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Abstract Ambrosio and Kirchheim presented a theory of currents with finite mass
in complete metric spaces. We develop a variant of the theory that does not rely on
a finite mass condition, closely paralleling the classical Federer–Fleming theory. If
the underlying metric space is an open subset of a Euclidean space, we obtain a nat-
ural chain monomorphism from general metric currents to general classical currents
whose image contains the locally flat chains and which restricts to an isomorphism
for locally normal currents. We give a detailed exposition of the slicing theory for
locally normal currents with respect to locally Lipschitz maps, including the recti-
fiable slices theorem, and of the compactness theorem for locally integral currents
in locally compact metric spaces, assuming only standard results from analysis and
measure theory.
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Introduction

Currents in the sense of geometric measure theory, linear functionals on spaces of
differential forms, were introduced by G. de Rham in 1955 for use in the theory of
harmonic forms [12]. A few years later, H. Federer and W.H. Fleming devised the
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class of rectifiable currents, generalized oriented surfaces with integer multiplicities,
and the subclass of integral currents whose boundary is of the same type. Their fun-
damental paper [15] from 1960 also furnished the compactness theorem for integral
currents and thereby a solution to the Plateau problem for surfaces of arbitrary di-
mension and codimension in Euclidean spaces. The theory of currents then rapidly
developed into a powerful apparatus in the calculus of variations. Federer’s mono-
graph [14] gives a comprehensive account of the state of the subject prior to 1970.
Since then, the theory has been extended in various directions and has found numer-
ous applications in geometric analysis and Riemannian geometry, far beyond pure
area minimization problems.

A breakthrough was achieved in 2000, when L. Ambrosio and B. Kirchheim [3],
following ideas of E. De Giorgi [7], presented a theory of currents in complete met-
ric spaces. This elegant approach employs (m + 1)-tuples of real-valued Lipschitz
functions in place of differential m-forms and provides some new insights even if the
ambient space is Euclidean. Ambrosio and Kirchheim discovered new proofs of the
boundary rectifiability theorem and the closure theorem for rectifiable currents, valid
in any complete metric space. As an application, they obtained existence results for
generalized Plateau problems in compact metric spaces and certain Banach spaces.
The theory of metric currents has been further developed in [8, 31, 33], and some
geometric applications have been found [32, 34]. Various interactions with other ar-
eas have emerged and should be further explored. In this context we just mention the
functions of bounded higher variation [8, 9, 21, 24, 27], the recent progress on (gen-
eralized) flat chains [1, 18, 36, 37], the scans from [10, 11, 16], the differentiation
theory on metric measure spaces [4, 5, 22], and the derivations from [29, 30]. We
refer to [19] for an excellent survey of some of these and further related topics.

The metric currents considered by Ambrosio and Kirchheim have finite mass by
definition. This a priori assumption plays a crucial role in their development of the
theory; in particular, it is used to derive the properties that qualify the functionals
under consideration as analogues of classical currents. Here we present a somewhat
different approach, strongly inspired by the work of Ambrosio and Kirchheim, but
not relying on a finite mass condition. In addition, we switch to local formulations.
At a later stage, this enables us to discuss metric currents with locally finite mass
and locally rectifiable currents. For this purpose it is appropriate to assume the under-
lying metric space to be locally compact. However, once some basic properties are
established, the theory readily extends to a theory of currents with locally compact
support in arbitrary metric spaces. Furthermore, in the case of finite mass, it is also
possible to dispense with the restriction on the support and to incorporate the class of
Ambrosio–Kirchheim currents. In the second half of the paper, which discusses cur-
rents with locally finite mass, a number of results are local versions of those in [3].
However, in some instances, we give different arguments, using fewer prerequisites.
A central aim was to provide a detailed account of the fundamentals of the theory,
including a complete proof of the compactness theorem for locally integral currents
in locally compact metric spaces, in a style readily accessible to non-specialists.

We now describe the contents of the paper in a more systematic way. Detailed
references will be given later in the individual sections.

In Sect. 1 we fix the notation and gather a few basic facts from analysis and mea-
sure theory.
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In Sect. 2 we turn to currents. A classical m-dimensional current in an open set
U ⊂ R

n is a real-valued linear function on the space of compactly supported differ-
ential m-forms on U , continuous with respect to convergence of forms in a suitable
C∞-topology. Given a locally compact metric space X, we substitute differential m-
forms by (m + 1)-tuples (f,π1, . . . , πm) of real-valued functions on X, where f is
Lipschitz with compact support spt(f ) and π1, . . . , πm are locally Lipschitz. We de-
note by Dm(X) the set of all such tuples. The guiding principle is that if X = U is
an open subset of R

n and if (f,π1, . . . , πm) ∈ C∞
c (U) × [C∞(U)]m, then this tu-

ple represents the form f dπ1 ∧ · · · ∧ dπm. An m-dimensional metric current T in
X is defined as an (m + 1)-linear real-valued function on Dm(X), continuous with
respect to convergence of tuples in a suitable topology involving locally uniform
bounds on Lipschitz constants, and satisfying T (f,π1, . . . , πm) = 0 whenever some
πi is constant on a neighborhood of spt(f ). The vector space of m-dimensional met-
ric currents in X is denoted by Dm(X). The terminology is justified by the fact that
the defining conditions of a metric current give rise to a set of further properties,
corresponding to the usual rules of calculus for differential forms. Namely, every
T ∈ Dm(X) is alternating in the m last arguments, and the following product rule
holds: If (f,π1, . . . , πm) ∈ Dm(X), and if g : X → R is locally Lipschitz, then

T (f,gπ1,π2, . . . , πm) = T (fg,π1, . . . , πm) + T (f π1, g,π2, . . . , πm).

We also obtain a chain rule, a special case of which states that if (f,π) =
(f,π1, . . . , πm) ∈ Dm(X) and g = (g1, . . . , gm) ∈ [C1,1(Rm)]m, i.e., the partial
derivatives of gi are locally Lipschitz, then

T (f,g1 ◦ π, . . . , gm ◦ π) = T (f det((Dg) ◦ π),π1, . . . , πm).

Every function u ∈ L1
loc(U) on an open set U ⊂ R

m induces a metric current [u] ∈
Dm(U) satisfying

[u](f, g) =
∫

U

uf det(Dg)dx

for all (f, g) = (f, g1, . . . , gm) ∈ Dm(U). This corresponds to the integration of a
simple m-form over U . The chain rule plays a crucial role in the development of the
theory. In particular, it is used to show (in Sect. 5) that for every open set U ⊂ R

n and
every m, there is an injective linear map Cm from Dm(U) into the space of general
classical m-currents in U such that

Cm(T )(f dg1 ∧ · · · ∧ dgm) = T (f,g1, . . . , gm)

for all (f, g1, . . . , gm) ∈ C∞
c (U) × [C∞(U)]m. This makes the aforesaid guiding

principle rigorous. Some more properties of these comparison maps Cm are men-
tioned further below.

In Sect. 3 we define the support spt(T ) ⊂ X of a metric current T and discuss the
boundary and push-forward operators. For a classical m-current T̄ , the boundary ∂T̄

is the (m − 1)-current satisfying ∂T̄ (φ) = T̄ (dφ) for every (m − 1)-form φ. Corre-
spondingly, the boundary ∂T ∈ Dm−1(X) of a metric current T ∈ Dm(X) verifies

∂T (f,π1, . . . , πm−1) = T (σ,f,π1, . . . , πm−1)
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for all (f,π1, . . . , πm−1) ∈ Dm−1(X) and for all σ such that σ = 1 on some neigh-
borhood of spt(f ). We have ∂ ◦ ∂ = 0, and, in case X = U is an open set in R

n,
∂ ◦ Cm = Cm−1 ◦ ∂ , so that the Cm form a chain map. The push-forward F#T̄ of
a general classical current T̄ is defined for every smooth map F whose restric-
tion to the support of T̄ is proper, and considerable effort is required to extend
the definition, for particular classes of currents, to locally Lipschitz maps. Given a
metric current T ∈ Dm(X) and another locally compact metric space Y , the push-
forward F#T ∈ Dm(Y ) is defined for every locally Lipschitz map F : D → Y such
that spt(T ) ⊂ D ⊂ X and F |spt(T ) is proper. In case D = X, we have

F#T (f,π1, . . . , πm) = T (f̃ ,π1 ◦ F, . . . , πm ◦ F)

whenever (f,π1, . . . , πm) ∈ Dm(Y ) and f̃ : X → R is a compactly supported Lip-
schitz function that agrees with f ◦ F on spt(T ).

In Sect. 4 we discuss the notion of mass. Given a metric current T ∈ Dm(X), we
define its mass MV (T ) in an open set V ⊂ X as the least number M ∈ [0,∞] such
that ∑

λ∈�

T (fλ,π
λ) ≤ M

whenever � is a finite set, (fλ,π
λ) ∈ Dm(X), πλ

1 , . . . , πλ
m are 1-Lipschitz,

spt(fλ) ⊂ V , and
∑

λ∈� |fλ| ≤ 1. If a metric current T ∈ Dm(X) has locally fi-
nite mass, then there is an associated Radon measure ‖T ‖ on X, characterized by
‖T ‖(V ) = MV (T ) for all open sets V ⊂ X, and

T (f,π) ≤
∫

X

|f |d‖T ‖

whenever (f,π) ∈ Dm(X) and the restrictions of π1, . . . , πm to spt(f ) are
1-Lipschitz. This last inequality allows us to extend T to all tuples (f,π) such that
f is a bounded Borel function with compact support and π1, . . . , πm are still locally
Lipschitz. For a Borel set B ⊂ X, the restriction T 
B is then defined as the m-current
satisfying

(T 
B)(f,π) = T (χBf,π)

for all (f,π) ∈ Dm(X), where χB is the characteristic function of B . For a locally
bounded Borel function g : X → R, T 
g is defined similarly.

A metric m-current T is called (locally) normal if both the mass of T and the mass
of ∂T are (locally) finite. A fundamental result about locally normal metric currents,
proved in Sect. 5, is the compactness theorem: If T1, T2, . . . ∈ Dm(X) are currents
with separable support, and if

sup
n

(MV (Tn) + MV (∂Tn)) < ∞

for every open set V ⊂ X with compact closure, then there is a subsequence
Tn(1), Tn(2), . . . that converges weakly to some T ∈ Dm(X), i.e., limi→∞ Tn(i)(f,π)

= T (f,π) for every (f,π) ∈ Dm(X). Since MV is lower semicontinuous with re-
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spect to weak convergence, and also ∂Tn(i) → ∂T weakly, the limit T is locally nor-
mal. In case X = U is an open set in R

n, the restriction of the comparison map Cm

to the vector space of locally normal currents is an isomorphism onto the space of
classical locally normal currents.

An important technique in the theory of currents consists of relating information
on the structure of a current T to properties of lower dimensional slices of T in the
level sets of a function. In Sect. 6 we discuss slicing of a locally normal current
T ∈ Dm(X) with respect to a locally Lipschitz map π : X → R

k , where 1 ≤ k ≤ m.
Let Tπ ∈ Dm−k(X) be the locally normal current satisfying

Tπ(f,g1, . . . , gm−k) = T (f,π1, . . . , πk, g1, . . . , gm−k)

for all (f, g) ∈ Dm−k(X). If spt(T ) is separable, then for almost every y ∈ R
k there

is a locally normal current in Dm−k(X) with support in π−1{y} ∩ spt(T ), denoted by
〈T ,π, y〉, such that ∫

Rk

〈T ,π, y〉(f, g) dy = Tπ(f,g)

for all (f, g) ∈ Dm−k(X). Moreover, for every Borel set B ⊂ X,
∫

Rk

‖〈T ,π, y〉‖(B)dy = ‖Tπ‖(B).

The first identity also holds more generally if f is a bounded Borel function with
compact support.

Slicing is particularly important and useful when k = 1, for geometric applica-
tions, or when k = m. In the latter case, the slices are 0-dimensional, and π maps any
compactly supported portion of T to a current of maximal dimension in R

m. This
situation is closely inspected in Sect. 7. The slicing theorem leads to a fundamental
identity: If f : X → R is any bounded Borel function with compact support, then
π#(T 
f ) ∈ Dm(Rm) is a standard current [uf ], for some uf ∈ L1(Rm), and

〈T ,π, y〉(f ) = uf (y)

for almost every y ∈ R
m. Moreover, if f is Lipschitz, then [uf ] is normal, and uf is

a function of bounded variation. Such functions satisfy a Lipschitz condition outside
a set of small Lebesgue measure. Exploiting the resulting Lipschitz property of the
function y �→ 〈T ,π, y〉(f ), we obtain a partial rectifiability result for every locally
normal current T with separable support: Let A ⊂ spt(T ) be the set of all x such that
{x} is an atom of the corresponding slice 〈T ,π,π(x)〉. Up to a set of ‖Tπ‖ measure
zero, A can be represented as the union of countably many pairwise disjoint compact
sets Bi ⊂ A such that π |Bi

is a bi-Lipschitz map into R
m.

In the final Sect. 8, we turn to rectifiable currents. For a general current T ∈ Dm(X)

with locally finite mass, the measure ‖T ‖ may be diffused, so that T does not cor-
respond to a generalized m-dimensional surface in any sense. We call T a locally
integer rectifiable current if ‖T ‖ is concentrated on some countably m-rectifiable
set E, i.e., the union of countably many Lipschitz images of subsets of R

m, and
if T satisfies the following integrality condition: Whenever B ⊂ X is a Borel set
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with compact closure and π : X → R
m is Lipschitz, then π#(T 
B) = [uB,π ] for

some uB,π ∈ L1(Rm,Z). From these conditions it follows that the support of T

is separable and that ‖T ‖ is absolutely continuous with respect to m-dimensional
Hausdorff measure H m. The slicing theory is then supplemented with the rectifi-
able slices theorem, relying on the above partial rectifiability result and the identity
〈T ,π, y〉(χB) = uB,π (y): Given a locally normal current T ∈ Dm(X) with separa-
ble support and k ∈ {1, . . . ,m}, T is locally integer rectifiable if and only if for each
Lipschitz map π : X → R

k , the (m − k)-dimensional slice 〈T ,π, y〉 is locally integer
rectifiable for almost every y ∈ R

k . We call T ∈ Dm(X) a locally integral current if
both T and ∂T are locally integer rectifiable. In particular, every such T is locally
normal. By the boundary rectifiability theorem, every locally integer rectifiable and
locally normal current is locally integral. This follows easily from the rectifiable
slices theorem, by induction on m. The closure theorem for locally integral currents
states that if T1, T2, . . . ∈ Dm(X) is a sequence of locally integral currents converging
weakly to T ∈ Dm(X), and if

sup
n

(MV (Tn) + MV (∂Tn)) < ∞

for every open set V ⊂ X with compact closure, then T is locally integral. The proof
is another simple inductive application of the rectifiable slices theorem. By combin-
ing this result with the compactness theorem for locally normal currents mentioned
earlier, we obtain the compactness theorem for locally integral currents.

Further results and applications will be discussed elsewhere.

1 Preliminaries

We now fix the notation and collect some basic facts from analysis and measure
theory. A few more prerequisites will be discussed in individual sections.

Given a point x in a metric space X = (X,d), B(x, r) := {y : d(x, y) ≤ r} and
U(x, r) := {y : d(x, y) < r} denote the closed and open ball, respectively, with center
x and radius r .

1.1 Lipschitz Maps

Let X = (X,d) and Y = (Y, d) be two metric spaces. For l ∈ [0,∞), a map
f : X → Y is l-Lipschitz if

d(f (x), f (x′)) ≤ l d(x, x′)

for all x, x′ ∈ X. The map f : X → Y is Lipschitz if the Lipschitz constant

Lip(f ) := inf{l ∈ [0,∞) : f is l-Lipschitz}
is finite, and f is locally Lipschitz if every point in X has a neighborhood such that
the restriction of f to this neighborhood is Lipschitz. Note that then f |K is Lip-
schitz for every compact set K ⊂ X. We let Liploc(X,Y ) be the set of locally Lip-
schitz maps from X into Y , Lip(X,Y ) and Lipl (X,Y ) the subsets of Lipschitz maps
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and l-Lipschitz maps, respectively. In this notation, we abbreviate (X,R) by (X).
Note that Liploc(X) forms an algebra, while Lip(X) is an algebra if and only if X is
bounded. In fact, if f,g ∈ Lip(X) are two bounded Lipschitz functions on a metric
space X, then the product fg is Lipschitz with Lipschitz constant

Lip(fg) ≤ ‖f ‖∞ Lip(g) + ‖g‖∞ Lip(f ), (1.1)

where ‖ · ‖∞ is the supremum norm.
A map f : X → Y is bi-Lipschitz if there is a constant b ∈ [1,∞) such that

b−1 d(x, x′) ≤ d(f (x), f (x′)) ≤ b d(x, x′)

for all x, x′ ∈ X.
If A ⊂ X and f ∈ Lipl (A), then there exists an extension f̄ ∈ Lipl(X), i.e.,

f̄ |A = f . In fact, one may simply define

f̄ (x) := inf
a∈A

(f (a) + l d(a, x)) (1.2)

for x ∈ X. By applying this result to each component of a map f = (f1, . . . , fm) ∈
Lipl (A,R

m), one obtains an extension f̄ ∈ Lip√
ml(X,R

m) of f .
Every uniformly continuous and bounded function f : X → R is a uniform limit

of a sequence of Lipschitz functions (see, e.g., [17, Theorem 6.8]).
By Rademacher’s theorem, every f ∈ Liploc(R

m,R
n) is differentiable at

L m-almost all points of R
m, where L m denotes (outer) Lebesgue measure.

1.2 Borel Functions and Baire Functions

Given a topological space X, B∞
loc(X) denotes the algebra of real-valued, locally

bounded Borel functions on X, B∞(X) the subalgebra of bounded functions, and
B∞

c (X) the subalgebra of bounded and compactly supported functions.
A class 	 of real-valued functions on a set X is called a Baire class if the fol-

lowing holds: Whenever f1, f2, . . . ∈ 	 and fi(x) → g(x) ∈ R for each x ∈ X, then
g ∈ 	. In case X is a topological space, f : X → R is a Baire function if it belongs
to the smallest Baire class containing all continuous functions. Since the Borel func-
tions form a Baire class, every Baire function is a Borel function. Conversely, if X

is a metric space, then it is not difficult to see that characteristic functions of Borel
sets are Baire functions and, hence, every Borel function is also a Baire function
(cf. [14, 2.2.15]).

1.3 Outer Measures and Radon Measures

An outer measure ν on a set X is a set function ν : 2X → [0,∞] such that
ν(∅) = 0 and ν(A) ≤ ∑∞

k=1 ν(Ak) whenever A ⊂ ⋃∞
k=1 Ak . A set A ⊂ X is called

ν-measurable if ν(B) = ν(B ∩ A) + ν(B \ A) for all B ⊂ X. The family of all
ν-measurable sets forms a σ -algebra, and the restriction of ν to this σ -algebra is
a measure. If E ⊂ X is any set, then ν
E is the outer measure satisfying

(ν
E)(A) = ν(E ∩ A)
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for all A ⊂ X. Every ν-measurable set is also (ν
E)-measurable. We say that ν is
concentrated on E if ν(X \ E) = 0 or, equivalently, ν = ν
E.

Let ν be an outer measure on a topological space X. The support spt(ν) of ν in
X is the closed set of all x ∈ X such that ν(U) > 0 for every neighborhood U of x.
We call ν Borel regular if all Borel sets are ν-measurable and if every set A ⊂ X is
contained in a Borel set B with ν(B) = ν(A). If ν is Borel regular and E is a Borel
set, then ν
E is Borel regular.

Now let ν be an outer measure on a metric space X. Carathéodory’s criterion says
that if ν(A)+ν(B) = ν(A∪B) for all A,B ⊂ X with inf{d(x, y) : x ∈ A,y ∈ B} > 0,
then all Borel sets are ν-measurable. If ν is Borel regular and B is a ν-measurable
set contained in the union of countably many open sets Ui with ν(Ui) < ∞, and if
ε > 0, then there is an open set V such that B ⊂ V and ν(V \ B) < ε.

An outer measure ν on a locally compact Hausdorff space X is called a Radon
measure if Borel sets are ν-measurable, ν is finite on compact sets,

ν(V ) = sup{ν(K) : K ⊂ X is compact, K ⊂ V }
for every open set V ⊂ X, and

ν(A) = inf{ν(V ) : V ⊂ X is open, A ⊂ V }
for every set A ⊂ X. Then it is also true that if B is a ν-measurable set with
ν(B) < ∞, and if ε > 0, then ν(B \ K) < ε for some compact set K ⊂ B

(cf. [14, 2.2.5]).
For m ∈ N, we denote by

αm := L m(B(0,1))

the Lebesgue measure of the unit ball in R
m, and we put α0 := 1. Given a metric space

X, the m-dimensional Hausdorff measure of a set A ⊂ X is defined by H m(A) :=
limδ→0+ H m

δ (A), where H m
δ (A) is the infimum of

∑
C∈C αm(diam(C)/2)m over

all countable coverings C of A with diam(C) := sup{d(x, y) : x, y ∈ C} ≤ δ for all
C ∈ C . For every m, H m is a Borel regular outer measure on X. With the chosen
normalization, H m = L m on R

m.

1.4 Maximal Functions and Lebesgue Points

Suppose that μ is a finite Borel measure on R
m, i.e., a σ -additive function μ : BX →

[0,∞), where BX is the σ -algebra of Borel sets in X. We denote by Mμ : R
m →

[0,∞] the maximal function of μ, i.e.,

Mμ(x) := sup
r>0

μ(B(x, r))

αmrm
.

A simple covering argument shows that

L m({x ∈ R
m : Mμ(x) > s}) ≤ 3ms−1μ(Rm) (1.3)
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for all s > 0. In particular, Mμ(x) < ∞ for L m-almost every x ∈ R
m. Note also that

Mμ is lower semicontinuous on R
m.

We further recall that, given a function u ∈ L1(Rm), L m-almost every x ∈ R
m is

a Lebesgue point of u, i.e.,

lim
r→0

1

αmrm

∫
B(x,r)

|u(y) − u(x)|dy = 0.

Moreover, if we associate with each x ∈ R
m a sequence of Borel sets Ei(x) with

the property that Ei(x) ⊂ B(x, ri(x)) and L m(Ei(X)) ≥ β(x)αmri(x)m for some
ri(x) → 0 and β(x) > 0, then

u(x) = lim
i→∞

1

L m(Ei(x))

∫
Ei(x)

u(y) dy (1.4)

at every Lebesgue point x of u, hence for L m-almost every x ∈ R
m. (See, e.g., the

first section of [25, Chap. 7].)

1.5 Smoothing

We shall use the following basic facts regarding smoothing. Let η ∈ C∞
c (Rm)

be a mollifier, so that spt(η) ⊂ U(0,1), η(−z) = η(z) ≥ 0 for all z ∈ R
m, and∫

Rm η(z) dz = 1. Recall that for g ∈ L1
loc(R

m), the convolution defined by

(η ∗ g)(x) :=
∫

Rm

η(z)g(x − z) dz =
∫

Rm

η(x − z)g(z) dz

for x ∈ R
m satisfies η ∗ g ∈ C∞(Rm), and spt(η ∗ g) ⊂ spt(η) + spt(g). If

g ∈ Liploc(R
m), then the partial derivatives of η ∗ g are given by

Dk(η ∗ g) = η ∗ Dkg, (1.5)

k = 1, . . . ,m. If g is bounded, then ‖η ∗ g‖∞ ≤ ‖g‖∞. If g is Lipschitz, then η ∗ g is
Lipschitz, with constant

Lip(η ∗ g) ≤ Lip(g). (1.6)

Now put ηj (z) := jmη(jz) for z ∈ R
m and j ∈ N, so that spt(ηj ) ⊂ U(0,1/j) and∫

Rm ηj (z) dz = 1. As j → ∞, (ηj ∗ g)(x) → g(x) whenever x is a Lebesgue point
of g. Moreover, the convergence is locally uniform if g is continuous. (See, e.g.,
[14, 4.1.2].)

2 Metric Currents

From now on, unless otherwise stated, X will always denote a locally compact metric
space. We write A � X if A ⊂ X and the closure of A is compact.

We let D(X) be the algebra of all f ∈ Lip(X) whose support spt(f ) is compact;
these will serve as test functions. For every compact set K ⊂ X and every constant
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l ≥ 0 we put LipK,l(X) := {f ∈ Lipl(X) : spt(f ) ⊂ K}, so that D(X) is the union of
all LipK,l(X). Then we equip D(X) with a locally convex vector space topology τ

with respect to which

fj → f in D(X) (2.1)

if and only if all fj belong to some fixed LipK,l(X) and fj → f pointwise on X for
j → ∞, which implies that fj → f uniformly on X. Explicitly, this topology τ is
given as follows. Let β be the collection of all absolutely convex sets W ⊂ D(X) with
the following property: For every pair (K, l) and every f ∈ W ∩ LipK,l(X), there is
an ε > 0 such that g ∈ W whenever g ∈ LipK,l(X) and ‖f − g‖∞ < ε. (Recall that
W is absolutely convex if and only if sf + tg ∈ W for all f,g ∈ W and s, t ∈ R with
|s| + |t | ≤ 1.) Then β is a local base of τ at 0, thus τ is the collection of all unions of
sets of the form f + W , where f ∈ D(X) and W ∈ β . (See, e.g., [26, p. 152] for the
corresponding construction in classical distribution theory.)

Similarly, we equip Liploc(X) with a locally convex vector space topology with
respect to which

πj → π in Liploc(X) (2.2)

if and only if for every compact set K ⊂ X there is a constant lK such that
Lip(πj |K) ≤ lK for all j and πj → π pointwise, hence uniformly, on K for j → ∞.
For a fixed compact set K ⊂ X, let βK be the collection of all absolutely convex
sets W ⊂ Liploc(X) with the following property: For every l ≥ 0 and every π ∈ W

with Lip(π |K) ≤ l, there is an ε > 0 such that ρ ∈ W whenever ρ ∈ Liploc(X),
Lip(ρ|K) ≤ l, and ‖(π − ρ)|K‖∞ < ε. The union of all βK forms a local base of
the topology of Liploc(X). The topologies of D(X) and Liploc(X) will only be used
through (2.1) and (2.2).

We define the spaces

D0(X) := D(X), Dm(X) := D(X) × [Liploc(X)]m (m ∈ N),

which will serve as substitutes for the spaces of compactly supported m-forms. The
guiding principle is that

(f,π1, . . . , πm) ∈ Dm(X) represents f dπ1 ∧ · · · ∧ dπm (2.3)

if X is an open subset of R
n and the f,π1, . . . , πm are smooth. This correspondence

will be made precise in Theorem 5.5. The space Dm(X) is equipped with the product
topology. Thus,

(f j ,π
j

1 , . . . , π
j
m) → (f,π1, . . . , πm) in Dm(X) (2.4)

if and only if f j → f in D(X) and π
j
i → πi in Liploc(X) for i = 1, . . . ,m.

Definition 2.1 (metric current) For m ∈ {0} ∪ N, an m-dimensional metric current T

in X is a function T : Dm(X) → R satisfying the following three conditions:

(1) (multilinearity) T is (m + 1)-linear;
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(2) (continuity) T (f j ,π
j

1 , . . . , π
j
m) → T (f,π1, . . . , πm) if (f j ,π

j

1 , . . . , π
j
m) →

(f,π1, . . . , πm) in Dm(X);
(3) (locality) in case m ≥ 1, T (f,π1, . . . , πm) = 0 whenever some πi is constant on

a neighborhood of spt(f ).

The vector space of m-dimensional metric currents in X is denoted by

Dm(X).

We endow Dm(X) with the locally convex weak topology with respect to which
Tn → T if and only if

Tn(f,π1, . . . , πm) → T (f,π1, . . . , πm)

for every (f,π1, . . . , πm) ∈ Dm(X).

As a first consequence of the defining conditions, we note the following strict form
of the locality property:

T (f,π1, . . . , πm) = 0 whenever some πi is constant on spt(f ). (2.5)

To see this, let βj : R → R (j ∈ N) be the 1-Lipschitz function satisfying −βj (−s) =
βj (s) = max{s − (1/j),0} for s ≥ 0. Then βj ◦f → f in D(X), and spt(f ) contains
a neighborhood of spt(βj ◦ f ) for every j , so that (2.5) follows. An alternative proof
uses the continuity in the respective argument. Suppose that (πi − c)|spt(f ) = 0 for
some c ∈ R. Then βj ◦ (πi − c) vanishes on some neighborhood of spt(f ), and βj ◦
(πi − c) → πi − c in Liploc(X). This implies that T (f,π1, . . . , πm) = 0.

The following simple lemma shows that the space [D(X)]m+1 would serve the
same purpose as Dm(X). However, the guiding principle (2.3) suggests thinking of
π1, . . . , πm as coordinate functions, so that the choice of Liploc(X) instead of D(X)

seems more appropriate. In the proof of Theorem 2.5 (chain rule) we shall also benefit
from the fact that Liploc(R

n) comprises the real polynomials in n variables.

Lemma 2.2 Suppose T : [D(X)]m+1 → R is a function satisfying the three condi-
tions of Definition 2.1 with [D(X)]m+1 in place of Dm(X). Then T extends uniquely
to a current T ∈ Dm(X).

In particular, every metric current T ∈ Dm(X) is determined by its values on
[D(X)]m+1.

Proof In view of conditions (1) and (3), the function T can be extended to Dm(X)

so that

T (f,π1, . . . , πm) = T (f,σπ1, . . . , σπm)

whenever (f,π1, . . . , πm) ∈ Dm(X), σ ∈ D(X), and σ = 1 on some neighborhood
of spt(f ). The right side is clearly independent of the choice of σ , for if τ ∈ D(X)

is another such function, then (σ − τ)πi vanishes on a neighborhood of spt(f ) for
i = 1, . . . ,m. Note also that whenever K ⊂ X is compact, there is a σ ∈ D(X) such
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that σ = 1 on some neighborhood of K , since X is locally compact. Now each of
the three properties of the given function T implies the respective property of the
extended function via an appropriate choice of σ . �

By inserting a number of locally Lipschitz functions into T and keeping them
fixed, we obtain a current of smaller dimension. This will often be used to simplify
notation.

Definition 2.3 For T ∈ Dm(X) and (u, v) ∈ Liploc(X) × [Liploc(X)]k , where m ≥
k ≥ 0, we define the current T 
(u, v) ∈ Dm−k(X) by

(T 
(u, v))(f, g) := T (uf, v, g)

= T (uf, v1, . . . , vk, g1, . . . , gm−k)

for (f, g) ∈ Dm−k(X).

In case k = 0, the definition simply reads

(T 
u)(f, g) := T (uf,g).

In case k ≥ 1, the placement of the functions v1, . . . , vk on the right side is in ac-
cordance with the corresponding definition in the smooth case; it has the property
that

(T 
(1, v))
(1,w) = T 
(1, v,w). (2.6)

The tuple (u, v) ∈ Liploc(X) × [Liploc(X)]k corresponds to the k-form udv1 ∧ · · · ∧
dvk . It is clear that T 
(u, v) is indeed an element of Dm−k(X), as it would be with
any other placement of v1, . . . , vk .

We now show that the defining properties of a general metric current give rise to a
set of further properties, corresponding to the usual rules of calculus for differential
forms.

Proposition 2.4 (alternating property and product rule) Suppose T ∈ Dm(X), m ≥ 1,
and (f,π1, . . . , πm) ∈ Dm(X).

(1) In case m ≥ 2, if πi = πj for some pair of distinct indices i, j , then

T (f,π1, . . . , πm) = 0.

(2) For all g,h ∈ Liploc(X),

T (f,gh,π2, . . . , πm) = T (fg,h,π2, . . . , πm) + T (f h,g,π2, . . . , πm).

Proof To prove (1), it suffices to show that if T ∈ D2(X) and (f,π) ∈ D1(X), then
T (f,π,π) = 0. For k ∈ Z, let ρk : R → R be the piecewise affine 1-Lipschitz func-
tion with ρk|[2k,2k+1] = 1 and spt(ρk) = [2k −1,2k +2]. Note that

∑
k∈Z

ρk = 1. Let
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σ, σ̄ : R → R denote the piecewise affine 4-Lipschitz functions such that σ |spt(ρk) =
2k for k even and σ̄ |spt(ρk) = 2k for k odd. Then

T (f,σ ◦ π, σ̄ ◦ π) =
∑
k∈Z

T ((ρk ◦ π)f,σ ◦ π, σ̄ ◦ π);

note that (ρk ◦π)f = 0 for almost all k since π |spt(f ) is bounded. By the strict locality
property (2.5), each summand is zero because σ ◦π or σ̄ ◦π is constant on spt(ρk ◦π)

for k even or odd, respectively. Hence T (f,σ ◦π, σ̄ ◦π) = 0. In the above definitions
of the functions ρk, σ, σ̄ we may equally well replace the unit by 1/j , for j ∈ N. The
argument then shows that

T (f,σj ◦ π, σ̄j ◦ π) = 0,

where σj (s) = σ(js)/j and σ̄j (s) = σ̄ (js)/j for s ∈ R. Letting j tend to ∞, we
obtain T (f,π,π) = 0 by the continuity of T , since σj ◦ π → π and σ̄j ◦ π → π in
Liploc(X).

For the proof of (2), it suffices to show that if T ∈ D1(X) and (f, g) ∈ D1(X), then
T (f,g2) = 2T (fg,g). Let ρk, σ, σ̄ be defined as above. Since σ ◦g|spt(ρk◦g) = 2k for
k even and σ̄ ◦ g|spt(ρk◦g) = 2k for k odd, and since (ρk ◦ g)f = 0 for almost all k,
the multilinearity of T and (2.5) give

T (f, (σ ◦ g)(σ̄ ◦ g))

=
∑
k∈Z

T ((ρk ◦ g)f, (σ ◦ g)(σ̄ ◦ g))

=
∑

k even

2kT ((ρk ◦ g)f, σ̄ ◦ g) +
∑
k odd

2kT ((ρk ◦ g)f,σ ◦ g)

=
∑
k∈Z

2kT ((ρk ◦ g)f,σ ◦ g + σ̄ ◦ g)

= T ((τ ◦ g)f, (σ + σ̄ ) ◦ g)

for the piecewise affine 2-Lipschitz function τ := ∑
k∈Z

2kρk , which satisfies
τ |[2k,2k+1] = 2k for k ∈ Z. Rescaling by the factor 1/j , as in the proof of (1), we
obtain the identity

T (f, (σj ◦ g)(σ̄j ◦ g)) = T ((τj ◦ g)f, (σj + σ̄j ) ◦ g),

where τj (s) = τ(js)/j for s ∈ R. Taking the limit for j → ∞ we conclude that
T (f,g2) = T (gf,2g). �

We now deduce a chain rule, which subsumes both the alternating property and the
case g = h of Proposition 2.4(2). For an open set U ⊂ R

n, C1,1(U) denotes the space
of all g ∈ C1(U) with partial derivatives D1g, . . . ,Dng ∈ Liploc(U). For n ≥ m ≥ 1,
we let �(n,m) be the set of all strictly increasing maps λ : {1, . . . ,m} → {1, . . . , n}.
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Theorem 2.5 (chain rule) Suppose m,n ≥ 1, T ∈ Dm(X), U ⊂ R
n is an open set,

f ∈ D(X), π = (π1, . . . , πn) ∈ Liploc(X,U), and g = (g1, . . . , gm) ∈ [C1,1(U)]m. If
n ≥ m, then

T (f,g ◦ π) =
∑

λ∈�(n,m)

T
(
f det

[
(Dλ(k)gi) ◦ π

]m
i,k=1,πλ(1), . . . , πλ(m)

)
.

If n < m, then T (f,g ◦ π) = 0.

Proof For illustration, suppose first that n = m = 1. In this case, the result says that

T (f,g ◦ π) = T (f (g′ ◦ π),π) (2.7)

whenever T ∈ D1(X), U ⊂ R is an open set, f ∈ D(X), π ∈ Liploc(X,U), and g ∈
C1,1(U). From the product rule, Proposition 2.4(2), we obtain the power rule

T (f,πr) = T (f rπr−1,π) ((f,π) ∈ D1(X), r ∈ N) (2.8)

by induction on r . Hence, (2.7) holds if g is (the restriction of) a polynomial. Next, if
g ∈ C2(U), there is a sequence of polynomials pj such that pj → g, p′

j → g′, and
p′′

j → g′′ locally uniformly on U as j → ∞. Then pj ◦ π → g ◦ π and p′
j ◦ π →

g′ ◦ π in Liploc(X), thus (2.7) follows by continuity. Finally, a smoothing argument
extends the result to all g ∈ C1,1(U). For this, note that there is no loss of generality
in assuming that spt(g) is compact; by (2.5), we may replace g by σg for any σ ∈
C1,1(U) such that σ = 1 on π(spt(f )) and spt(σ ) is compact.

Now let n ≥ m = 1. We must show that

T (f,g ◦ π) =
n∑

k=1

T
(
f ((Dkg) ◦ π),πk

)
(2.9)

whenever T ∈ D1(X), U ⊂ R
n is an open set, f ∈ D(X), π = (π1, . . . , πn) ∈

Liploc(X,U), and g ∈ C1,1(U). As above, the product rule implies that this iden-
tity holds if g is a polynomial in the variables x1, . . . , xn. Furthermore, if g ∈ C2(U),
there is a sequence of polynomials pj = pj (x1, . . . , xn) such that pj → g, Dkpj →
Dkg, and DlDkpj → DlDkg locally uniformly on U for all k, l ∈ {1, . . . , n} (see,
e.g., [6, p. 57] for a direct proof). The continuity of T then yields (2.9), and a smooth-
ing argument shows the same identity for all g ∈ C1,1(U).

Finally, the general result for m,n ≥ 1 follows from (2.9), applied to each gi , and
the alternating property. �

Suppose U is an open subset of R
n, T ∈ Dm(U), and π is the identity map on U ,

thus πi(x) = xi . In case m > n, the chain rule says that T (f,g) = 0 for all (f, g) ∈
D(U) × [C1,1(U)]m, and a smoothing argument then shows that T = 0. Hence

Dm(U) = {0} for m > n. (2.10)

In case m = n, we obtain

T (f,g) = T (f det(Dg),π) (2.11)
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for all (f, g) ∈ D(U) × [C1,1(U)]m. We now arrive at the first family of examples of
metric currents, corresponding to the integration of a simple m-form over U ⊂ R

m.

Proposition 2.6 (standard example) Suppose U ⊂ R
m is open, m ≥ 1. Every function

u ∈ L1
loc(U) induces a current [u] ∈ Dm(U) satisfying

[u](f, g) =
∫

U

uf det(Dg)dx

for all (f, g) ∈ Dm(U).

Clearly [u] is (m + 1)-linear and satisfies the locality condition. The continuity
follows from a well-known property of mappings in [W 1,∞

loc (U)]m (see, e.g., [2, The-
orem 2.16]). Since these examples will play a crucial role, we include a proof below.
For reasons of consistency (cf. Definition 8.1), we also extend the notation to the case
m = 0: Then R

0 = {0}, u ∈ L1
loc(R

0) assigns the constant u(0) ∈ R, and [u] ∈ D0(R
0)

is the current satisfying [u](f ) = u(0)f (0) for all f ∈ D(R0).

Proof We verify the continuity of [u]. Suppose (f j , gj ) → (f, g) in Dm(U). Then
there exist an open set V � U and a constant l such that spt(f j ) ⊂ V and Lip(f j ) ≤ l

for all j , and f j → f uniformly; moreover, for i = 1, . . . ,m, Lip(g
j
i |V ) ≤ l for all

j , and g
j
i |V → gi |V uniformly. Put h

j
i := g

j
i − gi . Then we have

[u](f j , gj ) − [u](f, g)

= [u](f j − f,gj ) +
m∑

i=1

[u](f, g1, . . . , gi−1, h
j
i , g

j

i+1, . . . , g
j
m).

Since the sequence (det(Dgj ))j∈N is bounded in L∞(V ), the first term on the right
side clearly tends to 0 for j → ∞. Now consider the summand for i = 1; the other
summands are treated similarly. Since uf ∈ L1(V ), we want to show that

lim
j→∞

∫
V

v det(D(h
j

1, g
j

2 , . . . , g
j
m)) dx = 0 (2.12)

for all v ∈ L1(V ). As C1
c (V ) is dense in L1(V ) and the sequence of determinants is

bounded in L∞(V ), it suffices to prove (2.12) with v replaced by w ∈ C1
c (V ). We

claim that
∫

V

w det(D(h
j

1, g
j

2 , . . . , g
j
m)) dx = −

∫
V

h
j

1 det(D(w,g
j

2 , . . . , g
j
m)) dx. (2.13)

If h
j

1, g
j

2 , . . . , g
j
m ∈ C2(V ), then

∫
V

d(wh
j

1 dg
j

2 ∧ · · · ∧ dg
j
m) = 0 and hence

∫
V

w dh
j

1 ∧ dg
j

2 ∧ · · · ∧ dg
j
m = −

∫
V

h
j

1 dw ∧ dg
j

2 ∧ · · · ∧ dg
j
m,
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which is just a restatement of (2.13). Now a smoothing argument relying on the
bounded convergence theorem shows (2.13) in the general case. Since h

j

1|V → 0
uniformly, the right side of (2.13) tends to zero for j → ∞. Thus (2.12) holds with v

replaced by w ∈ C1
c (V ). �

We conclude this section with some comments regarding Proposition 2.4 and The-
orem 2.5. The proof of the alternating property does not require the continuity of T in
the first argument, and corresponds essentially to the last paragraph on p. 17 in [3]. In
contrast, both the product and the chain rule depend on the joint continuity condition,
Definition 2.1(2). To exemplify this, consider the functional T : D1(R) → R defined
by

T (f,π) :=
∫

R

f ′π ′ dx.

Clearly T is 2-linear and satisfies the locality condition. Moreover, an approxima-
tion and integration by parts argument as in the proof of Proposition 2.6 shows
that if (f j ,πj ) → (f,π) in D1(R), then T (f j ,π) → T (f,π) and T (f,πj ) →
T (f,π). Yet, T fails to be a 1-dimensional metric current. For instance, if f j (x) =
χ[0,2π](x) sin(jx)/j , then f j → 0 in D(R), while T (f j , f j ) = π for all j ∈ N. Nei-
ther the product rule nor the chain rule holds for T . In [3, Theorem 3.5], the proofs
of the corresponding identities rely on the finite mass axiom and use piecewise affine
approximation rather than polynomial approximation.

3 Support, Boundary, and Push-forward

For classical currents, these notions are defined in duality with support, exterior deriv-
ative, and pull-back of forms. Similar constructions apply in the metric context.

Definition 3.1 (support) Given a current T ∈ Dm(X), m ≥ 0, its support spt(T ) in
X is the intersection of all closed sets C ⊂ X with the property that T (f,π) = 0
whenever (f,π) ∈ Dm(X) with spt(f ) ∩ C = ∅.

The definition is justified by the next lemma, whose proof employs Lipschitz par-
titions of unity. This is made possible by the fact that the functions in D(X) have
compact support. In [3], the support of a current T is defined as the support of the
associated finite Borel measure ‖T ‖.

Lemma 3.2 (support) Suppose that T ∈ Dm(X), m ≥ 0.

(1) The support spt(T ) equals the set of all x ∈ X such that for every ε > 0 there
exists an (f,π) ∈ Dm(X) with spt(f ) ⊂ B(x, ε) and T (f,π) �= 0.

(2) If f |spt(T ) = 0, then T (f,π1, . . . , πm) = 0.
(3) In case m ≥ 1, T (f,π1, . . . , πm) = 0 whenever some πi is constant on

{f �= 0} ∩ spt(T ).
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This shows in particular that T (f,π1, . . . , πm) depends only on the restrictions of
f,π1, . . . , πm to spt(T ).

Proof Let � be the set described in (1). Suppose that x �∈ spt(T ). There is a closed
set C with the property stated in Definition 3.1 such that x �∈ C. Then there is an
ε > 0 such that T (f,π) = 0 whenever spt(f ) ⊂ B(x, ε). This shows that x �∈ �, so
� ⊂ spt(T ).

Next we prove that T (f,π) = 0 whenever spt(f ) ∩ � = ∅. Since spt(f ) is a
compact subset of X \ �, there exist finitely many open balls U1, . . . ,UN such
that spt(f ) ⊂ ⋃N

k=1 Uk and T (g,π) = 0 whenever {g �= 0} ⊂ Uk for some k. De-
composing f by means of a Lipschitz partition of unity (ρk)

N
k=1 on spt(f ) with

{ρk �= 0} ⊂ Uk we see that T (f,π) = 0. As � is closed, this shows in particular
that spt(T ) ⊂ �.

For (2), let βj be the function defined after (2.5), j ∈ N. If f |spt(T ) = 0, then
spt(βj ◦ f ) ∩ spt(T ) = ∅. The argument of the previous paragraph then shows that
T (βj ◦ f,π) = 0 for all j , thus T (f,π) = 0 by the continuity of T .

To prove (3), by the linearity, locality, and the alternating property of T it suffices
to show that T (f,π1, . . . , πm) = 0 if π1 = 0 on K := spt(f |spt(T )). Then spt(βj ◦
π1) ∩ K = ∅ for βj as above, j ∈ N. For fixed j , since K is compact, there is a
function σ ∈ D(X) such that σ |K = 1 and βj ◦ π1 = 0 on some neighborhood of
spt(σ ). Then (1 − σ)f |spt(T ) = 0, hence

T (f,βj ◦ π1,π2, . . . , πm) = T (σf,βj ◦ π1,π2, . . . , πm) = 0

by (2) and the locality of T . Since βj ◦ π1 → π1 in Liploc(X) for j → ∞, we have
T (f,π1, . . . , πm) = 0. �

Suppose A is a closed subset of X, and TA ∈ Dm(A). For each f ∈ D(X), the
support of f |A in A is compact. Hence one obtains a current T ∈ Dm(X) by defining

T (f,π1, . . . , πm) := TA(f |A,π1|A, . . . , πm|A) (3.1)

for all (f,π1, . . . , πm) ∈ Dm(X). Clearly spt(T ) = spt(TA). Conversely, the follow-
ing holds.

Proposition 3.3 Let T ∈ Dm(X), m ≥ 0, and let A ⊂ X be a locally compact set
containing spt(T ). Then there is a unique current TA ∈ Dm(A) with the property that

TA(f,π1, . . . , πm) = T (f̄ , π̄1, . . . , π̄m)

whenever (f,π1, . . . , πm) ∈ Dm(A), (f̄ , π̄1, . . . , π̄m) ∈ Dm(X), f̄ |A = f , and
π̄i |A = πi for i = 1, . . . ,m. Moreover, spt(TA) = spt(T ).

In particular, every current T ∈ Dm(X) may be viewed as a current in its own
support, i.e., as an element of Dm(spt(T )).
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Proof For every compact set K ⊂ A, every l ≥ 0, and every c > 0 there exist a com-
pact set K ′ ⊂ X containing K , an l′ ≥ l, and an operator

E : {
f ∈ LipK,l(A) : ‖f ‖∞ ≤ c

} → LipK ′,l′(X)

such that (Ef )|A = f , ‖Ef ‖∞ = ‖f ‖∞, and ‖Ef − Eg‖∞ = ‖f − g‖∞. In fact,
one may choose σ ∈ D(X) such that 0 ≤ σ ≤ 1 and σ |K = 1 and define

(Ef )(x) := σ(x)min
{‖f ‖∞, infa∈A(f (a) + l d(a, x))

}
,

cf. Sect. 1.1. This has the required properties, with K ′ = spt(σ ) and l′ = l + c Lip(σ ).
Now the result follows easily from Lemmas 2.2 and 3.2. �

Suppose for the moment that X is an arbitrary metric space. In view of (3.1) and
Proposition 3.3, it is possible to define the vector space Dm(X) of general metric
m-currents in X as follows: An element

T ∈ Dm(X) (3.2)

is a pair T = (XT, T ) consisting of a closed and locally compact set XT ⊂ X and
a current T ∈ Dm(XT) (Definition 2.1) with spt(T ) = XT. For α ∈ R \ {0}, αT :=
(XT, αT ), and 0T := (∅,0). To form the sum of two elements T,T′ ∈ Dm(X), regard
both T and T ′ as currents in XT ∪ XT′ , put XT+T′ := spt(T + T ′) ⊂ XT ∪ XT′ , and
then interpret T + T ′ as a current in XT+T′ . With this understood, we may again
write T instead of T and XT or spt(T ) instead of XT. We shall briefly return to this
discussion at the end of Sect. 4, but otherwise we shall not pursue it in the present
paper.

We now proceed to the definition of the boundary of a metric m-current in the
locally compact space X, which is easily seen to be an (m − 1)-current.

Definition 3.4 (boundary) The boundary of a current T ∈ Dm(X), m ≥ 1, is the
current ∂T ∈ Dm−1(X) defined by

∂T (f,π1, . . . , πm−1) := T (σ,f,π1, . . . , πm−1)

for (f,π1, . . . , πm−1) ∈ Dm−1(X), where σ ∈ D(X) is any function such that σ = 1
on {f �= 0} ∩ spt(T ).

If τ ∈ D(X) is another such function, then f vanishes on {σ − τ �= 0} ∩ spt(T ),
thus T (σ − τ, f,π1, . . . , πm−1) = 0 by Lemma 3.2(3). This shows that ∂T is well-
defined. Clearly ∂T is multilinear and continuous. To verify the locality of ∂T , sup-
pose that some πi is constant on a neighborhood of spt(f ), choose σ such that πi is
constant on a neighborhood of spt(σ ), and use the locality of T . We have

spt(∂T ) ⊂ spt(T ), (3.3)

and if A ⊂ X and TA are as in Proposition 3.3, then

∂(TA) = (∂T )A. (3.4)
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If m ≥ 2, then

∂(∂T ) = 0. (3.5)

To see this, let (f,π) ∈ Dm−2(X), and choose ρ,σ, τ ∈ D(X) such that ρ|spt(f ) = 1,
σ |spt(ρ) = 1, and τ |spt(σ ) = 1. Then

∂(∂T )(f,π) = ∂T (σ,f,π) = T (τ, σ,f,π) = T (ρ,σ,f,π) = 0;
the third equality holds since f |spt(τ−ρ) = 0, the last since σ |spt(ρ) = 1. The operator
∂ : Dm(X) → Dm−1(X) is linear, and if Tn → T weakly in Dm(X), then ∂Tn → ∂T

weakly in Dm−1(X).
The following lemma corresponds to the identity

(∂T )
φ = T 
dφ + (−1)k∂(T 
φ)

for a classical m-current T and k-form φ, cf. [14, p. 356].

Lemma 3.5 For T ∈ Dm(X) and (u, v) ∈ Liploc(X) × [Liploc(X)]k , where m >

k ≥ 0, the identity

(∂T )
(u, v) = T 
(1, u, v) + (−1)k∂(T 
(u, v))

holds.

In case k = 0, the identity simply reads

(∂T )
u = T 
(1, u) + ∂(T 
u). (3.6)

Note also that

(∂T )
(1, v) = (−1)k∂(T 
(1, v)) (3.7)

since T 
(1,1, v) = 0 by the locality of T .

Proof Let (f, g) ∈ Dm−k−1(X), and choose σ ∈ D(X) with σ |spt(f ) = 1. Then

((∂T )
(u, v))(f, g) = ∂T (uf, v, g)

= T (σ,uf, v, g)

= T (σf,u, v, g) + T (σu,f, v, g)

= T (f,u, v, g) + (−1)kT (σu, v,f, g)

= (T 
(1, u, v))(f, g) + (−1)k(T 
(u, v))(σ,f, g)

= (T 
(1, u, v))(f, g) + (−1)k∂(T 
(u, v))(f, g);
the third step uses Proposition 2.4(2), the fourth 2.4(1). �

Next we define push-forwards of metric currents under locally Lipschitz maps.
Since the test functions have compact support, we need to restrict to proper maps, as
in the classical case (cf. [14, p. 359 and 4.1.14]).
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Definition 3.6 (push-forward) Suppose that T ∈ Dm(X), m ≥ 0, A ⊂ X is a locally
compact set containing spt(T ), Y is another locally compact metric space, and F ∈
Liploc(A,Y ) is proper, i.e., F−1(K) is compact whenever K ⊂ Y is compact. The
push-forward of T via F is the current F#T ∈ Dm(Y ) defined by

F#T (f,π1, . . . , πm) := TA(f ◦ F,π1 ◦ F, . . . , πm ◦ F)

for (f,π1, . . . , πm) ∈ Dm(Y ), where TA ∈ Dm(A) is as in Proposition 3.3.

Note that f ◦ F ∈ D(A) since F is locally Lipschitz and proper. One readily
verifies that F#T is a metric current. Since F is a proper continuous map, F(spt(T ))

is closed in Y , and

spt(F#T ) ⊂ F(spt(T )). (3.8)

If m ≥ 1, then

∂(F#T ) = F#(∂T ). (3.9)

To see this, let (f,π) ∈ Dm−1(Y ), and choose σ ∈ D(Y ) such that σ |spt(f ) = 1; then

∂(F#T )(f,π) = (F#T )(σ,f,π) = TA(σ ◦ F,f ◦ F,π ◦ F)

= ∂(TA)(f ◦ F,π ◦ F) = (∂T )A(f ◦ F,π ◦ F) = F#(∂T )(f,π).

If Z is another locally compact metric space and G ∈ Liploc(Y,Z) is proper, then

G#(F#T ) = (G ◦ F)#T . (3.10)

If F ∈ Liploc(X,Y ) is proper, then the operator F# : Dm(X) → Dm(Y ) is linear, and
F#Tn → F#T weakly in Dm(Y ) whenever Tn → T weakly in Dm(X). Finally, sup-
pose F ∈ Liploc(D,Y ) for some set D ⊂ X containing spt(T ), and F |spt(T ) is proper.
In this situation, we put

F#T := (
F |spt(T )

)
#T ; (3.11)

this is consistent with the above definition in case D is locally compact and F is
proper. When F ∈ Liploc(X,Y ) and F |spt(T ) is proper, it follows that

F#T (f,π1, . . . , πm) = T (σ (f ◦ F),π1 ◦ F, . . . , πm ◦ F) (3.12)

for (f,π1, . . . , πm) ∈ Dm(Y ) and any σ ∈ D(X) such that σ = 1 on {f ◦ F �= 0} ∩
spt(T ).

We compute the push-forward of a current [u] as in Proposition 2.6 (standard
example).

Lemma 3.7 Suppose u ∈ L1
loc(R

m), m ≥ 1, F ∈ Liploc(R
m,R

m), and F |spt(u) is
proper. Then F#[u] = [v], where v ∈ L1

loc(R
m) satisfies

v(y) =
∑

x∈F−1{y}
u(x) sign(det(DF(x)))

for L m-almost every y ∈ R
m.
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Proof Let (f,π) ∈ Dm(Rm). Then

F#[u](f,π) =
∫

Rm

u(f ◦ F)det(D(π ◦ F))dx =
∫

Rm

h(x) |det(DF(x))| dx

for h(x) := u(x)f (F (x))det(Dπ(F(x))) sign(det(DF(x))). By the change of vari-
ables formula (cf. [14, Theorem 3.2.3(2)] or [13, 3.3.3], the case n = m),

F#[u](f,π) =
∫

Rm

∑
x∈F−1{y}

h(x)dy =
∫

Rm

v(y)f (y)det(Dπ(y)) dy

= [v](f,π).

This proves the lemma. �

4 Mass

We now define the mass of a metric current. Our approach is inspired by both the
classical definition (recalled in (5.2)) and [3, Proposition 2.7]. Currents with locally
finite mass will be of particular interest.

Definition 4.1 (mass) For T ∈ Dm(X), m ≥ 0, and every open set V ⊂ X, we define
the mass MV (T ) of T in V as the least number M ∈ [0,∞] such that

∑
λ∈�

T (fλ,π
λ) ≤ M

whenever � is a finite set, (fλ,π
λ) = (fλ,π

λ
1 , . . . , πλ

m) ∈ D(X) × [Lip1(X)]m,
spt(fλ) ⊂ V , and

∑
λ∈� |fλ| ≤ 1. The number M(T ) := MX(T ) is the total mass

of T . We denote by

Mm,loc(X)

the vector space of all T ∈ Dm(X) such that MV (T ) < ∞ for every open set V � X,
and we put

Mm(X) := {T ∈ Dm(X) : M(T ) < ∞}.
Furthermore, we define

‖T ‖(A) := inf{MV (T ) : V ⊂ X is open, A ⊂ V }

for T ∈ Dm(X) and every set A ⊂ X.

Note that for T ∈ D0(X),

MV (T ) = sup{T (f ) : f ∈ D(X), spt(f ) ⊂ V, |f | ≤ 1},
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and by the continuity of T it follows that

MV (T ) = sup{T (f ) : f ∈ D(X), |f | ≤ χV }. (4.1)

If T ∈ Dm(X) and A ⊂ X is open, then clearly

‖T ‖(A) = MA(T ). (4.2)

The mass is lower semicontinuous with respect to weak convergence: If Tn → T

weakly in Dm(X), then

MV (T ) ≤ lim inf
n→∞ MV (Tn) (4.3)

for every open set V ⊂ X. For T ,T ′ ∈ Dm(X) and α ∈ R, we have

‖αT ‖ = |α|‖T ‖, ‖T + T ′‖ ≤ ‖T ‖ + ‖T ′‖, (4.4)

and ‖T ‖ = 0 if and only if T = 0. In particular, M is a norm on Mm(X).

Proposition 4.2 For m ≥ 0, (Mm(X),M) is a Banach space.

Proof Let (Tk)k∈N be a Cauchy sequence in (Mm(X),M). For every ε > 0 there
exists an index kε such that

|Tk(f,π) − Tl(f,π)| = |(Tk − Tl)(f,π)| ≤ M(Tk − Tl) ≤ ε

whenever k, l ≥ kε and (f,π) ∈ D(X) × [Lip1(X)]m with |f | ≤ 1. In particular,
(Tk(f,π))k∈N is a Cauchy sequence for every such (f,π). It follows that there is an
(m + 1)-linear function T : Dm(X) → R such that limk→∞ Tk(f,π) = T (f,π) for
all (f,π) ∈ Dm(X) and T satisfies the locality condition (Definition 2.1(3)). More-
over, for ε > 0 and kε as above, we have

|Tk(f,π) − T (f,π)| ≤ ε

whenever k ≥ kε and (f,π) ∈ D(X) × [Lip1(X)]m with |f | ≤ 1. It suffices to ver-
ify the continuity of T on the set of all such (f,π). Suppose that (f,π), (f 1,π1),

(f 2,π2), . . . belong to this set and (f j ,πj ) → (f,π) in Dm(X). Given ε > 0, there
is an index jε such that |Tkε (f

j ,πj ) − Tkε (f,π)| ≤ ε for all j ≥ jε ; then

|T (f j ,πj ) − T (f,π)|
≤ |T (f j ,πj ) − Tkε (f

j ,πj )| + ε + |Tkε (f,π) − T (f,π)| ≤ 3ε.

Hence T is a current. Whenever � is a finite set, (fλ,π
λ) ∈ D(X) × [Lip1(X)]m for

λ ∈ �, and
∑

λ∈� |fλ| ≤ 1, we have

∑
λ∈�

(Tk − Tl)(fλ,π
λ) ≤ M(Tk − Tl) ≤ ε
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for k, l ≥ kε , hence
∑

λ∈�(Tk −T )(fλ,π
λ) ≤ ε for k ≥ kε . We conclude that M(Tk −

T ) ≤ ε for k ≥ kε . Thus T ∈ Mm(X) and Tk → T in (Mm(X),M). �

Let U ⊂ R
m be an open set. For T ∈ Dm(U), it follows from Theorem 2.5 (chain

rule) that

MV (T ) = sup{T (f, id) : f ∈ D(X), spt(f ) ⊂ V, |f | ≤ 1}
for every open set V ⊂ U . Given a current [u] as in Proposition 2.6 (standard exam-
ple), where u ∈ L1

loc(U), we have

MV ([u]) = sup

{∫
V

uf dx : f ∈ D(V ), |f | ≤ 1

}
=

∫
V

|u|dx (4.5)

for every open set V ⊂ U . In particular, [u] ∈ Mm,loc(U).

Theorem 4.3 (mass) Let T ∈ Dm(X), m ≥ 0.

(1) The function ‖T ‖: 2X → [0,∞] (cf. Definition 4.1) is a Borel regular outer mea-
sure.

(2) We have spt(‖T ‖) = spt(T ) and ‖T ‖(X \ spt(T )) = 0.
(3) For every open set V ⊂ X,

‖T ‖(V ) = sup{‖T ‖(K) : K ⊂ X is compact, K ⊂ V }.
(4) If T ∈ Mm,loc(X), then ‖T ‖ is a Radon measure, and

|T (f,π)| ≤
m∏

i=1

Lip
(
πi |spt(f )

)∫
X

|f |d‖T ‖

for all (f,π) = (f,π1, . . . , πm) ∈ Dm(X).

In case m = 0, the inequality in (4) reads

|T (f )| ≤
∫

X

|f |d‖T ‖.

In case m ≥ 1, it holds as well with {f �= 0} ∩ spt(T ) in place of spt(f ), by
Lemma 3.2(3) and the extendability of Lipschitz functions. Properties (1), (2), and (3)
hold in general for every (m + 1)-linear functional T : Dm(X) → R; for m = 0 the
same argument occurs in the proof of the Riesz representation theorem (see, e.g., [28,
Theorem 4.1]). The proof of (4) corresponds essentially to that of [3, (2.8)].

Proof Clearly ‖T ‖(∅) = 0. We claim that

‖T ‖(V ) ≤
∞∑

k=1

‖T ‖(Vk)
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whenever V,V1,V2, . . . ⊂ X are open and V ⊂ ⋃∞
k=1 Vk . Let � and (fλ,π

λ) be
given as in the definition of MV (T ). There is an index N such that

⋃N
k=1 Vk contains

the compact set K := ⋃
λ∈� spt(fλ). Then there exist ρ1, . . . , ρN ∈ D(X) such that∑N

k=1 ρk = 1 on K and 0 ≤ ρk ≤ 1, spt(ρk) ⊂ Vk for k = 1, . . . ,N . Then

∑
λ∈�

T (fλ,π
λ) =

∑
λ∈�

N∑
k=1

T (ρkfλ,π
λ) =

N∑
k=1

∑
λ∈�

T (ρkfλ,π
λ) ≤

N∑
k=1

‖T ‖(Vk)

since spt(ρkfλ) ⊂ Vk and
∑

λ∈� |ρkfλ| ≤ 1 for k = 1, . . . ,N , proving the claim. It
follows that ‖T ‖ is an outer measure, and ‖T ‖(A ∪ B) = ‖T ‖(A) + ‖T ‖(B) when-
ever inf{d(x, y) : x ∈ A, y ∈ B} > 0. By Carathéodory’s criterion, every Borel set
is ‖T ‖-measurable. If A is an arbitrary set, then A is contained in a Gδ set B with
‖T ‖(B) = ‖T ‖(A), by the definition of ‖T ‖(A). Thus ‖T ‖ is Borel regular. This
proves (1).

Assertion (2) follows from Lemma 3.2.
For (3), given an open set V , let α < ‖T ‖(V ). Then there exist a finite set � and

(fλ,π
λ) ∈ D(X) × [Lip1(X)]m such that K := ⋃

λ∈� spt(fλ) ⊂ V ,
∑

λ∈� |fλ| ≤ 1,
and s := ∑

λ∈� T (fλ,π
λ) ≥ α. For every open set U containing K we have

‖T ‖(U) ≥ s ≥ α, hence ‖T ‖(K) ≥ α.
It remains to prove (4). If T ∈ Mm,loc(X), then ‖T ‖ is finite on compact sets, thus

T is a Radon measure. For the integral estimate, we first consider the case m = 0,
so that T ∈ M0,loc(X). Assuming without loss of generality that f ≥ 0, we put fs :=
min{f, s} and observe that, by (4.1),

|T (ft ) − T (fs)| = |T (ft − fs)| ≤ ‖T ‖({f > s})(t − s)

whenever 0 ≤ s < t . Hence s �→ T (fs) is a Lipschitz function with |(d/ds)T (fs)| ≤
‖T ‖({f > s}) for almost every s ≥ 0. Since T (f ) = T (f ) − T (f0) =∫ ∞

0 (d/ds)T (fs) ds, we conclude that

|T (f )| ≤
∫ ∞

0

∣∣∣∣ d

ds
T (fs)

∣∣∣∣ds ≤
∫ ∞

0
‖T ‖({f > s}) ds =

∫
X

f d‖T ‖

(for the last step, see, e.g., [25, Theorem 8.16]). Now let T ∈ Mm,loc(X), m ≥ 1.
Let first (f,π) ∈ D(X) × [Lip1(X)]m, and consider Tπ := T 
(1,π) ∈ D0(X). Then
‖Tπ‖ ≤ ‖T ‖, thus Tπ ∈ M0,loc(X), and

|T (f,π)| = |Tπ(f )| ≤
∫

X

|f |d‖Tπ‖ ≤
∫

X

|f |d‖T ‖.

Finally, given (f,π) ∈ Dm(X), there exists π̃ ∈ [Lip(X)]m such that π̃ = π on spt(f )

and Lip(π̃i) = Lip(πi |spt(f )) for i = 1, . . . ,m. Then T (f,π) = T (f, π̃) by the strict
locality property (2.5), and the result follows. �

Recall from Sect. 1.2 that we denote by B∞
c (X) the algebra of all bounded Borel

functions f : X → R such that spt(f ) is compact. From Theorem 4.3(4) it follows
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that every T ∈ Mm,loc(X), m ≥ 0, naturally extends to a function

T : B∞
c (X) × [Liploc(X)]m → R. (4.6)

To see this, note that D(X) is dense in L1(‖T ‖) (since Cc(X) is, see, e.g., [25, 3.14],
and since every element of Cc(X) is a uniform limit of a sequence of Lipschitz
functions, cf. Sect. 1.1). Hence, whenever f ∈ B∞

c (X) ⊂ L1(‖T ‖) and U � X is
a neighborhood of spt(f ), there is a sequence (gk)k∈N in D(X) such that gk → f in
L1(‖T ‖) and spt(gk) ⊂ U for all k. By Theorem 4.3(4), for every π ∈ [Liploc(X)]m,
(T (gk,π))k∈N is a Cauchy sequence whose limit is independent of the choice of
(gk)k∈N. Then T (f,π) is defined to be this limit.

Theorem 4.4 (extended functional) Let T ∈ Mm,loc(X), m ≥ 0. The extension
T : B∞

c (X) × [Liploc(X)]m → R possesses the following properties:

(1) (multilinearity) T is (m + 1)-linear on B∞
c (X) × [Liploc(X)]m.

(2) (continuity) T (f j ,πj ) → T (f,π) whenever f,f 1, f 2, . . . ∈ B∞
c (X),

supj ‖f j‖∞ < ∞,
⋃

j spt(f j ) ⊂ K for some compact set K ⊂ X, f j → f

pointwise on X, and πj → π in [Liploc(X)]m.
(3) (locality) In case m ≥ 1, T (f,π) = 0 whenever some πi is constant on the sup-

port of f ∈ B∞
c (X).

(4) For all (f,π) ∈ B∞
c (X) × [Liploc(X)]m,

|T (f,π)| ≤
m∏

i=1

Lip
(
πi |spt(f )

)∫
X

|f |d‖T ‖.

Obviously (4) subsumes (3). Moreover, whenever a functional T satisfying (4)
is linear in the first argument and continuous with respect to the convergence in
[Liploc(X)]m, then T fulfils (2) (cf. (4.9) below). As a consequence of (4) and Theo-
rem 4.3(2), we also have T (f − f̃ , π) = 0 and hence

T (f,π) = T (f̃ ,π) (4.7)

whenever f, f̃ ∈ B∞
c (X) agree on spt(T ).

Proof Clearly the extended functional T is (m + 1)-linear, and

|T (f,π)| ≤
m∏

i=1

Lip(πi |U)

∫
X

|f |d‖T ‖ (4.8)

whenever (f,π) ∈ B∞
c (X) × [Liploc(X)]m and U � X is a neighborhood of spt(f ).

Given (f,π), (f 1,π1), (f 2,π2), . . . and K as in (2), choose a neighborhood
U � X of K . Since πj → π in [Liploc(X)]m, there is a constant l such that

supj Lip(π
j
i |U) ≤ l and Lip(πi |U) ≤ l for i = 1, . . . ,m. We have

|T (f j ,πj ) − T (f,π)| ≤ |T (f j − f,πj )| + |T (f,πj ) − T (f,π)|, (4.9)
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and |T (f j − f,πj )| ≤ lm
∫
X

|f j − f |d‖T ‖ → 0, by the bounded convergence the-
orem. For the second term on the right side, given ε > 0, choose g ∈ D(X) such
that spt(g) ⊂ U and lm

∫
X

|f − g|d‖T ‖ < ε/3. For j sufficiently large, |T (g,πj ) −
T (g,π)| < ε/3 by the continuity of T , hence

|T (f,πj ) − T (f,π)|
≤ |T (f − g,πj )| + |T (f − g,π)| + |T (g,πj ) − T (g,π)| < ε.

This shows (2).
By the locality of T , clearly T (f,π) = 0 if some πi is constant on a neighborhood

of the support of f ∈ B∞
c (X). Hence, for the proof of (3), there is no loss of gen-

erality in assuming that πi = 0 on spt(f ). Let βj be the function defined after (2.5).
Then βj ◦ πi = 0 on some neighborhood of spt(f ), and letting j tend to infinity we
obtain T (f,π) = 0 by means of (2).

Finally, (4) follows from (4.8) by (3) and the extendability of Lipschitz func-
tions. �

The extension of T allows us to define T 
u more generally for locally bounded
Borel functions u, in particular for characteristic functions of Borel sets. This com-
plements Definition 2.3.

Definition 4.5 For T ∈ Mm,loc(X) and (u, v) ∈ B∞
loc(X) × [Liploc(X)]k , where m ≥

k ≥ 0, we define T 
(u, v) ∈ Mm−k,loc(X) by the same equation as in Definition 2.3.
For a Borel set B ⊂ X,

T 
B := T 
χB.

Clearly T 
(u, v) is a current, and it follows from Theorem 4.4(4) that

MV (T 
(u, v)) ≤
k∏

i=1

Lip(vi |V )

∫
V

|u|d‖T ‖ (4.10)

for all open sets V ⊂ X (meaning MV (T 
u) ≤ ∫
V

|u|d‖T ‖ in case k = 0). Since the
right side is finite if the closure of V is compact, we have T 
(u, v) ∈ Mm−k,loc(X).

The next lemma gives information on push-forwards of currents with locally finite
mass.

Lemma 4.6 Suppose T ∈ Mm,loc(X), m ≥ 0, Y is another locally compact metric
space, F ∈ Liploc(X,Y ), and F |spt(T ) is proper. Then F#T ∈ Mm,loc(Y ), and the fol-
lowing properties hold:

(1) For all (f,π) ∈ B∞
c (Y )×[Liploc(Y )]m and any σ ∈ B∞

c (X) such that σ = 1 on
{f ◦ F �= 0} ∩ spt(T ),

F#T (f,π) = T (σ (f ◦ F),π ◦ F).
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(2) For every Borel set B ⊂ Y ,

M((F#T )
B) ≤ Lip
(
F |F−1(B)∩spt(T )

)m‖T ‖(F−1(B)).

Proof Let V � Y be an open set, and choose σ ∈ D(X) such that σ = 1 on F−1(V )∩
spt(T ). It follows from (3.12) and Theorem 4.3(4) that

MV (F#T ) ≤ Lip
(
F |spt(σ )

)m‖T ‖(F−1(V )).

Hence F#T ∈ Mm,loc(Y ).
To prove (1), fix π ∈ [Liploc(Y )]m and ρ ∈ D(Y ), ρ ≥ 0. Choose τ ∈ D(X) such

that τ = 1 on {ρ ◦ F �= 0} ∩ spt(T ), and denote by 	 the set of all f ∈ B∞
c (Y ) such

that |f | ≤ ρ and F#T (f,π) = T (τ(f ◦ F),π ◦ F). It follows from Theorem 4.4(2)
that 	 is a Baire class. By (3.12), 	 contains all f ∈ D(Y ) with |f | ≤ ρ and therefore
consists of all f ∈ B∞

c (Y ) with |f | ≤ ρ, cf. Sect. 1.2. In view of (4.7), this gives (1).
For (2), suppose (f,π) ∈ D(Y )×[Lip1(Y )]m, and let σ be the characteristic func-

tion of F−1(B) ∩ {f ◦ F �= 0} ∩ spt(T ). By (1) and Theorem 4.4(4),

((F#T )
B)(f,π) = F#T (χBf,π) = T (σ (f ◦ F),π ◦ F)

≤ Lip
(
F |spt(σ )

)m
∫

F−1(B)

|f ◦ F |d‖T ‖.

This yields the result. �

For a current T ∈ Mm,loc(X) and a Borel set B ⊂ X, we always have M(T 
B) ≤
‖T ‖(B). Equality holds, for instance, if spt(T ) is separable; this is shown by the
following lemma.

Lemma 4.7 (characterizing ‖T ‖) Suppose T ∈ Mm,loc(X), m ≥ 0, and B ⊂ X is
either a Borel set that is σ -finite with respect to ‖T ‖ or an open set. Then ‖T ‖(B) is
the least number such that ∑

λ∈�

T (fλ,π
λ) ≤ ‖T ‖(B)

whenever � is a finite set, (fλ,π
λ) ∈ B∞

c (X) × [Lip1(X)]m, and
∑

λ∈� |fλ| ≤ χB .
Moreover,

‖T ‖
B = ‖T 
B‖,
in particular, ‖T ‖(B) = M(T 
B).

In case m = 0, this says that

‖T ‖(B) = sup{T (f ) : f ∈ B∞
c (X), |f | ≤ χB}. (4.11)

In particular,

‖T ‖({x}) = |T (χ{x})| (4.12)

for every x ∈ X.
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The following simple example illustrates the σ -finiteness assumption in the
lemma. Let R be any uncountable discrete space, and equip X = R × (−1,1) with
the metric d defined by

d((r, s), (r ′, s′)) :=
{

|s − s′| if r = r ′,
1 if r �= r ′.

Note that X is locally compact. Let T ∈ M1,loc(X) be the current satisfying

T (f,π) =
∫

X

f (r, s)
dπ

ds
(r, s) dH 1(r, s)

for all (f,π) ∈ D1(X); then ‖T ‖ = H 1 (compare (4.5)). Since R is uncountable,
the closed set B := R × {0} is not σ -finite with respect to ‖T ‖, hence ‖T ‖
B is
not σ -finite. On the other hand, (‖T ‖
B)(K) = 0 for all compact sets K ⊂ X, and
T 
B = 0.

Proof of Lemma 4.7 We show the first part. By Theorem 4.4(4), the inequality always
holds. To see that ‖T ‖(B) is the least number with this property, let ε > 0, and choose
an open set V such that B ⊂ V and ‖T ‖(V \ B) ≤ ε. Note that this is possible by
the assumption on B . Let α < ‖T ‖(V ). Then there exist � and (fλ,π

λ) as in the
definition of MV (T ) such that

α ≤
∑
λ∈�

T (fλ,π
λ) =

∑
λ∈�

T (χBfλ,π
λ) +

∑
λ∈�

T (χV \Bfλ,π
λ)

≤ ‖T ‖(B) + ε.

This gives the result.
For the second part, it suffices to prove that ‖T ‖(B ∩ A) = ‖T 
B‖(A) for every

Borel set A ⊂ X. To verify this equality, apply the result of the first part to either
side. �

In (4.6) we extended the elements of Mm,loc(X) to B∞
c (X) × [Liploc(X)]m. We

now extend currents of finite total mass in another direction. This will also establish
the connection to the metric currents of [3].

Let T ∈ Mm(X). We consider the restriction of T to D(X) × [Lip(X)]m, which
determines T uniquely (compare Lemma 2.2). Since ‖T ‖ is finite, L1(‖T ‖) contains
the algebra B∞(X) of bounded Borel functions on X. As in Theorem 4.4, it follows
from Theorem 4.3(4) that the restriction of T extends to a function

T : B∞(X) × [Lip(X)]m → R (4.13)

with the following properties:
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(1) (multilinearity) T is (m + 1)-linear.
(2) (continuity) T (f j ,πj ) → T (f,π) whenever (f,π), (f 1,π1), (f 2,π2), . . . ∈

B∞(X)×[Lipl (X)]m for some l ≥ 0, supj ‖f j‖∞ < ∞, and (f j ,πj ) → (f,π)

pointwise on X.
(3) (locality) In case m ≥ 1, T (f,π) = 0 whenever some πi is constant on spt(f ).
(4) For all (f,π) ∈ B∞(X) × [Lip(X)]m,

|T (f,π)| ≤
m∏

i=1

Lip
(
πi |spt(f )

)∫
X

|f |d‖T ‖.

Furthermore, by (4) and Lemma 4.7, for every Borel set B ⊂ X, ‖T ‖(B) is the least
number such that ∑

λ∈�

T (fλ,π
λ) ≤ ‖T ‖(B) (4.14)

whenever � is a finite set, (fλ,π
λ) ∈ B∞(X) × [Lip1(X)]m, and

∑
λ∈� |fλ| ≤ χB .

Suppose now, for the remaining part of this section, that X is an arbitrary met-
ric space. Combining the extension just described with the discussion of (3.2), we
obtain a corresponding normed space (Mm(X),M) of currents with finite mass and
locally compact support in X. By definition, an element T of Mm(X) is a functional
on B∞(XT ) × [Lip(XT )]m for some closed and locally compact set XT ⊂ X. How-
ever, T may now be equally well viewed as a functional on B∞(X) × [Lip(X)]m
(compare (3.1) and Proposition 3.3). A current

T ∈ Mm(X)

is then a function as in (4.13) satisfying (1)–(4) (now for arbitrary X), where ‖T ‖ is
a finite Borel regular outer measure that is concentrated on its locally compact sup-
port spt(‖T ‖) and characterized by (4.14). Since ‖T ‖ is finite, spt(‖T ‖) is separable
(cf. [14, Theorem 2.2.16]) and hence also σ -compact. In contrast to Proposition 4.2,
the space (Mm(X),M) of all such T , where M(T ) = ‖T ‖(X), is no longer complete
in general.

We now denote by (MAK
m (X),M) the Banach space of all m-currents in the sense

of Ambrosio and Kirchheim, viewed as functionals on B∞(X) × [Lip(X)]m, cf. [3,
Theorem 3.5]. A current

T ∈ MAK
m (X)

is a function as in (4.13) satisfying (1)–(3). Moreover, there exist a σ -compact set
� ⊂ X and a finite Borel measure μ on X such that μ(X \ �) = 0 and (4) holds
with μ in place of ‖T ‖. There is a minimal Borel measure μT with this property
(denoted ‖T ‖ in [3]), and M(T ) := μT (X). Regarding the existence of �, see [3,
Lemma 2.9] and the remark thereafter; note that this lemma requires completeness of
the underlying metric space.

We now verify that (Mm(X),M) is a dense subspace of (MAK
m (X),M), so that

(MAK
m (X),M) is the completion of (Mm(X),M). (4.15)
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Clearly Mm(X) ⊂ MAK
m (X), and for T ∈ Mm(X), (4.14) readily implies that

‖T ‖(B) = μT (B) for every Borel set B ⊂ X, thus the two definitions of M(T )

agree. Given T ∈ MAK
m (X), there exist compact sets K1 ⊂ K2 ⊂ · · · in X such that

μT (X\�) = 0 for � := ⋃∞
k=1 Kk . The restrictions T 
Kk form a sequence in Mm(X)

converging in (MAK
m (X),M) to T .

In the sequel, X will again denote a locally compact metric space.

5 Normal Currents

We turn to the chain complex of normal currents. In the first part of this section we
prove the compactness theorem for locally normal metric currents. Then we com-
pare metric currents in an open set U ⊂ R

n with classical currents; in particular, we
establish an isomorphism for locally normal currents.

Definition 5.1 (normal current) For T ∈ Dm(X) and every open set V ⊂ X, define

NV (T ) := MV (T ) + MV (∂T )

if m ≥ 1, and NV (T ) := MV (T ) if m = 0, and let N(T ) := NX(T ). The vector space

Nm,loc(X)

of m-dimensional locally normal currents in X consists of all T ∈ Dm(X) such that
NV (T ) < ∞ for all open sets V � X. An m-dimensional normal current in X is an
element of

Nm(X) := {T ∈ Dm(X) : N(T ) < ∞}.
Note that (Nm(X),N) is a Banach space, cf. Proposition 4.2. If T ∈ Nm,loc(X) and

(u, v) ∈ Liploc(X) × [Liploc(X)]k , where m > k ≥ 0, then

∂(T 
(u, v)) = (−1)k
(
(∂T )
(u, v) − T 
(1, u, v)

)

by Lemma 3.5. Applying (4.10) twice, we get

MV (∂(T 
(u, v))) ≤
k∏

i=1

Lip(vi |V )

(∫
V

|u|d‖∂T ‖ + Lip(u|V )‖T ‖(V )

)
(5.1)

for every open set V ⊂ X. Together with (4.10), this shows that T 
(u, v) ∈
Nm−k,loc(X). By Lemma 4.6 and (3.9), push-forwards of locally normal currents
are locally normal.

The following result corresponds to [3, Proposition 5.1].

Lemma 5.2 (uniform continuity of normal currents) Let T ∈ Nm,loc(X), m ≥ 1.

(1) For every (f, g) ∈ Dm(X) with g2, . . . , gm ∈ Lip1(X),

|T (f,g)| ≤ Lip(f )

∫
spt(f )

|g1|d‖T ‖ +
∫

X

|fg1|d‖∂T ‖.
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(2) For all (f, g), (f̃ , g̃) ∈ D(X) × [Lip1(X)]m,

∣∣T (f,g) − T (f̃ , g̃)
∣∣ ≤

∫
X

|f − f̃ |d‖T ‖

+
m∑

i=1

(
Lip(f )

∫
spt(f )

|gi − g̃i |d‖T ‖

+
∫

X

|f ||gi − g̃i |d‖∂T ‖
)

.

Proof For the proof of (1) we assume m = 1. Let (f, g) ∈ D1(X), and choose σ ∈
D(X) with σ |spt(f ) = 1. By the product rule,

|T (f,g)| ≤ |T (σg,f )| + |T (σ,fg)| = |T (σg,f )| + |∂T (fg)|,
hence

|T (f,g)| ≤ Lip(f )

∫
spt(f )

|g|d‖T ‖ +
∫

X

|fg|d‖∂T ‖.

For the proof of (2) we observe that

T (f,g) − T (f̃ , g̃)

= T (f − f̃ , g̃) +
m∑

i=1

T (f, g̃1, . . . , g̃i−1, gi − g̃i , gi+1, . . . , gm),

then we apply the alternating property and (1) to each summand. �

Lemma 5.2 yields the following proposition, which will be used repeatedly in the
sequel.

Proposition 5.3 (convergence criterion) Suppose X is compact, F ⊂ Lip1(X) is
dense in Lip1(X) with respect to the metric induced by ‖ · ‖∞, and (Tn)n∈N is a se-
quence in Nm(X), m ≥ 0, with M := supn N(Tn) < ∞ and the property that the limit
limn→∞ Tn(f,g) exists for all (f, g) ∈ F × Fm. Then (Tn)n∈N converges weakly to
some T ∈ Nm(X).

Proof We assume m ≥ 1; the case m = 0 is similar but easier. Let (f, g), (f̃ , g̃) ∈
D(X) × [Lip1(X)]m, and define

R(f,g, f̃ , g̃) := ‖f − f̃ ‖∞ + max{‖f ‖∞,Lip(f )}
m∑

i=1

‖gi − g̃i‖∞.

For every n ∈ N, Lemma 5.2(2) gives

|Tn(f,g) − Tn(f̃ , g̃)| ≤ R(f,g, f̃ , g̃)N(Tn) ≤ R(f,g, f̃ , g̃)M.
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Fix (f, g) ∈ Lip1(X) × [Lip1(X)]m for the moment. Given ε > 0, there is (f̃ , g̃) ∈
F ×Fm such that R(f,g, f̃ , g̃)M ≤ ε, and there is an index n0 such that |Tn(f̃ , g̃)−
Tn′(f̃ , g̃)| ≤ ε for all n,n′ ≥ n0. Then |Tn(f,g) − Tn′(f, g)| ≤ 3ε for all n,n′ ≥ n0,
so (Tn(f, g))n∈N is a Cauchy sequence. Define T : Lip1(X)×[Lip1(X)]m → R such
that

T (f,g) = lim
n→∞Tn(f,g)

for all (f, g) ∈ Lip1(X) × [Lip1(X)]m. It follows that |T (f,g) − T (f̃ , g̃)| ≤
R(f,g, f̃ , g̃)M for all (f, g), (f̃ , g̃) ∈ Lip1(X) × [Lip1(X)]m. Now it is clear that
T extends uniquely to a current T ∈ Dm(X), and Tn → T weakly. By the lower
semicontinuity of mass, T ∈ Nm(X). �

We now arrive at a fundamental result for locally normal currents in a locally
compact metric space X.

Theorem 5.4 (Nm,loc compactness) Suppose (Tn)n∈N is a sequence in Nm,loc(X),
m ≥ 0, such that each spt(Tn) is separable and supn NV (Tn) < ∞ for every open
set V � X. Then there is a subsequence (Tn(i))i∈N that converges weakly to some
T ∈ Nm,loc(X).

Compare [3, Theorem 5.2].

Proof Assume first that X is compact, so that M := supn N(Tn) < ∞. Choose a
countable set F ⊂ Lip1(X) as in Proposition 5.3. For every (f, g) ∈ F × Fm,

|Tn(f,g)| ≤ ‖f ‖∞M(Tn) ≤ ‖f ‖∞M

for all n. A diagonal process then yields a subsequence (Tn(i))i∈N such that the limit
limi→∞ Tn(i)(f, g) exists for every (f, g) ∈ F × Fm. By Proposition 5.3, this sub-
sequence converges weakly to some T ∈ Nm(X).

In the general case, the closure of
⋃

n∈N
spt(Tn) is separable, thus there is no loss

of generality in assuming that X itself is separable. Then there exists a countable set
� ⊂ D(X) such that for every compact set K ⊂ X there is a σ ∈ � with σ |K = 1.
Note that

N(Tn
σ) ≤ (‖σ‖∞ + Lip(σ ))NV (Tn)

whenever σ ∈ D(X) and V ⊂ X is an open set containing spt(σ ). Hence, for each σ ∈
�, we may apply the first part to the restrictions Tn
σ , temporarily viewed as currents
in the compact set spt(σ ). In combination with a diagonal process, this allows us to
extract a subsequence (Tn(i))i∈N such that for every σ ∈ �, the Tn(i)
σ converge
weakly to some Tσ ∈ Nm(X). Finally, for every (f, g) ∈ Dm(X), choose σ ∈ � with
σ |spt(f ) = 1 and put T (f,g) := Tσ (f, g). This defines a locally normal current T in
X, and Tn(i) → T weakly. �

In the context of classical currents, there is a similar compactness theorem for
currents with locally finite mass, cf. [28, Lemma 26.14]. Such a result is not available
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for metric currents. For instance, let (ηj )j∈N be a sequence of mollifiers on R
m, as

in Sect. 1.5. The corresponding currents [ηj ] ∈ Dm(Rm) (cf. Proposition 2.6) satisfy
M([ηj ]) = 1 and spt([ηj ]) ⊂ U(0,1/j). However, no subsequence converges weakly
to a current in Dm(Rm), for there is no metric m-current for m ≥ 1 whose support
is a single point, cf. Lemma 3.2(3). Viewed as classical currents, the [ηj ] converge
weakly to the classical m-current T̄ satisfying T̄ (f dx1 ∧ · · · ∧ dxm) = f (0) for all
f ∈ C∞

c (Rm).
We now examine the relation between metric and classical currents more closely.

To this end, we first recall a number of definitions and results from [14]. We adopt the
notation from there, except that we put a bar on the symbols D,M,N,F to distinguish
those spaces of forms, currents, and seminorms from their metric analogues.

For an open subset U of R
n, D̄m(U) denotes the vector space of compactly sup-

ported C∞ m-forms on U , endowed with the usual locally convex C∞ topology, and
D̄m(U) denotes the dual space, consisting of all m-dimensional currents in U , cf. [28,
p. 131f] and [14, 4.1.7]. The comass ‖φ‖ of an m-covector φ ∈ �m

R
n is the supre-

mum of 〈ξ,φ〉 over all simple m-vectors ξ ∈ �mR
n with Euclidean norm |ξ | ≤ 1,

where 〈·, ·〉 denotes the dual pairing. The mass ‖ξ‖ of an m-vector ξ ∈ �mR
n is the

supremum of 〈ξ,φ〉 over all φ ∈ �m
R

n with comass ‖φ‖ ≤ 1, cf. [14, 1.8.1]. The
comass norm of an m-form φ ∈ D̄m(U) is given by

M̄(φ) = supx∈U ‖φ(x)‖.
Let T ∈ D̄m(U). For every open set V ⊂ U , put

M̄V (T ) := sup
{
T (φ) : φ ∈ D̄m(U), spt(φ) ⊂ V, M̄(φ) ≤ 1

}
. (5.2)

The number M̄(T ) := M̄U(T ) ∈ [0,∞] is the mass of T . As in Theorem 4.3, one
obtains a Borel regular outer measure ‖T ‖ such that

‖T ‖(A) = inf
{
M̄V (T ) : V ⊂ U is open, A ⊂ V

}

for every set A ⊂ U . If ‖T ‖ is locally finite, then it is a Radon measure, and there
exists a ‖T ‖-measurable m-vector field ξ on U so that ‖ξ(x)‖ = 1 for ‖T ‖-almost
every x ∈ U and

T (φ) =
∫

U

〈ξ(x),φ(x)〉d‖T ‖(x) ≤
∫

U

‖φ(x)‖d‖T ‖(x)

for all φ ∈ D̄m(U), cf. [14, 4.1.5 and p. 349] and [28, 26.4–26.8]. The seminorm N̄ on
D̄m(U) and the space N̄m,loc(U) of locally normal currents are defined in analogy to
Definition 5.1. For a compact set K ⊂ U , N̄m,K(U) denotes the set of all T ∈ D̄m(U)

with spt(T ) ⊂ K and N̄(T ) < ∞, cf. [14, p. 358].
The flat seminorm of a form φ ∈ D̄m(U) relative to a compact set K ⊂ U is given

by

F̄K(φ) = sup
{
supx∈K ‖φ(x)‖, supx∈K ‖dφ(x)‖},

the respective flat seminorm of a current T ∈ D̄m(U) by

F̄K(T ) = sup
{
T (φ) : φ ∈ D̄m(U), F̄K(φ) ≤ 1

}
.
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Note that F̄K(∂T ) ≤ F̄K(T ) for m ≥ 1. If F̄K(T ) < ∞, then spt(T ) ⊂ K . If T ∈
D̄m(U) and spt(T ) ⊂ K , then

F̄K(T ) ≤ M̄(T − ∂S) + M̄(S)

for all S ∈ D̄m+1(U) with spt(S) ⊂ K , and equality holds for at least one such S. The
F̄K -closure of N̄m,K(U) in D̄m(U) is denoted by F̄m,K(U). The space F̄m(U) of flat
chains with compact support in U is the union of all F̄m,K(U). The space F̄m,loc(U)

of locally flat chains consists of all T ∈ D̄m(U) such that T 
σ ∈ F̄m(U) for every
σ ∈ C∞

c (U), cf. [14, 4.1.12].
Finally, we note that the set {T ∈ F̄m,K(U) : M̄(T ) < ∞} equals the M̄-closure of

N̄m,K(U) in D̄m(U), cf. [14, 4.1.17], and

F̄m,K(U) = {
R + ∂S : R ∈ F̄m,K(U),M̄(R) < ∞,

S ∈ F̄m+1,K(U), M̄(S) < ∞}
, (5.3)

cf. [14, p. 382].

Theorem 5.5 (comparison map) Let U ⊂ R
n be an open set, n ≥ 1. For every m ≥ 0,

there exists an injective linear map Cm : Dm(U) → D̄m(U) such that

Cm(T )(f dg1 ∧ · · · ∧ dgm) = T (f,g1, . . . , gm)

for all (f, g1, . . . , gm) ∈ C∞
c (U) × [C∞(U)]m. The following properties hold:

(1) For m ≥ 1, ∂ ◦ Cm = Cm−1 ◦ ∂ .
(2) For all T ∈ Dm(U), ‖T ‖ ≤ ‖Cm(T )‖ ≤ (

n
m

)‖T ‖.
(3) The restriction of Cm to Nm,loc(U) is an isomorphism onto N̄m,loc(U).
(4) The image of Cm contains the space F̄m,loc(U) of m-dimensional locally flat

chains in U .

For currents with finite mass and compact support in R
n this result was proved

by Ambrosio and Kirchheim in [3, Theorem 11.1]. They conjectured that the im-
age under Cm of {T ∈ Mm(Rn) : spt(T ) is compact} coincides with the space of m-
dimensional flat chains with finite mass and compact support in R

n. In view of (4)
and the many analogous properties of Dm(U) and F̄m,loc(U), one may similarly ask
whether Cm(Dm(U)) = F̄m,loc(U).

Proof In case m > n, Dm(U) = {0} by (2.10), and also D̄m(U) = {0}. Thus Cm is
the trivial map in this case.

In case m = 0, given T ∈ D0(U), C0(T ) is the functional satisfying C0(T )(f ) =
T (f ) for all f ∈ D̄0(U) = C∞

c (U). The continuity property of T implies that C0(T )

is sequentially continuous on D̄0(U). This yields C0(T ) ∈ D̄0(U) (cf. [26, Theo-
rem 6.6]).

Now let T ∈ Dm(U), 1 ≤ m ≤ n. To define Cm(T ), write φ ∈ D̄m(U) as φ =∑
λ∈�(n,m) φλ dxλ(1) ∧ · · · ∧ dxλ(m), φλ ∈ C∞

c (U), and put

Cm(T )(φ) :=
∑

λ∈�(n,m)

T (φλ,πλ(1), . . . , πλ(m)),
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where πi : U → R is the ith coordinate projection, πi(x) = xi . As above, due to
the continuity of T in the first argument, this defines an element of D̄m(U). For
(f, g1, . . . , gm) ∈ C∞

c (U) × [C∞(U)]m, the coefficients of the form φ = f dg1 ∧
· · · ∧ dgm are given by φλ = f det[Dλ(k)gi]mi,k=1. Thus

Cm(T )(φ) =
∑

λ∈�(n,m)

T (φλ,πλ(1), . . . , πλ(m)) = T (f,g1, . . . , gm)

by Theorem 2.5 (chain rule).
As for the injectivity of Cm in the case 0 ≤ m ≤ n, it suffices to note that for every

nonzero T ∈ Dm(U) one finds, by approximation, an (f, g1, . . . , gm) ∈ C∞
c (U) ×

[C∞(U)]m with

Cm(T )(f dg1 ∧ · · · ∧ dgm) = T (f,g1, . . . , gm) �= 0.

For (1), let T ∈ Dm(U) and (f, g1, . . . , gm−1) ∈ C∞
c (U) × [C∞(U)]m−1, and

choose σ ∈ C∞
c (U) with σ |spt(f ) = 1. Then

∂(Cm(T ))(f dg1 ∧ · · · ∧ dgm−1) = Cm(T )(σ df ∧ dg1 ∧ · · · ∧ dgm−1)

= T (σ,f, g1, . . . , gm−1)

= ∂T (f,g1, . . . , gm−1)

= Cm−1(∂T )(f dg1 ∧ · · · ∧ dgm−1).

To prove (2), let T ∈ Dm(U), and let V ⊂ U be an open set. If � is a finite set,
(fλ, g

λ) ∈ C∞
c (U) × [C∞(U) ∩ Lip1(U)]m, spt(fλ) ⊂ V , and

∑
λ∈� |fλ| ≤ 1, then

the form φ := ∑
λ∈� fλ dgλ

1 ∧· · ·∧dgλ
m ∈ D̄m(U) has comass norm M̄(φ) ≤ 1, hence

∑
λ∈�

T (fλ, g
λ) = Cm(T )(φ) ≤ M̄V (Cm(T )).

This implies that MV (T ) ≤ M̄V (Cm(T )). Conversely, for every form φ =∑
λ∈�(n,m) φλ dxλ(1) ∧ · · · ∧ dxλ(m) ∈ D̄m(U) with spt(φ) ⊂ V and M̄(φ) ≤ 1, we

have |φλ| ≤ 1 for all λ ∈ �(n,m), so that

Cm(T )(φ) =
∑

λ∈�(n,m)

T (φλ,πλ(1), . . . , πλ(m)) ≤
(

n

m

)
MV (T ).

Hence M̄V (Cm(T )) ≤ (
n
m

)
MV (T ). This yields (2).

We prove (3). From (1) and (2) it follows that Cm(T ) ∈ N̄m,loc(U) if and only
if T ∈ Nm,loc(U). Hence, since Cm is injective, it suffices to construct a map
C̄m : N̄m,loc(U) → Dm(U) such that Cm(C̄m(T̄ )) = T̄ for all T̄ ∈ N̄m,loc(U). Let
T̄ ∈ N̄m,loc(U). We first observe that whenever (f, g), (f̃ , g̃) ∈ C∞

c (U) × [C∞(U) ∩
Lip1(U)]m, then
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∣∣T̄ (f dg1 ∧ · · · ∧ dgm) − T̄ (f̃ dg̃1 ∧ · · · ∧ dg̃m)
∣∣

≤
∫

U

|f − f̃ |d‖T̄ ‖

+
m∑

i=1

(
Lip(f )

∫
spt(f )

|gi − g̃i |d‖T̄ ‖ +
∫

U

|f ||gi − g̃i |d‖∂T̄ ‖
)

; (5.4)

this is just the “classical” analogue of Lemma 5.2(2). To define C̄m(T̄ ), let (f, g) ∈
D(U) × [Lip1(U)]m, and choose a sequence ((f k, gk))k∈N in C∞

c (U) × [C∞(U) ∩
Lip1(U)]m such that f k → f in D(U) and gk

i → gi locally uniformly for i =
1, . . . ,m. It follows from (5.4) that (T̄ (f k dgk

1 ∧· · ·∧dgk
m))k∈N is a Cauchy sequence

whose limit is independent of the choice of the sequence ((f k, gk))k∈N. Put

C̄m(T̄ )(f, g) := lim
k→∞ T̄ (f k dgk

1 ∧ · · · ∧ dgk
m).

Let (f̃ , g̃) ∈ D(U)×[Lip1(U)]m be another such tuple. By choosing the approximat-
ing sequences appropriately, we see that (5.4) holds in the limit, i.e., |C̄m(T̄ )(f, g) −
C̄m(T̄ )(f̃ , g̃)| is less than or equal to the expression on the right side of (5.4). Now it
is clear that C̄m(T̄ ) extends to a current C̄m(T̄ ) ∈ Dm(U) satisfying

C̄m(T̄ )(f, g) = T̄ (f dg1 ∧ · · · ∧ dgm)

for all (f, g) ∈ C∞
c (U) × [C∞(U)]m. As the left side of this last equality equals

Cm(C̄m(T̄ ))(f dg1 ∧ · · · ∧ dgm), we have Cm(C̄m(T̄ )) = T̄ .
It remains to prove (4). First we observe that for every compact set K ⊂ U , the

restriction of C̄m to N̄m,K(U) naturally extends to a map from the set {T̄ ∈ F̄m,K(U) :
M̄(T̄ ) < ∞}, which equals the M̄-closure of N̄m,K(U) in D̄m(U), into Mm(U).
Since the restriction of C̄m is 1-Lipschitz with respect to M̄ and M, this follows
by the completeness of (Mm(U),M) (cf. Proposition 4.2). For every T̄ ∈ F̄m,K(U)

with M̄(T̄ ) < ∞, we still have Cm(C̄m(T̄ )) = T̄ . Next, let T̄ ∈ F̄m,K(U). Choose
R̄ ∈ F̄m,K(U) with M̄(R̄) < ∞ and S̄ ∈ F̄m+1,K(U) with M̄(S̄) < ∞ such that
T̄ = R̄ + ∂S̄, cf. (5.3), and put C̄m(T̄ ) := C̄m(R̄) + ∂(C̄m+1(S̄)) ∈ Dm(U). Then

Cm(C̄m(T̄ )) = Cm(C̄m(R̄)) + ∂
(
Cm+1(C̄m+1(S̄))

) = T̄ .

Since Cm is injective, this identity also shows that C̄m(T̄ ) is well-defined. Finally,
suppose that T̄ ∈ F̄m,loc(U). Given (f, g1, . . . , gm) ∈ Dm(U), choose σ ∈ C∞

c (U)

such that σ = 1 on some neighborhood of spt(f ) and put C̄m(T̄ )(f, g1, . . . , gm) :=
C̄m(T̄ 
σ)(f, g1, . . . , gm). It is readily checked that this yields a well-defined
C̄m(T̄ ) ∈ Dm(U) with Cm(C̄m(T̄ )) = T̄ . �

For an example of a current T ∈ Nm,loc(R
n) with ‖T ‖ �= ‖Cm(T )‖, let

T ∈ N2,loc(R
4) be defined by

T (f,g,h) =
∫

R4
f

(
D1gD2h − D2gD1h + D3gD4h − D4gD3h

)
dx
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for (f, g,h) ∈ D2(R4). The corresponding classical current T̄ = C2(T ) ∈ N̄2,loc(R
4)

is given by

T̄ (φ) =
∫

R4
〈e1 ∧ e2 + e3 ∧ e4, φ〉dx

for φ ∈ D̄2(R4). Note that these currents have boundary zero. To compute the
mass, use the following inequality: If v,w are vectors in R

4 with Euclidean norm
|v|, |w| ≤ 1, then

|v1w2 − v2w1 + v3w4 − v4w3| = |〈(−v2, v1,−v4, v3),w〉| ≤ 1,

with equality if and only if w = ±(−v2, v1,−v4, v3). It follows that ‖T ‖ = L 4. The
same inequality also shows that the form dx1 ∧ dx2 + dx3 ∧ dx4 has comass norm 1
(a special case of Wirtinger’s inequality, cf. [14, p. 40]), which leads to ‖T̄ ‖ = 2L 4.

6 Slicing

We now develop the slicing theory for locally normal m-currents in X with respect
to a locally Lipschitz map π : X → R

k , where 1 ≤ k ≤ m. The slices are currents of
dimension m−k in the level sets of π . General references are [14, 4.2.1 and 4.3.1–5],
[28, 28.6–28.10] for classical currents and [3, pp. 31–36] for metric currents of finite
mass. We first treat the case k = 1, which suffices for most geometric applications.
The general case will be relevant in Sect. 7 and in Theorems 8.4 and 8.5.

Definition 6.1 (codimension one slices of normal currents) Suppose T ∈ Nm,loc(X),
m ≥ 1, π ∈ Liploc(X), and s ∈ R. The left-hand and right-hand slices of T at s with
respect to π are the currents in Dm−1(X) defined by

〈T ,π, s−〉 := ∂(T 
{π < s}) − (∂T )
{π < s}
= (∂T )
{π ≥ s} − ∂(T 
{π ≥ s}),

〈T ,π, s+〉 := ∂(T 
{π ≤ s}) − (∂T )
{π ≤ s}
= (∂T )
{π > s} − ∂(T 
{π > s}),

respectively.

Note that since T ∈ Mm,loc(X) and ∂T ∈ Mm−1,loc(X), the restrictions T 
B and
(∂T )
B are defined for every Borel set B ⊂ X. Moreover, by Theorem 4.4(1),
T 
B + T 
(X \ B) = T . If (‖T ‖ + ‖∂T ‖)(π−1{s}) = 0, then T 
π−1{s} = 0 and
(∂T )
π−1{s} = 0, thus 〈T ,π, s−〉 = 〈T ,π, s+〉. It follows that if spt(T ) is separable,
then

〈T ,π, s−〉 = 〈T ,π, s+〉 (6.1)

for all but countably many s ∈ R. We now focus on right-hand slices.
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From the two representations of 〈T ,π, s+〉 we see that

spt(〈T ,π, s+〉) ⊂ π−1{s} ∩ spt(T ) (6.2)

for every s ∈ R. If m ≥ 2, then

〈∂T ,π, s+〉 = −∂〈T ,π, s+〉 (6.3)

for every s ∈ R.
There is a useful characterization of 〈T ,π, s+〉 as a weak limit. For this we ap-

proximate the characteristic function χ{π>s} by a family (us,δ)δ>0 in Liploc(X) such
that

0 ≤ χ{π>s} − us,δ ≤ χ{s<π<s+δ}

on X. (A natural choice is us,δ := γs,δ ◦ π for the piecewise affine (1/δ)-Lipschitz
function γs,δ : R → R with γs,δ|(−∞,s] = 0 and γs,δ|[s+δ,∞) = 1.) By (3.6),
T 
(1, us,δ) = (∂T )
us,δ − ∂(T 
us,δ), hence

〈T ,π, s+〉 − T 
(1, us,δ) = (∂T )
(χ{π>s} − us,δ) − ∂(T 
(χ{π>s} − us,δ)).

It follows that

〈T ,π, s+〉 = lim
δ→0+T 
(1, us,δ) (6.4)

for the weak limit.

Theorem 6.2 (codimension one slices of normal currents) Suppose T ∈ Nm,loc(X),
m ≥ 1, and π ∈ Liploc(X).

(1) For every s ∈ R and every open set V ⊂ X,

‖〈T ,π, s+〉‖(V ) ≤ lim inf
δ→0+

1

δ
‖T 
(1,π)‖(V ∩ {s < π < s + δ}).

(2) For all (f, g) ∈ Dm−1(X),

∫
R

〈T ,π, s+〉(f, g) ds = (T 
(1,π))(f, g).

(3) For every ‖T 
(1,π)‖-measurable set B ⊂ X with ‖T 
(1,π)‖(B) < ∞,

∫
R

‖〈T ,π, s+〉‖(B)ds = ‖T 
(1,π)‖(B).

(4) If spt(T ) is separable, then 〈T ,π, s+〉 ∈ Nm−1,loc(X) for almost every s ∈ R. If
π |spt(T ) is proper, or if T ∈ Nm(X) and π ∈ Lip(X), then 〈T ,π, s+〉 ∈ Nm−1(X)

for almost every s ∈ R.
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Proof For every δ > 0, fix a non-decreasing function γδ ∈ C1,1(R) such that
γδ|(−∞,0] = 0 and γδ|[δ,∞) = 1. Let s ∈ R. Define γs,δ(t) := γδ(t − s) for t ∈ R,
and put us,δ := γs,δ ◦ π . By Theorem 2.5 (chain rule),

T 
(1, us,δ) = T 
(γ ′
s,δ ◦ π,π) = (T 
(1,π))
(γ ′

s,δ ◦ π).

Hence, for every open set V ⊂ X, (4.10) gives

‖T 
(1, us,δ)‖(V ) ≤
∫

V

γ ′
s,δ ◦ π d‖T 
(1,π)‖

≤ Lip(γs,δ)‖T 
(1,π)‖(V ∩ {s < π < s + δ}),
since γ ′

s,δ ◦π is zero outside {s < π < s + δ}. Choosing the function γδ appropriately,
with Lip(γδ) ≤ 1/δ + δ say, we obtain (1) by (6.4) and the lower semicontinuity of
mass.

For the proof of (2) we assume (f, g) ∈ D(X) × [Lip1(X)]m−1. Choose a ∈ R

such that spt(f ) ⊂ {π > a}. If δ > 0 is fixed, then the function s �→ T (f,us,δ, g) is
continuous, and an approximation argument using simple functions shows that

∫ ∞

a

T (f,us,δ, g) ds = T

(
f,

∫ ∞

a

us,δ ds, g

)
.

Now we let δ tend to 0. We know that then T (f,us,δ, g) → 〈T ,π, s+〉(f, g) for
every s ∈ R. Moreover, since |us,δ| ≤ 1, Lemma 5.2(1) yields the uniform bound
|T (f,us,δ, g)| ≤ Lip(f )‖T ‖(spt(f )) + ∫

X
|f |d‖∂T ‖. Hence, s �→ 〈T ,π, s+〉(f, g)

is a bounded Borel function with compact support, and

lim
δ→0+

∫ ∞

a

T (f,us,δ, g) ds =
∫ ∞

a

〈T ,π, s+〉(f, g) ds =
∫

R

〈T ,π, s+〉(f, g) ds.

On the other hand, the functions t �→ ∫ ∞
a

γs,δ(t) ds = ∫ t−a

−∞ γδ(r) dr are 1-Lipschitz
for all δ > 0 and converge uniformly to t �→ max{t − a,0}, as δ → 0. It follows that

lim
δ→0+T

(
f,

∫ ∞

a

us,δ ds, g

)
= T (f,π − a,g) = T (f,π,g) = (T 
(1,π))(f, g).

This proves (2).
Suppose V ⊂ X is an open set such that ‖T 
(1,π)‖(V ) < ∞. Then the function

s �→ ‖T 
(1,π)‖(V ∩ {π < s}) is non-decreasing, hence almost everywhere differen-
tiable. From (1) it follows that

‖〈T ,π, s+〉‖(V ) ≤ d

ds
‖T 
(1,π)‖(V ∩ {π < s}) (6.5)

for almost every s ∈ R. Hence

∫ ∗

R

‖〈T ,π, s+〉‖(V )ds ≤ ‖T 
(1,π)‖(V ),
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where
∫ ∗

R
denotes the upper integral. The reverse inequality

∫
∗R

‖〈T ,π, s+〉‖(V )ds ≥ ‖T 
(1,π)‖(V )

for the lower integral is a direct consequence of (2). This shows (3) for every open
set V with ‖T 
(1,π)‖(V ) < ∞. Since every compact set K ⊂ X is a difference of
two such open sets, the same identity holds for all compact sets, and we obtain (3) by
approximation.

Finally, (4) follows easily from (3), or just (6.5), together with the corresponding
result for ∂〈T ,π, s+〉 = −〈∂T ,π, s+〉 in case m ≥ 2. �

Now we pass to slices of codimension k, for 1 ≤ k ≤ m. Our approach is similar to
that of [14, 4.3.1], where slices are defined for arbitrary locally flat chains (cf. the last
remark on p. 437 in [14]). Definition 6.3 generalizes (6.4) and applies to all metric
currents, however, we shall prove the existence of the weak limits in question only
for locally normal currents.

For s ∈ R and δ > 0, now let γs,δ : R → R be the piecewise affine (1/δ)-Lipschitz
function with γs,δ|(−∞,s] = 0 and γs,δ|[s+δ,∞) = 1. Then, for y = (y1, . . . , yk) ∈ R

k

and δ > 0, define γy,δ : R
k → R

k such that

γy,δ(z) = (γy1,δ(z1), . . . , γyk,δ(zk))

for all z = (z1, . . . , zk) ∈ R
k .

Definition 6.3 (slices) Suppose 1 ≤ k ≤ m, π ∈ Liploc(X,R
k), and T ∈ Dm(X). We

define the slice of T at y ∈ R
k with respect to π as the weak limit

〈T ,π, y〉 := lim
δ→0+T 
(1, γy,δ ◦ π)

whenever it exists and defines an element of Dm−k(X).

In view of (6.4), in case T ∈ Nm,loc(X) and k = 1 we have

〈T ,π, y〉 = 〈T ,π, y+〉 (6.6)

for every y ∈ R. (We could equally well arrange that 〈T ,π, y〉 = (〈T ,π, y−〉 +
〈T ,π, y+〉)/2, as in [14, 4.3.4], by choosing a more symmetric definition of
〈T ,π, y〉.) Before proving the existence of slices of locally normal currents in the
case k > 1, we discuss a few properties that can be derived directly from the defini-
tion.

Let y = (y1, . . . , yk) ∈ R
k , and suppose that 〈T ,π, y〉 ∈ Dm−k(X) exists. For

δ > 0, consider the cube

C(y, δ) := [y1, y1 + δ] × · · · × [yk, yk + δ] ⊂ R
k.

A simple Lipschitz partition of unity argument on R
k \ C(y, δ) shows that

spt(T 
(1, γy,δ ◦ π)) ⊂ π−1(C(y, δ)) ∩ spt(T ), (6.7)
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so that

spt(〈T ,π, y〉) ⊂ π−1{y} ∩ spt(T ). (6.8)

If m > k, then (∂T )
(1, γy,δ ◦ π) = (−1)k∂(T 
(1, γy,δ ◦ π)) by (3.7), hence

〈∂T ,π, y〉 = (−1)k∂〈T ,π, y〉. (6.9)

Whenever 0 ≤ l ≤ m − k and (u, v) ∈ Liploc(X) × [Liploc(X)]l , the alternating prop-
erty gives (T 
(u, v))
(1, γy,δ ◦ π) = (−1)kl(T 
(1, γy,δ ◦ π))
(u, v), so

〈T 
(u, v),π, y〉 = (−1)kl〈T ,π, y〉
(u, v), (6.10)

in particular, 〈T 
u,π,y〉 = 〈T ,π, y〉
u.

Theorem 6.4 (slicing) Suppose 1 ≤ k ≤ m, π ∈ Liploc(X,R
k), T ∈ Nm,loc(X), and

spt(T ) is separable.

(1) For L k-almost every y ∈ R
k , the slice 〈T ,π, y〉 ∈ Dm−k(X) exists and is locally

normal.
(2) For all (f, g) ∈ B∞

c (X) × [Liploc(X)]m−k ,

∫
Rk

〈T ,π, y〉(f, g) dy = (T 
(1,π))(f, g).

(3) For every ‖T 
(1,π)‖-measurable set B ⊂ X,
∫

Rk

‖〈T ,π, y〉‖(B)dy = ‖T 
(1,π)‖(B).

Proof We proceed by induction on k.
Let k = 1. We know from (6.6) and Theorem 6.2 that (1) holds, (2) holds

for all (f, g) ∈ Dm−1(X), and (3) holds for all ‖T 
(1,π)‖-measurable sets with
finite measure. Since spt(T ) is separable by assumption, spt(T ) is σ -compact,
hence ‖T 
(1,π)‖ is σ -finite, and (3) follows. To prove (2) in the general case,
fix g ∈ [Lip1(X)]m−1 and σ ∈ D(X), 0 ≤ σ ≤ 1, and let K := spt(σ ). Denote
by 	 the set of all f ∈ B∞

c (X) with |f | ≤ σ such that (2) holds for (f, g).
Suppose that f1, f2, . . . ∈ 	, f ∈ B∞

c (X), and fj → f pointwise on X. For al-
most every y ∈ R, |〈T ,π, y〉(fj , g)| ≤ ‖〈T ,π, y〉‖(K) for all j . Moreover, by (3),∫

R
‖〈T ,π, y〉‖(K)dy = ‖T 
(1,π)‖(K) < ∞. Now the bounded convergence the-

orem and Theorem 4.4(2) imply that f ∈ 	, so that 	 is a Baire class. Since 	

contains all f ∈ D(X) with |f | ≤ σ , 	 is the class of all f ∈ B∞
c (X) with |f | ≤ σ ,

cf. Sect. 1.2. This yields (2).
Now let k ≥ 2, and suppose (1), (2), and (3) hold with k′ := k − 1 in place of k.

We write π ′ for (π1, . . . , πk′), so that π = (π ′,πk). There is a Borel set D′ ⊂ R
k′

with L k′
(Rk′ \ D′) = 0 such that 〈T ,π ′, y′〉 exists as an element of Nm−k′,loc(X) for

every y′ = (y1, . . . , yk′) ∈ D′. By (6.6),

Ty := 〈〈T ,π ′, y′〉,πk, yk

〉 ∈ Dm−k(X)
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then exists for every y = (y′, yk) ∈ D′ × R. Moreover, for fixed (f, g) ∈ Dm−k(X),
the function y �→ Ty(f, g) is Borel measurable on D′ × R, since

Ty(f, g) = lim
δ→0+ lim

δ′→0+
T (f, γy′,δ′ ◦ π ′, γyk,δ ◦ πk, g)

and y �→ T (f, γy′,δ′ ◦ π ′, γyk,δ ◦ πk, g) is continuous on R
k for fixed δ′, δ > 0. Since

each ‖Ty‖ is concentrated on the separable set spt(T ), it also follows that for every
open set V ⊂ X the function y �→ ‖Ty‖(V ) ∈ [0,∞] is Borel measurable on D′ × R.
Hence, by Fubini’s theorem, the result in the case k = 1, (6.10), and the induction
assumption,

∫
Rk

‖Ty‖(V )dy =
∫

Rk′

∫
R

∥∥〈〈T ,π ′, y′〉,πk, yk

〉∥∥(V )dyk dy′

=
∫

Rk′ ‖〈T ,π ′, y′〉
(1,πk)‖(V )dy′

=
∫

Rk′ ‖〈T 
(1,πk),π
′, y′〉‖(V )dy′

= ‖(T 
(1,πk))
(1,π ′)‖(V )

= ‖T 
(1,π)‖(V ).

Reasoning as in the proof of Theorem 6.2 and again using the σ -compactness of
spt(T ) we obtain

∫
Rk

‖Ty‖(B)dy = ‖T 
(1,π)‖(B) (6.11)

for every ‖T 
(1,π)‖-measurable set B ⊂ X. Now it follows that Ty ∈ Mm−k,loc(X)

for almost every y ∈ R
k , and for fixed (f, g) ∈ Dm−k(X), the function y �→ Ty(f, g)

is in L1(Rk). By Fubini’s theorem, the result in the case k = 1, and the induction
assumption,

∫
Rk

Ty(f, g) dy =
∫

Rk′

∫
R

〈〈T ,π ′, y′〉,πk, yk

〉
(f, g) dyk dy′

=
∫

Rk′ 〈T ,π ′, y′〉(f,πk, g) dy′

= T (f,π ′,πk, g)

= (T 
(1,π))(f, g).

As in the case k = 1, a Baire class argument then shows that

∫
Rk

Ty(f, g) dy = (T 
(1,π))(f, g) (6.12)
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for all (f, g) ∈ B∞
c (X) × [Liploc(X)]m−k . Given φ ∈ B∞

loc(R
k), we may replace f

by (φ ◦ π)f ; since φ ◦ π = φ(y) on spt(Ty) ⊂ π−1{y}, this yields the identity
∫

Rk

φ(y)Ty(f, g) dy = (T 
(φ ◦ π,π))(f, g). (6.13)

Now we show that for almost every y ∈ R
k , the slice 〈T ,π, y〉 exists as an element

of Nm−k,loc(X) and coincides with Ty . By (6.12) and (6.11), this will complete the
proof of the theorem.

We first assume that X is compact, so that T is normal and π is Lipschitz. Then we
fix a countable set F ⊂ Lip1(X) that is dense in Lip1(X) with respect to ‖ · ‖∞. Put
Tπ := T 
(1,π) ∈ Nm−k(X) for the moment, and let y ∈ R

k and δ > 0. Using (6.7),
(4.7), and Theorem 4.4 we get

T 
(1, γy,δ ◦ π) = T 
(χC(y,δ) ◦ π,γy,δ ◦ π)

= 1

δk
T 
(χC(y,δ) ◦ π,π) = 1

δk
Tπ
π−1(C(y, δ)). (6.14)

Similarly, if m > k, applying (3.7) twice we obtain

∂
(
T 
(1, γy,δ ◦ π)

) = (−1)k(∂T )
(1, γy,δ ◦ π)

= (−1)k
1

δk

(
(∂T )
(1,π)

)
π−1(C(y, δ))

= 1

δk
(∂Tπ )
π−1(C(y, δ)).

For every Borel set C ⊂ R
k , put

μ(C) := (‖Tπ‖ + ‖∂Tπ‖)(π−1(C))

if m > k, and μ(C) := ‖Tπ‖(π−1(C)) if m = k. This defines a finite Borel measure
μ on R

k . Let Mμ : R
k → [0,∞] be the maximal function of μ. Then

N
(
T 
(1, γy,δ ◦ π)

) = 1

δk
μ(C(y, δ)) ≤ αkk

k/2Mμ(y).

For all (f, g) ∈ Dm−k(X), (6.14) and (6.13) give

(
T 
(1, γy,δ ◦ π)

)
(f, g) = 1

δk

(
T 
(χC(y,δ) ◦ π,π)

)
(f, g)

= 1

δk

∫
C(y,δ)

Tz(f, g) dz. (6.15)

Almost every y ∈ R
k satisfies Mμ(y) < ∞ and is a Lebesgue point of z �→ Tz(f, g)

for all (f, g) ∈ F × Fm−k . Applying Proposition 5.3 (convergence criterion)
and (1.4) we conclude that for every such y, the slice 〈T ,π, y〉 exists as an element
of Nm−k(X) and coincides with Ty .
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In the general case, when X is locally compact and spt(T ) is separable, there is no
loss of generality in assuming X itself to be separable. Then we choose a countable set
� ⊂ D(X) as in the proof of Theorem 5.4. The above argument together with (6.10)
then shows that for almost every y ∈ R

k , the slice 〈T 
σ,π, y〉 exists as an element of
Nm−k(X) and coincides with Ty
σ for every σ ∈ �. The general result follows. �

The following theorem will be used in the proof of Theorem 8.5 (rectifiable slices).

Theorem 6.5 (iterated slices) Suppose k, k′ ≥ 1, m ≥ k+k′, π ∈ Liploc(X,R
k), π ′ ∈

Liploc(X,R
k′
), T ∈ Nm,loc(X), and spt(T ) is separable. Then

〈T , (π,π ′), (y, y′)〉 = 〈〈T ,π, y〉,π ′, y′〉

for L k+k′
-almost every (y, y′) ∈ R

k+k′
.

In case k′ = 1 the result is clear from the preceding proof. Our argument for the
general case follows [14, Theorem 4.3.5].

Proof We assume that X is compact, so that T ∈ Nm(X) and (π,π ′) ∈ Lip(X,R
k+k′

).
The theorem easily follows from the result in this special case. We fix a countable set
F ⊂ Lip1(X) that is dense in Lip1(X) with respect to ‖ · ‖∞.

From Theorem 6.4 and Fubini’s theorem we conclude that there is a Borel set
D1 ⊂ R

k+k′
with L k+k′

(Rk+k′ \ D1) = 0 such that whenever (y, y′) ∈ D1, both
〈T ,π, y〉 and 〈T , (π,π ′), (y, y′)〉 exist and are normal currents, L k′

(({y} × R
k′
) \

D1) = 0, and ∫
Rk′ N

(〈T , (π,π ′), (y, z′)〉)dz′ < ∞. (6.16)

For δ′ > 0 and (y, y′) ∈ D1 we define a functional Aδ′(y, y′) on Dm−k−k′
(X) by

Aδ′(y, y′)(f, g) := 1

(δ′)k

∫
C(y′,δ′)

〈T , (π,π ′), (y, z′)〉(f, g) dz′.

Now (6.16) with M in place of N shows that 〈T , (π,π ′), (y, ·)〉(f, g) ∈ L1(Rk′
) and,

in conjunction with the bounded convergence theorem, that Aδ′(y, y′) satisfies the
continuity condition for metric currents. Hence Aδ′(y, y′) is a current; since

N(Aδ′(y, y′)) ≤ 1

(δ′)k

∫
C(y′,δ′)

N
(〈T , (π,π ′), (y, z′)〉)dz′, (6.17)

it is normal by (6.16). Now let δ, δ′ > 0 and (y, y′) ∈ D1. For all (f, g) ∈
Dm−k−k′

(X), we obtain

T (f, γy,δ ◦ π,γy′,δ′ ◦ π ′, g)

= 1

δk(δ′)k

∫
C(y,δ)×C(y′,δ′)

〈T , (π,π ′), (z, z′)〉(f, g) d(z, z′)
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= 1

δk

∫
C(y,δ)

Aδ′(z, y′)(f, g) dz (6.18)

by the same argument as for (6.15), and by Fubini’s theorem. Note that the left side
of this identity is continuous in (y, y′). Moreover, the limit for δ → 0 and for fixed
δ′ > 0 is equal to 〈T ,π, y〉(f, γy′,δ′ ◦π ′, g). Let D2 be the Borel set of all (y, y′) ∈ D1
where the limit of (6.18) equals Aδ′(y, y′)(f, g) for all rational numbers δ′ > 0 and
(f, g) ∈ F × Fm−k−k′

. Then L k+k′
(D1 \ D2) = 0, and for every (y, y′) ∈ D2, the

equality

〈T ,π, y〉(f, γy′,δ′ ◦ π ′, g) = Aδ′(y, y′)(f, g) (6.19)

holds for all rational numbers δ′ > 0 and (f, g) ∈ F ×Fm−k−k′
, hence for all δ′ > 0

and (f, g) ∈ Dm−k−k′
(X) by continuity and multilinearity. Now we pass to the limit

for δ′ → 0. Let D3 be the Borel set of all (y, y′) ∈ D2 where the limit of the right side
of (6.19) coincides with 〈T , (π,π ′), (y, y′)〉(f, g) for all (f, g) ∈ F × Fm−k−k′

and
where

supδ′>0
1

(δ′)k

∫
C(y′,δ′)

N
(〈T , (π,π ′), (y, z′)〉)dz′ < ∞. (6.20)

Then L k+k′
(D2 \ D3) = 0, and

lim
δ′→0

(〈T ,π, y〉
(1, γy′,δ′ ◦ π ′)
)
(f, g) = 〈T , (π,π ′), (y, y′)〉(f, g)

for all (y, y′) ∈ D3 and (f, g) ∈ F ×Fm−k−k′
. Combining (6.19), (6.17), and (6.20),

we have supδ′>0 N(〈T ,π, y〉
(1, γy′,δ′ ◦ π ′)) < ∞, so it follows from Proposition 5.3
(convergence criterion) that

〈〈T ,π, y〉,π ′, y′〉 = 〈T , (π,π ′), (y, y′)〉
for all (y, y′) ∈ D3. �

We conclude this section with a result that will be used in the proof of Theorem 8.9
(closure theorem).

Proposition 6.6 (slicing convergent sequences) Suppose m ≥ 1, (Tn)n∈N is a se-
quence in Nm,loc(X) that converges weakly to some T ∈ Nm,loc(X), each spt(Tn) is
separable, and supn NV (Tn) < ∞ for every open set V � X. Let π ∈ Liploc(X). Then
for L 1-almost every s ∈ R there is a subsequence (Tn(i))i∈N such that

〈Tn(i), π, s〉 → 〈T ,π, s〉
weakly and supi NV (〈Tn(i), π, s〉) < ∞ for every open set V � X.

Compare [35, p. 208] and [3, Proposition 8.3].

Proof We assume without loss of generality that X is compact.
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We first show the existence of a subsequence (Tn(i))i∈N such that for all but count-
ably many s ∈ R, 〈Tn(i), π, s〉 → 〈T ,π, s〉 weakly for i → ∞. Consider the measures
μn on R defined by μn(B) := (‖Tn‖ + ‖∂Tn‖)(π−1(B)) for all Borel sets B ⊂ R.
Note that supn μn(R) < ∞. Choose a subsequence (μn(i))i∈N that converges weakly∗
to some finite Borel measure μ on R (see, e.g., [13, Sect. 1.9]). Now let s ∈ R be such
that μ({s}) = 0. Suppose (f, g) ∈ D(X) × [Lip1(X)]m, and |f | ≤ 1. Given ε > 0,
choose δ > 0 such that ‖T ‖({s < π < s + δ}) < ε/3 and μ([s, s + δ]) < ε/3, and let
us,δ ∈ Lip(X) be given as in (6.4). Then

∣∣(T 
χ{π>s})(f, g) − (T 
us,δ)(f, g)
∣∣ = |T ((χ{π>s} − us,δ)f, g)|
≤ ‖T ‖({s < π < s + δ}) < ε/3.

Since lim supi→∞ μn(i)([s, s + δ]) ≤ μ([s, s + δ]), it follows similarly that
∣∣(Tn(i)
χ{π>s})(f, g) − (Tn(i)
us,δ)(f, g)

∣∣ ≤ μn(i)([s, s + δ]) < ε/3

for all sufficiently large i. Moreover, since Tn(i) → T weakly,
∣∣(Tn(i)
us,δ)(f, g) − (T 
us,δ)(f, g)

∣∣ < ε/3

for i sufficiently large. Combining these estimates we conclude that

Tn(i)
χ{π>s} → T 
χ{π>s}

weakly for i → ∞, and a completely analogous argument shows that

(∂Tn(i))
χ{π>s} → (∂T )
χ{π>s}

weakly. By (6.6), 〈Tn(i), π, s〉 → 〈T ,π, s〉 weakly for i → ∞.
Applying Theorem 6.2(3) and (6.3) we obtain

∫
R

lim inf
n→∞ N(〈Tn,π, s〉) ds ≤ lim inf

n→∞

∫
R

N(〈Tn,π, s〉) ds

≤ Lip(π) supn N(Tn) < ∞.

Hence, for L 1-almost every s ∈ R, there is a subsequence (Tn(i))i∈N such that
supi N(〈Tn(i), π, s〉) < ∞. Together with the first part of the proof, this yields the
result. �

7 Projections to Euclidean Spaces

The main purpose of this section is to establish Theorem 7.6, the central piece of the
proof of the rectifiablity criterion used later on, Theorem 8.4. We start by recalling a
few basic facts about functions of bounded variation (cf. [13, Chap. 5], [28, §6]).

Let U ⊂ R
m be an open set, m ≥ 1, and let u ∈ L1

loc(U). For an open set A ⊂ U ,

VA(u) := sup

{∫
A

udiv(ϕ) dx : ϕ ∈ C1
c (A,R

m), |ϕ| ≤ 1

}
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defines the variation of u in A. The number VA(u) is unchanged if C1
c (A,R

m) is
replaced by C∞

c (A,R
m) or Lipc(A,R

m) = [D(A)]m. Then u is a function of locally
bounded variation in U if VA(u) < ∞ for every open set A � U , and BVloc(U)

denotes the vector space of all such functions. Similarly, u is a function of bounded
variation in U if u ∈ L1(U) and VU(u) < ∞, and BV(U) denotes the vector space
of all such functions. Note that for u ∈ Liploc(U), the integration by parts formula

∫
A

udiv(ϕ) dx = −
∫

A

〈∇u,ϕ〉dx

holds for all ϕ ∈ C1
c (A,R

m), which implies that VA(u) = ∫
A

|∇u|dx. In particular,
Liploc(U) ⊂ BVloc(U). The representation theorem for u ∈ BVloc(U) says that there
exist a Radon measure on U , denoted by |Du|, and a |Du|-measurable vector field τ

on U such that |τ(x)| = 1 for |Du|-almost every x ∈ U and
∫

U

udiv(ϕ) dx = −
∫

U

〈ϕ, τ 〉d|Du| (7.1)

for ϕ ∈ C1
c (U,R

m) or even ϕ ∈ Lipc(U,R
m) = [D(U)]m. The Radon measure |Du|

is characterized by |Du|(A) = VA(u) for all open sets A ⊂ U .
Functions of bounded variation will be used through the following known fact

(cf. the proof of [3, Lemma 7.3] and the references there), which expresses a Lipschitz
property in terms of the maximal function of the variation measure.

Lemma 7.1 Suppose that u ∈ BV(Rm), m ≥ 1. Whenever x, x′ are two Lebesgue
points of u, then

|u(x) − u(x′)| ≤ cm

(
M|Du|(x) + M|Du|(x′)

)|x − x′|
for some constant cm depending only on m.

Thus, by (1.3), u is 2cms-Lipschitz outside a set of Lebesgue measure at most
3ms−1|Du|(Rm), for any s > 0.

Proof Suppose first that u ∈ C1(Rm) in addition, and let r > 0. Since u(z) − u(0) =∫ 1
0 〈∇u(tz), z〉dt for z ∈ R

m, it follows that

∫
B(0,r)

|u(z) − u(0)|
|z| dz ≤

∫
B(0,r)

∫ 1

0
|∇u(tz)|dt dz

=
∫ 1

0

∫
B(0,r)

|∇u(tz)|dzdt

=
∫ 1

0

1

tm

∫
B(0,tr)

|∇u(z)|dzdt

≤ αmrmM|Du|(0).
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For a general u ∈ BV(Rm), a smoothing argument then shows that

∫
B(x,r)

|u(z) − u(x)|
|z − x| dz ≤ αmrmM|Du|(x)

for every Lebesgue point x of u (cf. [2, Remark 3.8]).
Now suppose that x, x′ ∈ R

m are two Lebesgue points of u, and r := |x − x′| > 0.
Put c := 2αmrm/L m(B(x, r) ∩ B(x′, r)),

A := {
z ∈ B(x, r) : |u(x) − u(z)| > cM|Du|(x)|x − z|},

and define A′ similarly with x′ in place of x. The above estimate implies that
L m(A),L m(A′) < αmrm/c and thus

L m(A ∪ A′) < 2αmrm/c = L m(B(x, r) ∩ B(x′, r)).

In particular, B(x, r) ∩ B(x′, r) \ (A ∪ A′) is non-empty; for any z in this set we get

|u(x) − u(x′)| ≤ |u(x) − u(z)| + |u(x′) − u(z)|
≤ cM|Du|(x) |x − z| + cM|Du|(x′) |x′ − z|.

Since |x − z|, |x′ − z| ≤ r = |x − x′|, the result follows. �

The next result relates normal currents of the type described in Proposition 2.6
(standard example) to functions of bounded variation, cf. [28, Remark 26.28]
and [3, Theorem 3.7].

Theorem 7.2 (normal m-currents in R
m) Let U ⊂ R

m be an open set, m ≥ 1.

(1) If u ∈ L1
loc(U), then MA(∂[u]) = VA(u) for every open set A ⊂ U .

(2) If T ∈ Nm,loc(U), then T = [u] for some u ∈ BVloc(U), and ‖∂T ‖ = |Du|.

In particular, if T ∈ Nm(U), then T = [u] for some u ∈ BV(U).

Proof Let u ∈ L1
loc(U). Denote by π the identity map on U , πk(x) = xk . Let ϕ ∈

C∞
c (U,R

m), and choose σ ∈ D(U) such that σ |spt(ϕ) = 1. By Theorem 2.5 (chain
rule),

∫
U

udiv(ϕ) dx = [u](div(ϕ),π)

=
m∑

k=1

(−1)k−1[u](σ,ϕk,π1, . . . , πk−1,πk+1, . . . , πm)

=
m∑

k=1

(−1)k−1∂[u](ϕk,π1, . . . , πk−1,πk+1, . . . , πm).
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Assuming that A ⊂ U is an open set with MA(∂[u]) < ∞, we conclude that
VA(u) ≤ mMA(∂[u]) < ∞. In particular, u ∈ BV(A), and the representation for-
mula (7.1) holds on A. Let τ be a corresponding vector field on A. To show that
in fact VA(u) ≤ MA(∂[u]), let v ∈ R

m be a unit vector, and complete it to an ortho-
normal basis (v, e1, . . . , em−1) of R

m. Define gi ∈ Lip1(U) by gi(x) := 〈x, ei〉. For
f,σ ∈ D(U) with spt(f ) ⊂ A and σ |spt(f ) = 1, we have

∫
A

〈f v,−τ 〉d|Du| =
∫

A

uDvf dx = [u](σ,f, g1, . . . , gm−1)

= ∂[u](f, g1, . . . , gm−1) ≤
∫

A

|f |d‖∂[u]‖.

Now an approximation argument shows that |Du|(A) ≤ ‖∂[u]‖(A), thus VA(u) ≤
MA(∂[u]).

To prove the reverse inequality, suppose that g1, . . . , gm−1 ∈ C2(U). Consider the
matrix D(g1, . . . , gm−1), and let Mk be the (m − 1) × (m − 1) minor obtained by
deleting the kth column. Let ϕ be the C1 vector field on U with components ϕk =
(−1)k−1 det(Mk). Note that div(ϕ) = 0 since

0 = d(dg1 ∧ · · · ∧ dgm−1) = div(ϕ) dx1 ∧ · · · ∧ dxm.

Now let f ∈ C1
c (U). Then

det(D(f,g1, . . . , gm−1)) = 〈∇f,ϕ〉 = div(f ϕ) − f div(ϕ) = div(f ϕ)

on U . Hence, for any σ ∈ D(U) with σ |spt(f ) = 1,

∂[u](f, g1, . . . , gm−1) = [u](σ,f, g1, . . . , gm−1) =
∫

U

udiv(f ϕ)dx.

If, in addition, g1, . . . , gm−1 ∈ Lip1(U), then |ϕ| ≤ 1 by the Cauchy–Binet formula
(see, e.g., [2, Proposition 2.69]). It follows easily that MA(∂[u]) ≤ VA(u) for every
open set A ⊂ U . This completes the proof of (1).

Let T ∈ Nm,loc(U). Specializing Theorem 6.4(2) to the case where X = U , k = m,
and π : U → R

k is the inclusion map, we get

T (f,π) =
∫

U

〈T ,π, x〉(f ) dx =
∫

U

f (x)u(x) dx

for every f ∈ B∞
c (U), where u(x) := 〈T ,π, x〉(σ ) for any σ ∈ D(U) with σ(x) = 1

(note that spt(〈T ,π, x〉) ⊂ {x}). By (2.11) and a smoothing argument it follows that
T = [u]. Together with (1), this proves (2). �

Next we discuss two auxiliary results for currents T ∈ Mm,loc(X). We look at
π#(T 
f ) for f ∈ B∞

c (X) and π ∈ Lip(X,R
m). Note that since spt(T 
f ) is com-

pact, the push-forward is defined, moreover π#(T 
f ) is an element of Mm(Rm) with
compact support. In order to gain information on the local structure of T , we would
like to know that π#(T 
f ) is of the standard type [u] for some u ∈ L1(Rm). Except
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for m = 1 and m = 2, it is an open problem whether every S ∈ Mm(Rm) is of this
form, cf. [3, p. 15 and p. 21]. However, by Theorem 7.2, this is the case if S is normal;
in particular, π#(T 
f ) is of standard type if T is locally normal and f ∈ D(X). Thus,
for the purpose of this paper, the following result suffices.

Lemma 7.3 Let T ∈ Mm,loc(X), m ≥ 1. For π ∈ Lip(X,R
m), each of the following

two statements implies the other:

(1) Whenever f ∈ D(X), then π#(T 
f ) = [uf ] for some uf ∈ L1(Rm).
(2) Whenever B � X is a Borel set, then π#(T 
B) = [uB ] for some uB ∈ L1(Rm).

Proof Suppose first that (fk)k∈N is a sequence in B∞
c (X) that converges in L1(‖T ‖)

to some f ∈ B∞
c (X). Suppose further that π ∈ Lip1(X,R

m) and π#(T 
fk) = [uk]
for some uk ∈ L1(Rm). Then [uk − ul] = [uk] − [ul] = π#(T 
fk) − π#(T 
fl) =
π#(T 
(fk − fl)), and

∫
Rm

|uk − ul |dx = M([uk − ul]) = M
(
π#(T 
(fk − fl))

)

≤ M(T 
(fk − fl)) ≤
∫

X

|fk − fl |d‖T ‖

by (4.5), Lemma 4.6(2), and (4.10). Since fk → f in L1(‖T ‖), by the completeness
of L1(Rm) there is a function u ∈ L1(Rm) such that uk → u in L1(Rm). By passing
to the M-limit on either side of the identity π#(T 
fk) = [uk], for k → ∞, we con-
clude that π#(T 
f ) = [u]. Now, to see that (1) implies (2), apply this procedure to
the characteristic function f of a Borel set B � X and an approximating sequence
(fk)k∈N in D(X). To show that (2) implies (1), choose (fk)k∈N such that each fk is
a finite linear combination of characteristic functions of compact sets, and such that
fk → f ∈ D(X) in L1(‖T ‖). �

Proposition 7.4 (absolute continuity) Let T ∈ Mm,loc(X), m ≥ 1.

(1) If condition (1) or (2) of Lemma 7.3 holds for some π ∈ Lip(X,R
m), then

‖T 
(1,π)‖(π−1(N) ∩ B) = 0

whenever N ⊂ R
m is a Borel set with L m(N) = 0 and B ⊂ X is a Borel set that

is σ -finite with respect to ‖T ‖.
(2) If condition (1) or (2) of Lemma 7.3 holds for all π ∈ Lip(X,R

m), then
‖T ‖(A) = 0 for every set A ⊂ X with H m(A) = 0.

Together with Theorem 7.2, this shows that for every T ∈ Nm,loc(X), ‖T ‖ is ab-
solutely continuous with respect to H m (cf. [3, Theorem 3.9]).

Proof We assume that condition (1) of Lemma 7.3 holds for some π ∈ Lip(X,R
m).

Suppose N ⊂ R
m is a bounded Borel set with L m(N) = 0. Let f ∈ D(X), and

choose σ ∈ D(X) with σ |spt(f ) = 1. By assumption, π#(T 
f ) = [uf ] for some
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uf ∈ L1(Rm). We abbreviate Tπ := T 
(1,π); note that Tπ ∈ M0,loc(X). Using
Lemma 4.6(1) we obtain

(Tπ
π−1(N))(f ) = T ((χN ◦ π)f,π) = (T 
f )(σ (χN ◦ π),π)

= π#(T 
f )(χN, id) = [uf ](χN, id) =
∫

Rm

uf χN dx = 0.

Since this holds for all f ∈ D(X), we have Tπ
π−1(N) = 0. Let B ⊂ X be a Borel
set that is σ -finite with respect to ‖T ‖. By Lemma 4.7, ‖Tπ‖(π−1(N) ∩ B) = 0, and
it follows that the same identity holds if N is unbounded.

To prove (2), let A ⊂ X be a Borel set with H m(A) = 0. Then A is separable
and hence σ -finite with respect to ‖T ‖. Let π ∈ Lip(X,R

m). Since L m(π(A)) = 0,
there is a Borel set N ⊂ R

m with L m(N) = 0 that contains π(A). Then ‖Tπ‖(A) =
‖Tπ‖(π−1(N)∩A) = 0 by (1). Hence T (f,π) = Tπ(f ) = 0 for all f ∈ B∞

c (X) with
{f �= 0} ⊂ A. Since this holds for all π ∈ Lip(X,R

m), we conclude from Lemma 4.7
that ‖T ‖(A) = 0. �

We conclude this section with two results for locally normal currents that relate
the previous discussion to the slicing theory.

Theorem 7.5 (0-dimensional slices) Suppose T ∈ Nm,loc(X), m ≥ 1, and π ∈
Liploc(X,R

m). Whenever f ∈ B∞
c (X), then π#(T 
f ) = [uf ] for some unique

uf ∈ L1(Rm). Moreover, uf ∈ BV(Rm) if f ∈ D(X). If spt(T ) is separable, and
if f ∈ B∞

c (X), then

〈T ,π, y〉(f ) = uf (y)

for L m-almost every y ∈ R
m.

Proof If f ∈ D(X), then π#(T 
f ) ∈ Nm(Rm), hence π#(T 
f ) = [uf ] for some uf ∈
BV(Rm) by Theorem 7.2. The argument of the proof of Lemma 7.3 then shows that
π#(T 
f ) = [uf ] for some uf ∈ L1(Rm) in the general case, when f ∈ B∞

c (X).
Clearly (the equivalence class) uf ∈ L1(Rm) is uniquely determined.

Now suppose spt(T ) is separable, and f ∈ B∞
c (X). Choose σ ∈ D(X) with

σ |spt(f ) = 1. For all φ ∈ D(Rm), Theorem 6.4(2) (the case k = m) gives

∫
Rm

φ(y)〈T ,π, y〉(f ) dy = (T 
(1,π))((φ ◦ π)f )

= (T 
f )(σ (φ ◦ π),π)

= π#(T 
f )(φ, id)

= [uf ](φ, id)

=
∫

Rm

φ(y)uf (y) dy.

We conclude that 〈T ,π, y〉(f ) = uf (y) for L m-almost every y ∈ R
m. �
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Theorem 7.6 (partial rectifiability) Suppose T ∈ Nm,loc(X), m ≥ 1, spt(T ) is sepa-
rable, and π ∈ Liploc(X,R

m). Put

A := {
x ∈ X : 〈T ,π,π(x)〉 ∈ M0,loc(X) and ‖〈T ,π,π(x)〉‖({x}) > 0

}
.

Then there exists a countable family of pairwise disjoint compact sets Bi ⊂ A such
that ‖T 
(1,π)‖(A \ ⋃

i Bi) = 0 and π |Bi
is bi-Lipschitz for every i.

Compare [3, Theorem 7.4].

Proof We assume without loss of generality that X is compact, so that T ∈ Nm(X)

and π ∈ Lip(X,R
m). By Theorem 7.5, for every f ∈ D(X) there is a function uf ∈

BV(Rm) such that π#(T 
f ) = [uf ]. Hence, using Theorem 7.2, Lemma 4.7, and
Lemma 4.6(2), we obtain

|Duf |(B) = ‖∂[uf ]‖(B) = ‖∂(π#(T 
f ))‖(B) = ‖π#(∂(T 
f ))‖(B)

≤ Lip(π)m−1‖∂(T 
f )‖(π−1(B))

for every Borel set B ⊂ R
m. Suppose that |f | ≤ 1 and Lip(f ) ≤ 1. Since ∂(T 
f ) =

(∂T )
f − T 
(1, f ), cf. (3.6), it follows that

|Duf |(B) ≤ Lip(π)m−1(‖T ‖ + ‖∂T ‖)(π−1(B)) =: μ(B)

for all Borel sets B ⊂ R
m. Note that the finite Borel measure μ so defined is in-

dependent of f . Now we choose a countable subset F of {f ∈ D(X) : 0 ≤ f ≤
1, Lip(f ) ≤ 1} with the following property: Whenever x ∈ X and 0 < r ≤ 1, there is
an f ∈ F such that

f (x) ≥ 3

4
r, f ≤ r, spt(f ) ⊂ U(x, r). (7.2)

By Theorems 6.4, 7.5, and Lemma 7.1 there exists a Borel set N ⊂ R
m with

L m(N) = 0 such that whenever y, y′ ∈ R
m \N and f ∈ F , the slice Ty := 〈T ,π, y〉

exists as an element of M0(X), Ty(f ) = uf (y), Mμ(y) < ∞, and

|Ty(f ) − Ty′(f )| = |uf (y) − uf (y′)| ≤ cm

(
Mμ(y) + Mμ(y′)

)|y − y′|.
By Proposition 7.4(1),

‖T 
(1,π)‖(π−1(N)) = 0.

Let ε, δ ∈ (0,1] ∩ Q, and recall that ‖Ty‖ is concentrated on π−1{y}. Denote by Eε,δ

the Borel set of all x ∈ X such that y := π(x) �∈ N and

Mμ(y) ≤ 1

2ε
, ‖Ty‖({x}) ≥ ε, ‖Ty‖(U(x,2δ) \ {x}) ≤ ε

4
.

We have A\π−1(N) = ⋃
ε,δ Eε,δ . Let x, x′ ∈ Eε,δ with 0 < r := d(x, x′) ≤ δ and put

y := π(x), y′ = π(x′). Then choose f ∈ F as in (7.2). Since U(x, r) ⊂ U(x′,2r) \
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{x′}, it follows that

|Ty′(f )| ≤
∫

X

f d‖Ty′‖ ≤ r · ‖Ty′ ‖(U(x′,2δ) \ {x′}) ≤ ε

4
r.

Similarly, using (4.12), we obtain

|Ty(f )| ≥ |Ty(χ{x}f )| − |Ty(χX\{x}f )| ≥ 3

4
r · ε − r · ε

4
= ε

2
r.

We conclude that

ε

4
d(x, x′) = ε

4
r ≤ |Ty(f )| − |Ty′(f )| ≤ |Ty(f ) − Ty′(f )|

≤ cm

(
Mμ(y) + Mμ(y′)

)|y − y′| ≤ cm

ε
|y − y′| = cm

ε
|π(x) − π(x′)|.

This shows that whenever we restrict π to a subset of Eε,δ with diameter at most δ,
the resulting map is a bi-Lipschitz map into R

m \ N . The result follows. �

8 Integer Rectifiable Currents

We now turn to integer multiplicity rectifiable currents.
We recall that a subset E of a metric space X is countably m-rectifiable if

there is a countable family of Lipschitz maps Fi : Ai → X, Ai ⊂ R
m, such that

E ⊂ ⋃
i Fi(Ai). The set E ⊂ X is countably H m-rectifiable if there is a countably

m-rectifiable set E′ ⊂ X with H m(E \ E′) = 0 (cf. [14, 3.2.14]).
Now we again let X denote a locally compact metric space. Since X is locally

complete, it is not difficult to see that every countably m-rectifiable set E ⊂ X is
contained in a countably m-rectifiable and σ -compact set Ē ⊂ X.

Definition 8.1 (integer rectifiable current) Let T ∈ Dm(X), m ≥ 0. We call T a lo-
cally integer rectifiable current if

(1) T ∈ Mm,loc(X),
(2) whenever B � X is a Borel set and π ∈ Lip(X,R

m), then π#(T 
B) = [u] for
some u = uB,π ∈ L1(Rm,Z), and

(3) ‖T ‖ is concentrated on some countably H m-rectifiable Borel set E ⊂ X.

The set of all m-dimensional locally integer rectifiable currents in X is denoted by

Im,loc(X).

An m-dimensional integer rectifiable current in X is an element of

Im(X) := Im,loc(X) ∩ Mm(X).

Note that if a current T ∈ Mm,loc(X) satisfies condition (2), then ‖T ‖ is absolutely
continuous with respect to H m by Proposition 7.4. Moreover, condition (3) implies
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that the support of T is separable. Clearly Im,loc(X) forms an abelian group, as does
Im(X). Push-forwards of locally integer rectifiable currents under locally Lipschitz
maps are again locally integer rectifiable. If T ∈ Im,loc(X), then T 
B ∈ Im,loc(X)

for every Borel set B ⊂ X.
In case m = 0, condition (2) for T ∈ M0,loc(X) means that T (χB) ∈ Z for every

Borel set B � X (cf. the remark following Proposition 2.6). If T ∈ I0,loc(X), then
‖T ‖ is concentrated on some countable set E ⊂ X consisting of atoms of ‖T ‖, i.e.,
‖T ‖({x}) > 0 for x ∈ E. By (4.12) and condition (2), ‖T ‖({x}) = |T (χ{x})| ∈ Z for
x ∈ E, so E is discrete, and

T (f ) =
∑
x∈E

axf (x) (8.1)

for all f ∈ B∞
c (X), where ax = T (χ{x}) ∈ Z \ {0}.

Lemma 8.2 (characterizing I0,loc) Suppose S ∈ M0,loc(X), spt(S) is separable, and
S(χK) ∈ Z for every compact set K ⊂ X. Then S ∈ I0,loc(X).

Proof Let � be the set of all x ∈ X such that ‖S‖({x}) ≥ 1. Since S has locally finite
mass, � is discrete. Now let x ∈ X \ �. There is an open neighborhood V of x such
that ‖S‖(V ) < 1. Then |S(χK)| ≤ ‖S‖(V ) < 1 and thus S(χK) = 0 for every compact
set K ⊂ V . By approximation, this implies that S(f ) = 0 for every f ∈ D(X) with
spt(f ) ⊂ V , hence x �∈ spt(S). This shows that spt(S) ⊂ �. Since spt(S) is separable
by assumption, it follows that S ∈ I0,loc(X). �

The next theorem corresponds to [3, Theorem 4.5] in the case of finite mass.
A similar characterization of classical rectifiable currents is given in [14, Theo-
rem 4.1.28].

Theorem 8.3 (parametric representation) Let T ∈ Mm,loc(X), m ≥ 1. Then T ∈
Im,loc(X) if and only if there exists a countable family of currents T i , each of the
form T i = Fi#[ui] for some function ui ∈ L1(Rm,Z) and some bi-Lipschitz map
Fi : Ki → X defined on a compact set Ki ⊂ R

m containing spt(ui), such that

‖T ‖(A) =
∑

i

‖T i‖(A), T (f,π) =
∑

i

T i(f,π)

for all Borel sets A ⊂ X and for all (f,π) ∈ Dm(X).

The proof of the ‘only if’ part uses the following fact: If E ⊂ X is an H m-
measurable and countably H m-rectifiable set, then there exists a countable family
of bi-Lipschitz maps Fi : Ki → E, with Ki ⊂ R

m compact, such that the Fi(Ki) are
pairwise disjoint and

H m

(
E \

⋃
i

Fi(Ki)

)
= 0. (8.2)
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For X = R
n, this result is contained in [14, Lemma 3.2.18]. For a general complete

metric space X, it is stated in [3, Lemma 4.1]; the argument relies on the metric differ-
entiability theorem of [23] and generalizes to every locally complete metric space, in
particular to our locally compact metric space X. We omit the details since the ‘only
if’ part of the theorem will not be used in the sequel. In fact, for locally integer rectifi-
able currents whose boundary has locally finite mass, the existence of such parametric
representations also follows from Theorem 7.6, cf. the proof of Theorem 8.4 together
with Theorem 8.5(1) (the case k = m).

Proof of Theorem 8.3 Suppose T ∈ Im,loc(X), m ≥ 1. Then ‖T ‖ is concentrated on
some countably H m-rectifiable Borel set E ⊂ X. Choose a countable family of bi-
Lipschitz maps Fi : Ki → E, with Ki ⊂ R

m compact, such that the sets Bi := Fi(Ki)

are pairwise disjoint and H m(E \ ⋃
i B

i) = 0, cf. (8.2). Since ‖T ‖ is absolutely
continuous with respect to H m by Proposition 7.4,

‖T ‖
(

X \
⋃
i

Bi

)
= ‖T ‖

(
E \

⋃
i

Bi

)
= 0.

Let πi : X → R
m be a Lipschitz extension of F−1

i : Bi → R
m, and put T i := T 
Bi .

Since T ∈ Im,loc(X), we have πi
#T

i = [ui] for some ui ∈ L1(Rm,Z) with spt(ui) ⊂
Ki . It follows that T i = Fi#(π

i
#T

i) = Fi#[ui]. For every Borel set A ⊂ X,

‖T ‖(A) = ‖T ‖
(

A ∩
⋃
i

Bi

)
=

∑
i

‖T ‖(A ∩ Bi) =
∑

i

‖T i‖(A).

Let (f,π) ∈ Dm(X), and denote by χi and χ the characteristic functions of Bi and⋃
i B

i , respectively. Using Theorem 4.4(2) we get

T (f,π) = T (χf,π) =
∑

i

T (χif,π) =
∑

i

T i(f,π).

Conversely, suppose that T ∈ Mm,loc(X) admits a representation as in the theorem.
Since ‖T i‖(X \ Fi(Ki)) = 0, ‖T ‖ is concentrated on the countably m-rectifiable
Borel set

⋃
i Fi(Ki). From Lemma 3.7 it follows that [ui] ∈ Im(Rm), hence T i =

Fi#[ui] ∈ Im(X). By forming partial sums of
∑

i T
i we find a sequence (Sk)k∈N in

Im(X) such that for every Borel set B � X, M(T 
B − Sk
B) → 0 for k → ∞. For
π ∈ Lip(X,R

m), we have π#(S
k
B) = [uk], uk ∈ L1(Rm,Z). A similar argument as

in the proof of Lemma 7.3 then shows that π#(T 
B) = [u] for some u ∈ L1(Rm,Z).
Thus T ∈ Im,loc(X). �

We now supplement the slicing theory for locally normal currents T with the fol-
lowing two theorems, providing criteria for the rectifiability of T in terms of the
rectifiability of slices, and vice versa. We refer to [20, 37] for similar statements in
the context of classical currents, and to [3, Theorem 8.1] for a corresponding result
for normal metric currents.
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Theorem 8.4 (rectifiability criterion) Suppose T ∈ Nm,loc(X), m ≥ 1, spt(T ) is sep-
arable, and P is a countable subset of Lip1(X) such that for every π0 ∈ Lip1(X)

and every compact set K ⊂ spt(T ) there is a sequence in P converging uniformly on
K to π0. If for each π = (π1, . . . , πm) ∈ Pm, 〈T ,π, y〉 ∈ I0,loc(X) for L m-almost
every y ∈ R

m, then T ∈ Im,loc(X).

Proof Fix π ∈ Pm for the moment. Put

Aπ := {
x ∈ X : 〈T ,π,π(x)〉 ∈ M0,loc(X) and ‖〈T ,π,π(x)〉‖({x}) > 0

}
,

and let Eπ ⊂ Aπ be the respective σ -compact set provided by Theorem 7.6, so that
‖T 
(1,π)‖(Aπ \Eπ) = 0. By assumption, for L m-almost every y ∈ R

m, ‖〈T ,π, y〉‖
is concentrated on some countable set contained in Aπ . Hence, by Theorem 6.4(3),

‖T 
(1,π)‖(X \ Aπ) =
∫

Rm

‖〈T ,π, y〉‖(X \ Aπ)dy = 0.

Thus ‖T 
(1,π)‖(X \ Eπ) = 0.
Now let E := ⋃

π∈Pm Eπ . Suppose (f,π) ∈ B∞
c (X) × Pm, and {f �= 0} ⊂

spt(T )\E. Since {f �= 0} ⊂ X\Eπ and ‖T 
(1,π)‖(X\Eπ) = 0, we have T (f,π) =
(T 
(1,π))(f ) = 0. By the choice of the family P , it follows that T (f,π) = 0 for
all (f,π) ∈ B∞

c (X)×[Lip1(X)]m with {f �= 0} ⊂ spt(T ) \E. Since ‖T ‖ is σ -finite,
Lemma 4.7 yields ‖T ‖(X \ E) = 0. So ‖T ‖ is concentrated on the countably m-
rectifiable Borel set E.

By the respective property of the sets Eπ , we find a countable family of pair-
wise disjoint compact sets Bk ⊂ E with ‖T ‖(E \ ⋃

k Bk
) = 0 and the property that

for every k, there is a πk ∈ Pm such that πk|Bk is bi-Lipschitz. By Theorem 7.5,
πk

# (T 
Bk) = [uk] for some uk ∈ L1(Rm), and

uk(y) = 〈T ,πk, y〉(χBk )

for L m-almost every y. By assumption, 〈T ,πk, y〉(χBk ) ∈ Z for L m-almost every
y, hence uk ∈ L1(Rm,Z). Now it follows that T admits a parametric representation
as in Theorem 8.3. Hence T ∈ Im,loc(X). �

Theorem 8.5 (rectifiable slices) Suppose T ∈ Nm,loc(X), 1 ≤ k ≤ m, and spt(T ) is
separable.

(1) If T satisfies condition (2) of Definition 8.1, in particular if T ∈ Im,loc(X), and
if π ∈ Liploc(X,R

k), then 〈T ,π, y〉 ∈ Im−k,loc(X) for L k-almost every y ∈ R
k .

(2) Conversely, if for each π ∈ Lip(X,R
k), 〈T ,π, y〉 ∈ Im−k,loc(X) for L k-almost

every y ∈ R
k , then T ∈ Im,loc(X).

Proof For the proof of (1), we first consider the case k = m, so that π ∈
Liploc(X,R

m). Choose a countable family U of open sets U � X such that for every
x ∈ spt(T ) and ε > 0 there is a U ∈ U with x ∈ U ⊂ U(x, ε), and such that the union
of finitely many elements of U is in U . By assumption, for every U ∈ U there exists
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a function uU ∈ L1(Rm,Z) such that π#(T 
U) = [uU ]. Thus, for L m-almost every
y, 〈T ,π, y〉 ∈ M0,loc(X), and, by Theorem 7.5,

〈T ,π, y〉(χU ) = uU(y) ∈ Z

for all U ∈ U . It follows that for every such y, 〈T ,π, y〉(χK) ∈ Z for all compact
sets K ⊂ X. Lemma 8.2 then shows that 〈T ,π, y〉 ∈ I0,loc(X).

Now suppose 1 ≤ k < m, and let π ∈ Liploc(X,R
k). Choose a countable set

P ⊂ Lip1(X) as in Theorem 8.4. Fix ρ ∈ Pm−k for the moment. We know from
Theorem 6.5 (iterated slices) and the result in the case k = m that

〈〈T ,π, y〉, ρ, z
〉 = 〈T , (π,ρ), (y, z)〉 ∈ I0,loc(X)

for L m-almost every (y, z) ∈ R
k × R

m−k . Hence, there is a set Nρ ⊂ R
k with

L k(Nρ) = 0 such that for every y ∈ R
k \ Nρ , 〈T ,π, y〉 ∈ Nm−k,loc(X) and〈〈T ,π, y〉, ρ, z

〉 ∈ I0,loc(X) for all z ∈ R
m−k \ N ′

y,ρ , where L m−k(N ′
y,ρ) = 0.

Suppose y ∈ R
k \ ⋃

ρ∈Pm−k Nρ , and put Ty := 〈T ,π, y〉. For each ρ ∈ Pm−k ,

〈Ty,ρ, z〉 ∈ I0,loc(X) for all z ∈ R
m−k \ N ′

y,ρ . Hence Ty ∈ Im−k,loc(X) by The-
orem 8.4. Since P is countable, this proves (1).

We show (2). In case k = m, the result holds by Theorem 8.4.
Now suppose 1 ≤ k < m. Let π ∈ Lip(X,R

k) and ρ ∈ Lip(X,R
m−k). Again let

U be given as above. It follows from Theorem 6.4 that the set M of all (y, z) ∈
R

k × R
m−k such that 〈T , (π,ρ), (y, z)〉 ∈ M0,loc(X) and 〈T , (π,ρ), (y, z)〉(χU ) ∈ Z

for all U ∈ U is L m-measurable. By assumption (and Theorem 6.4), 〈T ,π, y〉 ∈
Im−k,loc(X) ∩ Nm−k,loc(X) for L k-almost every y ∈ R

k . Hence, for L k-almost
every y ∈ R

k , it follows from Theorem 6.5 and the first part of the proof of (1) that
for L m−k-almost every z ∈ R

m−k ,

〈T , (π,ρ), (y, z)〉 = 〈〈T ,π, y〉, ρ, z
〉 ∈ I0,loc(X),

thus L m−k({z ∈ R
m−k : (y, z) �∈ M}) = 0. We conclude that L m(Rm \ M) = 0, and,

by virtue of Lemma 8.2, that 〈T , (π,ρ), (y, z)〉 ∈ I0,loc(X) for all (y, z) ∈ M . As π

and ρ were arbitrary, we have T ∈ Im,loc(X) by the result in the case k = m. �

Finally, we consider the chain complex of integral currents.

Definition 8.6 (integral current) The abelian group of m-dimensional locally integral
currents in X is defined by

Im,loc(X) := {T ∈ Im,loc(X) : ∂T ∈ Im−1,loc(X)}
if m ≥ 1, and I0,loc(X) := I0,loc(X). An m-dimensional integral current in X is an
element of

Im(X) := Im,loc(X) ∩ Nm(X).

The following important result yields a simpler characterization of Im,loc(X),
cf. [28, Theorem 30.3] and [3, Theorem 8.6].
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Theorem 8.7 (boundary rectifiability) For all m ≥ 0, Im,loc(X) ∩ Nm,loc(X) =
Im,loc(X).

In other words, if T ∈ Im,loc(X), m ≥ 1, and if ∂T has locally finite mass, then
∂T ∈ Im−1,loc(X).

Proof In case m = 0 there is nothing to prove.
Now consider the case m = 1. Let T ∈ I1,loc(X) ∩ N1,loc(X), and let U � X be

an open set. If U = X, then ∂T (χU) = ∂T (1) = T (1,1) = 0. If U �= X, put π(x) :=
inf{d(x, z) : z ∈ X \ U} for x ∈ X. Then for L 1-almost every s > 0,

∂T (χ{π>s}) = ((∂T )
{π > s})(χU )

= ∂(T 
{π > s})(χU ) + 〈T ,π, s〉(χU )

= 〈T ,π, s〉(χU ) ∈ Z

by Theorem 8.5(1). By continuity, letting s tend to 0 we conclude that ∂T (χU ) is
an integer. Since this holds for every open set U � X, it follows that ∂T (χK) is an
integer for every compact set K ⊂ X, and Lemma 8.2 yields ∂T ∈ I0,loc(X).

Now let m ≥ 1 and suppose the result holds in dimension m. Let T ∈ Im+1,loc(X)

∩ Nm+1,loc(X) and π ∈ Lip(X). For almost every y ∈ R, 〈T ,π, y〉 ∈ Im,loc(X)

∩ Nm,loc(X) by Theorem 8.5(1), hence

〈∂T ,π, y〉 = −∂〈T ,π, y〉 ∈ Im−1,loc(X)

by (6.3) and the induction hypothesis. Since this holds for every π ∈ Lip(X), Theo-
rem 8.5(2) implies that ∂T ∈ Im,loc(X). �

As a corollary, we obtain another characterization of locally integral currents
(cf. [3, Theorem 8.8(ii)]).

Theorem 8.8 Let T ∈ Nm,loc(X), m ≥ 0. Then T ∈ Im,loc(X) if and only if spt(T ) is
separable and T satisfies condition (2) of Definition 8.1.

Proof One implication is clear from Definition 8.1. The other follows from
Lemma 8.2 if m = 0 and from Theorem 8.5 (e.g., the case k = m) and Theorem 8.7
if m ≥ 1. �

A similar induction argument as in the proof of Theorem 8.7 also shows the next
result, cf. [28, Theorem 32.2], [35, Sect. 3], and [3, Theorem 8.5].

Theorem 8.9 (Closure theorem) If (Tn)n∈N is a sequence in Im,loc(X) converging
weakly to T ∈ Dm(X), m ≥ 0, and if supn NV (Tn) < ∞ for every open set V � X,
then T ∈ Im,loc(X).

Proof Suppose first that m = 0. Each Tn is a locally finite sum
∑

i an,i[xn,i] with
coefficients an,i ∈ Z \ {0}, where [xn,i](f ) = f (xn,i) for all f ∈ D(X), cf. (8.1). For
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every open set V � X, spt(Tn) ∩ V contains at most MV (Tn) points. Since Tn → T ,
it follows that spt(T ) ∩ V consists of at most supn MV (Tn) points. Hence, T is a
locally finite sum

∑
j aj [xj ] with coefficients aj ∈ R\{0}. To see that aj ∈ Z, choose

f ∈ D(X) so that 0 ≤ f ≤ 1, f (xj ) = 1, f (x) = 0 for all x ∈ spt(T ) \ {xj }, and such
that the set {n : {0 < f < 1} ∩ spt(Tn) �= ∅} is finite. Then, for sufficiently large n,
Tn(f ) = ∑

i an,if (xn,i) ∈ Z, thus aj = T (f ) = limn→∞ Tn(f ) ∈ Z.
Now let m ≥ 1 and suppose the result holds in dimension m − 1. Let π ∈ Lip(X).

For almost every y ∈ R, we have 〈Tn,π, y〉 ∈ Im−1,loc(X) for all n by Theo-
rems 8.5(1) and 8.7. Note that T ∈ Nm,loc(X) by the lower semicontinuity of mass.
By Proposition 6.6 (slicing convergent sequences), for almost every y ∈ R, 〈T ,π, y〉
is the weak limit of some locally N-bounded subsequence of (〈Tn,π, y〉)n∈N. Hence
〈T ,π, y〉 ∈ Im−1,loc(X) by the induction hypothesis. Since this holds for every
π ∈ Lip(X), Theorems 8.5(2) and 8.7 imply that T ∈ Im,loc(X). �

The compactness theorem for locally integral currents is now an immediate con-
sequence. See [28, Theorem 27.3] for the classical result.

Theorem 8.10 (Im,loc compactness) Suppose (Tn)n∈N is a sequence in Im,loc(X)

such that supn NV (Tn) < ∞ for every open set V � X. Then there is a subsequence
(Tn(i))i∈N that converges weakly to some T ∈ Im,loc(X).

Note that X still denotes an arbitrary locally compact metric space. However, the
closure of

⋃
n∈N

spt(Tn), which also contains the support of the limit T , is separable.

Proof Combine Theorem 5.4 (Nm,loc compactness) and Theorem 8.9. �
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