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Abstract Process-based forest landscape models are

valuable tools for testing basic ecological theory and

for projecting how forest landscapes may respond to

climate change and other environmental shifts. How-

ever, the ability of these models to accurately predict

environmentally-induced shifts in species distribu-

tions as well as changes in forest composition and

structure is often contingent on the phenomenological

representation of individual-level processes accurately

scaling-up to landscape-level community dynamics.

We use a spatially explicit landscape forest model

(LandClim) to examine how three alternative formu-

lations of individual tree growth (logistic, Gompertz,

and von Bertalanffy) influence model results. Interac-

tions between growth models and landscape charac-

teristics (landscape heterogeneity and disturbance

intensity) were tested to determine in what type of

landscape simulation results were most sensitive to

growth model structure. We found that simulation

results were robust to growth function formulation

when the results were assessed at a large spatial extent

(landscape) and when coarse response variables, such

as total forest biomass, were examined. However,

results diverged when more detailed response vari-

ables, such as species composition within elevation

bands, were considered. These differences were

particularly prevalent in regions that included envi-

ronmental transition zones where forest composition is

strongly driven by growth-dependent competition. We

found that neither landscape heterogeneity nor the

intensity of landscape disturbances accentuated sim-

ulation sensitivity to growth model formulation. Our

results indicate that at the landscape extent, simulation

results are robust, but the reliability of model results at

a finer resolution depends critically on accurate tree

growth functions.

Keywords Tree growth � Gap model �
Forest disturbances � Model uncertainty

Introduction

Forest landscape models attempt to accurately repre-

sent forest dynamics in a spatially explicit manner

by incorporating landscape level processes, such as

disturbances and dispersal, while still retaining suffi-

ciently detailed representations of smaller-grain pro-

cesses such as tree growth and competition (e.g.,

Scheller and Mladenoff 2004, 2007; He 2008). Thus,

these models must incorporate trade-offs regarding the
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type and amount of process detail included (Reynolds

et al. 2001). In addition, forest landscape models must

deal with the problem of accurately parameterizing

smaller grain processes in a way that is robust to

the natural variation that occurs within landscapes

(Guisan and Thuiller 2005). The accuracy of land-

scape simulations therefore are expected to depend on

the degree to which the model is suitable for the

environment, but also on how robust the model

framework is to uncertainty in model structure and

parameterization of smaller-grain processes.

The importance of accurately representing and

parameterizing small-grain processes, such as how

individual trees grow and respond to environmental

conditions, is likely to depend on the spatial extent at

which model output is evaluated (Xu et al. 2004), and

on the degree to which model dynamics are impacted

by intrinsic model processes rather than extrinsic

drivers such as landscape disturbances and landscape

structure (Druckenbrod et al. 2005). For example, in

environments where landscape disturbances are a

primary driver of forest dynamics, model accuracy

may be relatively insensitive to how late-stage

succession dynamics are modelled. Conversely, accu-

rately simulating forest development in landscapes

where disturbances are infrequent and of low intensity

may be highly sensitive to how intrinsic processes,

such as tree growth, are modelled and parameterized.

Thus, confidence in simulation results will depend on

knowing in what type of landscapes, and under what

environmental conditions the model predictions are

most robust, but little is known on this issue.

Growth formulations commonly used in forest

landscape models can be divided into three types:

polynomial equations fit to empirical data (Peng 2000;

Trasobares et al. 2004), sigmoidal phenomenological

growth models premised on ecophysiology but con-

taining few such processes explicitly (Zeide 1993;

Bugmann 2001), and detailed physiological growth

models which represent individual growth as the

outcome of linked physiological processes (Smith

et al. 2001). Phenomenological growth models, such

as the logistic, Gompertz, Chapman-Richards and von

Bertalanffy equations (Zeide 1993), have a biological,

albeit theoretical, basis, and therefore are expected to

be more suitable for simulating tree growth under

novel conditions than polynomial equations (Fekedu-

legn et al. 1999). In addition, the number of param-

eters required by phenomenological growth models is

comparatively low, a trait that is particularly beneficial

when parameterizing a large number of species.

While phenomenological growth models are com-

paratively simple and robust, challenges remain with

respect to: (1) selecting the form of the model that

works best across a range of conditions, and (2)

parameterizing the model such that accurate results are

produced at the resolution of interest (MacFarlane

et al. 2000; Colbert et al. 2004). A key constraint

limiting both model selection and parameterization is

the availability of empirical data (Alexandrov 2008).

If data are not equally available across the lifespan of

the tree species, parameter estimation and model

selection will be biased (Fekedulegn et al. 1999;

Falkowski et al. 2010), particularly if data from crucial

stages such as early juvenile growth are missing

(Rammig et al. 2007a). Similarly, in heterogeneous

landscapes, such as mountain forests, site-specific

conditions strongly influence tree growth (Li et al.

2003) as well as life-history strategy (e.g. a slow vs.

fast growth strategy; cf. Wunder et al. 2008; Bigler and

Veblen 2009), which can result in deviations from the

standard trajectory of phenomenological models. For

all these reasons, uncertainties in model structure and

parameter values are inherent in any landscape-level

forest model, but they have not received much

attention to date.

Here we test the sensitivity of a landscape-level

forest simulation to growth model uncertainty by

comparing alternative model formulations across a

range of parameter values. We compare three differ-

ent growth models (logistic, Gompertz and von

Bertalanffy; Zeide 1993) in landscapes that exhibit

different levels of heterogeneity and which are sub-

jected to different levels of disturbance. Our analysis

comprises four aspects:

First, while forest landscape models are designed to

incorporate landscape-level driving forces, the reso-

lution at which model output is analysed often depends

on the specific question. We therefore test how growth

model differences influence simulation outputs at

different spatial extents. Second, we test how growth

models that are parameterized for particular tree life-

history stages will influence simulation results. This

corresponds to situations where empirical data are

available for only a part of the trees’ full life-history.

Third, interactions between landscape characteristics

and tree growth models have been suggested to

influence the robustness of simulation results (Coates
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2002; Getzin et al. 2008). We predict that the results

from growth models parameterized to minimize

differences in early tree growth would be most similar

in heavily disturbed landscapes, while results from

models parameterized to minimize differences in

growth during the latter part of trees’ lives would be

more similar in relatively undisturbed landscapes.

Fourth, we compare the individual growth trajectories

predicted by the growth model variants to empirical

data on Norway spruce (Picea abies) growth so as to

evaluate the sensitivity of simulation results from

different growth models to the ability to distinguish

growth models using empirical tree growth data from

heterogeneous landscapes.

Methods

We used the model LandClim (Schumacher et al. 2004;

Schumacher et al. 2006), a spatially explicit, process-

based model that incorporates competition-driven

stand dynamics and landscape-level disturbances to

simulate forest dynamics at a landscape resolution. In

LandClim the tree and stand-level processes that

determine competition are modified versions of the

respective processes used in forest gap models (Liu

and Ashton 1995; Bugmann 1996; Bugmann 2001;

Scheller and Mladenoff 2007) that continue to be

extensively used. This modelling framework allowed

us to assess the importance of growth model formu-

lation at both the landscape and smaller spatial

resolutions, and to examine the influence of landscape

heterogeneity and disturbances (i.e. fire, wind-throw).

We provide a brief overview of the stand-level

formulations of the model; for further details see

Schumacher et al. (2004). LandClim simulates forest

growth in 25 m by 25 m cells using simplified versions

of tree recruitment, growth and competition processes

that are commonly included in gap models (Bugmann

2001). Forest growth is determined by climatic

variables, soil properties and topography, land use,

and large-scale disturbances. Individual cells are

linked by the spatially explicit processes of seed

dispersal and landscape disturbances. Succession

processes within each cell are simulated on a yearly

time step, while landscape-level processes are simu-

lated on a decadal time step. Forest dynamics within

each cell are simulated by following tree size cohorts,

where cohorts are characterized by the mean biomass

of an individual tree (Bi) and the number of trees in the

cohort.

Growth model formulation

Maximum individual tree growth is modelled as a

sigmoidal function (Fig. 1) that is defined by a species-

specific maximum growth rate (rs) and a species-

specific maximum biomass (Ks). The realized growth

rate of trees (ri(t)) is the maximum growth rate

constrained by three growth-limiting factors: light

availability, the sum of degree-days, and a drought

index (Schumacher et al. 2004). Similarly, the realized

maximum biomass of a tree (Ki(t)) is the maximum

biomass constrained by the size-limiting factors of sum

of degree days and drought index (for details see

Schumacher et al. 2004).

Growth model types

We compare three phenomenological growth models:

(1) logistic, (2) Gompertz, and (3) von Bertalanffy

(cf. Zeide 1993).

Logistic

dBi

dt
¼ ri tð Þ 1� Bi tð Þ

Ki tð Þ

� �
BiðtÞ ð1Þ

Fig. 1 a Growth model formulations; unconstrained growth

trajectories are shown for Picea abies. b von Bertalanffy growth

models parameterized to represent different periods of a tree’s

development
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Gompertz

dBi

dt
¼ ri tð Þ � ðlogðKiÞ � log½BiðtÞ�Þ � BiðtÞ ð2Þ

von Bertalanffy

dBi

dt
¼ 3 � ri tð Þ � Ki tð Þ1=3�BiðtÞ2=3 � BiðtÞ ð3Þ

The logistic growth function is used as the baseline

here because it is the simplest growth model and has

been used in all previous applications of LandClim

(e.g., Schumacher et al. 2006). We tested the impor-

tance of the formulation of the growth function by

contrasting the output of the Gompertz or von Berta-

lanffy model with the results obtained using the logistic

function. To focus on the importance of the parame-

terization of the growth rate, we fixed the maximum

biomass of a tree and fit the models using the growth

rate parameter (ri(t)). Independent fitting was per-

formed for each of the 30 central European species

included in the simulations.We parameterized the

Gompertz and von Bertalanffy models to approximate

the logistic model using five measures of similarity,

selected so as to examine where along the growth

curves the model was most sensitive to variation. We

started by fitting the model using two measures of

similarity that were designed to minimize the differ-

ence between the models across a tree’s whole life

span. The first measure minimized the squared differ-

ence in biomass predictions between the growth

models for trees growing optimally. While this makes

the formulations most similar across their whole range

it does not account for the fact that mortality results in

fewer large trees being present in a stand. We took this

into account in the second metric by weighting the

difference in biomass at a specific age by the tree’s

survival probability, such that differences at later

stages (to which few trees survive) influence the model

fit less than differences early in tree life (where many

trees are typically present).The other three measures of

similarity were aimed at making the growth formula-

tions most similar to the logistic model during three

periods of a tree’s development; the juvenile stage, up

until the tree has achieved 1/3 of its total maximum

biomass, the middle part when the tree is growing

fastest, i.e. between 1/3 and 2/3 of its maximum

biomass, and the later part, i.e. from 2/3 of the tree’s

maximum biomass upwards. Models fit to tree devel-

opment stage were not weighted by mortality.

Case study landscapes

We used two environments to compare the growth

models: a realistic environment that is spatially heter-

ogeneous, and an idealized environment designed to

minimize the impact of landscape heterogeneity on

forest dynamics. The real environment represented the

Dischma valley near Davos in southeastern Switzer-

land (46�470N and 9�530E; elevation range 1,500–2,290

m a.s.l). We chose to use the Dischma valley because it

is characteristic of European Alpine valleys, its forest

dynamics have previously been simulated using

LandClim (Schumacher and Bugmann 2006), and it

encapsulates natural variation in slope, aspect and soil

depth. The idealized environment was a 4 km by 4 km

area designed to approximate conditions in the Euro-

pean Alps, while at the same time minimizing land-

scape heterogeneity that can produce spatial variation

in forest structure and dynamics (Li et al. 2003; Li and

Yang 2004). Thus we assumed the area had an east

facing valley side (constant aspect of 90�), a constant

slope of 21� and constant soil conditions. In the

idealized environment we tested a broader elevation

range (700–2,290 m a.s.l.) so as to include the wider

range of tree species that occur at lower elevations.

Disturbances

We compared the performance of the three growth

models in the two environments under three distur-

bance regimes: no disturbance, intermediate distur-

bance and heavy disturbance. While avalanches are a

common natural disturbance in the Dischma valley

today, they occur in certain parts of the landscape only

(avalanche tracks), thus leaving most parts of the

forest area unaffected (cf. Schumacher and Bugmann

2006; Rammig et al. 2007b). By contrast, windthrow

and fire can affect any part of the landscape, the former

being important today, the latter likely becoming more

important in a changing climate (Schumacher et al.

2006). Therefore, we focus on windthow and fire. In

the ‘no disturbance’ scenario, both wind and fire were

excluded from the simulations. In the ‘intermediate

disturbance’ scenario wind and fire were set to

approximate their natural occurrence (Schumacher

et al. 2006), while in the ‘heavy disturbance’ scenario,

we increased the probabilities of fire initiation and

spread such that there was approximately a fivefold

increase in fire disturbances (Fig. 2).
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In all simulations the same monthly inputs of mean

temperature and precipitation were used and spatially

extrapolated across the case study landscapes. These

data were obtained from a climate station at the Davos

case study region (Davos-Platz climate station, Mete-

oSwiss, elevation 1,560 m a.s.l).

Simulation experiments

All simulations were initialized with an empty land-

scape in which all tree species had the same proba-

bility (10%) of contributing seedlings to each cell on

the landscape. The first 1,000 years of each simulation

was a spin-up period during which the simulation

reached a pseudo-equilibrium state; in most simula-

tions this occurred after c. 300 years. After the 1,000

year spin up we ran the simulations for another 2,000

years. The mean forest state (mean biomass of each

tree species and cohort) within 10 m elevation bands

was calculated for the last 500 years of the simulation.

Each landscape and treatment was independently

simulated 25 times.

For each treatment we calculated the elevation-

specific mean biomass for each species from each of

the 25 replicates. To facilitate comparisons between

the growth models we standardized our results by

examining the difference between the output from the

logistic model and the output from the two other

growth models. This allowed the species, location and

model-specific differences to be compressed into a

single metric. We focus on three differences: differ-

ence in total landscape biomass (tons of aboveground

biomass per ha averaged across the landscape),

elevation-specific differences in total biomass (the

sum of differences in biomass in 10 m elevation

bands), and species- and elevation-specific differences

in biomass. Comparisons were aggregated according

to whether the simulations were based on the simpli-

fied or real topography, and by disturbance intensity,

such that the differences reflect deviations due to

model structure and model parameterization only.

Analysis

We assessed the relative impact of landscape hetero-

geneity, disturbance intensity and growth model

formulations by evaluating the effect size (proportion

of the total variance) associated with each factor

(Tabachnick and Fidell 2007). First, we tested for

these effects using an ANOVA that included all

second order interactions. The Gompertz and von

Bertalanffy models were compared using only param-

eters from the weighted biomass fitting. To allow for

comparison between landscape types, this first anal-

ysis was restricted to data from the elevation band

present in both landscapes (1,530–2,300 m a.s.l.). The

logistic growth model run on the idealized landscape

with no disturbance was used as the baseline model

from which deviations were calculated. Following this

initial analysis we separated the two simulation

landscapes and analysed each using an ANOVA that

included disturbance intensity, growth model formu-

lation, and the five types of growth model parameter-

ization (see above). All second order interactions

between the main factors were included, and the

analysis was performed across the full elevation range

in each landscape type. For this analysis the baseline

model was the logistic growth model with no distur-

bance from the corresponding landscape simulation.

Testing growth models against empirical growth

data

Growth data were obtained from increment cores

taken from Picea abies trees on southwest-facing

slopes within the Dischma (17 trees) and the adjacent

Flüela valley (24 trees) (Bigler and Veblen 2009).

These trees were sampled between 1,720 and 2,000 m

a.s.l. where Picea abies is the dominant species. From

Fig. 2 Mean forest area disturbed (solid line) and biomass

burnt (dashed line) in intermediate and heavy disturbance

scenarios
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each tree two increment cores were taken at breast

height. Tree age and size was determined by measur-

ing tree rings at a resolution of 0.01 mm (Bigler and

Veblen 2009).

Growth of the 41 real trees was tested against the

simulated growth of comparable trees in the Dischma

valley. Tree growth data were extracted from each of

the eleven different growth model simulations that

were run for the Dischma valley. For each growth

model the age and biomass of all Picea abies

individuals that occurred between 1,720 and 2,000 m

a.s.l. were extracted from each of the 25 simulation

replicates. The biomass of simulate Picea abies was

converted into diameter at breast height (DBH) using

allometric relationships that are embedded in LandC-

lim (Schumacher et al. 2004). We compared the fit of

each of the eleven growth models using a permutation

procedure that compared the size at age of the real

trees with the size at age of the simulated trees. For

each model, predicted tree size was drawn randomly

(with replacement) from simulated trees that were

within ±10 m of the real tree’s elevation. The model

that fit the empirical data best was recorded. This

randomization procedure was repeated 100,000 times.

Using this procedure, we calculated the percent of

times that each growth model provided the best fit. We

summarized the best model fit by taking the median fit

for each model across the 41 trees.

Results

Disturbances

At the higher elevations the inclusion of disturbances

slightly decreased total landscape biomass (0.13%

reduction by intermediate disturbances and 0.5%

reduction by heavy disturbances), and accounted for

ca. 10% of the observed variation (Table 1, Fig. 3).

Disturbance intensity had a large impact on elevation-

specific forest biomass (ca. 50% of variation

explained, Table 1), and a very large impact on

species-specific biomass differences (79%). The large

impact of disturbances on the latter was primarily

driven by disturbances facilitating larch (Larix

decidua) between 1,700 and 2,200 m a.s.l. (Fig. 3).

At lower elevations, forest disturbances altered the

relative abundance of species but did not promote the

inclusion of species that would otherwise be absent

(Fig. 3). As a result, when a broader elevation range

was analysed the relative effect size of disturbance

intensity was reduced (Table 2).

Landscape heterogeneity

Forest species composition did not substantially differ

between the idealized and the heterogeneous, ‘realis-

tic’ landscape. None of the three metrics we used (total

biomass, elevation-specific difference, species- and

elevation-specific difference) were strongly influ-

enced by the inclusion of natural landscape heteroge-

neity (Table 1, Fig. 3). Landscape-level biomass was

on average 0.53% lower in the heterogeneous land-

scape (range -0.25% to -0.76%). The difference in

elevation-specific forest biomass was 0.23% greater in

the heterogeneous landscape, and the species-specific

elevation differences was 5.41% greater, but in both

cases the amount of variation explained by landscape

differences was less than 9%. There was also no strong

interaction effect between landscape type and distur-

bance, or between landscape type and growth model,

for any of the metrics (Table 1).

Because the effect size of landscape heterogeneity

was small (Table 1), for the remainder of the analysis

we focus on results from the idealized landscape as it

included a broader elevation range.

Table 1 Effect size (% variance explained) of landscape heterogeneity, disturbance intensity and growth model formulation on

forest model output when aggregated at three different resolutions

Response variable Landscape

heterogeneity (LH)

Disturbance

intensity (DI)

Growth

model (GM)

LH*

DI

LH*

GM

DI*

GM

Residual

Total landscape biomass 1.9 10.4 76.4 0.2 0.0 9.3 1.8

Elevation-specific differences

in biomass

0.2 49.5 39.3 0.4 1.3 7.1 2.3

Species- and elevation-specific

differences in biomass

8.9 79.0 8.8 1.5 0.5 1.1 0.8
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Growth model formulation

At intermediate disturbance levels the logistic model

simulated a landscape average of 229 t/ha of forest

biomass in the idealized landscape (Fig. 4a). Under

identical conditions the Gompertz growth model, fit

using the weighted biomass method, simulated 237 t/ha

(?3%, Fig. 4b), and the von Bertalanffy model 243 t/ha

(?6%, Fig. 4c). The largest increase in biomass occurred

at intermediate elevations (*1,000–500 m a.s.l.) where

the forest was dominated by a mixture of deciduous

species (Fagus sylvatica, Quercus sp.) and Picea abies,

above which Picea abies became dominant.

Species- and elevation-specific differences in bio-

mass varied considerably between growth mod-

els (Fig. 4), being most pronounced at the lowest

(700–1,200 m) and highest elevations (1,900–2,050

m) (Fig. 4). These regions represent elevational tran-

sition zones that are characterized by shifts of domi-

nant tree species.

At the landscape resolution the difference between

growth model formulations accounted for little of the

observed variance (Table 2, Fig. 5). The majority of

the variance in total landscape biomass (85%) was due

to differences in how the models were parameterized

(Table 2). The large effect size was driven by the low

Fig. 3 Simulate forest

composition using the

logistic growth model in the

heterogeneous (Dischma

valley, a and b) and

homogeneous (idealized,

c and d) landscapes, under

different disturbance

scenarios

Table 2 Effect size (% variance explained) of disturbance intensity, growth model formulation, and model parameterization on

forest model output when aggregated at three different resolutions

Response variable Disturbance

intensity (DI)

Growth

model (GM)

Growth model

parameterization (MP)

DI*

GM

DI*

MP

GM*

MP

Residual

Total landscape biomass 0.9 2.6 84.8 0.1 0.0 11.5 0.1

Elevation-specific differences

in biomass

0.5 49.7 42.1 0.0 2.8 4.1 0.9

Species- and elevation-specific

differences in biomass

1.8 39.0 42.4 0.4 2.7 12.6 1.1
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average total biomass that was simulated by the

Gompertz and von Bertalanffy models when they were

fit to the early part of the growth curve (Fig. 5).

In contrast to landscape biomass, the effect size

associated with model formulation and parameteriza-

tion was high for both the elevation-specific biomass

difference, and elevation- and species-specific bio-

mass difference (Table 2, Fig. 5). The effect size

associated with model fit was primarily due to ‘‘late’’

fit models varying considerably with respect to

elevation-specific differences, and ‘‘early’’ fit models

differing with respect to elevation- and species-

specific differences (Fig. 5).

Growth model parameterization and disturbance

interactions

The effect size for the interaction between growth

model parameterization and disturbance intensity was

small for each of the three metrics (\2%, Table 2).

The ‘‘early’’ fit model produced the biggest differ-

ences compared to the logistic model with regard to

both the elevation-specific, and the elevation- and

species-specific difference (Fig. 6a, d, g). Even with

heavy disturbance the ‘‘middle’’ and ‘‘late’’ fit models

were closer to the logistic model than the ‘‘early’’ fit

models.

The Gompertz and von Bertalanffy models fit to the

middle and late logistic growth period simulated larger

elevation-specific forest biomass due to the higher

growth rates of young trees (Fig. 1, age\100 years).

Conversely, models fit to the early sections simulated

lower elevation-specific biomass (Fig. 6) due to the

trees not approaching their maximum size until later in

their lives (Fig. 1).

Species-specific differences were greatest at eleva-

tions where there was a transition between species.

The models fit to the middle and late sections of the

growth curve exhibited the largest discrepancies at

low elevations (\1,300 m a.s.l.) where there were

elevation-defined transitions between deciduous spe-

cies, and at high elevations (*2,000 m a.s.l.) where

there was a transition of species within the pine genus

(Fig. 6).

Testing growth models against empirical growth

data

None of the eleven growth models tested provided a

comparatively superior fit to the empirical data across

Fig. 4 Forest composition

as simulated using the

logistic (a), Gompertz (b),

and von Bertalanffy

(c) growth models under

intermediate disturbance

conditions. Deviation of the

simulation output from

Gompertz (d, difference

between b and a) and von

Bertalanffy (e, difference

between c and a) models

compared to the logistic

model

704 Landscape Ecol (2012) 27:697–711

123



the full Picea abies growth trajectory (Fig. 7).

Assessing the growth models between age zero and

250, the logistic model was the best model in 9.4% of

the permutations. The range of von Bertalanffy models

(biomass fit, weighted biomass fit, and early, middle

and late fit) were best in 8.2, 8.3, 11.5, 11.3, 7.7 and

8.9% of the permutations respectively, while equiva-

lent Gompertz models were best in 8.9, 9.1, 6.2, 11.4

and 7.8% of the permutations.

While there were only small differences between

the suitability of the models when assessed across

all tree ages, the models did differ considerably in

where along the trees’ growth trajectory they fit

best. The logistic model was comparatively poor at

simulating the size of young (\150 years) and old

trees ([250 years), but was one of the better models

at simulating the size of intermediate aged trees

(150–250 years; Fig. 7a). The Gompertz models, fit

using the biomass and weighted biomass method

(Fig. 7b), were poor at simulating young trees (\80

years), but were reasonably good at simulating tree

size of individuals [80 years old. Conversely, the

von Bertalanffy models, fit using the biomass and

weighted biomass method (Fig. 7c), were good at

simulating tree size up to 80 years but were less

suitable for older trees.

Gompertz and von Bertalanffy models that were fit

to correspond to the early logistic growth were poor at

Fig. 5 Impact of growth

model structure and

parameterization on

simulation output. Median

(±range) total forest

biomass of Gompertz and

von Bertalanffy growth

models (dashed lines show

the range of forest biomass

simulated using the logistic

growth model). Median

(±range) deviation in

elevation-specific biomass,

and species- and elevation-

specific biomass of the

Gompertz and von

Bertalanffy growth models

compared to the logistic

model. Note that the range

of values for some of the

models is sufficiently

narrow that the range is

masked by the median line

marker
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accurately simulating the size of young trees, but were

very good at simulating the size of old trees ([270

years, Fig. 7d). The reason for the good fit with older

trees is that in order to get the von Bertalanffy and

Gompertz models to approximate logistic growth of

young trees the age at which the trees achieve their

maximum size under optimal growth conditions

increased to [400 years (Fig. 1b). Gompertz and

von Bertalanffy models that were fit to the interme-

diate logistic growth performed reasonably well across

all ages.

Discussion

Spatial resolution of forest model sensitivity

Our results indicate that forest landscape models are

robust when results are aggregated at the landscape

level. Uncertainty in growth model structure, and to a

lesser degree parameter uncertainty, had very little

impact on estimated forest biomass at the landscape

level. The spatial resolution at which landscape

models are evaluated often depends on the specific

Fig. 6 Deviation of von Bertalanffy simulation output from the logistic model at different disturbance intensities and when the von

Bertalanffy model is parameterized so as to approximate logistic growth during the early, middle and late stages of a tree’s development
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question that they are being used to address. For

example, carbon dynamics (Stoy et al. 2008; Fahey

et al. 2010), the impact of forest cover on hydrology

(Wilby and Schimel 1999; Zierl et al. 2007), or

biodiversity estimates that focus on species presence

and relative abundance (Hartmann et al. 2010), are

Fig. 7 Fit of simulation model growth projections to empirical

Picea abies growth data. Grey points show the size at age for the

41 measured trees. Black points in the lower figures show the

size at age from comparable simulations. Median simulated tree

size for each age class is shown as a black open diamond. The

upper figures in each plot show the percent of the permutation

test in which the given growth model provided the best fit with

the empirical data. The null expectation (if all models are equal)

is that each would be best in 9.09% of the permutation (dotted
grey line in upper figure)
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commonly assessed at the landscape or regional level.

In these cases, simulation results aggregated at the

landscape level should be resilient to uncertainty

regarding the simulation of fine grain processes such

as tree growth, thus confirming earlier results regard-

ing the sensitivity to initialization data (Xu et al. 2004,

2005).

Conversely, when the output of landscape models is

evaluated at a finer resolution, the accuracy of the

growth model becomes increasingly important. When

assessing forest state on a species-specific basis we

found that growth model variation had a strong impact

on simulation results. Both the structure of the growth

model, and to a greater extent how it was parameter-

ized, influenced the simulated species composition

when the results were aggregated by elevation. A

principle benefit of using a landscape model is that the

spatial distribution of forest properties can be explic-

itly analysed. This finer grained detail is often needed

to assess forest ecosystem goods and services, such as

protection from gravitational hazards and biodiversity

(Fahrig 2003; Lindner et al. 2010), evaluate the impact

of alternative forest management strategies (He et al.

2002; Radeloff et al. 2006), and assess the impact of

forest disturbances (Schmidt et al. 2008). Our results

suggest that when forest landscape models are used to

assess such finer grained metrics, great care needs to

be taken to make sure that the form and parameter-

ization of the growth model are appropriate.

We found the largest impact of growth model

differences occurred in areas where there was an

elevation dependent transition between dominant

species (Fig. 4). In these transition regions the abun-

dance of a species depends critically on its relative

competitive ability, which in turn depends on how

environmental constraints such as light and moisture

impact growth rate (Urban and Shugart 1992; Schum-

acher et al. 2004). In our simulations the response of

each species to environmental growth reduction

factors was held constant. The simulated shifts in

species abundance were therefore solely driven by

changes in the species’ relative competitive ability that

resulted from alterations to the growth equation.

We suggest that growth model formulation can

have a large impact on the relative competitive ability

of species in forest landscape models. This implies

that model applications aiming to examine the influ-

ence of shifts in environmental conditions on spe-

cies interactions and species distribution, must be

cognisant of the need for the growth models to be

accurate (Fekedulegn et al. 1999; He et al. 2011).

Similarly, accurately formulating and parameterizing

other ecological process that influence the relative

competitive ability of species, such as seed production

and dispersal, is expected to be equally important.

Species transition zones in our simulations were

driven by elevation gradients that entailed shifts in

temperature and precipitation. While using forest

landscape models to explore forest dynamics along

spatial environmental gradients is common (Bugmann

2001; Scheller and Mladenoff 2007), forest models are

also frequently used to evaluate shifts in environmen-

tal state that occur through time (He et al. 2008; Taylor

et al. 2009). The impacts of climate change (Bugmann

2003; Lindner et al. 2010), changes in forest manage-

ment plans (Boyland et al. 2005), shifts in the

frequency of landscape disturbance (Klenner et al.

2000), human-induced landscape change (Bolte et al.

2009), and dispersal of pest or invasive species

(Wermelinger 2004; Netherer and Schopf 2010) are

all mechanisms that will alter the environmental

conditions that competing tree species experience

through time. When landscape models are used to

examine the effects of these processes on forests, the

focus is often on areas where competition between

species is known a priori to be an important factor

influencing forest dynamics, such as the limits of

species distributions and ecotones (Pastor and Post

1988; He et al. 2005). Our work clearly indicates that

in these regions the accuracy of landscape models will

be highly sensitive to the formulation and parameter-

ization of the growth model.

Landscape structure and disturbances

Landscape heterogeneity had little influence on our

simulation results. One reason for this is that even in

our finer resolution assessments we still spatially

aggregated results such that the impact of landscape

variation at the cell level was averaged out. Landscape

characteristics, such as soil depth and aspect, interact

with species’ growth-rates to determine the realized

competition between species. Therefore, landscape

characteristics have the potential to systematically

magnify problems with poorly formulated or param-

eterized growth models, similar to the environmental

transition zones described above. However, the impact

on simulation output is expected to only be important
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when the results are evaluated at a resolution that is at,

or below, the grain of landscape heterogeneity.

While disturbances have the potential to substan-

tially alter landscape properties and influence forest

dynamics (Schumacher and Bugmann 2006; Reyes

and Kneeshaw 2008), we found that the sensitivity of

model output to growth model formulation was not

substantially increased or decreased by disturbances,

at least not for the range of disturbance intensity tested

here. This suggests that uncertainty associated with the

growth model formulation will not be magnified when

forest landscape models are used to evaluate scenarios

where forest disturbance regimes are predicted to

change in the future.

We predicted that with increased disturbance,

simulation output would be most sensitive to accu-

rately estimating the growth of young trees. Therefore,

we expected that growth model formulations param-

eterized to reduce growth differences during the first

third of the trees’ development would result in the

smallest differences in heavily disturbed landscapes.

However, parameterizing the models to minimize

early growth differences resulted in the greatest

deviation (Fig. 6). This deviation was primarily driven

by increases of the relative competitive ability of slow-

growing species, such as silver fir (Abies alba). While

past studies have noted the problems associated with

deriving parameters for dominant tree species (Pacala

et al. 1996; Fekedulegn et al. 1999; MacFarlane et al.

2000; Alexandrov 2008), our results are novel in that

they highlight that growth model formulation and

parameterization must be accurate not only for a single

species, but ideally must have the same level of

accuracy across all species included in the simulations.

This is most likely to be a considerable problem

when non-commercial species, for which there is

less empirical growth information, are included in

simulations.

Across all three levels of disturbance, simulations

were most accurate, with output deviating least from

the known base state, when the alternative growth

models were parameterized to minimize the difference

across the full life history of each species. Our results

suggest that developing a growth model that accu-

rately captures all stages of an individual’s growth is

important irrespective of whether forest dynamics are

subject to weak disturbances only and thus assumed to

be dominated by late successional processes, or

heavily disturbed and assumed to be driven by the

growth rate of early successional species. Our results

imply that once a suitable growth model is defined, the

accuracy of the simulation results will be maintained

irrespective of whether or not there are extrinsically

driven shifts in forest disturbance regimes, such as

may occur due to shifts in land use policy or change in

forest management (McEwan et al. 2011).

Growth model variation and individual tree growth

We found that growth model formulation and param-

eterization had a large impact on simulation results at a

sub-landscape resolution. Conversely, when we com-

pared the growth of simulated and real trees we found

that drastically different growth models differed little

with respect to their ability to reproduce the growth

trajectory of real trees. None of the growth model

forms that we tested were substantially better at

replicating individual tree growth over the full dura-

tion of a tree’s life (Fig. 7).

While our analysis is an inverse of the normal

growth model fitting procedure, it highlights the

difficulties associated with determining the best

growth model form and parameters (Fekedulegn

et al. 1999; Colbert et al. 2004). Our results demon-

strate that small changes to the model formulation or

parameterization can substantially alter the results of

forest landscape models. Thus, modifications to the

growth models used in landscape simulations should

be evaluated at both the resolution of tree growth and

at larger spatial scales such as forest composition.

Conclusions

Our results demonstrate that, first, growth model

uncertainty is most important when model results are

assessed at a sub-landscape resolution, particularly

when the simulation region includes environmental

transition zones (both spatial and temporal) where

each species’ relative competitive ability critically

depends on its realized growth rate. Conversely, when

the outputs of forest landscape models are aggregated

at the landscape level, the results are relatively

resilient to uncertainty in small-grain processes.

Second, we show that growth model form and

parameterization should accurately represent all

stages of a tree’s life history. When growth models

were parameterized to focus on specific life-history
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stages we found that simulation results were less

accurate than those that trade off accurate parameter-

ization of specific life stages in order to better describe

the tree’s whole lifespan.

Third, although we predicted that growth models

biased towards accurately representing early tree grow

would be more suitable in heavily disturbed landscape,

we found that even under these conditions growth

models fit equally across a trees lifespan were better.

Fourth, our results indicate that while the output of

forest landscape models are sensitive to how small-

grain processes are modelled and parameterized, the

power to distinguish the best model structure and

parameterization using empirical data may be com-

paratively low.
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