expected to be close to yu and yb for nonentraining
flows is the interface height Yq through which there is no net flow, i.e. below which the flow
rate is equal to q0. In arrested saline wedges the volume flux is zero by definition, and data by
Sargent and Jirka [40] (their Fig. 9) show that the height Yq , above which the entire approach
flow passes, agrees closely with both the half-width yb and the visible width δv of the lower
layer.

A further rugged flux-delimited depth scale can be defined by considering two-layer flows
as a superposition of the throughflow of velocity ut averaged over the entire water depth, and
an equal counterflow qec in the upper and lower layer [41]. The interface is then generally
at the uppermost intersection where ut = u in case a free surface without boundary shear
is present. For symmetrical velocity and buoyancy distributions the interface position rela-
tive to the center of shear then depends on the depth ratio of the upper and lower layers. In
particular, Yec moves upwards relative to it when the ratio increases. This can be a problem
when a shear stress is to be assigned to the interface, unless the boundary layer is thin.
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Fig. 3 Figure reproduced from Lawrence 1993 [38]. The flow is from left to right. Profiles of density dif-
ference �ρ = ρ − 1, 000 kg/m3(�), and velocity (�), are presented at three positions along the plate
(x = −1, 1and 5 m). The thick line presents the obstacle (hill) and the thin one presents the visual observa-
tions of the interface

To compare the mass-based scales with local scales yb, and δv , as well as with the flux
delimited scales Yq and Yec, we examined the buoyancy and velocity distributions obtained
by Lawrence [38] in a two-layer flow over an obstacle, as shown in Fig. 3. The flow is from
left to right in both layers, density is measured in σt units, where ρ(σt ) = ρ(kg/m3)−1, 000,
and velocity in cm/s. The water depth hs was 0.511 m, and the buoyancy g′

0 at the source
8.8 · 10−2m/s2. The flow rate q0 was 2.05 · 10−2m2/s in the lower layer, and the total
through-flow qt = 4.09 · 10−2m2/s, resulting in a depth-averaged through-flow velocity
ut = 80.0 mm/s. All data were obtained from the figure to minimize the effect of repro-
duction errors. Lawrence ignored interfacial and boundary shear, as well as entrainment, the
top-hat depths h, and γ h as well as the other depth scales mentioned above are then considered
to agree. Upstream of the obstacle the velocity and density distributions are approximately
symmetrical to the visual interface at δv , marked by thin solid line, which he assumed to
represent the no-flow depth Yq . The two depths can be expected to differ downstream of the
obstacle as some entrainment occurs on its downslope. Due to the presence of an internal
hydraulic jump the velocity distributions in the upper layer are nonuniform at x = 1 m and
x = 5 m. The shape factors β and γ in Table 2a, b were thus determined in the first profile
only.

Data for the remaining width scales are listed in Table 2a, bold symbols indicate that the
values were normalized by the water depth hs . The corresponding velocities, normalized by
ut , are listed in Table 2b.

The different mass-based flow depths in Table 2a agree to within about ±7% with each
other, except that Yq is considerably higher than the other values at x = 1 m, δv at 5 m, and
Yec low at 5 m. This could be due to the low velocities near the interface in both of these
profiles.
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Table 2 Normalized width scales (a), velocity scales (b), and other quantities (c), calculated from data in
Fig. 3

Station h γ yb δv Yq Yec

(a)

−1m 0.59 1.13 0.64 0.65 0.64 0.60

1 m 0.29 – 0.30 0.30 0.41 0.27

5 m 0.44 – 0.45 0.50 0.43 0.39

u β ub uv uq uec

(b)

−1 m 0.74 1.06 0.80 0.83 0.75 0.77

1 m 1.28 – 1.36 1.41 1.15 1.38

5 m 1.10 – 1.14 1.11 1.22 1.23

Ri∗ Riiu uh/u Rih Rihu Ri∗uest

(c)

−1 m 6.13 0.86 1.04 5.51 1.26 1.23

1 m 0.8 – 1.09 0.63 4.21 4.11

5 m 2.31 – 1.01 2.23 3.09 3.02

When the upper layer velocity is uniform, an alternative procedure is to pack the ex-
cess fluxes of volume and momentum into the layer below γ h. The corresponding value
of γ h/hs at −1 m is 0.67 for γ = 1.13. The Richardson number Ri∗ = Rii at that loca-
tion is shown in Table 2c, and the one in the upper layer is then Riiu = g′(hs −hi )/(γ u2

a). The
Richardson number Ri∗ can also be evaluated in the other cross-sections, where the
upper layer velocity is nonuniform. To examine the corresponding velocity scales, we also
located the interface at the depth h. The ratios uh/u = S1h = S2h = g′/�h accord-
ing to (24) and (25), shown in Table 2c, indicate that the mean flow velocities uh agree
rather well with u. The Richardson number Rih = �hh/u2

h , and the one of the upper layer
Rihu = �h(hs − h)3/(ut hs − uhh)2 are included for comparison. When no velocity mea-
surements are available, but the throughflow is known, an estimate of this Richardson number
is Ri∗uest

∼= g′(hs − h)3/(qt − uh)2.
Regardless of whether a flow is self-preserving or not, and whether the water depth is large

or limited, mass-based top-hat scales are thus useful for tracking the flow along its path, as
they represent gravitational forces and fluxes. Similarly, measured distributions of velocity
and buoyancy can be normalized with the scales g′, h, and u instead of the half-widths of the
velocity and buoyancy distributions when the flows are not self-preserving. Another advan-
tage of mass-based scales compared to those of ET is that a distinction between the widths
γ h of the velocity distribution and h of the buoyancy field can be made when the ambient
velocity is known and uniform (dua/dx = 0).

7 Conclusions

Gravity currents on an incline are often analyzed by using the top-hat flow scales of
Ellison and Turner (ET). In a first part of the present contribution, their entrainment relation
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(6) is compared with a modified version of a diffusion relation of Prandtl for jets, wakes and
mixing layers (10). This relation is shown to agree with experimental data for wall jets and
wall plumes (Ri = 0), as the widening rate D of these flows is approximately the same,
but not the value of the entrainment function E . The new parameterization is applicable for
forced plumes on an incline, which gradually evolve into an equilibrium gravity current. As
the diffusion relation is not consistent with the continuity equation, the relation is only valid
for supercritical flows on uniform topography.

Whereas the structures of ET’s entrainment relation, and of their shallow water equations,
are consistent with the ones for open channel flows, their flow scales are not. The reason for
the difference is that the water depth is the extent of the vertical distribution of the liquid
mass, whereas layer depth H of ET is based on the velocity distribution in analogy to the
usual procedure for free shear flows, see (3) and (4). To reconcile the two descriptions, two
mass-based sets of flow scales are outlined for gravity currents. The first set is based on the
flux and distribution of buoyancy only. The velocity u is derived as the ratio of the buoyancy
flux and the excess pressure at the bottom. The excess pressure force in a cross section is
also required to derive a buoyancy scale g′ and a depth scale h over which the buoyancy
extends, see (11). The main advantage of these flow scales is that they are consistent with
those which are used for open channel flows. Conversely, the depth scale H of ET can dif-
fer considerably from the water depth when it is evaluated for open channel flows, or the
depth h of weakly entraining gravity currents. In cases where the buoyancy flux is known,
the proposed scales can also be derived for gravity currents without measuring the velocity
distribution. When the ambient velocity ua is uniform in the transverse direction, a (gener-
ally larger) depth γ h can be defined, which accommodates the excess volume flux, and u2

is modified by a shape factor β to accommodate the excess momentum flux in (12). β is the
conventional momentum, or Boussinesq, coefficient, which accounts for the non-uniformity
of the velocity distribution. Errors in the velocity measurements thus affect the momentum
Eq. (13) only, when the buoyancy flux is known.

An intermediate set of flow scales by Noh and Fernando [22] distinguishes only a single
depth scale hi = γ h, and the buoyancy is distributed over the entire depth, so that the buoy-
ancy scale g′

i is g′/γ . The other quantities correspond to those of the first set, and their scales
in (20) are again consistent with those of open channel flows. A similarity of their scales
with those of ET is that both are based on the concept of dilution, i.e. the buoyancy scale is
derived by dividing the buoyancy flux by the volume flux.

The shape factors S1 and S2 of ET, and the corresponding coefficients γ and β of the
mass-based sets were evaluated by Altinakar [33] for his experiments with saline gravity
currents on an incline. S1 ranged from 0.48 to 1.11, γ from 1.10 to 1.86, S2 = β from 0.92
to 1.11. For both nonentraining gravity currents and free jets and plumes, the value of γ is
slightly less than one [34]. The two sets of flow scales, as well as the shape coefficients, were
also evaluated for field data on katabatic winds in a co-flow by Princevac et al. [23] (Fig. 2;
Table 1). A hopeful sign is that the range of S1 is again larger than that of γ , and that β is
in the range of values for open channel flows, from about 1.03 to 1.33. S2 again agrees well
with β even though co-flows are present in the upper layer in this case.

Both ET’s and mass-based scales are derived from integrals over the entire velocity and
density excess distribution in the lower layer, they are also called top-hat scales. Another
type of scales, which have often been used, is based on local properties of the buoyancy or
velocity distribution. Examples are the buoyancy half-width or the layer width determined
by flow visualization. In contrast to top-hat scales these scales are not directly related to
forces, unless the flows are self-preserving, and the shape of the distributions of velocity and
buoyancy known. A third type of flux-delimited width scales can be defined, which depend
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on both integral and local properties of the flow. These two types of scales are compared with
mass-based ones for a rather rapidly varying two-layer flow over an obstacle (Fig. 3; Table 2).
The different width scales agree reasonably well with each other. Depending on whether the
upper layer velocity is uniform or not, fully mass-based and intermediate flow scales again
have definite advantages over the local and flux delimited ones.

Fully mass-based and intermediate flow scales represent gravity forces acting on the flow,
and fluxes. They are thus a good measure for comparisons of experimental data at different
cross-sections of a flow, regardless whether the flow is self-preserving or not, whether the
ambient flow is uniform or not, and whether the water is deep or of limited depth. Similarly,
buoyancy and velocity distributions can conveniently be made nondimensional in terms of
fully mass-based or intermediate flow scales.
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