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Abstract Obsessive compulsive disorder (OCD) is a
frequent psychiatric disorder with a prevalence of 1-3 %,
and it places an enormous burden on patients and their
relatives. Up to 50 % of all cases suffer from onset in
childhood or adolescence, and the disorder often takes a
chronic course with a poor long-term prognosis. Paediatric
OCD, with its high familiality, is often referred to as a
distinct OCD subtype that coincides with a developmental
period in which the prefrontal cortex exhibits extensive
structural and functional maturation. In the present review,
we included all studies examining cognitive brain activa-
tion in children and/or adolescents with OCD. We con-
ducted extensive literature searches for relevant articles
(Pubmed, ScienceDirect) and summarize, tabulate, and
discuss their results. For the eight activation studies using
functional magnetic resonance imaging, we also performed
preliminary meta-analyses to assess the most consistent
hypo- and hyperactivation in paediatric OCD patients
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during cognitive task performance. The review of literature
as well as our preliminary meta-analyses of paediatric
studies indicated altered functional activation in the same
brain regions of affective and cognitive cortico-striatal-
thalamic (CST) circuits as for adult OCD patients despite
some variations in the direction of activation difference.
The still small number of studies that examined brain
activation in paediatric OCD patients thereby largely
converged with previous findings in adult patients and with
the established neurobiological models of CST circuit
dysfunction in OCD.
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Introduction

Early-onset obsessive compulsive disorder (OCD):
epidemiology

Obsessive compulsive disorder (OCD) is a psychiatric
disorder characterised by distressing intrusive, repetitive,
and often uncontrollable thoughts (obsessions) and the urge
to engage in repetitive time-consuming behaviours (com-
pulsions) that are enacted to reduce, neutralize, or prevent
distress, dreaded experiences, or events (American Psy-
chiatric Association 2000). Obsessive symptomatology
places an enormous burden on the patients as well as their
relatives (Walitza et al. 2010; Mossner et al. 2007).
According to a nationally representative survey of adult US
citizens, 2.3 % of all respondents fully met the DSM-IV
criteria for lifetime OCD (Ruscio et al. 2010). Similar
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prevalence rates between 0.1 and 2.3 % have also been
reported for European countries (Wittchen and Jacobi
2005). Up to 50 % of all OCD cases emerge during
childhood or adolescence (Flament et al. 1988; Nestadt
et al. 2000), and more than 40 % of early-onset OCD cases
persist into adulthood (Stewart et al. 2004). OCD with an
onset in childhood, thus, often follows a chronic course;
and the earlier the age of onset the poorer is the long-term
prognosis (Stewart et al. 2004). The disorder seriously
affects the everyday lives of children and adolescents and
has negative consequences for professional and academic
careers and social and emotional development (Kolada
et al. 1994). According to the National Comorbidity Survey
Replication (Kessler et al. 2005), the median age of OCD
onset is 19 years, and in 21 % of the cases, the onset is at
age 10 years already. Several studies showed a bimodal
onset distribution with a first peak in 11-year-olds and
another peak of onset in young adults (21 years) (Delorme
et al. 2005; Geller et al. 1998; Rasmussen and Eisen 1992).
Because of the heterogeneity of the disorder, it is of great
interest to identify distinct subtypes such as, for example,
early-onset or paediatric OCD as well as poor-insight OCD
or tic-related OCD, respectively (Geller et al. 1998; Ro-
sario-Campos et al. 2001). While adults are usually well
aware of their obsessive behaviours and may develop
compensatory cognitive and behavioural strategies during
the course of the disorder, children may not demonstrate
such insight (Geller et al. 1998; American Psychiatric
Association 2000; Geller 2006). Despite largely overlap-
ping symptoms seen in early- (paediatric) and late-onset
(adult) OCD, early-onset OCD is often referred to as a
distinct OCD subtype showing greater familiality and age-
specific molecular genetic differences (Chabane et al.
2005; Pauls et al. 1995; do Rosario-Campos et al. 2005;
Walitza et al. 2010), high comorbidity with tic disorders
and attention deficit hyperactivity disorder (ADHD), and a
male preponderance (Geller et al. 1998). Several differ-
ences between the characteristic symptoms in adults versus
adolescents and children have been reported. Children and
adolescents, for example, suffer more often from aggres-
sive obsessions or hoarding compulsions than adults; reli-
gious obsessions are especially dominant in adolescents,
and sexual obsessions are underrepresented in children
(Geller et al. 2001). Other authors, however, discussed
hoarding not only as a symptom of OCD but also as a
discrete diagnostic entity if other primary causes are ruled
out (Pertusa et al. 2010).

Treatment of OCD in paediatric patients
Cognitive behavioural therapy (CBT) and a combination

therapy involving CBT with a selective serotonin reuptake
inhibitor (SSRI) is the treatment of first choice in paediatric

@ Springer

patients suffering from OCD (Foa et al. 2005). Various
investigations have shown that the percentage of OCD
patients not responding to first-line treatment is high
(30—40 %) and that residual symptoms often persist even in
successfully treated patients (Foa et al. 2005). The meta-
analysis of Stewart et al. (2004) and a prospective follow-
up study of our own group (Zellmann et al. 2009) indicated
that early treatment is important as the outcome is better
with earlier therapy. The authors of the Cochrane analysis
(O’Kearney et al. 2010) summarized that CBT and SSRIs
are comparably effective in children, whereas more drop-
outs were seen under SSRI therapy. According to some
studies, patients with early-onset OCD respond less well to
pharmacotherapy (Rosario-Campos et al. 2001), suggesting
a different pathophysiology, while those with a family
history of OCD respond less well to CBT (Garcia et al.
2010).

Functional neuroimaging methods

Despite the high prevalence of OCD in childhood and
adolescence, most insights into the neurobiology of the
affected brain networks and brain functions of the disorder
are derived from studies with adults. This may be partly
explained by the fact that studying adult patients is often
easier, as they may be more cooperative and willing to
participate in research studies given their often long period
of suffering. Furthermore, modern neuroimaging tech-
niques usually require the patients to lie or sit still for a
prolonged period to achieve good data quality. Research on
brain (dys)function in paediatric populations rarely justifies
the application of neuroimaging techniques that use
radioactive tracers as in single photon emission computed
tomography (SPECT) or positron emission tomography
(PET). Non-invasive techniques such as functional mag-
netic resonance imaging (fMRI), near-infrared spectros-
copy (NIRS), and electro- and/or magnetoencephalography
(EEG/MEQG) are better suited for investigations in children
and adolescents. These techniques reveal neuronal activity
either directly (EEG, MEG) or indirectly (fMRI, NIRS) and
provide particularly precise information about the timing of
information processing (EEG, MEG) or the localization of
the neural activation and its connectivity (fMRI). MEG and
NIRS are less available than fMRI and EEG, and no study
with these techniques has so far been done in paediatric
OCD. Please note that, throughout the present review, we
use the term “paediatric OCD” for children and adoles-
cents below the age of 18 years who are suffering from
OCD.

Interpreting neuroimaging data in paediatric OCD may
be even more difficult than in adult OCD patients because
the onset of paediatric OCD coincides with a develop-
mental period in which cortical and subcortical brain areas
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exhibit extensive structural (Giedd et al. 1999; Thompson
et al. 2000; Kanemura et al. 2003; Sowell et al. 2003,
2004a) and functional (Brown et al. 2005; Casey et al.
2005; Galvan et al. 2007; Casey et al. 2008; Somerville and
Casey 2010) maturation. Even though the most dramatic
brain volume changes have been reported in early child-
hood until the age of 6 years (Giedd 2004), maturation
continues beyond adolescence and early adulthood and
includes regional alterations in the volume of grey and
white matter (Giedd et al. 1999; Paus et al. 1999; Sowell
etal. 1999, 2001, 2004a, b; Giedd 2004): In general, lower-
order sensorimotor areas and phylogenetically older
structures mature before the more recent and higher-level
association areas (Gogtay et al. 2004), and the dorsal,
medial, and ventral prefrontal cortices are among the last
regions to achieve full maturation (Sowell et al. 1999,
2004b; Giedd 2004). The inverted U-shaped grey matter
volume increases in the frontal and parietal cortex and
reach their maxima at the age of around 10-12 years
(Giedd et al. 1999), while white matter changes follow
more linear increases until adulthood (Giedd et al. 1999;
Paus et al. 1999). Not only cortical regions but also the
basal ganglia and thalamus undergo important develop-
mental changes during childhood and adolescence. A
pronounced post-adolescent reduction in gray-matter den-
sity has been found in the putamen and pallidum (Sowell
et al. 1999), and a marked developmental loss of tissue
volume in the head of the caudate nucleus occurs in an age
range in which the onset of paediatric OCD peaks
(Thompson et al. 2000). It is important to note that those
brain areas that show pronounced late maturation such as
the prefrontal cortex are among the most relevant to steer
the flexible, adaptive behaviour (Elliott et al. 2000) that
seems dysfunctional in patients with OCD.

Neuropsychology and neurobiological models of OCD

The most commonly accepted neurobiological working
model addressing neuropsychological deficits proposes a
dysfunction of cortico-striato-thalamic (CST) loops (see
Fig. 1). This dysfunction may be caused by an imbalance
in the signalling of the direct (excitatory) and indirect
(inhibitory) paths (Albin et al. 1989; for a review of dif-
ferent models, see Huey et al. 2008). A recent model
suggests that two parallel loops (van den Heuvel et al.
2010; Menzies et al. 2008), namely the ventral/affective
and the dorsal/cognitive CST loops, are involved in the
generation of characteristic OCD symptoms. According to
this model, the responsiveness of the dorsal CST loop with
projections from the dorsolateral prefrontal (dIPFC), tem-
poral, and parietal association cortices to the dorsal stria-
tum is diminished. The overactive ventral CST loop
involves projections from the ventromedial PFC,
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Fig. 1 Simplified illustration of cortico-striato-thalamic (CST) loops
based on the models of Albin et al. (1989) and the extensions of van
den Heuvel et al. (2010) and Menzies et al. (2008). Projections run
from the ventral prefrontal cortex (including OFC and ventromedial
PFC) and (rostral) ACC to the ventral striatum or the dorsolateral
prefrontal cortex (dIPFC) and (dorsal) ACC to the dorsal striatum.
Cortical areas are functionally interconnected by reciprocal connec-
tions. Brain structures (see also cluster maxima, Table 2) that
exhibited hyper- or hypoactivation in our meta-analysis across
paediatric OCD patients are labelled by arrows pointing upwards (1
hyperactivation) or downwards (| hypoactivation). Direct and indirect
paths connect the striatum and the thalamus: The direct path has a net
excitatory effect and connects the striatum over the internal part of the
globus pallidus with the thalamus. The indirect path has a net
inhibitory effect, emerges from the striatum, projects to the external
part of the globus pallidus and over the subthalamic nucleus to the
internal part of the globus pallidus and finally to the thalamus. The
thalamus closes the loops through projections to the cortex. An
imbalance of direct and indirect paths within these CST loops may
cause the hyper- or hypoactivation of specific brain areas reported in
functional brain imaging studies. An imbalance in the parallel
cognitive and affective loops further may explain the symptomatic
behaviours seen in OCD patients (for more detailed models see also:
van den Heuvel et al. 2010; Menzies et al. 2008; Aouizerate et al.
2004; Huey et al. 2008). ACC anterior cingulate cortex, aINS anterior
insula, dIPFC dorsolateral prefrontal cortex, /PL inferior parietal

lobule, OFC orbitofrontal cortex, vimPFC ventromedial prefrontal
cortex

connections:
reciprocal

—P excitatory

===« inhibitory

orbitofrontal cortex (OFC), and (rostral) anterior cingulate
cortex (ACC) to the ventral striatum and mediodorsal
thalamus (Chamberlain et al. 2005, van den Heuvel et al.
2010). A deficient modulation of the affective CST loop
through the inhibited dorsal CST loop is in line with the
finding that the dIPFC exerts a critical role in the deploy-
ment of self-control in decision-making (Hare et al. 2009).

@ Springer



1428

S. Brem et al.

The excessive activation of cortical brain areas implicated
in affective processing and the diminished activation of
cortical networks exerting executive control result in
reduced cognitive control and the inability to inhibit
inappropriate, repetitive cognitions and behaviours (van
den Heuvel et al. 2010).

Neuropsychological deficits reported for adult patients
largely correspond to impairments in these CST loops,
especially in the domain of executive functions. The few
neuropsychological studies in paediatric OCD patients
largely overlapped with those in adults, as children showed
relatively consistent impairments of cognitive flexibility
(Shin et al. 2008; Ornstein et al. 2010), planning (Behar
et al. 1984; Shin et al. 2004; Ornstein et al. 2010, but see
Beers et al. 1999), visual memory (Cox et al. 1989; Andres
et al. 2007, 2008), and inhibition (Rosenberg et al. 1997a;
Woolley et al. 2008; Rubia et al. 2011, but see Beers et al.
1999; Shin et al. 2008).

The importance of CST loops in the pathophysiology of
OCD has also been corroborated by an increasing number
of structural (meta-analysis; see Radua and Mataix-Cols
2009) and functional neuroimaging studies (reviews:
Friedlander and Desrocher 2006; MacMaster et al. 2008;
Menzies et al. 2008). These studies showed specific
structural abnormalities and/or altered brain activation and
connectivity in CST networks during resting state, symp-
tom provocation, or the performance of cognitive tasks.
Even though it is still unclear whether altered activity in
the CST loops reflects a cause or a consequence of the
observed obsessive—compulsive symptoms, there is a broad
consensus that the structures of these loops all play crucial
roles in various cognitive processes. The OFC, for exam-
ple, is involved in the evaluation of punishers (Kringelbach
2005), in inhibition (Rosenberg et al. 1997b; Rosenberg
and Keshavan 1998; Roth et al. 2007), and in processes
requiring cognitive flexibility such as choice behaviour
in situations with uncertain outcomes (Elliott et al. 2000),
reversal learning (O’Doherty et al. 2001; Chamberlain
et al. 2007, 2008), or changing behaviour (Nobre et al.
1999). The ACC may contribute to successful response
inhibition through its role in conflict detection during
information processing by alerting the systems involved in
top-down control for conflict-solving (van Veen and Carter
2002) and by playing a critical role in selecting behavioural
responses based on experiences and perceived outcomes
together with the OFC (for reviews, see Graybiel and
Rauch 2000; Chamberlain et al. 2005).

Methods

An extensive literature search was performed using the
Pubmed library and ScienceDirect database for articles
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addressing functional activation in child and adolescent
patients with obsessive—compulsive disorder. The last
search was conducted on November 1, 2011, and included
all studies published by that date.

The search terms “obsessive—compulsive disorder” and
“OCD” were used to describe the disorder. For the meth-
odology, the following terms were included: “functional
magnetic resonance imaging”, “fMRI”, “magnetic reso-
nance imaging”, “MRI”, “positron emission tomogra-
phy”, “PET”, “evoked potentials”, “ERP”,
“electroencephalography”, “EEG”, “single-photon emis-
sion computed tomography”, “SPECT”, “transcranial
magnetic stimulation”, “TMS”, “transcranial direct-cur-
rent stimulation”, “tDCS”, “magnetoencephalography”,
“MEG”, “near-infrared spectroscopy”, and “NIRS”. The
study group was described with: “adolescent”, “child”,
“infant”, and “paediatric”, and the search was restricted to
articles published in English. In our literature search, we
combined in each case the disease search term either
written as an acronym or written out in full with one
methodology search term, again written as acronym or
written out, and all of the aforementioned study group
search terms, each time in all possible combinations. In
addition, the reference lists of the suitable articles were
screened for other relevant studies.

As already summarized in the recent comprehensive
review by Huyser et al. (2009), the majority of the imaging
studies that included paediatric patients with OCD con-
centrated on changes in brain structure measured using
MRI and computed tomography (CT) or on brain chemistry
assessed using MR proton spectroscopy (H-MRS). In
contrast to brain structure and chemistry, cognitive brain
function was only rarely examined in paediatric patients.
Despite the sophisticated literature search formulas used,
many false positive hits were obtained. Several studies, for
example, examined groups pooled over paediatric and adult
OCD npatients but did not specifically report differences
between the age groups or between the paediatric patient
subgroup and the controls. These studies are, thus, not
included in the present review. After careful consideration
of all articles, only 15 studies were deemed eligible for the
present systematic review since only these directly
addressed cognitive activation using brain imaging in
paediatric OCD patients. From a total of 15 articles on
functional activation, 11 articles used fMRI and 4 used
ERPs. Note that several articles examined brain activation
in the same or partly the same OCD patient group but
focussed on different aspects, e.g.: (1) different cognitive
activation tasks (Britton et al. 2010a and Britton et al.
2010b or Huyser et al. 2010 and Huyser et al. 2011,
respectively), (2) a comparison to different control groups
and the use of different tasks (Rubia et al. 2010; Woolley
et al. 2008; Rubia et al. 2011), (3) the use of different
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analysis methods and tasks (Fitzgerald et al. 2010, 2011),
or (4) testing different aspects of auditory information
processing (Oades et al. 1996, 1997). Therefore, the 15
studies in fact included and reported findings for 9 inde-
pendent groups of paediatric OCD patients. No cognitive
activation studies using PET, NIRS, or MEG were found
that included paediatric OCD patients.

To assess the consistency of alterations in the brain
activation of paediatric OCD patients, we performed a
quantitative, voxel-based meta-analysis using activation
likelihood estimation (GingerALE V2.1.1) software (Tur-
keltaub et al. 2002; Laird et al. 2005; Eickhoff et al. 2009).
We included all eight paediatric fMRI studies that reported
coordinates (foci) from whole-brain analyses (Lazaro et al.
2008; Woolley et al. 2008; Britton et al. 2010a; b; Huyser
et al. 2010; Rubia et al. 2010; Huyser et al. 2011; Rubia
et al. 2011) showing significant activation differences in
cognitive tasks between OCD patients and healthy controls
(see Table 1A). Two separate ALE analyses were com-
puted to delineate clusters showing either consistent hyp-
oactivation (OCD < controls, 29 foci, 12 contrasts from 3
independent groups) or hyperactivation (OCD > controls,
18 foci, 7 contrasts from 3 independent groups) in OCD
(Fig. 2). Finally, we also report the results of a combined
analysis (OCD # controls, 47 foci, 18 contrasts from 4
independent groups) summarizing the brain areas that most
consistently exhibited altered functional activation inde-
pendent of the direction (hypo- or hyperactivation)
(Table 2C). First, all coordinates were transformed into the
same standard space (MNI) before activation likelihood
estimation maps were generated by applying a 3D Gauss-
ian with a subject-number-dependent FWHM between 9
and 11 mm. The random effects analysis method described
in the article by Eickhoff et al. (2009) was used to compute
p values. A false discovery rate (FDR) corrected p value
(pN) of 0.05 and a minimal cluster size >50 mm?> was used
to report the ALE results (Table 2) and illustrate the ALE
maps (Fig. 2), but foci exceeding the recommended mini-
mal cluster size are specifically marked (*) in Table 2.

Summary of findings

Although the number of cognitive brain activation studies
in paediatric OCD patients is still limited, the number has
increased considerably in recent years (Oades et al. 1996,
1997; Santesso et al. 2006; Hajcak et al. 2008; Lazaro et al.
2008; Woolley et al. 2008; Gilbert et al. 2009; Britton et al.
2010a, b; Fitzgerald et al. 2010, 2011; Huyser et al. 2010,
2011; Rubia et al. 2010, 2011), demonstrating the
increasing interest of the scientific community in studying
children and adolescents with OCD. The cognitive pro-
cesses that have been studied in paediatric patients with

functional neuroimaging (fMRI and EEG) involved mainly
executive functions such as performance monitoring,
inhibition, planning, cognitive flexibility, and working
memory. Even though cognitive activation studies that
used the fMRI technique were summarised in a recent
review by Huyser et al. (2009), the substantial increase in
the number of articles within the last 2 years, and the
addition of ERP work well justifies another review focus-
sing on cognitive functional brain activation in paediatric
OCD. The studies are summarized below. An overview of
the groups, methods, and results is also given in Tables 1A
(fMRI) and 1B (ERP).

Symptom provocation in child versus adult OCD

In OCD symptom provocation studies, patients are con-
fronted with pictures of disorder-relevant objects or scenes
such as, e.g., a dirty public toilet for patients with con-
tamination fears or a messy pile of toys for patients with
symmetry/ordering symptoms. Symptom provocation
studies provide insights into functional abnormalities in
neural systems related to disorder-specific symptoms.
Abnormal activity in certain brain areas of the CST loops
has been demonstrated by a considerable number of PET
and fMRI studies (for meta-analyses and review tables, see
Whiteside et al. 2004; Menzies et al. 2008) in adult (Adler
et al. 2000; Mataix-Cols et al. 2004; Nakao et al. 2005) and
in paediatric patients (Gilbert et al. 2009). According to
studies with adult and paediatric OCD patients, structures
of the ventral CST loop such as the OFC, ACC, and cau-
date nucleus are usually hyperactive at rest (Baxter et al.
1987, 1988; Alptekin et al. 2001; Diler et al. 2004), even
though hypoactivation in the form of reduced cerebral
blood flow has also been reported (Lucey et al. 1995).
More pronounced activation has also been detected when
provoking OCD symptoms with pictures or scenes in adults
(Adler et al. 2000; Mataix-Cols et al. 2004). Interestingly,
different symptom dimensions could be related to distinct
patterns of activation with, e.g., greater activation in the
ventromedial prefrontal regions, ACC, and caudate nucleus
when provoking washing-related anxiety, in the dorsolat-
eral frontal region, ACC, lentiform nucleus, and thalamus
for checking anxiety, and in the precentral and orbito-
frontal cortex for hoarding in adult patients (Mataix-Cols
et al. 2004). However, deactivated structures have also
been found in OCD patients, depending on the symptom
type, in the ventrolateral PFC, insula, posterior cingulate
gyrus, precentral gyrus, precuneus, occipito-temporal cor-
tex, and cerebellum (Mataix-Cols et al. 2004). Studies that
examined adult patients before and after treatment, fur-
thermore, reported the normalisation of hyperactivation in
the affected brain areas (Schwartz et al. 1996; Nakao et al.
2005) following successful treatments (for reviews, see
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Fig. 2 Results of the preliminary ALE meta-analysis. The red foci
represent areas where paediatric OCD patients exhibit overactivation
in comparison to healthy controls while the yellow foci index
hypoactivation in paediatric OCD patients. The clusters are overlaid

Whiteside et al. 2004; Maia et al. 2008; Menzies et al.
2008). Hypoactivation following the presentation of
symptom-provoking and neutral pictures in CST regions
were detected in the only fMRI study that examined
symptom provocation in paediatric OCD patients (Gilbert
et al. 2009). The deactivated structures in the 13.1 &+ 2.5-
year-old patients included the right insula, thalamus, right
dIPFC, putamen, and left OFC. In addition, symptom-
related scores on the contamination dimension were asso-
ciated with reduced dIPFC activation, and overall symptom
severity was negatively correlated with activation in the
right putamen.

Differences in cognitive activation between paediatric
OCD patients and healthy peers

Conflict monitoring and inhibition

There is considerable evidence from brain imaging studies
of a dysfunctional monitoring system in patients with
OCD. One of the critical brain structures of the monitoring
system is the anterior cingulate cortex (ACC). ACC
activity has been studied in a variety of tasks, most often
involving response and/or error monitoring (Ursu et al.

Controls > OCD

on an average MNI template and illustrate sagittal (rows 1-3) as well
as axial views (row 4). All FDR (p < 0.05) corrected clusters that
exceed a cluster volume >50 mm® are illustrated

2003; van den Heuvel et al. 2005; Santesso et al. 2006;
Hajcak et al. 2008; Fitzgerald et al. 2010; Huyser et al.
2011), working memory (van der Wee et al. 2003), or
inhibition (Maltby et al. 2005; Woolley et al. 2008; Rubia
et al. 2010). Enhanced activity is, for example, found when
conflict arises due to unexpected error feedback (van Veen
and Carter 2002). In adult OCD patients, the monitoring
system has shown similar excessive activation when erro-
neous responses or correct responses in high-conflict trials
(Ursu et al. 2003; Maltby et al. 2005) were processed. This
may indicate that excessive ACC activity reflects a neural
correlate of the patients’ continuing sense that “something
is wrong” (reviews, see Schwartz 1998; Aouizerate et al.
2004) or “just not right” (Maltby et al. 2005) and requires
correction. Support comes from ERP studies that have
related response monitoring processes to a specific
response-locked potential referred to as error negativity
(“Ne”) or error-related negativity (“ERN”). This Ne is
recorded on the scalp at around 50-150 ms after error
commission. It emerges in the ACC, as shown by source
computations (Dehaene et al. 1994; van Veen and Carter
2002). The Ne has been linked to a phasic error signal from
the mesolimbic dopamine system that triggers further
processing and compensation (Holroyd and Coles 2002).
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Table 2 Summary of ALE meta-analyses for (A) controls > OCD, (B) OCD > controls and (C) OCD # controls

Cluster No. Volume (mm®) Wei ghted centre ALE Extreme value ALE (sub)maxima Hem Region
X y z X y Z
(A) Controls > OCD
1* 1,240 27 1 —27 0.0231 26 2 —-28 R Uncus/amygdala
2% 880 -23 2 —-25 0.0199 =22 2 —24 L Parahippocampal gyrus/amygdala
3 64 45 —27 45 0.0080 44 —28 44 R Inferior parietal lobule
4 56 —54 6 42 0.0089 —54 6 42 L Middle frontal gyrus/posterior dIPFC
(B) OCD > controls
1* 80 54 3 0 0.0086 54 3 0 R Superior temporal gyrus
2% 80 -36 51 18 0.0086 -36 51 18 L Middle/superior frontal gyrus/dIPFC
3* 80 12 3 48 0.0086 12 2 48 R Cingulate gyrus/SMA
4% 64 33 15 3 0.0080 33 15 3 R Putamen/claustrum/anterior insula
5% 56 —42 12 —12 0.0089 —42 12 —-12 L Anterior insula
6%* 56 12 18 36 0.0089 —-12 18 36 L Anterior cingulate gyrus
T* 56 12 36 36 0.0089 12 36 36 R Medial frontal gyrus, dmPFC
(C) OCD # controls
1* 1,192 27 1 —27 0.0231 26 2 —-28 R Uncus/amygdala
2% 856 =23 2 —25 0.0199 =22 2 —24 L Parahippocampal gyrus/amygdala
3* 336 —43 11 —10 0.0116 —42 12 —-10 L Anterior insula
4% 208 -35 31 -5 0.0104 —-36 32 -4 L Inferior frontal gyrus (OFC)

Clusters 1-3 of contrast (C) coincide with clusters in contrasts (A) and (B). Note, for contrasts (A) and (B) all clusters that exceed a cluster
volume >50 mm® are listed for information but only clusters denoted with * exceed the ALE recommended minimum cluster-size threshold

Hem hemisphere, R right, L left

An alternative explanation for the occurrence of repet-
itive behaviours in the form of compulsions in OCD
patients is a failure in the inhibition of prepotent responses
(Maltby et al. 2005). The stronger activation of the lateral
OFC, lateral PFC, and rostral and caudal ACC in adults for
correct inhibition in high-conflict trials (Maltby et al. 2005)
during Go/Nogo tasks supported this theory: While the
caudal ACC activation was explained by an exaggerated
response to the identification of a response conflict, the
excessive rostral ACC activation may indicate an amplified
affective response in conflict situations. The failure to
reduce the response conflict through appropriate filtering
(Maltby et al. 2005) is reflected by the hyperactive lateral
PFC. When considering the role of the lateral OFC in
encoding the affective value of an anticipated aversive
event and for adapting behaviour, particularly when a
negative outcome is anticipated (O’Doherty et al. 2001), its
overactivity in OCD patients could reflect excessive con-
cern about the expected outcome (Ursu and Carter 2009).

The findings of ERP studies examining conflict moni-
toring processes in adult and paediatric OCD patients are
consistent, as more pronounced Ne amplitudes have been
found in children (Santesso et al. 2006; Hajcak et al. 2008)
as well as in adults (Johannes et al. 2001; Endrass et al.
2008; Grundler et al. 2009). The flanker tasks in the studies
of Santesso et al. (2006) and Hajcak et al. (2008) targeted

@ Springer

error processing and focussed on the modulation of the
characteristic frontocentral Ne in children. Both the find-
ings of (1) an enhanced Ne and subsequent error positivity
(Pe) in children (10.2 £ 0.25 years) (Santesso et al. 2006)
and (2) enhanced Ne in a group of partly medicated pae-
diatric patients (13.3 £ 2.8 years) (Hajcak et al. 2008)
corroborate the suggestion that OCD patients show an
exaggerated automated response-checking behaviour. The
study of Hajcak et al. (2008) also examined treatment
effects with pre/post assessments. The Ne remained
increased for children with OCD (12.5 £ 3.2 years) before
and after cognitive behavioural therapy (CBT) and, thus,
showed no normalization in amplitude. The enlarged Ne
has, therefore, been proposed to reflect a trait-like marker
that may characterize a useful endophenotype (Hajcak
et al. 2008). It is interesting to note that fMRI studies that
examined error processing in paediatric patients were not
as consistent as ERP studies regarding the corresponding
ACC activity: Fitzgerald et al. (2010) used a multisource
interference task that was adapted for event-related fMRI
to compare the brain activation of a group of medicated
and treatment-naive patients (8—18 years) with moderate
OCD symptoms with that of a group of healthy controls. In
line with the increased Ne reported in ERP studies (Sant-
esso et al. 2006; Hajcak et al. 2008), excess activation was
found in the dorsal ACC (dACC) and ventral medial frontal



Neuroimaging of cognitive brain function in paediatric OCD

1439

cortex (VMFC) during interference task performance and in
the vMFC and rostral ACC during error processing in OCD
patients. In addition, the functional connectivity of the
dorsal ACC and vMFC was enhanced in paediatric patients
during task performance. These results corroborate the
pronounced drive towards prepotent responding in OCD
patients because the atypically exaggerated engagement of
the vMFC may indicate the increased emotional salience of
cognitive stimuli in conflict situations. Therefore, more
performance monitoring through the dACC is required to
achieve a similar performance (Fitzgerald et al. 2010). The
same authors analysed functional connectivity not only
during task performance but also during rest (Fitzgerald
et al. 2010, 2011). The analyses focussed on differences in
the connections from the dorsal and ventral striatum or the
medial dorsal thalamus to cortical regions in four age
groups of patients with OCD (children 8-12 years, ado-
lescents 13—17 years, young adults 18-25 years, adults
2640 years) compared to matched controls. Reduced
connectivity was found between the dorsal striatum (head
of caudate) and the rostral ACC and between the medio-
dorsal thalamus and bilateral ACC. These effects within
cortical cognitive control networks depended on age and
were driven by the pronounced difference between the
youngest groups. Independent of age, excessive connec-
tivity was detected between the ventral striatum (nucleus
accumbens) and the ventral medial frontal cortex for OCD
patients, suggesting a failure in the regulation of affectively
salient information (Fitzgerald et al. 2011). The authors
concluded that altered brain function and connectivity may
critically affect the interactions between networks and
thereby cause the potentiation of distressing, affective
thoughts while disrupting performance monitoring in
young OCD patients (Fitzgerald et al. 2010). In contrast to
the study of Fitzgerald et al. (2010) summarized above, the
study of Rubia et al. (2011) did not find increased activa-
tion of the ACC during interference processing in their
group of OCD patients (mean age 13.8 years). Instead,
reduced activation of the right ACC/supplementary motor
area (SMA) and the superior parietal lobe was found in
both paediatric patients with OCD and patients with ADHD
as compared to controls (Rubia et al. 2011). For the easier
oddball condition, no disorder-specific hyper- or hypoac-
tivation in the dIPFC was reported for paediatric OCD
(Rubia et al. 2011). Cognitive control exerted through the
dIPFC may, thus, also be reduced for simpler perceptual
attention allocation tasks in paediatric patients (Rubia et al.
2011). The study on cognitive behavioural therapy (CBT)
effects conducted by Huyser et al. (2011) pointed to the
important influence of age when studying paediatric OCD
samples and when looking at ACC function: The rostral
ACC (and insula) hyperactivation was especially pro-
nounced in the older patients of the group aged between 9

and 19 years during error processing. This suggests normal
ACC function in young patients. However, the disorder
may disturb the normal maturation and development of this
structure and thereby cause the abnormal function seen
later (Huyser et al. 2011). The same study also revealed an
increase in the activation of the dorsomedial PFC, ACC,
and premotor areas when patients were confronted with
conflict trials after successful CBT, suggesting that vol-
untary regulation could be facilitated through CBT (Huyser
et al. 2011).

ERP studies have investigated inhibitory control pro-
cesses with Go/Nogo tasks. Inhibition-related ERPs (Kopp
et al. 1996; Falkenstein et al. 1999) with larger amplitude
on Nogo than Go trials include fronto-central N2 (or N200)
negativity after 200-300 ms and later (350-600 ms) fron-
to-central P3 (or P300) positivity. However, there is also
some evidence that the N2 with sources in the caudal
region of the anterior cingulum (van Veen and Carter 2002)
may be driven preliminarily by conflict monitoring pro-
cesses rather than inhibition alone (Donkers and van Boxtel
2004). Previous studies have reported inconsistent findings
regarding the N2 in adult OCD patients for Go/Nogo tasks
examining inhibitory control with enhanced (Ruchsow
et al. 2007), reduced (Kim et al. 2007), or comparable (Di
Russo et al. 2000) amplitudes. No ERP study has assessed
inhibitory control in paediatric OCD patients up to now,
and it remains to be examined whether paediatric OCD
patients exhibit abnormal N2 and/or P3 amplitudes. The
fMRI studies of Rubia et al. (2010) and Woolley et al.
(2008) addressed motor and interference inhibition pro-
cesses as well as cognitive flexibility in boys with OCD
who were treated and in partial remission. The activation in
patients with a mean age of 14.3 £ 1.7 years differed from
matched healthy controls by showing reduced right
orbitofrontal and ACC activation upon successful stop
trials and reduced left mesial and dorsolateral frontal
activation upon failed stop trials (Woolley et al. 2008;
Rubia et al. 2010). While reduced activation of the dIPFC
has been reported for planning and reversal learning tasks
in adults (van den Heuvel et al. 2005; Remijnse et al. 2006;
see below), the reductions in ACC and OFC activation
found in paediatric populations contrasts with the hyper-
activation observed in adults (Ursu et al. 2003; Maltby
et al. 2005).

Cognitive flexibility and learning processes

In contrast to constant and predefined stimulus—response/
reinforcement contingencies in flanker and Go/Nogo tasks,
the stimulus-response contingencies change in reversal
learning tasks, forcing subjects to adjust their behaviour
accordingly. Reversal learning tasks assess cognitive flex-
ibility and reinforcement-based learning, as a previously
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learned response has to be adjusted (Chamberlain et al.
2007; Finger et al. 2008; Gu et al. 2008). FMRI studies
comparing adult OCD patients and controls revealed less
pronounced activation during reversal learning in the lat-
eral OFC and PFC (Remijnse et al. 2006; Chamberlain
et al. 2008; Gu et al. 2008) as well as in the parietal cortex
(Chamberlain et al. 2008; Gu et al. 2008) in patients. This
hypoactivation was related to the weaker performance and
especially the slowed responding of patients in tasks
requiring cognitive flexibility (Remijnse et al. 2009).
Because unaffected relatives of OCD patients also yielded
reduced lateral OFC and PFC activation in a reversal
learning task, this pattern has been proposed as a candidate
endophenotype of OCD (Chamberlain et al. 2008).

Few studies have examined reversal learning in OCD
patients using ERPs. These ERP studies focussed particu-
larly on the Ne and on feedback-related potentials. Neither
the Ne nor the feedback potentials differed between adult
OCD patients and controls in the study of Nieuwenhuis
et al. (2005). The absence of excessive Ne amplitude in
adult OCD patients may be explained by diminished action
monitoring processes given that the task included a trial-to-
trial feedback as well as undetermined stimulus response
associations (Nieuwenhuis et al. 2005). In a study con-
ducted by Grundler et al. (2009), the relations between Ne
amplitude and OC symptoms in adults were opposite even
when comparing a probabilistic learning task with a simple
flanker task: the diminished differential Ne amplitude in
the probabilistic reinforcement learning task was inter-
preted as hypoactivity in neural systems promoting active
avoidance and perhaps corresponding to the inability of
OCD patients to learn to inhibit repetitive behaviours.
Hyperactivity in the same neural system, in contrast, as
seen during the flanker task, could indicate the perpetuation
of a previously maladaptive response that is reflected in
stereotypical behaviours (Grundler et al. 2009).

Two studies so far have tested cognitive flexibility in
children and adolescents. Rubia et al. (2010) used a simple
visuo-spatial switch task that required switching between
two spatial dimensions to examine their 14.3 + 1.7-year-
old patients. Only minor activation differences on a trend
level in the left precentral and inferior prefrontal cortex
between OCD patients and controls (Woolley et al. 2008;
Rubia et al. 2010) were found for dimensional switch
versus non-switch (repeat) trials. The absence of clear
disorder-specific effects in brain activation could, however,
be explained by studying a relatively small group (n = 10)
of mostly medicated OCD patients with only some residual
Ssymptoms.

The study of Britton et al. (2010a) of medicated but still
symptomatic OCD patients (aged 10-17 years, mean
13.5 £ 2.4 years) examined cognitive flexibility using a
blocked set-shifting paradigm with the two dimensions of
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colour and shape. Within the blocks, the target dimension
(colour or shape) either alternated or remained unchanged.
The set-shifting contrast yielded reduced activation in
OCD npatients in the left inferior frontal gyrus and a neg-
ative correlation between behavioural shift costs (defined
as reaction time differences between alternating and repe-
ated trials) and right caudate activation. Together with
previous findings in adult patients (Remijnse et al. 2006;
Chamberlain et al. 2008; Gu et al. 2008), the results sug-
gest dysfunction in the dorsal cognitive CST loop.

Learning processes in paediatric patients with OCD
were examined in a study by Lazaro et al. (2008). The
dysfunction of premotor-cortico-striatal activity was stud-
ied using a serial reaction time task testing the implicit
serial learning of complex and simple sequences in a group
of OCD patients (7-18 years) before and after 6 months of
pharmacological treatment. Hyperactivation of the bilateral
middle frontal gyri in OCD patients before and in the right
inferior parietal lobe after treatment was reported. A
comparison of pre- and post-treatment yielded a reduction
in hyperactivation in the left insula and putamen, which has
been associated with decreased anxiety due to clinical
improvements. Treatment did not normalize the hyperac-
tivity in the frontal cortex. Huyser et al. (2010) compared
planning processes in 25 unmedicated paediatric OCD
patients (9-19 years) and healthy controls in an age- and
gender-matched pairs design. A modified Tower of London
task including one control and five planning conditions of
different task loads was performed during fMRI scanning
before and after 16 sessions of cognitive behavioural
treatment (CBT). The effects of group and/or time with
planning or task load were analysed. Like adult patients
(van den Heuvel et al. 2005), paediatric patients also
exhibited hypoactivation in the left posterior dIPFC/pre-
motor cortex and the right parietal cortex prior to CBT.
Diminished activation during planning was no longer found
after CBT, and the authors suggested that this hypoacti-
vation represents a state rather than a trait marker of pae-
diatric OCD. Task load was associated with increased
activation of the ventrolateral and medial PFC, ACC, and
insula in paediatric OCD patients compared to controls
before treatment, which may reflect increased error moni-
toring for demanding processes. After treatment, a decrease
and normalisation of the right inferior frontal activation in
OCD patients was found for increased task loads.

Emotion processing

Only one functional activation study examined emotion
processing in paediatric patients with OCD. Britton et al.
(2010b) looked at the processing of emotional stimuli in
their patients (13.8 & 2.4 years) to determine whether
paediatric OCD differs from other anxiety disorders by
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showing reduced rather than increased amygdala activity.
Emotional (fearful, happy, disgusted) and neutral facial
stimuli were presented to the children in an event-related
design. As expected, the OCD children revealed reduced
amygdala/hippocampus activation in response to emotional
and neutral facial stimuli and thereby underlined the dis-
tinction from other anxiety disorders. Happy faces were,
furthermore, associated with excessive activation in the
dorsal ACC of OCD patients, while fearful faces evoked
hyperactivation in the ventrolateral PFC and hypoactiva-
tion in the OFC.

Working memory and memory traces

There is some evidence for the existence of a deficit in
working memory function in patients with OCD (Purcell
et al. 1998; van der Wee et al. 2003, 2007; Nakao et al.
2009; review: Chamberlain et al. 2005), especially for
difficult tasks with high working memory loads or when
failures in strategy impair performance in a given task
(Chamberlain et al. 2005). Working memory function may
even be related to symptom type, as shown by the poor
performance in a study of adult patients with checking
symptoms compared to those with washing symptoms
(Nakao et al. 2009). Only a few studies have examined
working memory function in OCD patients with neuroim-
aging techniques, and the results have been rather incon-
sistent. More pronounced activation in the dIPFC, superior
temporal gyrus, insula, and cuneus was reported for adult
OCD patients compared to controls in a two-back task
(Nakao et al. 2009). Van der Wee et al. (2003) revealed
enhanced ACC activity in adult OCD patients during a
spatial working memory task but attributed this overacti-
vation to monitoring rather than specific working memory
processes. A single EEG study (and no fMRI or PET
studies) has so far examined working memory traces in
paediatric OCD patients. Auditory oddball tasks (Oades
et al. 1996, 1997) were applied to study working memory
traces during focussed (active) versus diffuse (passive)
attention allocation. Healthy controls and the group of
adolescents with OCD aged 11-19 years (mean 16.3 years)
in the studies by Oades et al. (1996, 1997) served as control
patients to two groups of patients with schizophrenia (with
or without paranoid-hallucinatory symptoms). The focus of
this article was, thus, on group differences in the auditory
ERPs in the time range from 20 to 550 ms after stimulus
presentation and especially the mismatch negativity
(MMN) known to be attenuated in schizophrenia. The
MMN represents a pre-attentive potential and has been
related to the formation of perceptual traces or working
memory. Despite the focus on patients with schizophrenia,
the data also has shown some differences between OCD
patients and healthy controls. These differences included

strongly expressed P3, enhanced MMN in the active
attention allocation condition, topographic asymmetries in
the form of a right lateralized auditory N1, a delayed N2
peak, and a reduced P2 amplitude. ERP analyses, thus,
have pointed to differences in the formation of perceptual
traces in OCD patients, but more research is needed to
clarify specific failures in working memory processes.

Preliminary ALE meta-analysis of paediatric OCD studies

With our preliminary ALE meta-analysis, we attempted to
elucidate the most consistent foci of abnormal brain acti-
vation across different cognitive tasks in paediatric OCD.
Significant clusters that exceeded the ALE minimal cluster
threshold were located in the bilateral amygdalae, para-
hippocampal gyrus, left anterior insula, and left orbito-
frontal cortex (see Table 2C). More specifically, the results
(Fig. 2) revealed four clusters that showed hypoactivation
in paediatric OCD compared to healthy controls in the left
and right parahippocampal gyri/amygdala extending to the
left orbitofrontal cortex and the ventral part of the putamen.
The two clusters in the right inferior parietal lobule and the
left posterior dIPFC (middle frontal gyrus) should be
regarded as trends for differential activation because of
their rather small cluster sizes (Table 2A). Excessive
activation in OCD patients was found in the right superior
temporal gyrus, anterior insula, putamen, dorsal ACC, right
dorsomedial, and left dorsolateral PFC (Table 2B). Please
note that these preliminary results have to be interpreted
with caution. Major limitations regarding the validity of
this analysis apply because the results are based on a very
limited set of functional neuroimaging studies. Therefore,
these analyses include activation foci of very few inde-
pendent samples of paediatric OCD patients evoked by
different cognitive tasks. The analyses, thus, cannot pro-
vide information about task-specific activation abnormali-
ties but may only give a first impression on where the most
consistent abnormalities (Table 2C) in functional activa-
tion are located. Given the very limited number of studies
in paediatric patients, including either unmedicated and/or
medicated patients with or without comorbidities, so far, it
is difficult to disentangle consistent traits or markers from
functional neuroimaging data that specifically characterize
childhood OCD.

Discussion

The rapidly growing literature on cognitive functional
networks in children and adolescents with OCD shows the
increasing interest in understanding the alterations in cog-
nitive networks underlying OCD in childhood and/or
adolescence. Studying paediatric patients has the advantage
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that the data is usually less prone to confounding factors
such as alterations in brain structure and function due to the
chronicity of the disorder, past treatments, medications,
and/or behavioural compensation strategies that may have
emerged in patients to cope with the distressing symptoms.
According to formal genetic studies, the early-onset OCD
phenotype (age of onset under 18 years of age) showed
higher heritability (Chabane et al. 2005) than the late-onset
phenotype. Therefore, biological mechanisms seem to
more strongly influence the early-onset phenotype (Walitza
et al. 2010). Studies with paediatric patients should, thus,
provide more direct insights into the underlying brain
dysfunctions of early-onset OCD. Similar to adults, how-
ever, the interpretation of data collected in paediatric
studies also suffers from the heterogeneous nature of the
disorder in terms of age of onset, severity, symptom types,
and varying time elapsing between onset and diagnosis as
well as from comorbidities, therapy, and medication.
Moreover, the variability in the data of paediatric OCD
patients is further increased by the major developmental
and maturational changes that occur in brain networks
during childhood and adolescence. This problem is espe-
cially pronounced when studies include patients of a wide
age range because functional as well as structural changes
in grey and white matter and especially within the cortical
and subcortical structures of the affected networks are
major (Giedd et al. 1999; Paus et al. 1999; Sowell et al.
1999, 2001, 2004a, b; Giedd et al. 2004; Gogtay et al.
2004; Casey et al. 2008; Thompson et al. 2000).

The heterogeneity seen in the symptoms of the disorder
is largely mirrored by the variability in the results of
neuroimaging studies. Still, the overall pattern of altered
functional brain activation in paediatric OCD patients lar-
gely corresponds to the neurobiological working model of
a dysregulation in cortico-striato-thalamic circuits and,
more specifically, to failures of the cognitive and affective
loops (reviews, see Saxena et al. 1998; Chamberlain et al.
2005; Friedlander and Desrocher 2006; Maia et al. 2008;
Menzies et al. 2008; van den Heuvel et al. 2010). A meta-
analysis of cognitive activation studies in adult OCD
patients identified the brain areas that showed the most
consistent alterations in activation patterns across studies
and different tasks (Menzies et al. 2008). Thereafter,
excessive activation in OCD patients was localized mainly
in the inferior and medial frontal cortex, ACC, claustrum,
thalamus, caudate, and parts of the posterior cingulate,
occipital, and parietal cortices. According to our pre-
liminary meta-analyses, the excessive activation of the
ACC thus coincided in paediatric and adult OCD. Over-
active performance monitoring processes in OCD patients,
as revealed by ERP and fMRI studies, could be required to
control for the increased emotional salience of cognitive
stimuli in conflict situations (Fitzgerald et al. 2010) and
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may also cause the feeling of patients that something is
wrong and needs correction (Aouizerate et al. 2004). Even
though abnormal ACC activity quite consistently charac-
terizes adult and paediatric OCD patients, there is some
evidence for an age-specific dysfunction of this structure: a
volumetric study revealed that the typical maturational
increase in the ACC volume in healthy controls was absent
in OCD patients (Rosenberg and Keshavan 1998). The
absence of these age-related maturation effects and the
increased ACC volume (Rosenberg and Keshavan 1998)
and grey matter density (Szeszko et al. 2008) in OCD
patients have been interpreted as a failure in neuronal
pruning during development (Rosenberg and Keshavan
1998). More evidence specifically pointing to a failure in
the maturation of CST loops was provided by two very
recently published cross-sectional studies, one on cognitive
activation during interference processing (Huyser et al.
2011) and one on functional connectivity during resting
state (Fitzgerald et al. 2011). These studies directly com-
pared different age groups of paediatric OCD patients
(Huyser et al. 2011) or paediatric and adult OCD patients
(Fitzgerald et al. 2011). The connectivity between the
rostral ACC and the dorsal striatum was especially reduced
in young paediatric OCD patients, while the connectivity
between the dorsal striatum and the ventral medial frontal
cortex was enhanced across development in patients
(Fitzgerald et al. 2011). The authors concluded that the
hypoconnectivity in the cognitive control circuits may
characterize OCD in young patients, in contrast to the
hyperconnectivity of affective circuits that is common to
OCD across development. Not all studies reported
increased ACC activity in paediatric patients with OCD
during interference or error processing. The rostral ACC,
for example, showed normal activation in very young but
increased activity in older paediatric patients during error
processing (Huyser et al. 2011), and the dorsal ACC/SMA
exhibited diminished activation even during conflict pro-
cessing in the study of Rubia et al. (2011).

Such findings indicate that differential development may
characterize the maturation of CST networks in OCD.
Unfortunately, no longitudinal studies exist that track and
compare the development of CST networks between
affected and healthy children. The neuroimaging studies
with the longest follow-up interval to date focussed on the
effect of treatments within a restricted period of time
(usually up to 6 months) rather than on the long-term
development and maturation of brain networks (Lazaro
et al. 2009; Huyser et al. 2010, 2011). Longitudinal follow-
up studies of patients from childhood onward would be
critical to understand how the disorder affects brain mat-
uration and important to disentangle the impact of chro-
nicity, treatment, and development on brain networks.
Pronounced abnormalities in the structural development of
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CST networks in OCD patients have already been reported
(Rosenberg and Keshavan 1998; for a review, see Huyser
et al. 2009).

In contrast to the usual hyperactivity in affective CST
loops during simple error performance monitoring tasks in
OCD npatients, the activation of the dorsal, cognitive CST
loop, and especially the dorsolateral prefrontal cortex and
the lateral OFC was often diminished in challenging cog-
nitive tasks. This held for both paediatric (Woolley et al.
2008; Britton et al. 2010a; Huyser et al. 2010; Rubia et al.
2010) and adult patients (Remijnse et al. 2005, 2006;
Chamberlain et al. 2008; Gu et al. 2008; Freyer et al. 2010)
in tasks requiring cognitive control for, e.g., planning and/
or the flexible adjustment of behaviour through learning.
The meta-analyses of Menzies et al. (2008) revealed
reduced activation in adult OCD patients in comparison to
controls mainly in the basal ganglia, i.e., in the putamen
and caudate nucleus but also in the lateral OFC, inferior
frontal gyrus, insula, parahippocampal gyrus/amygdala,
cerebellum, and ACC (Menzies et al. 2008). The foci of
hypoactivation in adult patients, thus, converged with those
identified in our preliminary meta-analysis of paediatric
patients regarding the parahippocampal gyrus/amygdala. In
addition, our meta-analysis pointed to two foci in the
middle frontal gyrus (posterior dIPFC) and the inferior
parietal lobule, where paediatric patients showed reduced
activation. Even though the meta-analyses identified the
OFC as a focus of altered activation, no focus of consistent
hypoactivation was found in the ventral PFC for paediatric
patients. Also, regarding the functional activation of the
dIPFC, mixed results were found: one cluster at the pos-
terior end of the dIPFC tended to indicate hypoactivation
whereas two clusters in the left dorsolateral and right
dorsomedial PFC exhibited hyperactivation in paediatric
OCD patients. Still, several studies with paediatric OCD
patients have reported hypoactivation of the ventral PFC
(including OFC) (Britton et al. 2010a, b; Rubia et al. 2010;
Woolley et al. 2008; Gilbert et al. 2009; Fitzgerald et al.
2010) or the dIPFC in switch and planning tasks (Rubia
et al. 2010; Woolley et al. 2008; Huyser et al. 2010), in
accordance with adult studies. The reduced activation in
tasks requiring cognitive flexibility (Remijnse et al. 2009)
may represent a neural correlate of deficient self-control
over behaviours and explain the difficulty of stopping the
inappropriate compulsive behaviours (Aouizerate et al.
2004) that are common to paediatric and adult OCD. To
summarize, altered activation was found primarily in the
same cortico-striatal brain regions for adult (Menzies et al.
2008) and paediatric OCD patients, as indicated by the
meta-analyses. The direction of activation differences,
though, yielded partly opposing results between youth and
adults such as the hyperactivation in the anterior insula and
the putamen in paediatric patients. Even though the results

provide some preliminary insight into alterations in cog-
nitive activation patterns, the interpretation and relation to
altered cognitive function is difficult because a variety of
cognitive tasks had to be included in the present meta-
analyses.

The quite consistent overactivation of the OFC reported
for adult patients during symptom provocation (for meta-
analyses and review tables, see Whiteside et al. 2004;
Menzies et al. 2008; Baxter et al. 1987, 1988; Alptekin
et al. 2001; Diler et al. 2004, but see Lucey et al. 1995) has
so far not been replicated in paediatric patients (Gilbert
et al. 2009): instead, diminished activation was found in the
OFC and in other brain areas of the CST loops. An eval-
uation of this difference between children and adults is
difficult since only one study so far has examined paedi-
atric patients, and no direct comparison between adult and
paediatric patients is available. It needs to be clarified
whether the deactivation found in the prefrontal cortex of
paediatric patients is related to a delayed maturation of
these structures compared to healthy peers or whether it
reflects a neural correlate of dysfunctional cognitive
processing.

It has to be noted that the majority of the studies used for
the meta-analysis and reviewed here included mixed
groups of non-medicated and medicated paediatric patients
with or without treatment history and comorbidities (see
Table 1). Treatments and comorbidities (e.g., generalized
anxiety disorder, depression, etc.) may confound the acti-
vation results and make comparisons between studies more
difficult. Two of the reviewed paediatric studies, on fMRI
symptom provocation and ERP conflict monitoring,
included an additional analysis comparing the effects in
medicated and non-medicated OCD patients (Gilbert et al.
2009; Hajcak et al. 2008). These comparisons yielded
neither fMRI activation differences nor differences in the
core ERP measures, thereby confirming the validity of the
results. From other studies, however, it is well known that
psychotropic medication (e.g., SSRIs) may affect the brain
chemistry (Rosenberg et al. 2000), structure (e.g., thalamus
(Atmaca et al. 2006; Gilbert et al. 2000) or amygdala
(Szeszko et al. 2004)), and functional activation (e.g.,
Lazaro et al. 2008). Moreover, medication effects depend
on the task and, thus, are process specific (Del-Ben et al.
2005). While most of the summarized ERP studies con-
centrated on medication-free OCD samples, only the fMRI
treatment studies examining CBT (Huyser et al. 2010,
2011) or SSRI medication (Lazaro et al. 2008) reported
results from non-medicated patients at baseline (Lazaro
et al. 2008) or both assessments (Huyser et al. 2010, 2011).
In the SSRI treatment study, medication along with clinical
improvements had the most impact on activation in the
insula and putamen. Given the evidence that treatments
and/or comorbidity may affect functional activation, it is
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important that future studies control for such confounding
variables. However, one should keep in mind that comor-
bidities are highly frequent among patients with OCD. The
strict exclusion of patients with comorbidities would, thus,
massively complicate recruitment and result in smaller
sample sizes.

To summarize, paediatric and adult studies converge in
showing abnormal activity in cognitive as well as affective
CST circuits. However, it remains to be examined whether
the impact of different CST networks and their role in the
establishment of obsessions and/or compulsions change
with development and differ between subtypes of OCD.

Conclusions

Studies on OCD in adult and paediatric patients both point
to dysfunction in cognitive and affective CST loops, by
either showing hyper- or hypoactivation in—and altered
functional connectivity between—specific brain structures.
The modest number of paediatric OCD neuroimaging
studies and especially the lack of studies with a cross-
sectional and/or longitudinal approach to date does not
allow for delineating and characterizing specific differ-
ences between paediatric and adult OCD or between OCD
with early and late onset. Only two very recent studies
compared patients across different age groups and were
able to show commonalities as well as specific differences
between neuronal networks in younger and older OCD
patients. More cross-sectional studies elucidating differ-
ences in cognitive processing across age groups of paedi-
atric OCD patients and especially longitudinal studies that
track the maturation of affected brain networks over time
are needed. Such studies may help us to understand how
the functional development of CST networks in healthy
children deviates from that of patients, how the disorder
affects brain development, and whether markers from
neuroimaging could be used to characterize different sub-
types of OCD in the future.
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