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Abstract. A class of models is introduced describing the evolution of
population species whose carrying capacities are functionals of these
populations. The functional dependence of the carrying capacities re-
flects the fact that the correlations between populations can be realized
not merely through direct interactions, as in the usual predator-prey
Lotka-Volterra model, but also through the influence of species on the
carrying capacities of each other. This includes the self-influence of each
kind of species on its own carrying capacity with delays. Several ex-
amples of such evolution equations with functional carrying capacities
are analyzed. The emphasis is given on the conditions under which the
solutions to the equations display extreme events, such as finite-time
death and finite-time singularity. Any destructive action of populations,
whether on their own carrying capacity or on the carrying capacities
of co-existing species, can lead to the instability of the whole popula-
tion that is revealed in the form of the appearance of extreme events,
finite-time extinctions or booms followed by crashes.

1 Brief survey of population models

Evolution equations, describing population dynamics, are widely employed in
various branches of biology, ecology, and sociology. The main forms of such equa-
tions are given by the variants of the predator-prey Lotka-Volterra models. In
this paper, we introduce a novel class of models whose principal feature, making
them different from other models, is the functional dependence of the population
carrying capacities on the population species. This general class of models allows
for different particular realizations characterizing specific correlations between
coexisting species. The functional dependence of the carrying capacities describes
the mutual influence of species on the carrying capacities of each other, including the
self-influence of each kind of species on its own capacity. Such a dependence is, both
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mathematically and biologically, principally different from the direct interactions
typical of the predator-prey models. Before formulating the general approach,
we give in this section a brief survey of the main known models of population
dynamics. This will allow us to stress the basic difference of our approach from other
models used for describing the population dynamics in biology, ecology, and sociology.

(i) Predator-prey Lotka-Volterra model
The first model, describing interacting species, one of which is a predator with

population N1, and another is a prey with population N2, has been the Lotka-
Volterra [1,2] model

dN1

dt
= −γ1N1 +A12N2N1, dN2

dt
= γ2N2 −A21N1N2, (1)

where all coefficients are positive numbers. It is easy to show that the solutions to
these equations are bound oscillating functions of time.

(ii)Predator-prey Kolmogorov model
The Lotka-Volterra model is a particular case of the predator-prey Kolmogorov

model [3,4] that has the general form

dN1

dt
= f1(N1, N2)N1,

dN2

dt
= f2(N1, N2)N2, (2)

under the conditions

∂f1

∂N2
> 0,

∂f2

∂N1
< 0.

This model is too general and requires specifications for describing concrete cases.

(iii) Generalized predator-prey Lotka-Volterra model
Generalizing the Lotka-Volterra model (1) to multiple species yields the equations

dNi

dt
=

⎛
⎝γi +

∑
j

AijNj

⎞
⎠Ni, (3)

where all coefficients are real numbers [5]. The signs of the parameters can be
different. When all γi’s are positive, while all Aij ’s are negative, one gets the
competitive Lotka-Volterra equations whose behavior has been analyzed in detail in
Refs. [6–9].

(iv) Replicator equations
These equations have the form

dNi

dt
=
(
fi − f

)
Ni, (4)

where fi is the species fitnesses and

f ≡
∑
i

fiNi

is the average fitness characterizing the whole society [5]. The species populations
are usually assumed to be defined on a simplex, being normalized to a constant
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representing the total fixed population
∑
i

Ni = N = const.

The n-dimensional replicator model is equivalent to the n − 1-dimensional Lotka-
Volterra model (3), to which it can be reduced by a change of variables [5,10].

(v) Jacob-Monod equations
The equations describe not the coexisting species but rather a single type of

species of population N1, like bacteria, which are fed on the nutrient of amount N2.
The nutrient plays the role of the prey that is getting depleted being consumed by the
feeders and, at the same time, being supplied into the system from outside according
to the supply function f(N2) = αN2/(β +N2). The equations read as

dN1

dt
= f(N2)N1

dN2

dt
= −γf(N2)N1, (5)

with all parameters being positive [11]. As time increases, t → ∞, the nutrient
becomes depleted, N2 → 0, and the bacteria population reaches the stationary value
N1 = N1(0) +N2(0)/γ.
The Holling equation of second kind [12] takes into account that predators, in order
to consume prey, need to search for it, chase, kill, eat, and digest. This is why
predators attack not all preys but a limited number of them, which saturates to a
constant when the prey density increases. Mathematically, the Holling equation is
analogous to the Jacob-Monod model.

(vi) Verhulst logistic equation
The well known logistic equation

dN

dt
= γN

(
1− N
K

)
, (6)

where all parameters are positive, was suggested by Verhulst [13]. The constant K is
the carrying capacity. The solution to this equation is the sigmoid function

N(t) =
N0Ke

γt

K +N0 (eγt − 1) ,

in which N0 ≡ N(0).

(vii) Hutchinson delayed logistic equation
If one interprets the term inside the brackets in Eq. (6) as an effective reproductive

rate, then, as Hutchinson argued [14], it could be delayed in time, which results in
the equation

dN(t)

dt
= γN(t)

[
1− N(t− τ)

K

]
, (7)

in which K is a fixed carrying capacity. The solution to this equation gives additional
oscillations superimposed on the logistic curve.

(viii) Generalized delayed logistic equations
There are many variants generalizing the delayed logistic Eq. (7), which can be

found in Refs. [15–17]. For example, the multiple-delayed equation

dN(t)

dt
= γN(t)

⎡
⎣1−

∑
j

N(t− τj)
Kj

⎤
⎦ , (8)
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where the carrying capacities Kj are positive constants. All such equations are
usually applied to single-species systems of population N . The multiple carrying
capacities Kj in Eq. (8) correspond to different processes of the same single species.
The logistic equations of the above type, whether with delays or without them,
do not describe the possible coexistence of several species. When such equations
are generalized to the case of several species, one comes back to the generalized
Lotka-Volterra predator-prey model (3).

(ix) Peschel-Mende hyperlogistic equation
In order to take into account the accelerated growth of population, occurring,

for instance, for the human world population, Peschel and Mende [18] extended the
standard logistic equation by introducing two additional positive powers m and n,
getting the equation

dN

dt
= γNm

(
1− N
K

)n
. (9)

The solution to this equation could be reasonably well fitted to the world population
dynamics. The form of the solution is a slightly modified sigmoid curve, with the
population never surmounting the carrying capacity K. For m = 1 and n = 1, the
Verhulst logistic Eq. (6) is recovered.

(x) Hyperlogistic time-delay equations
The straightforward extension of the Peschel-Mende hyperlogistic equation is the

hyperlogistic time-delay equation

dN(t)

dt
= γNm(t)

[
1− N(t− τ)

K

]n
, (10)

which can also be treated as a generalization of the Hutchinson delayed logistic
Eq. (7). This time-delay equation is capable of simulating a population that can
essentially surmount the carrying capacity K for a limited period of time, then
dropping below it subsequently [19].

(xi) Singular Malthus equations
All equations enumerated above produce bounded solutions. In some cases, the

population dynamics seems to follow a law ending with divergent solutions. The well
known Malthus equation [20] gives the exponential population growth. But some-
times, the population dynamics develops a super-exponential behavior, diverging at
a finite time tc according to a power law of the time to the singular time tc. The
simplest way of modeling such a behavior is by the equation

dN

dt
= γNm, (11)

with the power m ≥ 1. This is a direct generalization of the Malthus equation,
capturing the positive feedback of the population on the growth rate: the larger the
population, the higher the growth rate. For m = 1, one recovers the usual Malthus
equation with the exponential solution. When m > 1, the solution to the Eq. (11) is
of power law

N(t) =
C

(tc − t)1/ε ,

where

C ≡ 1

(εγ)1/ε
ε ≡ m− 1,



Discussion and Debate: From Black Swans to Dragon-Kings 317

tc ≡ 1

Nε0εγ
N0 ≡ N(0).

The solution diverges hyperbolically at the critical time tc. Such strongly singular
solutions were first discussed by von Foerster et al. [21] and applied to rationalize the
super-exponential growth of the human world population [22–25], population dynam-
ics and financial markets [26–28], material failures and earthquakes [29,30], climate
and environmental changes [31–34], and dynamics of other systems [35–37]. In ecol-
ogy, the correlation between population density and the per capita growth rate is
known as the Allee effect [38]. The feedback between the population density, associ-
ated with the Allee effect, can lead to the increase of the effective growth rate, in the
case of sufficiently large populations, or to the rate decrease and species extinction
for small-density populations [38–41].
In addition to the differential equations describing population dynamics, there ex-

ist as well difference equations [42,43] and integro-differential equations [44,45]. There
are more complicated equations characterizing several factors, such as the population
density, mass or weight dependence of individual members of different species, the
dynamics of available food, and so on [44,46,47]. Some study the influence on popula-
tion dynamics of available information [48]. It is also possible to investigate the spatial
dependence of populations [49]. More details on these and other types of equations
can be found in the review articles [50–53].
We do not consider here the complications caused by the desire to take into ac-

count many various features of the studied populations. Our aim here is different: we
concentrate our attention on the influence of the functional dependence of carrying
capacities on population densities. Since this idea is rather new, it is necessary, first
of all, to study the related effects for simpler equations, without overloading them by
secondary specifications. Once the main influence of the functional carrying capacities
is understood, it will be possible to complicate the equations by taking into account
more and more mechanisms and specificities. For the same reason, the parameters
characterizing the interactive species are treated as fixed. In reality, the characteris-
tics of each given biological species vary in general with the age of the individuals
composing the group. However, it is always admissible to divide the populations into
different age ranges characterized by similar birth and death rates. Another possibil-
ity is to consider each species being characterized by effective averaged parameters,
which corresponds to what is called the mean-field approximation [36,37,54].
In the dynamics of any population, one can distinguish several time scales. The

shortest time scale is the interaction time tint, describing interactions between indi-
viduals. This time is much shorter than the observation time tobs, during which the
population is investigated. In order that the studied species could be characterized by
fixed parameters, such as birth-death rates, the observation time should be shorter
than the variation time tvar during which individuals experience noticeable changes
related, e.g., to their age. In this way, we keep in mind the situation,
when

tint � tobs � tvar.
Then all population parameters, except the carrying capacity, can be kept fixed. Our
main point is that the carrying capacity can vary due to mutual interactions of in-
dividuals, hence it varies during the interaction time and this variation needs to be
taken into account.
The standard situation in treating the population evolution by means of the equa-

tions of the above types is that the carrying capacities are kept as fixed constant para-
meters. In the following Sect. 2, we propose an approach where the carrying capacities
are functionals of the species populations. This makes it possible to drastically extend
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the applicability of the population-evolution equations to various situations describ-
ing the regimes that where unavailable with other models. The basic idea of the
approach has been formulated in our previous papers [39,40], where some particular
models were considered. Now, in Sect. 2, we propose a general framework for gener-
ating a large class of such models. In Sect. 3 and 4, we consider particular variants of
the suggested equations, corresponding to those of Refs. [39,40]. The difference from
the previous works is three-fold. First, we simplify the consideration by a convenient
choice of the scaling for the terms describing the carrying capacities, which allows us
to make a more straightforward classification of different dynamical regimes. Second,
we emphasize the conditions under which solutions arise that are characterized by ex-
treme events, such as the finite-time death and finite-time singularity of the species.
Third, we suggest a new interpretation for an extreme event such as the finite-time
singularity. The novel interpretation is based on the leverage effect and considers
the singularity as a manifestation of an evolutional boom followed by a crash. Our
considerations are phrased for applications to the development, growth and possible
collapse of biological as well as human societies, as they both follow similar dynamics
with analogous underlying mechanisms [37].

2 Population evolution with functional carrying capacity

The idea that the carrying capacity may be not a constant but a function of population
fractions has repeatedly appeared in the literature in the form of general discussions.
In Sect. 2.1, we give a historical overview of these ideas that provide a firm justification
for their mathematical representation in Sect. 2.2 and in the following sections.

2.1 General meaning of functional carrying capacity

The carrying capacity of a biological species in an environment is generally under-
stood as the maximum population size of the species that the environment can sustain
indefinitely, given the food, habitat, water and other necessities available in the en-
vironment. In population biology, carrying capacity is defined as the environment
maximal load [55], which is different from the concept of population equilibrium. His-
torically, carrying capacity has been treated as a given fixed value [56,57]. But then,
it has been understood that the carrying capacity of an environment may vary for
different amounts of species and may change over time due to a variety of factors,
including food availability, water supply, environmental conditions, living space, and
population activity.
Thus, the carrying capacity of a human society is influenced by the intensity

of human activity, which depends on the level of technological development. When
prehistoric humans first discovered that crude tools and weapons allowed greater ef-
fectiveness in gathering wild foods and hunting animals, they effectively increased the
carrying capacity of the environment for their species. The subsequent development
and improvement of agricultural systems has had a similar effect, as have discov-
eries in medicine and industrial technology. Clearly, the cultural and technological
evolution of human socio-technological systems has allowed enormous increases to be
achieved in carrying capacity for our species. This increased effectiveness of environ-
mental exploitation has allowed a tremendous multiplication of the human population
to occur [58,59].
Technology is an important factor in the dynamics of carrying capacity. For ex-

ample, the Neolithic revolution increased the carrying capacity of the world relative
to humans through the invention of agriculture. Currently, the use of fossil fuels has
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artificially increased the carrying capacity of the world by the use of stored sunlight,
albeit with increasingly negative externalities, such as global warming, ocean acid-
ification and the indirect reduction of diversity. Other technological advances that
have increased the carrying capacity of the world relative to humans are: polders,
fertilizer, composting, greenhouses, land reclamation, and fish farming. Agricultural
capability on Earth expanded in the last quarter of the 20th century. Whether this
is sustainable is debatable. There are signs that human-induced soil erosion as well
as destabilization of sensitive ecosystems may lead, at the same time, to a reduction
of agricultural capability over the coming decades, such as in Africa where the popu-
lation is expected to double before 2050. The change in the carrying capacity of the
habitat and environment supporting a human society can be described by the con-
sumption impact [60], which is proportional to the population size, with a coefficient
characterizing the technology level.
One way to estimate human influence on the carrying capacity of the ecosystem

is to use the so-called ecological footprint accounting method that provides empirical,
non-speculative assessments of human activities with regard to the preservation or
destruction of the Earth carrying capacity. It compares regeneration rates (biocapac-
ity) against human demand (ecological footprint) in the same year. The results show
that, in recent years, humanity demand has exceeded the planet biocapacity by more
than 20 percent [61]. The present situation of rapid population growth in some re-
gions, massive overexploitation of resources and steady accumulation of pollution and
wastes diminishes the Earth carrying capacity. To a first approximation, with all the
caveats associated with the heterogeneity of technological developments in different
parts of the World, one can consider an average footprint per person, which leads to
an estimation of the decrease of the Earth carrying capacity as roughly proportional
to the size of the total population. The question is how and by what means this
change of the Earth carrying capacity for humanity will pay back [62].
Mutual coexistence and symbiosis of several species also strongly influences the

carrying capacities of the species, with the changes being, to a first approximation,
proportional to the species numbers. For example, humans have increased the carry-
ing capacity of the environment for a few other species, including those with which we
live in a mutually beneficial symbiosis. Those companion species include more than
about 20 billion domestic animals such as cows, horses, pigs, sheep, goats, dogs, cats,
and chickens, as well as certain plants such as wheat, rice, barley, maize, tomato,
and cabbage. Clearly, humans and their selected companions have benefited greatly
through active management of mutual carrying capacities [63].
Interactions between two or more biological species are known to essentially influ-

ence the carrying capacity of each other, by either increasing it, when species derive
a mutual benefit, or decreasing it, when their interactions are antagonistic [64–66].
The same applies to economic and financial interactions between firms, which also
form a kind of symbiosis, where the interacting firms develop the carrying capacity
of each other also roughly proportionally to their sizes [67].
Many authors (e.g., Del Monte-Luna et al. [68]) stress that, due to the influence

on the carrying capacity resulting from the existing populations, its original defini-
tion implying a constant value has lost its meaning. As a consequence of the feedback
loops of the population sizes, the notion of carrying capacities has taken a broader
sense. Carrying capacity should be understood as a non-equilibrium relationship or
function that depends on the population size and on the symbiotic relations between
the interacting populations. It characterizes the growth or development of available
resources at all hierarchical levels of biological integration, beginning with the pop-
ulations, and shaped by processes and interdependent relationships between finite
resources and the consumers of those resources [68].
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The above discussion shows that, in general, the carrying capacity is not a fixed
quantity, but it should be considered a function of population sizes. In the case of a
single species, the carrying capacity can be created or destroyed by the species activity.
The simplest assumption is to take the species impact as proportional to the species
population size. When species coexist, their carrying capacities are influenced by the
species mutual interactions, either facilitating the capacity development or damaging
it. Being functions of the species populations, such nonequilibrium carrying capacities
can be naturally represented as polynomials over the population numbers [69].

2.2 Mathematical formulation of basic equations

Let the considered society consist of several species enumerated by an index i =
1, 2, . . .. The number of members in a society is denoted as Ni = Ni(t),
The main idea of our approach is that the carrying capacity of each species is not

a fixed constant, but it is a functional

Ki = Ki({Ni}) (12)

of the set {Ni} of the species populations. This assumption takes into account that
the species may interact not merely directly but also by influencing the carrying
capacities of each other as well as their own carrying capacity.
A general form of the evolution equations, that takes into account both direct

interactions and mutual influence on the carrying capacities, can be written as

dNi

dt
=

⎛
⎝γi +

∑
ij

CijNj

⎞
⎠ Ni
Ki
, (13)

where Ki is the functional carrying capacity (12). If the latter were a fixed parameter,
one would return to the generalized Lotka-Volterra predator-prey model (3). But in
our approach, the carrying capacities are nontrivial functionals of populations.
In a particular case, when the species do not display strong direct interactions,

but their mutual correlations are mainly through influencing the carrying capacities
of each other, then Eq. (13) reduces to the evolution equation

dNi

dt
= γiNi − CiN

2
i

Ki
. (14)

Here the effective rate
γi ≡ γbirthi − γdeathi (15)

is the difference between the birth and death rates of the corresponding species. When
birth prevails over death, then γi > 0, while if death is prevailing over birth, then
γi < 0. In economic applications, birth translates into gain and death into loss. The
parameter

Ci ≡ Ccompi − Ccoopi (16)

characterizes the difference between the competition and cooperation of the members
inside a given type of species. When competition is stronger than cooperation, then
Ci > 0, while if cooperation is stronger, then Ci < 0.
It is important to stress that Eq. (13) is principally different, both mathematically

as well as by its meaning, from the predator-prey model (3). Similarly, Eq. (14) is
principally different from the logistic Eq. (6) or its variants (7) and (8). As a result,
the equations with functional carrying capacities can display novel types of solutions
allowing for the consideration of effects that are absent in other evolution equations.
In the following sections, we consider concrete examples of evolution equations with
functional carrying capacities.
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3 Action of society on its own carrying capacity

3.1 Justification for equation form

In the previously studied variants of the logistic equation, the carrying capacity is
treated as a given quantity. However, it is often the case that the society activity
does influence its own carrying capacity that can be either enhanced by producing
new goods, materials, knowledge, and so on, or can be destroyed by unreasonable
exploitation of resources, e.g., by deforestation, polluting water, and spoiling climate.
Therefore, the carrying capacity, taking into account such feedback effects, must be
a functional K = K(N) of the population N .
Thus, the population evolution is characterized by the equation

dN

dt
= γN − CN

2

K(N)
, (17)

with the carrying capacity depending on N itself.
Moreover, the creation or destruction of the carrying capacity by the society mem-

bers does not occur immediately, but is delayed since any creation or destruction re-
quires time for its realization. Hence, the variable N , entering the carrying capacity,
should be delayed in time by a lag τ , so that K(N) = K(N(t− τ)).
Different types of carrying capacity can be introduced that depend on a delayed

population variable. In the present paper, we consider a simple linear form

K(N) = A+BN(t− τ). (18)

Here the first term A > 0 is a natural carrying capacity, provided by Nature. The
second term is the created or destroyed capacity, depending on whether the society
activity is constructive or destructive. The parameter B is the production factor, if
it is positive, and it is a destruction factor, when it is negative. Form (18) of the
carrying capacity agrees with the assumption of additivity, when its different parts
sum to produce the total carrying capacity.

3.2 Reduced quantities and choice of scaling

As the population numbers can be very large, it is therefore more convenient to deal
with the reduced quantities

x ≡ N(t)
Neff

(19)

measured in units of some typical population size Neff . It is also convenient to in-
troduce dimensionless parameters for the natural carrying capacity

a ≡ A

Neff

∣∣∣ γ
C

∣∣∣ (20)

and for the production-destruction factor

b ≡ B
∣∣∣ γ
C

∣∣∣ . (21)

The total dimensionless carrying capacity

y ≡ K(N)
Neff

∣∣∣ γ
C

∣∣∣ (22)
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takes the form
y = a+ bx(t− τ). (23)

Up to now, the effective value Neff has been arbitrary. By a special choice of
the scaling, it is possible to simplify the equations and to make a more transparent
classification of arising dynamical regimes. It is convenient to choose

Neff ≡ A
∣∣∣ γ
C

∣∣∣ . (24)

Then parameters (20) and (21) reduce to

a = 1, b =
B

A
Neff . (25)

The dimensionless carrying capacity (23) becomes

y = 1 + bx(t− τ). (26)

Let us also define the signs of the birth-death rate and of the competition-
cooperation parameter as

σ1 ≡ sgnγ = γ|γ| , σ2 ≡ sgnC = C|C| . (27)

Depending on these signs, the following situations can occur.

σ1 = +1 , σ2 = +1 (gain + competition),
σ1 = +1 , σ2 = −1 (gain + cooperation),
σ1 = −1 , σ2 = +1 (loss + competition),
σ1 = −1 , σ2 = −1 (loss + cooperation).

(28)

Using the above notations and measuring time t > 0 in units of 1/γ, we reduce
Eq. (17) to

dx

dt
= σ1x− σ2 x

2

y
, (29)

with the carrying capacity (26). This equation is to be complemented by the initial
conditions

x(t) = x0 (t ≤ 0),

y(t) = y0 = 1 + bx0 (t ≤ 0). (30)

The solution for x, by its meaning, is to be positive. The production-destruction factor
b can take any real values, being positive for the constructive society activity, while
negative, for its destructive activity.

3.3 Evolutionary stable states

One of the most important problems in studying any evolutional model is the
determination of evolutionary stable states. These are given by the stable station-
ary solutions to the considered equation. In order to analyze the stability of the
solutions to the differential delay equations, we employ the Lyapunov stability theory
following the work by Pontryagin [70] and the books [11,15,16].
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The stationary states of Eq. (29) are defined as the solutions to the fixed-point
equation

σ1x
∗ − σ2(x

∗)2

1 + bx∗
= 0. (31)

This yields two fixed points

x∗1 = 0, x∗2 =
σ1

σ2 − b . (32)

Resorting to the Lyapunov stability analysis, we need to consider a small deviation

δxj(t) = xj(t)− x∗j (j = 1, 2) (33)

from the related fixed point. This deviation satisfies the equation

d

dt
δxj(t) = Cjδxj(t) +Djδxj(t− τ), (34)

in which

Cj ≡ σ1 −
2σ2x

∗
j

1 + bx∗j
, Dj ≡ bσ2

x∗j
1 + bx∗j

.

For the corresponding fixed points, these parameters are

C1 = σ1, D1 = 0,

C2 = σ1
b(σ1 − 1)− σ2
b(σ1 − 1) + σ2 , D2 =

bσ2

[b(σ1 − 1) + σ2]2 .

Looking for the deviation in the exponential form

δxj(t) ∝ eλjt,
we obtain the equation

λj = Cj +Dje
−λjτ (35)

for the characteristic exponents λj . By using the notation

Wj ≡ (λj − Cj)τ, zj ≡ τDje−Cjτ ,
equation (35) becomes

Wje
Wj = zj ,

which is nothing but the equation defining the Lambert function Wj . Therefore, the
characteristic-exponent Eq. (35) acquires the form

λj = Cj +
1

τ
Wj(Dje

−Cjτ ). (36)

The stationary solution is stable when the real part of the characteristic exponent is
negative, 	λj < 0.
To proceed further, we shall analyze separately the cases listed in Eq. (28).
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4 Society with gain and competition

Under the prevailing gain (birth) and competition, when

σ1 = 1, σ2 = 1, (37)

the evolution equation (29) reads as

dx(t)

dt
= x(t)− x2(t)

1 + bx(t− τ) . (38)

At the initial stage, when 0 ≤ t < τ , we have the exact solution

x(t) =
x0(1 + bx0)e

t

1 + x0(b− 1 + et) (0 ≤ t < τ).

This can be used for constructing by iteration an approximate solution at the second
stage, when τ < t < 2τ . Then we could find an approximate solution at the third step,
and so on. However, the accuracy of such iterative constructions quickly deteriorates
and is admissible only over a couple of initial steps. More accurate solutions are to
be found by numerically solving the evolution Eq. (38).
The stability analysis of the previous section shows that the fixed point x∗1 = 0 is

unstable for all b and τ . The second fixed point

x∗2 =
1

1− b ≡ x
∗ (39)

is stable when either
−1 < b < 1, τ ≥ 0, (40)

or when
b < −1 τ ≤ τ0, (41)

where

τ0 ≡ 1√
b2 − 1arccos

(
1

b

)
. (42)

The stability region is shown in Fig. 1.
Varying the system parameters and initial conditions, we can meet the following

dynamic regimes.

4.1 Punctuated unlimited growth

For the parameters
b ≥ 1, τ ≥ 0 (x0 > 0), (43)

the population grows by steps, as shown in Fig. 2. The growth continues to infinite
times. This is a typical example of the punctuated evolution caused by the fact that
the production factor b is positive and sufficiently large. Hence, the carrying capacity
is produced by the population, with a delay τ .

4.2 Punctuated growth to stationary state

The punctuated growth is not always unbounded, but it can be bounded by the fixed
point, provided the initial condition x0 is smaller than x

∗ and the parameters are

0 ≤ b < 1, τ ≥ 0 (x0 < x
∗) . (44)

This regime is presented in Fig. 3.
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Fig. 1. Stability region for the gain-competition case defined in (37).
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Fig. 2. Temporal behavior of solutions to Eq. (38) for the initial condition x0 = 1, lag τ = 30,
and parameters b = 2 (solid line) and b = 3 (dashed-dotted line). Solutions x(t)→∞, when
t→∞.

4.3 Punctuated decay to stationary state

When the parameters are the same as in Eq. (44), but the initial condition x0 is larger
than the fixed point x∗,

x0 > x
∗ =

1

1− b , (45)

then there appears the punctuated decay, as illustrated in Fig. 4.
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Fig. 3. Dynamics of solutions to Eq. (38) for the lag τ = 20, symbiotic parameter b = 0.5,
and the initial conditions x0 = 0.1, (solid line) and x0 = 1 (dashed-dotted line). Solutions
x(t) → x∗, monotonically growing by steps, when t → ∞. The stationary point is x∗ =
1/(1− b) = 2.

4.4 Punctuated alternation to stationary state

If the carrying capacity is destroyed by the population, then there can occur a punctu-
ated alternation to a stationary state, when the parameters and the initial condition
are

−1 ≤ b < 0, τ ≥ 0
(
x0 <

1

|b|
)
. (46)

This is depicted in Fig. 5.

4.5 Oscillatory approach to stationary state

For sufficiently large destruction factor, there arises a regime of an oscillatory ap-
proach to a stationary state, as is presented in Fig. 6. This happens under the para-
meters and the initial condition being defined by the inequalities

b < −1, τ < τ0

(
x0 <

1

|b|
)
, (47)

where the lag τ0 is defined in Eq. (42).

4.6 Sustained oscillations

There exists a lag τ1 = τ1(b), such that, when

b < −1, τ0 ≤ τ ≤ τ1
(
x0 <

1

|b|
)
, (48)

then oscillations do not decay, but continue without attenuation, as in Fig. 7. The
lag τ1(b) can be found only numerically.
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Fig. 4. Evolution of solutions to Eq. (38) for the lag τ = 20, parameter b = 0.5, and
initial conditions x0 = 3, (solid line) and x0 = 5 (dashed-dotted line). Solutions x(t)→ x∗,
monotonically diminishing by steps, when t→∞. The stationary point is x∗ = 1/(1−b) = 2,
the same as in Fig. 3.

4.7 Punctuated alternation to finite-time death

If the time lag surpasses the value τ1 = τ1(b), the alternating solution exists only for
a limited time. At the death time td, given by the equation

1 + bx(td − τ) = 0, (49)

all population becomes extinct, as in Fig. 8. This happens for the parameters

b < −1, τ > τ1

(
x0 <

1

|b|
)
. (50)

4.8 Growth to finite-time singularity

In the case, where the activity of the population is destructive, time lags are large,
and the initial condition is also large, so that

b < 0, τ > τc

(
x0 >

1

|b|
)
, (51)

the population dynamics becomes dramatic, diverging at a finite time, called the
critical time. The divergence is hyperbolic, according to the law

x(t) ∝ 1

tc − t (t→ tc − 0), (52)

as is demonstrated in Fig. 9. The values of the critical lag τc and the critical divergence
time tc can be found numerically.



328 The European Physical Journal Special Topics

0 10 20 30 40 50 60 70 80 90
0

0.25

0.5

0.75

1

1.25

1.5

t

x(t)

b = −1/3, x
0
 = 1.5

b = − 2/3, x
0
 = 0.1

Fig. 5. Temporal behavior of solutions to Eq. (38) for the lag τ = 20, parameters b = −1/3,
x0 = 1.5 (solid line), and b = −2/3, x0 = 0.1 (dashed-dotted line). Solutions x(t) → x∗,
oscillating by steps, when t → ∞. The stationary points are x∗ = 0.75 and x∗ = 0.6,
respectively.

4.9 Unlimited exponential growth

For shorter time lags, when

b < 0, τ ≤ τc
(
x0 >

1

|b|
)
, (53)

the divergence moves to infinity, the solution being a simple growing exponential, as
shown in Fig. 10.
In this system with gain and competition, there may happen two extreme events,

the finite-time death at a death time td and the finite-time singularity at a critical
time tc. These two extreme events occur under the condition of a destructive activity
of the population. The finite-time death is caused by the destruction of all resources.
The finite time singularity implies that close to this critical point, the dynamic regime
has to be changed, according to the accepted interpretation of such singularities
[27,39,40]. Such a change of the dynamic regime is analogous to the occurrence of
critical phenomena in statistical systems [36,37,54,71]. An interpretation of the finite-
time singularity, based on the leverage effect, will be given below.

5 Society with gain and cooperation

When gain prevails over loss, and cooperation over competition, that is, when

σ1 = 1, σ2 = −1, (54)

the evolution equation takes the form

dx(t)

dt
= x(t) +

x2(t)

1 + bx(t− τ) . (55)
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Fig. 6. Temporal behavior of the solution to Eq. (38) for the parameter b = −2 < −1, lag
τ = 1.18 < τ0, where τ0 = 1.2092 is defined by (42), with the initial condition x0 = 0.25 <
1/|x0|. Solution x(t)→ x∗ = 1/3, oscillating, when t→∞.

There are no stable stationary solutions in that case. Depending on the system
parameters and initial conditions, there can arise the following dynamic regimes.

5.1 Growth to finite-time singularity

When the population activity is productive, but the time lag is long, so that

b > 0, τ > τc (x0 > 0), (56)

or if the activity is destructive, when

b < 0, τ > 0

(
x0 <

1

|b|
)
, (57)

then the solution diverges at a finite critical time tc. The behavior is the same as in
Fig. 9.

5.2 Unlimited exponential growth

Productive activity, under cooperation and not too long time lags, such that

b > 0, 0 < τ ≤ τc (x0 > 0), (58)

result in an exponential growth, as in Fig. 10.

5.3 Punctuated unlimited growth

For the parameters

b < −1, τ ≥ 0
(
x0 >

1

|b| − 1
)
, (59)

the solution displays unlimited punctuated growth, as in Fig. 2.
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Fig. 7. Dynamics of the solution to Eq. (38) for the parameter b = −2 < −1, lag τ0 < τ =
1.5 < τ1, where τ0 = 1.2092 is defined by (42), τ1 = τ1(b) ≈ 1.65, with the initial condition
x0 = 0.25 < 1/|b|. Solution x(t) oscillates without convergence, when t→∞.

5.4 Punctuated decay to finite-time death

Destructive activity, under one of the conditions, when either

−1 < b < 0, τ ≥ 0
(
x0 >

1

1− |b|
)
, (60)

or when

b < −1, τ ≥ 0
(
x0 <

1

|b| − 1
)
, (61)

leads to population extinction, at the death time given by Eq. (49). But the dynamics
for this case, as is shown in Fig. 11, is different from that of Fig. 8. In the present
case, there are no alternations, but the decay to zero is monotonic, exhibiting a finite
number of quasi-plateaus.
Under the conditions of gain and cooperation, there are two types of extreme

events, the finite-time singularity at a critical time tc and the finite-time death at a
death time td. The finite-time death is caused by the destructive population activity.
And the finite-time singularity means that, close to the singularity point, the system
experiences a change of dynamic regime.

6 Society with loss and competition

Under prevailing loss and competition, when

σ1 = −1, σ2 = 1, (62)

the evolution equation becomes

dx(t)

dt
= −x(t)− x2(t)

1 + bx(t− τ) . (63)
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Fig. 8. Dynamics of the solution to Eq. (38) for the parameter b = −2 < −1, lag τ = 1.7 >
τ1, where τ1 ≈ 1.65 is defined numerically, with the initial condition x0 = 0.25 < 1/|b|.
Solution x(t) exists only till the moment t = td ≈ 19.975, defined by (49).
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Fig. 9. Behavior of the solution to Eq. (38) in logarithmic scale for the parameter b =
−2 < −1, lag τ = 1.7 > τ1, where τ1 ≈ 1.65 is defined numerically, and the initial condition
x0 = 1 > 1/|b|. Solution x(t) diverges, x(t)→∞, when t→ tc ≈ 0.69315.

There are two stable fixed points. One is the trivial point

x∗1 = 0, (64)

which is stable for all parameters

−∞ < b <∞, τ ≥ 0. (65)
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Fig. 10. Behavior of the solution, shown in logarithmic scale, to Eq. (38) for the parameter
b = −2 < −1, lag τ = 0.415 < τc, where τc ≈ 0.416 is defined numerically, with the initial
condition x0 = 1 > 1/|b|. Solution x(t) exponentially grows, when t→∞.
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Fig. 11. Evolution of the solution to Eq. (55) for the parameter b = −1.5 < −1, lag τ = 10,
with the initial condition x0 = 1.5 < 1/(|b| − 1). Solution x(t) monotonically decays to
finite-time death at td ≈ 31.884, defined by (49).

Another stationary point

x∗2 = −
1

1 + b
≡ x∗ (66)

is stable for the parameters

b < −1, τ < τ0, (67)
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Fig. 12. Stability region for the loss-competition case definedin (62).

where

τ0 ≡ 1√
b2 − 1 arccos

(
1

|b|
)
. (68)

Thus, there is the bistability region shown in Fig. 12. Solutions tend to one of the
two stationary states, when the initial conditions are in the basin of attraction of the
corresponding fixed point. The following regimes can arise.

6.1 Monotonic decay to zero

In a society with prevailing loss and competition, the decay to zero, as in Fig. 13,
seems to be a natural type of behavior. This happens when either

b > 0, τ ≥ 0 (x0 > 0), (69)

or when

b > 0, τ ≥ 0
(
x0 <

1

|b|
)
. (70)

6.2 Oscillatory convergence to stationary state

When the parameters are such that

b < −1, 0 < τ < τ0

(
x0 >

1

|b| − 1
)
, (71)

the population fraction x oscillates in time, converging to the stationary state (66),
as is shown in Fig. 14. Oscillations are caused by the presence of the time delay.



334 The European Physical Journal Special Topics

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

x(t)

b = − 0.5

b = 8

Fig. 13. Temporal behavior of the solution to Eq. (63) for the lag τ = 10, initial condition
x0 = 1, with the parameters b = −0.5 (solid line) and b = 8 (dashed-dotted line). The initial
condition x0 < 1/|b| for b < 0. Solutions x(t) monotonically converge to their stationary
state x∗ = 0.

6.3 Everlasting nondecaying oscillations

For the parameters

b < −1, τ0 ≤ τ < τ1
(
x0 >

1

|b| − 1
)
, (72)

the solution oscillates without decay, similarly to the behavior in Fig. 7. The time lag
τ0 is given by Eq. (68) and τ1 is defined numerically.

6.4 Punctuated growth to finite-time singularity

A rather interesting behavior of the population dynamics happens for the parameters

b < −1, τ1 ≤ τ < τ2
(
x0 >

1

|b| − 1
)
, (73)

Then the solution experiences several punctuations, after which it diverges, as is
illustrated in Fig. 15, at the critical time defined by the equation

1 + bx(tc − τ) = 0. (74)

When the final rise is preceded by a fall, this behavior is reminiscent of the Parrondo
effect [72],

6.5 Up-down convergence to stationary state

A highly non-monotonic behavior exists for the parameters

b < −1, 0 ≤ τ < τc
(
1

|b| < x0 <
1

|b| − 1
)
, (75)
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Fig. 14. Solutions x(t) to Eq. (63) as functions of time for the parameters τ = 0.4 (solid
line) and τ = 0.5 (dashed-dotted line), where τ < τ0 = 0.505 951, with τ0 defined by (68).
Other parameters are: x0 = 1, and b = −2.5. The solutions x(t) converge by oscillating
towards their stationary point x∗2 = −1/(1 + b) = 2/3 as t→∞.

where the time lag τc can be found only numerically. In this case, the solution, first,
bursts out upwards, after which it decays to the stationary value x∗, as in Fig. 16.

6.6 Growth to finite-time singularity

Under the parameters

b < −1, τ > τc

(
1

|b| < x0 <
1

|b| − 1
)
, (76)

the solution diverges at a finite critical time, without any punctuation, in the same
way as in Fig. 9.

6.7 Unlimited exponential growth

In the region of the parameters

−1 < b < 0, 0 < τ ≤ τc
(
x0 >

1

|b|
)
, (77)

the solution grows exponentially, as in Fig. 10.
For a society with prevailing loss and competition, there are two extreme events,

both characterized by a finite-time singularity at a critical time tc. These regimes
occur under a strong destructive activity of the population and a rather long time
lag. The divergence can be understood as a critical point where the society dynamics
qualitatively changes.
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Fig. 15. Behavior of the solution x(t) in logarithmic scale to Eq. (63) as a function of
time for the parameters b = −2.5, τ = 0.6272, and the initial history x0 = 1. The solution
x(t)→∞ as t→ tc = 15.1498, where tc is defined by (74).
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Fig. 16. Temporal behavior of solutions x(t) to Eq. (63) as functions of time for the pa-
rameters b = −2.5 and τ = 0.25 (solid line); τ = 0.23 (dashed-dotted line); and the initial
history x0 = 1. The solution x(t)→ x∗ = 2/3, when t→∞.

7 Society with loss and cooperation

When loss and cooperation prevail, so that

σ = −1, σ2 = −1, (78)
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the population evolution equation is

dx(t)

dt
= −x(t) + x2(t)

1 + bx(t− τ) . (79)

There exists the sole evolutionary stable state

x∗ = 0 (80)

that is stable for all parameters

−∞ < b <∞, τ ≥ 0. (81)

The following dynamic regimes are possible.

7.1 Monotonic decay to zero

For the initial conditions in the attraction basin of the stable fixed point, the solutions
decay to zero with time, as in Fig. 13. This happens when either

b < 0, τ ≥ 0
(
x0 <

1

1− b
)
, (82)

or when

b > 1, τ ≥ 0
(
x0 >

1

b− 1
)
. (83)

7.2 Growth to finite-time singularity

If the initial conditions are outside of the attraction basin of the fixed point (80), they
can diverge at a finite critical time, similarly to the behavior in Fig. 9. This happens
when either

b ≤ 0, τ > 0

(
x0 <

1

|b|
)
, (84)

or when

0 < b < 1, τ > τc

(
x0 >

1

1− b
)
. (85)

7.3 Unlimited exponential growth

For the parameters

0 < b < 1, τ < τc

(
x0 >

1

1− b
)
, (86)

the solution exhibits exponential growth, as in Fig. 10
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Fig. 17. Behavior of solutions x(t) to Eq. (79) as functions of time for b = −2.5, lag
τ = 1.5, history x0 = 1 (solid line), and lag τ = 0.5, history x0 = 0.5 (dashed-dotted line).
At the moment t = td, defined as 1 + bx(td − τ) = 0, solutions monotonically decay to zero,
x(td) = 0, ẋ(t)|t=td = −∞. The death time for the population, represented by the solid line,
is td = 2.141 58, and the death time for the population shown by the dashed-dotted line, is
td = 0.58004.

7.4 Monotonic decay to finite-time death

Finally, for the parameters

b < 0, 0 ≤ τ < τd
(
x0 >

1

|b|
)
, (87)

the population becomes extinct at a finite death time, as in Fig. 17. The death time
is defined by an equation having the same form as Eq. (49). However the decay to
death now is monotonic, which distinguishes it from the punctuated behavior before
death, shown in Fig. 8 and Fig. 11.

The society with prevailing loss and cooperation can exhibit the finite-time sin-
gularity as well as the finite-time death. These two types of extreme events happen
under the destructive activity of population.

Summarizing, all extreme events, except one, occur when the population destroys
its carrying capacity. The sole exception is the case of a society with gain and co-
operation, when there can arise a finite-time singularity under b > 0, i.e., when the
activity of the population is productive. This latter type of finite-time singularity
is analogous to that studied in Ref. [27]. Its appearance means that, near the crit-
ical time, the society becomes unstable and requires to change its parameters, for
instance replacing cooperation by competition. It seems to be rather clear that, when
the population grows too much, the competition of individuals must come into play,
becoming prevailing over their cooperation. The finite-time singularities, occurring
under the destructive society activity, imply the existence of some critical events,
whose detailed interpretation will be given in Sect. 11.
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8 Mutual influence of symbiotic species on their carrying capacities

8.1 Classification of symbiosis types

When the considered society is structured with several species, it is necessary to
characterize their interactions. The standard way of doing this is by assuming the
equations of the predator-prey type (3), with direct interactions of species that eat
each other. Such equations, however, cannot describe indirect interactions, when the
species do not kill each other, but influence the carrying capacities of each other.
Therefore, the predator-prey equations are suitable for describing the predator-prey
relations, but are not suitable for characterizing symbiotic relations [40].
Examples of symbiosis are ubiquitous in biology and ecology [73–76]. It is also

widespread in human societies. For example, one can treat as symbiotic the interrela-
tions between firms and banks, between population and government, between culture
and language, between economics and arts, and between basic science and applied
research.
Considering purely symbiotic relations, we need Eq. (14), with the carrying capac-

ities being functionals of the species populations. The natural form of such carrying
capacities for symbiotic species is

Ki = Ai +BiSi({Ni}). (88)

Here Ai > 0 is the natural carrying capacity, provided by nature, for an i-th species.
The coefficient Bi characterizes the strength of influence of other species on the car-
rying capacity of the i-th species. When Bi is positive, it can be called the production
factor, while, if it is negative, it is the destruction factor. The function S({Ni}) is a
symbiotic function specifying the mutual relations between symbiotic species. Since
the sign has already been attributed to the factor Bi, the symbiotic function can be
treated as non-negative.
Depending on the kinds of symbiotic relations, that is, on the signs of the factors

Bi, there can occur different variants of symbiosis. To illustrate this, let us analyze
the case of two symbiotic species for which there can exist the following types of
symbiosis.

(i) Mutualism, when both species are useful for each other, developing their mutual
carrying capacities:

B1 > 0, B2 > 0 (mutualism). (89)

(ii) Parasitism, when one of the species is harmful for another, or both species are
harmful for each other, destroying the carrying capacities, which happens under
one of the pairs of inequalities below:

B1 > 0, B2 < 0.
B1 < 0, B2 > 0, (parasitism).
B1 < 0, B2 < 0

(90)

(iii) Commensalism, when one of the species is useful for another, while the latter is
indifferent to the existence of the first species, which corresponds to the validity
of one of the pairs of equations:

B1 > 0, B2 = 0,
B1 = 0, B2 > 0 (commensalism).

(91)
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8.2 Normalized species fractions

We continue analyzing the symbiotic coexistence of two kinds of species. As always,
it is more convenient to work with reduced quantities. So, we introduce the reduced
fractions

x ≡ N1

Neff
, z ≡ N2

Zeff
, (92)

whose normalization values Neff and Zeff will be chosen later. We define the dimen-
sionless carrying capacities

y1 ≡ γ1K1

C1Neff
, y2 ≡ γ1K2

C2Zeff
(93)

and the relative birth rate
α ≡ γ2

γ1
. (94)

With these notations, the symbiotic Eqs. (14), in the case of two types of species,
reduce to

dx

dt
= x− x

2

y1
,

dz

dt
= αz − z

2

y2
, (95)

where time is measured in units of 1/γ1. By their definition, the solutions x and y
are non-negative. The equations are complemented by the initial conditions

x(0) = x0, z(0) = z0. (96)

For the following analysis, it is necessary to make concrete the explicit forms of the
carrying capacities (88).

9 Symbiosis with mutual interactions

9.1 Derivation of normalized equations

The action of the species on the carrying capacities of each other can be different,
depending on whether, influencing the carrying capacities, the species interact or not.
If the species, in the process of influencing their carrying capacities, interact with each
other, then the carrying capacities (88) can be represented in the form

K1 = A1 +B1N1N2, K2 = A2 +B2N2N1. (97)

Generally, the populations N1 and N2 in these carrying capacities could depend on
the shifted time, when one would have

Ki = Ai +BiNi(t− τi)Nj(t− τj),
where i �= j. However, we need, first, to understand the influence of symbiosis without
the time lag. Therefore, we consider below the interactions without time delay.
Introducing the dimensionless natural carrying capacities

a1 ≡ γ1A1

C1Neff
, a2 ≡ γ1A2

C2Zeff
(98)

and dimensionless symbiotic factors

b ≡ γ1B1Zeff
C1

, g ≡ γ1B2Neff
C2

(99)
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translates Eqs. (97) into the dimensionless expressions

y1 = a1 + bxz, y2 = a2 + gxz. (100)

Since the scaling values Neff and Zeff are arbitrary, it is reasonable to choose them
so as to simplify the equations. For this purpose, we set

Neff ≡ γ1A1
C1
, Zeff ≡ γ1A2

C2
. (101)

Then the natural carrying capacities (98) become

a1 = a2 = 1. (102)

And the total carrying capacities (100) read as

y1 = 1 + bxz, y2 = 1 + gxz. (103)

As usual, we measure time in units of 1/γ1. The most interesting case in symbiosis
is when the species influence each other throughout their lifetimes, and when these
lifetimes are of comparable durations. If this were not the case, i.e., with very different
lifetimes, the symbiotic relations could not be supported for a duration longer than the
shortest lifespan, making symbiosis inefficient for the longer-lived species. Therefore,
we assume that the symbiotic species have comparable growth rates, because the
inverse of the growth rate sets the time scale of lifetime, and the later is often found
proportional to the growth period, at least for mammals [77]. We thus set α = 1 and
obtain the equations

dx

dt
= x− x2

1 + bxz
,

dz

dt
= z − z2

1 + gxz
. (104)

We can note that these equations are symmetric with respect to the simultaneous
interchange between x with z and between b with g. This symmetry will result in the
corresponding symmetry of the following solutions.

9.2 Evolutionary stable states

Again we use the Lyapunov stability analysis [11,16,70]. Eqs. (104) possess the non-
zero stationary state

x∗ =
1

2g

[
1− b+ g −

√
(1 + b− g)2 − 4b

]
,

z∗ =
1

2b

[
1 + b− g −

√
(1 + b− g)2 − 4b

]
. (105)

It is stable when either
b < 0, −∞ < g < +∞, (106)

or when
0 ≤ b < 1, g ≤ gc, (107)

or when
b ≥ 1, g ≤ 0, (108)
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Fig. 18. Region of stability (shaded) in the parameter plane b−g for the stationary solutions
in the case of symbiosis with mutual interactions.

where the critical value gc is

gc ≡
(
1−
√
b
)2
≤ 1. (109)

The stability region is depicted in Fig. 18. The basin of attraction of this stationary
state, depending on the signs of the symbiotic factors, is defined by the following
equations:

x0z0 <
1

|b| (b < 0, g > 0) ,

x0z0 <
1

|g| (b > 0, g < 0) , (110)

x0z0 < min

{
1

|b| ,
1

|g|
}

(b < 0, g < 0).

The solutions to the symbiotic Eqs. (104) should be compared to those of the uncou-
pled equations

dx

dt
= x− x2, dz

dt
= z − z2 (b = g = 0), (111)

corresponding to the case of no symbiosis, when the stationary states are x∗ = z∗ = 1.
Solving numerically the system of Eqs. (104) for different symbiotic factors and

initial conditions yields the following possible dynamic regimes.

9.3 Convergence to stationary states

For the system parameters in the region of stability and for the initial conditions
in the basin of attraction of the non-zero fixed point (105), both species develop
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Fig. 19. Comparison of the symbiotic solutions x(t) (solid line) and z(t) (dashed-dotted
line), for the symbiosis with mutual interactions (104), with the solutions x(t) = z(t) (dashed
line) of the decoupled Eqs. (111) for the same initial conditions x0 = z0 = 0.1 < 1, with
different symbiotic parameters b and g: (a) b = 0.25, g = 0.1 < gc = 0.25, the stationary
points of the symbiotic equations being x∗ = 1.411, z∗ = 1.164; (b) b = 2, g = −0.5, the
fixed points of the symbiotic equations being x∗ = 3.562, z∗ = 0.360; (c) b = −1, g = 2,
the symbiotic fixed points being x∗ = 0.293, z∗ = 2.414; (d) b = −1, g = −2, the symbiotic
fixed points being x∗ = 0.707, z∗ = 0.414.

and converge to the stationary state. This is illustrated in Fig. 19 for different types
of symbiosis, where, for comparison, the solutions for the case of no symbiosis are
also presented. The four possible cases are illustrated in the four panels of Fig. 19,
depending on the relative positions of x(t) and z(t) compared with the solution of
the uncoupled Eqs. (111).

9.4 Unlimited exponential growth

When stationary solutions do not exist, so that either

0 < b < 1, g > gc, (112)

or when
b > 1, g > 0, (113)

or when they exist, but the initial conditions are taken outside of the attraction basin,
then the populations of both species grow exponentially with time.
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Fig. 20. Behavior of the solutions in logarithmic scale to Eqs. (104) in the case of finite-time
death and singularity, x(t) (solid line) and z(t) (dashed-dotted line), for the parasitic relations
with the symbiotic coefficients b = −1, g = −2, under the initial conditions x0 = 1.8,
z0 = 0.5. For these parameters, the critical time is tc = 0.87.

9.5 Finite-time death and singularity

In the case of mutual parasitism, there can happen an extreme solution when one of
the species becomes extinct at a finite critical time, while the other species displays a
finite-time singularity, as is shown in Fig. 20. This happens when the initial conditions
are outside of the attraction basin so that either

1

|b| < x0z0 <
1

|g| (b < g < 0), (114)

or if
1

|g| < x0z0 <
1

|b| (g < b < 0). (115)

The critical time is defined by one of the corresponding equations:

x(tc)z(tc) =
1

|b| (b < g < 0),

(116)

x(tc)z(tc) =
1

|g| (g < b < 0).

The appearance of such an extreme solution is caused by the mutual parasitism of
the species, destroying the carrying capacities of each other.

10 Symbiosis without direct interactions

10.1 Derivation of symbiotic equations

In many cases, symbiotic species influence each other by increasing (improving) the
carrying capacities of each other, which does not involve direct interactions between



Discussion and Debate: From Black Swans to Dragon-Kings 345

the species. The most known example of this type is the symbiosis between tree roots
and fungi. In that case, the carrying capacities (88) can be written in the form

K1 = A1 +B1N2, K2 = A2 +B2N1. (117)

The dimensionless carrying capacities (93) now read as

y1 = a1 + bz, y2 = a2 + gx. (118)

Employing the scaling of Eqs. (101) gives normalization (102) and the carrying ca-
pacities (118) become

y1 = 1 + bz, y2 = 1 + gx. (119)

Thus, we come to the symbiotic equations in dimensionless form

dx

dt
= x− x2

1 + bz
,

dz

dt
= z − z2

1 + gx
. (120)

There exists again the symmetry with respect to the simultaneous interchange
between x and z and between b and g.

10.2 Evolutionary stable states

Equations (120) possess a non-zero stationary state

x∗ =
1 + b

1− bg , z∗ =
1 + g

1− bg , (121)

which is stable when either

−1 ≤ b < 0, g ≥ −1, (122)

or when
b ≥ 0, 0 ≤ g ≤ gc, (123)

where

gc ≡ 1
b
. (124)

The stability region is presented in Fig. 21.
If the symbiotic relations correspond to mutualism or commensalism, then the

attraction basin of the stationary solution (121) is the whole region of positive initial
conditions:

x0 > 0, z0 > 0 (b ≥ 0, 0 ≤ g < gc). (125)

But if at least one of the species is parasitic, then the attraction basins are defined
by one of the conditions, depending on the signs of the symbiotic factors:

x0 <
1

|g| , z0 > 0 (b > 0, g < 0),

x0 > 0, z0 <
1

|b| (b < 0, g > 0), (126)

x0 <
1

|g| , z0 <
1

|b| (b < 0, g < 0).

The following dynamic regimes are possible.
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Fig. 21. Region of stability (shaded) in the parameter plane b − g for the fixed points in
the case of symbiosis without direct interactions.

10.3 Convergence to stationary states

If initial conditions are in the attraction basin, then both species converge to their
stationary populations. The convergence can be monotonic or not, depending on the
system parameters and initial conditions, as is demonstrated in Fig. 22.

10.4 Unlimited exponential growth

For the parameters outside the stability region, such that

b > 0, g > gc, (127)

there exists a solution with exponential growth in time for both species.

10.5 Finite-time divergence

Extreme solutions appear when at least one of the species is parasitic and initial
conditions are outside of the attraction basin. Thus, when either

x0 >
1

|g| , z0 > 0 (b > 0, g < 0), (128)

or when

x0 > 0, z0 >
1

|b| (b < 0, g > 0), (129)

then one of the species experiences a finite-time singularity at a critical time tc that is
defined numerically. In this case, when approaching tc, one of the following behaviors
arise:

x(t)→ x(tc) <∞, z(t)→∞,
(130)

x(t)→∞, z(t)→ z(tc) <∞,
where the first line corresponds to conditions (128), while the second line, to condi-
tions (129). The typical behavior of populations is shown in Fig. 23.
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Fig. 22. Nonmonotonic convergence to stationary states of x(t) (solid line) and z(t) (dashed-
dotted line) as functions of time, in the case of symbiosis without direct interactions (120):
(a) for the initial conditions x0 = 1.8, z0 = 0.01 and the parameters b = 2, g = 0.25. The
functions x(t) → x∗ and z(t) → z∗, when t → ∞, the fixed points being x∗ = 6, z∗ = 2.5;
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Functions x(t)→ x∗ = 0.25 and z(t)→ z∗ = 1.5, when t→∞.
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Fig. 23. Behavior of the solutions x(t) (solid line) and z(t) (dashed-dotted line) in logarith-
mic scales in the case of symbiosis without direct interactions (120) in the presence of the
finite-time singularity for the symbiotic coefficients b = −0.75, g = −0.25, and the initial
conditions x0 = 10, z0 = 5. The critical time is tc = 0.55303.

10.6 Finite-time extinction

Parasitic symbiotic relations may end with one of the species being extinct and the
other continuing its life without symbiosis. When either

x0 <
1

|g| , z0 > 0 (b > 0, g ≤ −1), (131)
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Fig. 24. Finite-time death in the case of symbiosis without direct interactions. Temporal
behavior of solutions x(t) (solid line) and z(t) (dashed-dotted line) for different symbiotic
parameters and initial conditions: (a) b = −0.75, g = −0.5, x0 = 0.8, z0 = 3, the death time
being td = 0.204; (b) b = −1.5, g = 1, x0 = 1, z0 = 0.1, with the death time td = 2.412.

or when

x0 <
1

|g| , z0 >
1

|b| (b < 0, g < 0), (132)

then the species z dies at a finite time td, defined by the relation

x(td) =
1

|g| . (133)

That is, the species x kills the species z:

x(t)→ x(td), z(t)→ 0 (t→ td). (134)

The opposite situation, when the species z kills the species x occurs if either

x0 > 0, z0 <
1

|b| (b ≤ −1, g > 0), (135)

or if

x0 >
1

|g| , z0 <
1

|b| (b < 0, g < 0). (136)

Then the species x dies at a finite time given by the relation

z(td) =
1

|b| , (137)

so that
x(t)→ 0, z(t)→ z(td) (t→ td). (138)

The corresponding behavior is illustrated in Fig. 24.

11 Interpretation of extreme events in population evolution

11.1 Types of extreme events

In the population evolution, there may happen two types of extreme events, finite-time
death and finite-time singularity. The origin for the occurrence of finite-time death
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is rather clear. This happens when the carrying capacity of the species is destroyed,
either by the species themselves or by the parasitic symbiosis of other species. The
destroyed carrying capacity makes it impossible the long-term existence of the species
that, thus, go towards extinction.
Finite-time singularity can be due to two causes. One reason is the existence

of cooperation between the members of species, as in Sect. 5.1. and 7.2. This type
of the finite-time singularity means that the society, in which cooperation persists
under fast increasing numbers of its members, becomes unstable and, to be stabi-
lized, requires that cooperation be changed into competition. The necessity for such a
change looks rather evident and is easily understandable. Really, in the presence of a
strongly increasing population, the competition for the means of survival will become
unavoidable.
A more elaborate mechanism operates in the case of the finite-time singularities

occurring under competition, as in Sect. 4.8, 6.4, 6.6, 9.5, and 10.5. In all these cases,
the singularities appear under the destruction of the carrying capacities either by
the society itself or by a parasitic symbiotic species. It may seem quite strange that,
while the carrying capacity is being destroyed, the population continues growing. To
understand the origin of such a paradoxical effect and of these finite-time singular-
ities, let us consider in turn the different types of finite-time singularities found in
Sect. 4.8, 6.4, 6.6, 9.5 and 10.5.

11.2 Boom and crash in society with gain and competition

This corresponds to the case studied in Sect. 4.8, of a finite-time singularity occurring
at a critical time tc. The divergence is of the hyperbolic type (52). This extreme event
happens under the destructive action of the society on its own carrying capacity, when
b < 0. The parameters are such that, at the initial moment of time, the effective
carrying capacity is negative,

y(0) = 1− |b|x0 < 0. (139)

How would it be possible to understand the existence of a negative carrying capacity?
For some simple biological species, as ants or bees, the negative capacity would,
probably, be impossible. Such species would not be able to live at all. However, for
more complex societies such as human societies, the negative carrying capacity may
have sense. For instance, humans do extract non-renewable resources that become
progressively exhausted forever, they destroy their habitat, poison rivers, pollute air,
cut forests, and so on. At the same time, humans possess the ability of regenerating
the habitat by cleaning rivers, or even oceans, and planting trees. Thus, humans
may spoil their habitat to such an extent that it would require a hard work for its
recovering. In that sense the effective carrying capacity can become negative for a
while, implying the necessity of its recuperation in the positive domain in order to
ensure the long-term survival of the human society [78].
Even more transparent is the explanation for the existence of negative carry-

ing capacity for financial and economic societies, when the variable x represents not
population, but capitalization. In these cases, negative capacity is nothing but the
borrowed resources that have to be returned back to the lender. Due to this leverage
effect resulting from borrowing, a firm can exhibit a fast development. But borrowing
cannot last forever. If the firm, society, or country does not produce enough and is
not able to pay debts, its creditors will lose trust and may require early reimburse-
ment, or will simply refuse rolling over the debts, as occurred for Greece in May
2010 and Ireland in November 2010. This situation can be captured by assuming the
existence of a maximum level of debt, beyond which the society or country becomes
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highly unstable due to feedbacks resulting from market forces. Actually, Reinhart and
Rogoff [79] have recently documented the existence of a strong link between levels
of debt and countries’ economic growth over the last two centuries: Countries with a
gross public debt exceeding about 90% of annual economic output tended to grow a
lot more slowly and to exhibit larger default risks.
Assuming the existence of a maximum debt level beyond which instabilities ap-

pear leads to the existence of a time tcrash beyond which a crash or at least strong
turbulence can occur. This is highly reminiscent of the scenario leading to the “great
recession” that started in 2007 worldwide [80]. The minimum crash time tcrash is thus
given by the condition that the debt, represented by the negative carrying capacity,
reaches the value

y(tcrash) = 1− |b|x(tcrash − τ) < 0. (140)

The crash happens before the critical divergence time tc,

tcrash < tc, (141)

where the firm or country capitalization is still finite. In such a regime, the accelerated
growth, fueled by borrowing, leads to a boom that is not supported by increasing
productivity. This can therefore be called a bubble [28]. As the bubble develops,
it eventually reaches a threshold level beyond which it becomes unstable, and can
therefore be followed by a crash at times between tcrash and tc.

11.3 Boom and crash in society with loss and competition

The same interpretation as above is applicable for the society with loss and competi-
tion, as in Sect. 6.4 and 6.6. There, the finite-time singularity arises under a high level
of destruction, when the destruction coefficient b < −1 and the initial carrying ca-
pacity is negative. The hyperbolic divergence occurs at a critical time tc. In Sect. 6.6,
the situation is similar to that discussed above. The difference between Sect. 6.4 and
Sect. 6.6 is that in Sect. 6.4 the divergence is defined by the equation

y(tc) = 1− |b|x(tc − τ) = 0. (142)

Again, a society or a firm with loss and competition, actually, does not reach
the point of divergence, but becomes bankrupt before this. The fast growth is due
to exploiting and destroying the carrying capacity. But, after destruction has taken
place and reached an unbearable level, the boom is followed by a crash.

11.4 Species extinction under mutual parasitic symbiosis

In the parasitic symbiosis of two species considered in Sect. 9.5, there occurs a finite-
time singularity. Thus, for the symbiotic parameters b < g < 0, the initial carrying
capacities are such that

y1(0) = 1− |b|x0z0 < 0, y2(0) = 1− |g|x0z0 > 0. (143)

For the opposite case, when g < b < 0, the situation is symmetric. Thence, below we
shall treat the case of Eq. (143) without loss of generality. The divergence appears at
the critical time tc given by the equation

y1(tc) = 1− |b|x(tc)z(tc). (144)
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At this time, the population of the species x tends to infinity, while that of the species
z goes to zero.
Of course, no realistic population can rise to infinite values. Such a divergence

happens because of the mutual parasitic symbiotic relations, resulting in the formal
appearance of a negative effective capacity. As in the cases above, the divergence can
be avoided by limiting the carrying capacity by a fixed level. This implies that the rise
of a parasitic species continues only up to some limiting carrying capacity threshold

y1(tcrash) = 1− |b|x(tcrash)z(tcrash), (145)

after which the species x dies out by a fast process of extinction at the crash time
tcrash < tc.

11.5 Species extinction under parasitic symbiosis without direct interactions

A finite-time singularity also appears in the case of symbiosis without direct interac-
tions, as in Sect. 10.5. This happens when at least one of the species is parasitic. For
example, for the case b < 0 and b < g. Below, we shall consider this case, since the
situation with g < 0 and g < b is symmetric.
When b < 0, this means that the species z is parasitic and destroys the carrying

capacity of the species x. The finite-time singularity occurs if, at the initial moment
of time, the effective carrying capacity of species x is negative,

y1(0) = 1− |b|z0 < 0, (146)

while the carrying capacity of species z,

y2(0) = 1 + gx0, (147)

can be positive or negative, depending on the values of g and x0. The divergence of
x occurs at the critical time tc, where the effective capacity of species x is negative,

y1(tc) = 1− |b|z(tc) < 0. (148)

The population of species z at the moment tc is finite.
In the same way as in the previous cases, we understand that this divergence

cannot be real and there should exist a limiting carrying capacity

y1(tcrash) = 1− |b|z(tcrash), (149)

at which the population x is to be set to zero, implying its extinction caused by the
parasitic species z. This extinction happens at the crash time tcrash < tc.
In all these cases for which there arises a finite-time singularity, it is possible to

exclude the formal divergence by limiting the carrying capacity to a minimal value
y(tcrash), that is, a maximal absolute value |y(tcrash)|. This limiting value can be
interpreted as a threshold for a change of regime. The overall dynamics, thus, starting
with the fast growth of the population (or capitalization), is followed by its drop to
zero at the crash time tcrash, before the critical time tc.

12 Conclusion

In this paper, we have suggested a general approach for describing the evolution of
populations, whose activities influence their carrying capacities. In order to take into
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account this influence, the carrying capacities are to be defined as functions of the
society populations. This includes the action of a population on its own carrying
capacity. In general, the actions of populations on the carrying capacities can be
delayed, since such actions, generally, require time for their realization.
The approach is illustrated by analyzing the time evolution of a society that acts

on its own carrying capacity, either by producing the increase of the capacity or
by destroying it. Different types of societies have been studied, depending on the
balance between gain and loss and between competition and cooperation. A detailed
classification of admissible dynamic regimes has been given.
Two kinds of extreme events have been found to arise, when the society destroys

its carrying capacity. One is a finite-time death at a death time td and another is
a finite-time singularity at a critical time tc. The finite-time death describes the
extinction of the population because of the destruction of the carrying capacity. The
finite-time singularity signals that the society becomes unstable and its stabilization
requires changing the society parameters and a transfer to another dynamic regime.
The divergence can be avoided by limiting the carrying capacity and interpreting the
effect as a fast rise of the population (or capitalization), followed by its sharp drop.
For economic and financial societies, the fast growth is understood as a boom or
bubble, due to the leverage effect induced by over-indebtedness, after which a crash
occurs.
The suggested approach is also illustrated by considering the symbiosis of several

species. This approach allows us to give a general classification of different symbiosis
types. The case of two species is analyzed in detail. Extreme events arise when at least
one of the species is parasitic, destroying the carrying capacity of the other species.
Again, there can exist two kinds of such extreme events, finite-time death and finite-
time singularity. Their interpretation is analogous to that given for the case of the
self-destructing population activity.
As a general conclusion valid for the different considered situations, we have to say

that any destructive action of populations, whether on their own carrying capacity
or on the carrying capacities of co-existing species, can lead to the instability of the
society that is revealed in the form of the appearance of extreme events, finite-time
extinctions or booms followed by crashes.

We acknowledge financial support from the ETH Competence Center “Coping with Crises
in Complex Socio-Economic Systems” (CCSS) through ETH Research Grant CH1-01-08-2
and ETH Zurich Foundation.
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