
The VLDB Journal (2013) 22:151–175
DOI 10.1007/s00778-012-0278-6

REGULAR PAPER

Scalable and dynamically balanced shared-everything OLTP
with physiological partitioning

Pınar Tözün · Ippokratis Pandis · Ryan Johnson ·
Anastasia Ailamaki

Received: 7 September 2011 / Revised: 21 January 2012 / Accepted: 2 May 2012 / Published online: 26 June 2012
© Springer-Verlag 2012

Abstract Scaling the performance of shared-everything
transaction processing systems to highly parallel multicore
hardware remains a challenge for database system designers.
Recent proposals alleviate locking and logging bottlenecks
in the system, leaving page latching as the next potential
problem. To tackle the page latching problem, we propose
physiological partitioning (PLP). PLP applies logical-only
partitioning, maintaining the desired properties of shared-
everything designs, and introduces a multi-rooted B+Tree
index structure (MRBTree) that enables the partitioning of
the accesses at the physical page level. Logical partition-
ing and MRBTrees together ensure that all accesses to a
given index page come from a single thread and, hence, can
be entirely latch free; an extended design makes heap page
accesses thread private as well. Moreover, MRBTrees offer
an infrastructure for easy repartitioning and allow us to have
a lightweight dynamic load balancing mechanism (DLB) on

Ippokratis Pandis and Ryan Johnson: work done while author
affiliated with CMU and EPFL.

P. Tözün (B) · A. Ailamaki
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne,
Lausanne, VD, Switzerland
e-mail: pinar.tozun@epfl.ch

A. Ailamaki
e-mail: anastasia.ailamaki@epfl.ch

I. Pandis
IBM Almaden Research Center,
San Jose, CA, USA
e-mail: ipandis@us.ibm.com

R. Johnson
Department of Computer Science,
University of Toronto, Toronto, ON, Canada
e-mail: ryan.johnson@cs.utoronto.ca

top of PLP. Profiling a PLP prototype running on different
multicore machines shows that it acquires 85 and 68 % fewer
contentious critical sections, respectively, than an optimized
conventional design and one based on logical-only partition-
ing. PLP also improves performance up to almost 50 % over
the existing systems, while DLB enhances the system with
rapid and robust behavior in both detecting and handling load
imbalances.

Keywords Physiological partitioning · PLP ·
Multi-rooted B+Trees · MRBtree · Dynamic load balancing ·
Re-partitioning

1 Introduction

Due to concerns over power draw and heat dissipation, pro-
cessor vendors can no longer rely on rising clock frequencies
or increasingly aggressive micro-architectural techniques to
boost performance. Instead, they focus on parallelism by
placing many independent processing cores in each chip.
The resulting multicore designs require software to expose
enough execution parallelism in order to exploit the abundant
and rapidly growing hardware parallelism. However, this is
not an easy task, especially given the high degree of hardware
resource sharing common to multicore designs.

On-line transaction processing (OLTP) is a particularly
complex data management application that needs to perform
efficiently on modern hardware. It has been shown that con-
ventional shared-everything OLTP systems may face signif-
icant scalability problems in highly parallel hardware [24].
There is increasing evidence that one source of scalability
problems arises from the conventional transaction-oriented
assignment of work policy that assigns each transaction to a
single thread [40]. The transaction, along with the physical

123



152 P. Tözün et al.

arrangement of records within the data pages, determines
what resources (e.g., records and pages) each thread will
access. The random nature of transaction processing requests
leads to unpredictable data accesses [40,48] that complicate
resource sharing and concurrency control.

Such unpredictability favors pessimistic systems that clut-
ter the transaction’s execution path with many lock and latch
acquisitions to protect the consistency of the data. These crit-
ical sections often lead to contention that limits scalability
[24] and in the best case imposes a significant penalty to
single-thread performance [19].

Following a different approach, shared-nothing systems
deploy many independent database instances that collectively
serve the workload [13,49]. In shared-nothing designs, the
contention for shared data resources can be explicitly tuned
(the database administrator (DBA) determines the number
of processors assigned to each instance), potentially lead-
ing to superior performance as long as inter-instance com-
munication can be minimized. The H-Store system takes
this approach to the extreme, with single-threaded data-
base instances that eliminate critical sections altogether
[51]. However, shared-nothing systems physically partition
the data and deliver poor performance when the work-
load triggers distributed transactions [11,20] or when skew
causes load imbalance [11]. Repartitioning to rebalance load
requires the system to physically move and reorganize all
affected data. These weaknesses become especially prob-
lematic as partitions become smaller and more numerous in
response to the multicore trend.

Recent work proposes logical-only partitioning [40] to
address problems with conventional execution while avoid-
ing the weaknesses of shared-nothing approaches. Logical-
only partitioning assigns each partition to one thread; the
latter manages the data locally without the overheads of cen-
tralized locking. However, purely logical partitioning does
not prevent conflicts due to false sharing nor does it address
the overhead and complexity of page latching protocols.

Ideally, we would like a system with the best properties of
both shared-everything and shared-nothing designs: a cen-
tralized data store that sidesteps the challenges of moving
data during (re)partitioning, and a partitioning scheme that
eliminates contention and the need for page latches.

1.1 Dynamically balanced physiological partitioning

This paper presents physiological partitioning (PLP), a trans-
action processing approach that partitions logically the phys-
ical data accesses. To alleviate the difficulties imposed by
page latching and repartitioning, PLP uses a new physical
access method, a type of multi-rooted B+Tree called MRB-
Tree. Under PLP, a partition manager assigns threads to sub-
tree roots of MRBTrees and ensures that requests distributed
to each thread reference only the corresponding subtree. As

a result, threads can bypass the partition mapping and their
accesses to the subtree are entirely latch free. In addition, PLP
can extend the partitioning down into the heap pages where
non-clustered records are actually stored, eliminating another
class of page latching (similar to shared-nothing systems). At
the same time, the underlying MRBTree structure supports
fast repartitioning and does not require distributed transac-
tions when requests span partitions (like a shared-everything
system).

To further exploit the MRBTrees, this paper also gives a
lightweight yet effective dynamic load balancing and reparti-
tioning mechanism, called DLB, on top of PLP. DLB uses the
existing request queues of the partitions and employs a sim-
ple data structure, called aging two-level histogram, to collect
information about the current access patterns and load in a
workload to dynamically guide the decision on the partition
maintenance.

1.2 Contributions and organization

This paper extends physiological partitioning (PLP) [42]
with a dynamic load balancing mechanism, DLB, which is
naturally integrated to PLP, and provides a more thorough
evaluation of PLP and its limitations. The contributions and
structure of the remaining of this paper is as follows:

We categorize the communication patterns, which clearly
highlight the latent scalability bottlenecks. Using this catego-
rization, we identify page latching as a lurking performance
and scalability bottleneck in modern transaction processing
systems, whose effect is proportional to the available hard-
ware parallelism (Sect. 2).

We show that the need for page latching during acces-
ses to both index and heap pages can be eliminated within a
shared-everything OLTP system by deploying a design based
on physiological partitioning (Sect. 3).

We demonstrate that even though partitioning-based
OLTP systems have better throughput compared to non-par-
titioning based ones under uniform workloads, access skew
can severely hurt performance in statically partitioned dat-
abases, rendering partitioning useless in many realistic work-
loads and underlining the need for dynamic repartitioning
(Sect. 4.1).

We devise a cost model for repartitioning and exhibit
that PLP provides a very good infrastructure for dynamic
repartitioning, mainly due to its key component MRBTrees
(Sect. 4.2), and we exploit this advantage by designing a
lightweight yet effective dynamic load balancing and repar-
titioning mechanism, DLB, for PLP (Sect. 5).

We evaluate a prototype implementation of PLP integrated
with DLB. PLP acquires 85 and 68 % fewer contentious
critical sections per transaction than an optimized conven-
tional design and a logically partitioned system, respectively,
improving scalability and yielding up to almost 50 % higher

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 153

performance on multicore machines. In the meantime, the
overhead of DLB is minimal in regular processing (in the
worst case 8 %), and it achieves low response times in both
detecting and balancing imbalances (Sect. 6).

While PLP advances the state-of-the-art design options for
OLTP systems as discussed in Sect. 7, it has some limitations
as well, which we detail in Sect. 8. Nevertheless, we conclude
by promoting PLP as a very promising OLTP system design
in the light of the upcoming hardware trends in Sect. 9.

2 Communication patterns

Traditional transaction processing systems excel at providing
high concurrency or the ability to interleave multiple concur-
rent requests or transactions over limited hardware resources.
However, as core counts increase exponentially, performance
increasingly depends on execution parallelism or the abil-
ity for multiple requests to make forward progress simulta-
neously in different execution contexts. Even the smallest of
serializations on the software side therefore impact scalabili-
ty and performance [21]. Unfortunately, recent studies show
that high concurrency in transaction processing systems does
not necessarily translate to sufficient execution parallelism
[24,25], due to the high degree of irregular and fine-grained
communication they exhibit.

Proposals to tackle overhead and scalability bottlenecks
fall into two general categories: (1) reducing the degree
of communication and contention within shared-everything
systems, relying on efficient communication via shared
caches to keep synchronization overheads low; and (2) taking
a shared-nothing approach [49], relying on the low-latency
of multicore hardware to keep overheads manageable in spite
of the challenges, which accompany distributed transactions
and load balancing.

In this section, we first categorize the types of commu-
nication that can occur in an OLTP system, and from this
point of view, we analyze the execution of a modern shared-
everything system. Then, we revisit the debate between the
shared-everything and shared-nothing approaches.

2.1 Types of communication

OLTP systems employ several different types of communi-
cation and synchronization. Database locking operates at the
logical (application) level to enforce isolation and atomicity
between transactions. Page latching operates at the physical
(database page) level to enforce the consistency of the physi-
cal data stored on disk in the face of concurrent updates from
multiple transactions. Finally, at the lowest levels, critical
sections protect various code paths that must execute seri-
ally to protect the consistency of the system’s internal state.
Critical sections are traditionally protected by mutex locks,
atomic instructions, etc. We note that locks and latches, which

form a crucial part of the systems’ internal state, are them-
selves protected by critical sections; analyzing the behavior
of critical sections thus captures nearly all forms of commu-
nication in the DBMS.

Critical sections, in turn, fall into three categories depend-
ing on the nature of the contention they tend to trigger in the
system. For example, pairs of threads that form producer–
consumer pairs protect their communication with a critical
section but cannot generate significant contention. We refer
to these as fixed critical sections because contention is inde-
pendent of the underlying hardware and depends only on the
(fixed) number of threads that communicate. At the other
extreme, unscalable critical sections have the highly unde-
sirable tendency to affect most threads in the system. As
hardware parallelism increases the degree of contention also
increases and inevitably grows into a bottleneck. Making
these critical sections shorter or less frequent provides a little
slack but does not fundamentally improve scalability. Finally,
Moir et al. [35] introduce the notion of composable critical
sections; those having the property that multiple threads can
aggregate their operations. Composable critical sections are
highly resistant to contention because threads take advan-
tage of queuing delays to combine their requests and drop
out of the queue. The critical section is thus self-regulating:
adding more threads to the system gives more opportunity
for threads to combine rather than competing directly for the
critical section.

2.2 Communication patterns in OLTP

As the previous section hints, the real key to scalability lies in
converting all unscalable communication to either the fixed
or composable type, thus removing the potential for bottle-
necks to arise. The three left-most bars of Fig. 1 compare
the number and types of critical sections executed by a con-
ventional OLTP system and two others designed to reduce
contention due to locking: Speculative Lock Inheritance [23]
and data-oriented execution [40] (labeled as SLI and Logi-

Fig. 1 Breakdown of the critical sections when running the TATP
OLTP benchmark

123



154 P. Tözün et al.

Fig. 2 Page latch breakdown for various OLTP benchmarks

cal-only, respectively). Each bar shows the number of critical
sections entered during a mix of short transactions, cate-
gorized by the originating storage manager service (details
in Sect. 6.1). Locking and latching form a significant frac-
tion of the total communication for the baseline system. SLI
achieves a performance boost by sidestepping the most prob-
lematic critical sections associated with the lock manager, but
fails to address the remaining (still-unscalable) communica-
tion in that category. Logical partitioning, in contrast, elim-
inates nearly all types of locking, replacing both contention
and overhead of centralized communication with efficient,
fixed communication via message passing.

With locking removed, latching remains by far the largest
source of critical sections. There is no predefined limit to the
number of threads that might attempt to access a given page
simultaneously, so page latching represents an unscalable
form of communication, which should be either eliminated
or converted to a scalable type. The remaining categories
represent either fixed communication (e.g., transaction man-
agement), composable operations (e.g., logging [25]), or a
minor fraction of the total unscalable component.

Examining page latching more closely, Fig. 2 decomposes
the page latches acquired by three popular OLTP bench-
marks into the different types of database pages: metadata,
index pages, and heap pages. The majority of page latches
(60–80 %) reside in index structures. Heap page latches are
another non-negligible component, accounting for nearly all
remaining page latches.

2.3 Physical versus logical partitioning

With the preceding characterization of communication pat-
terns in mind, we now return to the question of logical
partitioning (shared-everything) versus physical partitioning
(shared-nothing). As its name suggests, logical partitioning
eliminates unscalable communication at the logical level,
namely database locking. However, it has little impact on
the remaining communication, which arises in the physical
layers and cannot be managed cleanly from the application
level. Even when requests do not communicate at the applica-
tion level, threads must acquire page latches and potentially
perform other unscalable communication.

Shared-nothing systems [13,49] are an appealing design,
giving the designer explicit control over the number of
threads per instance. Thus, the contention on each component
of the system can be controlled or even eliminated. However,
such designs give up too much by eliminating all communica-
tion within the engine. Even the composable and fixed types
of critical sections, which do not threaten scalability become
problematic. For example, logging is not amenable to distri-
bution [25], and physically partitioned systems either use a
shared log [32] or eliminate it completely [51].

Perhaps the biggest challenge for shared-nothing systems
arises with distributed transactions, due to requests accessing
data from multiple physically distributed database instances.
The scalable execution of distributed transactions has been
an active field of research for the past three decades, with
researchers from both academia and industry, persuasively
arguing that they are fundamentally not scalable [8,20]. Fur-
thermore, the performance of shared-nothing systems is very
sensitive to imbalances in load arising from skew in either
data or requests while non-partition aligned operations (such
as non-clustered secondary indexes) may pose significant
barriers to physical partitioning.

3 Physiological partitioning

We have seen how both logically and physically partitioned
designs offer desirable properties, but also suffer from weak-
nesses that threaten their scalability. In this work, we there-
fore propose physiological partitioning (or PLP), a hybrid of
the two approaches that combines the best properties of both.
Like a physically partitioned system the majority of physical
data accesses occur in a single-threaded environment, which
obviate the need for page latching; like the logically par-
titioned system, locking is distributed without resorting to
distributed transactions and load balancing requires almost
no data movement.

3.1 Design overview

Each transaction in a typical OLTP workload accesses a very
small subset of records via indexes (sequential scans are
prohibitively expensive). PLP therefore centers around the
indexing structures of the database. Figure 3 gives a high-
level overview of a physiologically partitioned system. We
adapt the traditional B+Tree [3] (top left of Fig. 3) for PLP by
splitting it into multiple subtrees, each covering a contigu-
ous subset of the key space (bottom of Fig. 3). A partitioning
table becomes the new root and maintains the partitioning as
well as pointers to the corresponding subtrees. We call the
resulting structure a multi-rooted B+Tree (MRBTree). The
MRBTree partitions the data but unlike a horizontally par-
titioned workload (top right of Fig. 3), all subtrees belong

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 155

Fig. 3 The conventional shared-everything and shared-nothing designs and the PLP variations

to the same database file and can exchange pages easily; the
partitioning, though durable, is dynamic and malleable rather
than static.

With the MRBTree in place, the system assigns each
subtree to a single thread, guaranteeing exclusive access
for latch-free execution. A partition manager layer controls
all partition tables and makes assignments to threads. The
threads in PLP do not reference partition tables during nor-
mal processing, which might otherwise become a bottleneck.
Instead, the partition manager ensures that all work given to
a thread involves only data it owns.

The partition manager breaks transactions into directed
graphs, passing each node to the appropriate thread and
assembling the results into complete transactions. Since each
table is assigned to have different set of worker threads,
whenever a transaction touches more than one table it
becomes a multisite transaction under PLP. However, mul-
tisite transactions are not expensive as in a shared-nothing
system since PLP has a shared-everything setting.

All indexes in the system—primary, secondary, clustered,
non-clustered—can be implemented as MRBTrees; data are
stored directly in clustered indexes, or in tightly integrated
heap file pages referenced by record ID (RID). When the
system can infer partitions from secondary (non-clustered)
index columns, the partition’s thread manages them directly.
The remaining (non-partition aligned) secondary indexes are
accessed as in the conventional system, but each leaf entry
records the associated fields used for the partitioning so that
the result of each probe can be passed to its partition’s owning
thread for further processing.

3.2 Multi-rooted B+Tree

The “root” of an MRBTree is a partition table that identifies
the disjoint subsets of the key range assigned to each sub-

tree as well as a pointer to the root of each tree. Because the
routing information is cached in memory as a ranges map
by the partition manager, the on-disk layout favors simplic-
ity rather than optimal access performance. We, therefore,
employ a standard slotted page format to store key-root pairs.
If the partitioning information cannot fit on a single page (for
example, if the number of partitions is large or the keys are
very long) the routing page is extended as a linked list of rout-
ing pages. In our experiments we have never encountered the
need to extend the routing page, however, as several dozen
mappings fit easily in 8 KB, even assuming rather large keys.

Record insertion (deletion) takes place as in a regular
B+tree. When the key to insert (delete) is given, the ranges
map routes it to the subtree that corresponds to the key range
the key belongs to and the insert (delete) operation is per-
formed as in a regular B+tree in that subtree. The other sub-
trees, ranges map, and the routing page do not get affected
by the insert (delete) operation at all.

When deployed in a conventional shared-everything sys-
tem, the MRBTree eliminates latch contention at the index
root; fewer threads attempt to grab the latch for the same
index root at a time. Partitioning also reduces the expected
tree level by at least one, which reduces the index probe
time. Further, the MRBTree can also potentially benefit sys-
tems that use shared-nothing parallelism in a shared-memory
environment (e.g., possibly H-Store [51]).

3.3 Heap page accesses

In PLP a heap file scan is distributed to the partition-own-
ing threads and performed in parallel. Large heap file scans
reduce concurrency of OLTP applications and PLP has little
to offer. Still, heap page management opens up an additional
design option, since we can extend the partitioning of the

123



156 P. Tözün et al.

accesses at the heap pages. That is, when records reside in
a heap file rather than in the MRBTree leaf pages, PLP can
ensure that accesses to pages are partitioned in the same way
as index pages. There are three options on how to place and
access records in the heap pages, depicted in Fig. 3: (1) keep
the existing heap page design (PLP-Regular); (2) each heap
page keeps records of only one logical partition (PLP-Par-
tition); and (3) each heap page is pointed by only one leaf
page of the primary MRBTree (PLP-Leaf ).

PLP-Regular simply keeps the existing heap page opera-
tions. Without any modification, the heap pages still need to
be latched because they can be accessed by different threads
in parallel. This may be acceptable because heap page acces-
ses are not the biggest fraction of the total page accesses in
OLTP (as low as 30 %, according to Fig. 2). Thus, there is
room for significant improvement even if we ignore them.
However, allowing heap pages to span partitions prevents
the system from responding automatically to false sharing or
other sources of heap page contention.

In PLP-Partition and PLP-Leaf the MRBTree and heap
operations are modified so that heap page accesses are par-
titioned as well. The difference between the two is that in
the former a heap page can be pointed by many leaf pages as
long as they belong to the same partition, while in the latter
a heap page is pointed by only one leaf page.

Both variations provide latch-free heap page accesses, but
they suffer from some disadvantages. Forcing a heap page to
contain records that belong to a specific partition causes frag-
mentation. In the worst case, each leaf has room for one more
entry than fits in the heap page, resulting in nearly double the
space requirement (Sect. 6.8 measures this cost). Further, in
PLP-Leaf every leaf split must also move the records that are
pointed by the new leaf page to a new heap page, increas-
ing the overhead of record insertion (deletions are simple
because a leaf may point to many heap pages). On the other
hand, PLP-Partition by allowing multiple leaf pages from a
partition to share a heap page, forces the system to reorga-
nize potentially significant numbers of heap pages with every
repartitioning. Significant reorganization costs go against
the philosophy of physiological partitioning, so we favor
PLP-Leaf.

The two extensions impose one additional piece of com-
plexity: During record insertion, the system must identify the
correct MRBTree entry before selecting a heap page for the
record. Because the storage management layer is completely
unaware of the partitioning strategy (by design), it must make
callbacks into the upper layers of the system to identify an
appropriate heap page for each insertion.

Similarly, a partition split may split heap pages as well,
invalidating the record IDs of migrated records. The storage
manager, therefore, exposes another callback so the metada-
ta management layer can update indexes and other structures
that reference the stale RIDs. We note that when PLP-Leaf

splits leaf pages during record insertion, the same kinds of
record relocations arise and use the same callbacks.

3.4 Page cleaning

Page cleaning cannot be performed naively in PLP. Conven-
tionally there is a set of page cleaning threads in the system
that are triggered when the system needs to clean dirty pages
(for example, when it needs to truncate log entries). Those
threads may access arbitrary pages in the buffer pool, which
breaks the invariant of PLP where a single thread can access
a page at each point of time.

To handle the problem of page cleaning in PLP each thread
does the page cleaning for its logical partition. Each logical
partition has an additional input queue for system requests
and the page cleaning requests go to that queue. The sys-
tem queue has higher priority than the queue of completed
actions. Their execution won’t be delayed by more than the
execution time of one action (typically very short). In addi-
tion, because page cleaning is a read-only operation, the
thread can continue to work (and even re-dirty pages) during
the write-back I/O.

3.5 Benefits of physiological partitioning

Under physiological partitioning, each partition is perma-
nently locked for exclusive physical access by a single thread,
which then handles all the requests for that partition. This
allows the system to avoid several sources of overhead, as
described in the following paragraphs.

Latching contention and overhead. Though page latch-
ing is inexpensive compared to acquiring a database lock, the
sheer number of page latches acquired imposes some over-
head and can serialize B+Tree operations as transactions crab
down the tree during a probe. The problem becomes more
acute when the lower levels of the tree do not fit in mem-
ory, because a thread that fetches a tree node from disk holds
a latch on the node’s parent until the I/O completes might
be preventing access to 80–100 other siblings, which may
well be memory-resident. Section 6.3 evaluates a case where
latching becomes expensive for B+Tree operations and how
PLP can eliminate this problem by allowing latch-free acces-
ses on index pages.

False sharing of heap pages. One significant source of
latch contention arises when multiple threads access unre-
lated records that reside on the same physical database page.
In a conventional system false sharing requires padding to
force problematic database records to different pages. PLP
variations that allow latch-free heap page accesses achieve
the same effect automatically (without the need of expen-
sive tuning) as it splits hot pages across multiple partitions.
Section 6.3 evaluates this case as well.

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 157

Serialization of structural modification operations.
The traditional ARIES/KVL indexes [33] allow only one
structural modification operation (SMO), such as a leaf split,
to occur at a time, serializing all other accesses until the
SMO completes. Partitioning the tree physically with MRB-
Trees eases the problem by distributing SMOs across sub-
trees (whose roots are fixed) without having to apply more
complicated protocols, as such those described in [22,34].
The benefits of parallel SMOs are apparent in the case of
insert-heavy workloads, which we evaluate in Sect. 6.5.

Repartitioning. In PLP, repartitioning can occur at a
higher level in the partition manager and therefore can be
latch free as well; the partition manager can simply quies-
ces affected threads until the process completes. Moreover,
it requires very few pointer updates and data movement as
we discuss in Sect. 4.2. Therefore, it can be performed very
efficient as shown in Sect. 6.9.

Code complexity. Finally, with all latching eliminated,
the code paths that handle contention and failure cases can be
eliminated as well, simplifying the code significantly. To the
extend that the index can be substituted with a much simpler
implementation. For example, a huge source of complexity in
traditional B+Trees arises due to the sophisticated protocols
that maintain consistency during an SMO in spite of concur-
rent probes from other threads. The simpler code not only
is more efficient but also easier to maintain. In this paper,
we did not attempt the code refactoring required to exploit
these opportunities, and the performance results we report are
therefore conservative. But, we note that B+Tree probes are
the most expensive remaining component of PLP. Thus, we
expect significant performance improvements if, for exam-
ple, we substitute the B+tree implementation of our prototype
with a cache-conscious [43,44] or prefetching-based B+-tree
[10].

4 Need and cost of dynamic repartitioning

Although partitioning is an increasingly popular solution for
scaling up the performance of database management systems,
it is not the panacea since there are many challenges associ-
ated with it. One of these challenges is the system behavior
under skewed and dynamically changing workloads, which
is the rule rather than an exception in real settings (e.g., the
slashdot effect).

This section shows how even mild access skew can
severely hurt performance in a statically partitioned database,
rendering partitioning useless in many realistic workloads
(Sect. 4.1). Then it exhibits that PLP provides an adequate
infrastructure for dynamic repartitioning, mainly because it is
based on physiological partitioning and because of its usage
of MRBTrees (Sect. 4.2). The low repartitioning cost facili-
tates the implementation of a robust yet lightweight dynamic

load balancing mechanism for PLP, which is presented in the
following section (Sect. 5).

4.1 Static partitioning and skew

In general, one of the disadvantages of partitioning-based
transaction processing designs is that they are vulnerable to
skewed and dynamically changing workloads, in contrast to
shared-everything systems that do not employ any form of
partitioning and tend to suffer less. Unfortunately, skewed
and dynamically changing workloads are the rule rather than
an exception in transaction processing. Thus, it is impera-
tive for partitioning-based designs to alleviate the problem
of skewed and dynamically changing accesses.

To exhibit how vulnerable partitioning-based systems
are to skew, Fig. 4 plots the throughput of a non-parti-
tioned (shared-everything) system and a statically partitioned
system when all the clients in a TATP database submit
the GetSubscriberData read-only transaction [38]. Ini-
tially the distribution of requests is uniform to the entire data-
base. But at time point 10 (s) the distribution of the load
changes with 50 % of the requests being sent to 30 % of
the database (see Sect. 6.1 for experimental setup details).
As we can see from the graph, initially and as long as the
distribution of requests is uniform the performance of the
non-partitioned system is around 15 % lower than the parti-
tioned one. After the load change the performance of the
non-partitioned system remains pretty much the same (at
around 325 Ktps), while the performance of the partitioned
system drops sharply by around 35 % (from 375 Ktps to
around 360 Ktps). The drop in the performance is severe
even though the skew is not that extreme; easily a higher
fraction of the requests could go to a smaller portion of the
database, for example following the 80–20 rule of thumb
where the 80 % of the accesses go to only 20 % of the
database.

Fig. 4 Throughput of a statically partitioned system when load
changes at runtime; at time t = 10, 50 % of the requests are sent
to 30 % of the database

123



158 P. Tözün et al.

There are two ways to attack the problem of skewed access
in partitioning-based transaction processing systems: pro-
actively by configuring the system with an appropriate ini-
tial partitioning scheme; and reactively by using a dynamic
balancing mechanism. Starting with the appropriate par-
titioning configuration is key. If the workload character-
istics are known a priori, previously proposed techniques
[11,45] can be used to create effective initial configurations.
If the workload characteristics are not known, then simpler
approaches like round-robin, hash-based, and range-based
partitioning can be used [13]. As time progresses, however,
skewed access patterns gradually lead to load imbalance and
lower performance, as the initial partitioning configuration
eventually becomes useless no matter how carefully it was
chosen. Thus, it is far more important and challenging to
dynamically balance the load through repartitioning based
on the observed, and ever changing, access patterns. A robust
dynamic load balancing mechanism should eliminate any bad
choices made during initial assignment.

4.2 Repartitioning cost

A dynamic load balancing mechanism would be useless if the
cost of repartitioning in a partitioning-based transaction pro-
cessing system is high. The lower the cost of repartitioning,
the more frequently the system can trigger load balancing
procedures and the faster it can react to load changes. This
subsection models the cost of repartitioning for a shared-
nothing (physically partitioned) system and the three PLP
variations to highlight the clear advantage of PLP-Regular
and PLP-Leaf. It also describes the way to perform reparti-
tioning for the three PLP designs.

The basic case of repartitioning is when a partition needs
to split into two. Thus, for all the PLP variations and the
shared-nothing design our repartitioning cost model calcu-
lates the number of records and index entries that have to be
moved, the number of update/insert/delete operations on the
indexes, the number of pointer updates on the index pages
and the routing page, and the remaining number of read oper-
ations that have to be performed when a partition is split into
two. We also discuss merging two partitions but do not give
as detailed cost model.

Let’s assume that there is a heap file (table) with an index
on it, which in the case of PLP it is an MRBTree. When a par-
tition needs to split into two, that means that a subtree in the
index needs to split into two as well. In that case we define
as: h the height of the tree; n the number of entries in an
internal B+Tree node; mi the number of entries to be moved
from the B+Tree at level i ; and M the number of records in
the heap file that have to be moved.

The number of read operations during a key value search
in the B+Tree is omitted since it is the same for all the systems
(a binary search at each level from root to leaf).

4.2.1 Splitting non-clustered indexes

The first case we consider, is when the heap file that needs
to be re-partitioned has a unique non-clustered primary and
a secondary index and the data are partitioned based on the
primary index key values.

PLP-Regular. The cost of repartitioning in PLP-Regular
is very low. Only a few index entries need to move from one
subtree of the MRBTree index(es) to another newly created
subtree. Algorithm 1 shows the procedure that needs to be
executed to split an MRBTree subtree. First, we need to find
the leaf page that the starting key of the new partition should
reside (Lines 4–8 in Algorithm 1). Let’s assume that there
are m1 entries that are greater than or equal to the starting
key on the leaf page where the slot for this key is found. All
needs to be done is to move these m1 entries on that leaf
page to a newly created (MRBTree) index node page and
this procedure has to repeat as the tree is traversed from this
leaf page to the root (Lines 9–13 in Algorithm 1). It is not
necessary to move any entry from the pages that keep the key
values greater than the ones in the leaf page containing the
starting key. Setting the previous/next pointers of the pages
at the boundaries of the old and new partitions is sufficient.
Finally, a new entry to the routing page should be added for
the new partition.

The overall cost is given in the first row of Table 1. The
cost model in Table 1 describes the worst case scenario for
PLP-Regular. If the starting key of the new partition is in one
of the internal index node pages, there is no need to move
any entries from the pages that are below this page because
the moved entries from the internal node page already have
pointers to their corresponding child pages; resulting in fewer
reads, updates, and moved entries.

PLP-Leaf. The partition splitting cost related with the
MRBTree index structure is the same as in PLP-Regular. But,
as mentioned in Sect. 3.3, in addition to modifying the index

Algorithm 1 Splitting an MRBTree subtree.
1: {binary-search routine used below performs binary search to find

the key on the page. If an exact match for the key is found, f ound
is returned as true and the function returns the slot for the key on
the page. Otherwise, f ound is false and the function returns which
slot on the page the key should reside.}

2: page = root
3: f ound = f alse
4: while page! = NU L L & ! f ound do
5: slot = binary-search(page, key, f ound)

6: slots.push(slot)
7: pages.push(page)
8: page = page[slot].child
9: while nodes.si ze > 0 do
10: slot = slots.pop()

11: page = pages.pop()

12: Create pagenew
13: Move starting from slot at page to pagenew

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 159

Table 1 Repartitioning costs for splitting a partition into two

System #Records moved (M) Primary index Secondary index

#Entries #Reads #Pages read #Pointer Changes Changes
moved updates

PLP-Regular –
∑h

k=1 mk – – 2 × h + 1 – –

PLP-Leaf m1
∑h

k=1 mk M 1 2 × h + 1 M updates M updates
PLP-Partition m1 + ∑h−2

l=0 (nh−l−1 × (mh−l − 1))
∑h

k=1 mk M 1 + M−m1
n 2 × h + 1 M updates M updates

Shared-Nothing m1 + ∑h−2
l=0 (nh−l−1 × (mh−l − 1)) – M 1 + M−m1

n – M inserts M inserts

M deletes M deletes

PLP (clustered) m1
∑h

k=2 mk – – 2 × h + 1 – M updates

Shared-Nothing m1 + ∑h−2
l=0 (nh−l−1 × (mh−l − 1)) – – – – M inserts M inserts

(clustered) M deletes M deletes

structure, when repartitioning in PLP-Leaf, we also have to
move records from the heap file to new heap pages. Figure 5
shows the three-step process for splitting a partition to two
in PLP-Leaf.

The height of the subtree is two and the dark slot in Fig. 5a
indicates the slot that contains the leaf entry with the starting
key of the new partition. Figure 5b shows that a new subtree
is created as a result of the split. Those two steps are the same
with the repartitioning process in PLP-Regular.

In PLP-Leaf, however, we also have to move the records
at the heap file that belong to the new partition to a new set
of heap data pages. Algorithm 2 shows the pseudo code for
updating the heap pages upon a partition split in PLP-Leaf
(and PLP-Partition). The dark records on the heap pages in
Fig. 5b indicate those records that belong to the new partition
(subtree) and need to move. Those records are pointed by the
m1 leaf page entries that moved to the newly created subtree.
Thus, in the worst case m1 records have to move (Lines 4–7
in Algorithm 2). Since the index is non-clustered, we have to
scan these m1 entries in order to get the RIDs of the records
to be moved and spot their heap pages. The result of the split
after the records are moved is shown in Fig. 5c. Whenever
a record moves its RID changes. Thus, once all the records
are moved, all the indexes (primary and secondary) need to
update their entries (Line 8 in Algorithm 2).

Algorithm 2 Splitting heap pages in PLP-Leaf and PLP-Par-
tition.
1: lea f = leftmost leaf node
2: Create pagenew
3: while lea f ! = NU L L {Omit for PLP-Leaf } do
4: for all t pointed by lea fcurrent do
5: if pagenew does not have space then
6: Create pagenew
7: Move t to pagenew
8: Update pointers at all the secondary indexes
9: lea f = lea f.next {Omit for PLP-Leaf }

The cost for repartitioning in PLP-Leaf is given in the sec-
ond row of Table 1. This cost, again, illustrates the worst case
scenario. If the starting key of the new partition is found in
one of the internal nodes, then no record movement has to be
done since there will be no leaf page splits and the constraint
of having all heap pages pointed by only one leaf page is
already preserved. Moreover, even if the key is found on the
leaf page, we might not have to move all the records that are
specified by the model above. If all the records on a heap
page are pointed only by leaf entries of the new partition,
then these records can stay on that heap page.

PLP-Partition. In PLP-Partition, the process for splitting
the index structure is the same as in PLP-Regular and PLP-
Leaf. Therefore, it is omitted from Fig. 6, which shows the

(a) (b) (c)

Fig. 5 Example of splitting a partition in PLP-Leaf, which is a three-step process

123



160 P. Tözün et al.

(a) (b)

Fig. 6 Splitting a partition when PLP-Partition is used

rest of the process for splitting a partition into two in PLP-
Partition.

In the worst case, in PLP-Partition we may have to move
records from all the heap pages that belong to the old
partition. Those records are indicated with the dark rectan-
gles in the heap pages of Fig. 6a. The number of records to
be moved is equal to the number of entries that are on the
leaf pages of the new subtree. As in PLP-Leaf, the RIDs of
the records are retrieved with an index scan of the newly cre-
ated subtree, the records are moved to new heap pages and
they get new RIDs, and all the indexes are updated with the
new RIDs after the record movement is completed (shown in
Lines 3–9 in Algorithm 2). The result of the partitioning is
shown in Fig. 6b; while the cost model for PLP-Partition is
given in the third row of Table 1.

Shared-Nothing. In a shared-nothing system, the cost for
the record movement is equal to the worst case of PLP-Par-
tition since the entire old partition needs to be scanned for
records that belong to the new partition. In addition, the cost
of index maintenance may be prohibitively expensive.

That is, in a shared-nothing system each record move
across partitions results to a deletion of an index entry (or
entries if there are multiple indexes) from the old partition
and an insertion of an index entry to the new partition, in con-
trast to the PLP variant where every record move is a result
of a few MRBTree updates. The cost of index maintenance
when repartitioning shared-nothing systems sometimes can
be prohibitive. In order to avoid the index maintenance, a
common technique is to drop and bulk-load the index from
scratch upon every repartition. For shared-nothing systems
that employ replication, this procedure has to be repeated
for all the partition replicas. The repartitioning cost for one
replica in a shared-nothing system is given as in the fourth
row of Table 1. Given how expensive repartitioning can be,
shared-nothing systems are reluctant to frequently triggering
repartitioning.

4.2.2 Splitting clustered indexes

Let’s consider the case where we have a unique clustered
primary index and a secondary index, and the data partition-

ing is done using the primary index key columns. In this
setup, no heap file exists, since the primary index contains
the actual data records rather than RIDs, and the three PLP
variations are equivalent, because their differences lie on how
they treat the records in the heap pages.

When the actual records are part of the clustered primary
index, the cost of record movement for PLP is equal to the
number of leaf page entries that need to move while the cost
of primary index maintenance is equal to the entry move-
ments in the internal nodes of the MRBTree index. The cost
model is given in the fifth row of Table 1.

On the other hand, the repartitioning cost for the shared-
nothing system is similar to the non-clustered case. Because
there is not a common index structure and data need to move
from the index of the one partition to the other. The only
difference is there is no need to scan the leaf pages to get the
RIDs of the records to be moved since the leaf pages have
the actual records. Therefore, the repartitioning cost model
for a replica is given as it is in the last row of Table 1.

4.2.3 Moving fewer records

With some additional information we can actually move
fewer data during repartitioning with the cost of increased
number of reads. For example, in PLP-Partition instead of
directly moving all the records that belong to a new partition,
we can scan all the index leaf pages to be split and collect
information for all the records. With this information, we can
determine whether a heap page has more records that belong
to the old partition or the new partition and act accordingly.
That is, if a heap page has more records that belong to the new
partition, we can move out of the page the records that belong
to the old partition. The number of reads while scanning the
leaf pages can easily become a bottleneck in disk-resident
databases, due to the number of I/O operations that have to
be performed. On the other hand, in in-memory databases
or systems that use flash storage devices, the I/O bottleneck
can be prevented [9] and the above mentioned technique can
reduce the amount of data movement during repartitioning.
This technique, unfortunately, cannot be used in a shared-
nothing system because the pages of the two partitions do
not share the same storage space.

4.2.4 Example of repartitioning cost

Table 2 gives an example of the repartitioning cost for the dif-
ferent systems under consideration based on the cost model
given in Table 1. In this example, a partition, which contains
433 MB of 100-byte data records in a heap file is split in
half. We assume that there is a primary index of height 3
with 170 32-byte entries on each page. The first four rows
of the table assume there is a unique non-clustered primary
index and a secondary index in the system, whereas for the

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 161

Table 2 Repartitioning costs when splitting a partition with 466 MB data in half

System Records Primary index Secondary index
moved

Entries #Pages #Pointer Changes
moved read updates Changes

PLP-Regular – 8 KB – 7 – –

PLP-Leaf 8.3 KB 8 KB 1 7 85 U 85 U

PLP-Partition 233 MB 8 KB 14,365 7 2.44M U 2.44M U

Shared-Nothing 233 MB – 14,365 – 2.44M I + 2.44M D 2.44M I + 2.44M D

PLP (clustered) 8.3 KB 5.3 KB – 7 – 85 U

Shared-Nothing 233 MB – – – 2.44M I + 2.44M D 2.44M I + 2.44M D
(clustered)

(U updates, D deletes, I inserts)

last two rows there is a unique clustered primary index and
a secondary index. The cost for the shared-nothing system
is just for one replica (if we assume that it uses replication
for durability). For the PLP variations the number of moved
records represents the worst case scenario.

As Table 2 shows, the PLP variations, except for PLP-Par-
tition, move very few records compared to the shared-nothing
one. In the worst case, PLP-Partition moves the same number
of records as the shared-nothing system. For the clustered
index case, PLP is cheaper to repartition than the shared-
nothing system, both in terms of record movement and index
maintenance. When we calculate the corresponding costs for
a larger heap file with an index of height 4, the repartition-
ing cost for the shared-nothing system (and PLP-Partition)
becomes prohibitive.

4.2.5 Cost of merging two partitions

For any PLP variation, merge operation only requires index
reorganization and no data movement. During the index reor-
ganization, there are three cases to consider; (1) when two
subtrees have the same level, (2) when the subtree with lower
key values (Tl ) has a higher level than the other subtree, and
(3) when the subtree with higher key values (Th) has a higher
level than the other subtree.

When the two subtrees to be merged have the same level,
the entries of Th’s root are appended at the end of the entries
of Tl ’s root. Since the entries of the root page have infor-
mation about the pointers to the interior nodes, copying the
entries of the root page is sufficient for this merge operation.
In this case the cost of the merge operation only depends on
the number of entries in the root page of Th . If the number
of entries destined to the new root exceeds the page capacity,
an SMO happens and a new root page is created, the same
way a page split happens after a record insert.

When Tl is taller than Th , Tl is traversed down to one level
higher than the level of Th . Then an entry is inserted at the

right-most node of this level that points to Th and has the key
value equal to the starting key of the key range of Th . There-
fore, the cost of the merge operation is only a tree traversal,
which depends on the level difference between the two trees
and an insert operation in this case.

When Th is taller, the merge operation is very similar to the
second case and the cost is the same. Th is traversed down
to one level higher than the level of Tl and instead of the
right-most node, the left-most node gets the entry that points
to Tl and has the key value equal to the starting key of the
key range of Tl .

After the delete operation, the partition table is updated
according to the new key range and its corresponding subtree
root page id.

In a Shared-Nothing system, however, we have to move
all the records from one partition to the other and insert the
corresponding index entries at the resulting partition. There-
fore, the cost of the merge operation is proportional to the
number of records in a partition and its way higher than the
merge cost for any PLP variation.

We conclude that, in contrast to shared-nothing systems,
the PLP-Regular and PLP-Leaf designs provide low reparti-
tioning costs that allow frequent repartitioning attempts and
facilitate the implementation of responsive and lightweight
dynamic load balancing mechanisms. We present one such
mechanism in the next section.

5 A dynamic load balancing mechanism for PLP

At the high level, any dynamic load balancing mechanism
performs the same functionality. During normal execution
it has to observe the access patterns and detect any skew
that causes load imbalance among the partitions. Once the
mechanism detects the troublesome imbalance, it triggers
a repartition procedure. It is very important for the detec-
tion mechanism to incur minimal overhead during normal

123



162 P. Tözün et al.

operation and to not trigger repartitioning when it is not really
needed. After the mechanism decides to proceed to a reparti-
tion, it needs to determine a new partitioning configuration,
so that the load is again uniformly distributed. This decision
depends on various parameters, such as the recent load of
each partition and the available hardware parallelism. Finally,
after the new configuration has been determined, the system
has to perform the actual repartitioning. The repartitioning
should be done in a way that minimizes the drop in perfor-
mance and the duration of this process.

Thus, any dynamic load balancing mechanism that we
build on top of PLP (or any partitioning-based system in gen-
eral) should; (a) perform lightweight monitoring, (b) make
robust decisions on the new partition configuration, and (c)
repartition efficiently when such decision is made. We have
already shown that PLP provides the infrastructure for effi-
cient repartitioning, in Sect. 4. In this section, we present
techniques for lightweight monitoring and decision making.
The overall mechanism is called DLB.

5.1 Monitoring

DLB needs to monitor some indicators of the system behav-
ior and based on the collected information to decide: (a)
when to trigger a repartition operation and (b) what the new
partitioning configuration should be. Candidate indicators
can be the overall throughput of the system, the frequency
of accesses in each partition, and the amount of work each
partition should do.

There is need for DLB to continuously collect information
of multiple indicators. For example, let’s consider that DLB
monitors only the overall throughput of the system and raises
flags when changes in throughput are larger than a threshold
value. If the initial partitioning configuration of the system
was not optimal (e.g., with load imbalance among partitions)
then its throughput would be low without fluctuations—the
effect caught when monitoring only the throughput, and the
monitoring would fail. Or there could be uniform drops or
increases in the incoming request traffic, which would trig-
ger unnecessary repartitioning. Thus, DLB needs to maintain
additional information about the load of each partition. In
addition, the information about the throughput is not useful
for the component that decides on the new configuration (pre-
sented in Sect. 5.2). Thus, DLB needs to collect and maintain
information about the load not only across partitions, but also
within each partition.

To that end, DLB uses the length of the request queue
of each partition and a two-level histogram structure that
employs aging. The histogram structure is depicted on Fig. 7.
To monitor the differences in the load across partitions, DLB
monitors the number of requests waiting at each partition’s
request queue. To have accurate information about the load
distribution within each partition, in addition to the one

…

K1

K2

Fig. 7 Two-level histogram on MRBtrees

Fig. 8 The aging algorithm example

bucket it maintains for each partition (left side of the fig-
ure), the histogram has sub-buckets on ranges within each
partition’s key range (shown on the right side of the figure).
The number of sub-buckets within each partition is tunable
and determines the monitoring granularity.

DLB frequently checks whether the partition loads are bal-
anced or not. The load of each partition is calculated based on
an aging algorithm. Each bucket in the histogram is imple-
mented as an array of age-buckets, shown on Fig. 8. At each
point of time there is one active age-bucket. When a record is
accessed, the active age-bucket of the sub-bucket of the range
where the record belongs to increments by one. At regular
time intervals the age of the histogram increases. Whenever
the age of the histogram increases, the next age-bucket is
reset and starts to count the accesses.

When calculating the load of a sub-bucket in the histo-
gram, the recent age-buckets are given more weight than the
older ones. More specifically, if a sub-bucket consists of A
age-buckets, the load for the i th age-bucket is li , and the cur-
rent age-bucket is the cth bucket, then we calculate the total
load L for the sub-bucket as follows:

L =
A+c−1∑

i=c

100 × limod(A)

(i − c + 1)
.

Figure 8 shows an example of the aging algorithm, when
the load to a particular sub-bucket increases by 10 for five
consecutive time intervals (T 1 to T 5). W is the weight of
each age-bucket and L is the load value of this sub-bucket at
each interval, calculated by the formula above.

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 163

Because they are both lightweight, DBL very frequently
monitors the throughput and the length of the request
queues. On the other hand, the histograms are analyzed only
whenever an imbalance is observed. The overall monitoring
mechanism does not incur much overhead and it also pro-
vides adequate information for DLB to decide on the new
partitions.

5.2 Deciding new partitioning

The algorithm DLB employs for reconfiguring the partition
key-ranges is highly dependent on the request queues and
two-level aging-histogram structure discussed previously.
First we describe the algorithm that determines the partition-
ing configuration within a single table and then we consider
the case when we decide the partitioning across all tables.

Deciding the partitioning within a single table. To
describe the algorithm, let N be the total number of parti-
tions, and Qi be the number of requests at the request queue
of the i th partition. Then, the ideal number of requests for
“each partition’s queue” is:

Qideal =
N∑

i=1

Qi

N
.

Knowing Qideal, we have to decide on the ideal data access
load for each partition. Let Li be the aging load of the i th
partition, which can be calculated as the sum of the aging
loads of its sub-buckets. We have to calculate the ideal data
access load for partition i , L Ii , based on the ideal request load
and how much request load, Qi , each Li creates. Therefore,
L Ii is:

L Ii = Qideal × Li

Qi
.

Because the granularity on the load information is deter-
mined by the number of sub-buckets in the histogram, it is
difficult for DLB to achieve precise ideal loads. Therefore,
DLB only tries to approximate the precise ideal value. Algo-
rithm 3 sketches how the new key-ranges are assigned. DLB
iterates over all partitions except for the last one. While the
estimated load Li at a partition is less than L Ii − t for some t
value, it moves the range of the leftmost sub-bucket from the
(i + 1)th partition to i th. Similarly, while the load at a parti-
tion is larger than L Ii + t , it moves the range of right-most
sub-bucket from the i th partition to (i + 1)th. If the moved
sub-bucket causes a significant change in the calculated load
(more than 2 × t), then this sub-bucket is substituted by a
larger number of sub-buckets to observe that range in finer-
granularity.

Figure 9 has an example of how Algorithm 3 is applied.
In the example, there are three partitions on a table and Fig. 9
shows the two-level histogram for each partition. The first-

Algorithm 3 Calculating ideal loads.
1: for i = 1 → N − 1 do
2: while Li < L Ii − t do
3: Move leftmost sub-bucket range from i + 1 to i
4: Li ⇐ Li + Lsubbucket
5: if Li > L Ii + t then
6: Distribute sub-bucket range into µ sub-buckets
7: while Li > L Ii + t do
8: Move rightmost sub-bucket range from i to i + 1
9: Li ⇐ Li − Lsubbucket
10: if Li < L Ii − t then
11: Distribute sub-bucket range into µ sub-buckets

P1: [1,40]

P2: [41,80]

P3: [81,120]

P1: [1,50]

P2: [51,60]

P3: [61,120]

Before After

Fig. 9 Example of how to decide on the new partition ranges

level of the histogram tracks down the number of accesses
to a partition’s range, which is 40 units in this example. The
second-level of the histogram, the 4 sub-buckets, keeps the
number of accesses to sub-ranges in a partition, which is 10
units in this example. The higher bar in a sub-bucket indi-
cates that the sub-range that corresponds to that sub-bucket
has more load. Initially, each partition has equal key-ranges,
shown in the left-hand side of Fig. 9. If we assume that each
partition has to perform equal amount of work per request, the
loads in this configuration are not balanced among the parti-
tions. Therefore, the repartition manager triggers repartition-
ing. Based on Algorithm 3 the new partitions are decided by
moving around the sub-buckets to create almost-equal loads
among the partitions. The result is shown on the right-hand
side of Fig. 9; the most loaded regions end up in partitions
with smaller ranges, like the second partition in Fig. 9, and
the lightly loaded regions are merged together.

Deciding the number of partitions of each table. The
algorithm presented above is just for one table and assumes
that the number of partitions before and after the reparti-
tioning operation does not change. To determine how many
partitions a table should have is another issue and requires
knowledge on all of the tables in the database.

In our setting, initially, the number of partitions for a
table is determined automatically to be equal to the number
of hardware contexts supported by the underlying machine.
To find what the number of partitions for a table should be
dynamically, based on the workload trends; let T be the num-
ber of tables, Ntotal be the upper limit on the total number of
partitions for the whole database, Qi be the total number of

123



164 P. Tözün et al.

requests for table i , Ni be the number of partitions for table
i , QTavg be the average number of requests for all the tables,
Navg be the average number of partitions for a table, and
#CT X be the total number of available hardware contexts
supported by the machine that executes the transactions run
on this database.

Based on the initial total number of partitions, we define
Ntotal as: Ntotal = T × #CT X . As a result, Navg will be:
Navg = Ntotal

T = #CT X . The QTi values are known from the
request queues, and therefore, QTavg can be calculated as:

QTavg =
∑T

i=1 QTi
T . The goal is to find the Ni values, which

can be derived from the following formula:
QTavg
Navg

= QTi
Ni

.
Using the formulas and algorithm presented above, DLB effi-
ciently decides on the new partitioning configuration.

5.3 Using control theory for load balancing

In our prototype, the system immediately tries to adjust to a
new configuration, once a target load value is determined for
each partition. Thus, there is always the danger of over-fit-
ting, especially for the workloads that observe access skew
with frequently changing hot-spots. Since repartitioning is
not expensive for PLP (except for PLP-Partition), it can repar-
tition again very quickly to alter the bad effects of a previ-
ous bad partitioning choice. Rather than directly aiming to
reach the target load, a more robust technique would be to
employ control theory while converging to the target load
[31]. Control theory can increase the robustness of our algo-
rithm, prevent the system from repartitioning unnecessarily
and/or resulting with wrong partitions, and reduce the down-
time faced by PLP-Partition during repartitioning. Neverthe-
less, it is orthogonal with the remaining infrastructure, and it
could be easily integrated in the current design. The prototype
implementation does not employ control theory techniques.
But the evaluation, presented next, shows that DLB allows
PLP to balance the load effectively.

6 Evaluation

The evaluation consists of four parts. In the first part we
measure how useful PLP can be. In particular; Sect. 6.2
quantifies how different designs impact page latching and
critical section frequency, Sect. 6.3 examines how effec-
tively PLP reduces latch contention on index and heap page
latches, and Sect. 6.4 shows the performance impact of
those changes. In the second part we try to quantify any
overheads related to PLP. To do that we measure PLP’s
behavior in challenging workloads that seem to not fit well
with physiological partitioning, such as transactions with
joins (Sect. 6.6) and secondary index accesses that can be
aligned with the partitioning or not (Sect. 6.7). In addition,

Sect. 6.8 inspects the fragmentation overhead of the three
PLP variations. In the third part (Sect. 6.5) we quantify how
useful MRBTrees can be also for conventional and logically
partitioned systems. In the last part of the evaluation, we
measure the overhead and effectiveness of the dynamic load
balancing mechanism of PLP (Sects. 6.9, 6.10). Finally, In
Sect. 6.11, we highlight the key conclusions of the whole
evaluation.

6.1 Experimental setup

To ensure reasonable comparisons, all the prototypes are built
on top of the same version of the Shore-MT storage manager
[24], incorporate the logging optimizations of [25], and share
the same driver code.

We consider five different designs: (a) An optimized ver-
sion of a conventional, non-partitioned system, labeled as
Conventional. This system employs speculative lock inheri-
tance [23] to reduce the contention in the lock manager; (b)
Logical-only is a data-oriented transaction processing proto-
type [40] that applies logical-only partitioning; (c) PLP or
PLP-Regular prototypes the basic PLP variation. This varia-
tion accesses the MRBTree index pages without latching; (d)
PLP-Partition extends PLP-Regular, so that one logical par-
tition “owns” each heap page, allowing latch-free both index
and heap page accesses; (e) PLP-Leaf assigns heap pages to
leaves of the primary MRBTree index, also allowing latch-
free index and heap page accesses. In addition, we experiment
with the PLP variations with the dynamic load balancing
mechanism integrated. We label those systems with a “-DLB”
suffix (PLP-Reg-DLB, PLP-Part-DLB, and PLP-Leaf-DLB).

All experiments are performed on two machines: an x64
box, with four sockets of quad-core AMD Opteron 8356 pro-
cessors, clocked at 2.4 GHz and running Red Hat Linux 5; and
a Sun UltraSPARC T5220 server with a 64-core Sun Niagara
II chip clocked at 1.4 GHz and running Solaris 10. Due to
unavailability of a suitably fast I/O sub-system, all experi-
ments are with memory-resident databases. But the relative
behavior of the systems will be similar with larger databases.

6.2 Page latches and critical sections

First we measure how PLP reduces the number of page latch
acquisitions in the system. Figure 10 shows the number and
type of page latches acquired by the conventional, the log-
ically partitioned, and two variations of the PLP design;
PLP-Regular and PLP-Leaf. Each system executes the same
number of transactions from theTATPbenchmark. PLP-Reg-
ular reduces the amount of page latching per transaction by
more than 80 %; while PLP-Leaf reduces the total further
to roughly 1 % of the initial page latching. The remaining
latches are associated with metadata and free space manage-
ment.

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 165

Fig. 10 Page latches acquired by different designs in TATP

Fig. 11 Time breakdown per transaction in an insert/delete-heavy
benchmark

The two right bars of Fig. 1 compare total critical sec-
tion entries of PLP versus the conventional and logically
partitioned systems. The two PLP variants eliminate the
vast majority of lock- and latch-related critical sections,
leaving only metadata and space management latching as
a small fraction of the critical sections. Transaction man-
agement, which is the largest remaining component, mostly
employs fixed-contention communication to serialize threads
that attempt to modify the transaction object’s state. Simi-
larly, the buffer pool-related critical sections are mostly due
to the communication between cleaner threads, which again
do not impact scalability. Overall, PLP-Leaf acquires 85 and
65 % fewer contentious critical sections than the conven-
tional and logically partitioned systems, respectively.

6.3 Reducing index and heap page latch contention

Having established that PLP effectively reduces the number
of page latch acquisitions and critical sections, we measure
what is the impact of that change in the time breakdown.

Figure 11 shows the impact in the transaction execution
time as PLP eliminates the contention on index page latches.
The graph gives the time breakdown per transaction for the
different designs as increasing number of threads run an

Fig. 12 Time breakdown per transaction in TPC-B with false sharing
on heap pages

insert/delete-heavy workload on the TATP database. In this
benchmark, each transaction makes an insertion or a dele-
tion to the CallFwd table, causing page splits and con-
tention for the index pages that lead to the records being
inserted/deleted. As Fig. 11 shows, the conventional and the
logically partitioned systems experience contention on the
index page latches. They both spend 15–20 % of their time
waiting, while PLP eliminates the contention achieving pro-
portional performance improvements.

Figure 12 gives the time breakdown per transaction when
we run TPC-B benchmark [53]. In this experiment we do not
pad records to force them onto different pages. Transactions
often wait for others because the record(s) they update happen
to reside on latched heap pages. The conventional, logically
partitioned, and PLP-Regular all suffer from false sharing of
heap pages. At high utilization this contention wastes more
than 50 % of execution time. On the other hand, PLP-Leaf is
immune, reducing response time by 13–60 % and achieving
proportional performance improvement. In a way, PLP-Leaf
provides automatic and more robust padding for the work-
loads that require manual padding in the conventional system
to reduce contention on the heap pages.

Figure 13 has the time breakdown per transaction when
16 and 40 hardware contexts are utilized by the conventional,
logically partitioned, and PLP-Partition systems when they
run a slightly modified version of StockLevel transaction
of TPC-C benchmark. StockLevel contains a join, and
in this version, 2,000 tuples are joined. We see that the con-
ventional system wastes 20–25 % of its time in contention
in the lock manager and for page latching. Interestingly, the
logically partitioned system eliminates the contention in the
lock manager, but this elimination is not translated to perfor-
mance improvements. Instead the contention is shifted and
aggravated to the page latches. On the other hand, PLP elim-
inates the contention both in the lock manager and for page
latches and achieves higher performance.

123



166 P. Tözün et al.

Fig. 13 Time breakdown for the StockLevel transaction in TPC-C
when 2,000 tuples joined

(a) (b)

Fig. 14 Throughput of the GetSubscriberData transaction in
two multicore machines. a Sun Niagara II b 4-socket Quad x86_64

6.4 Impact on scalability and performance

Since PLP effectively reduces the contention (and the
time wasted) to acquire and release index and heap page
latches, we next measure its impact on performance and
overall system scalability. Figures 14 and 15 show the
throughput of the three main designs under comparison
as we increase hardware utilization of the two multi-
core machines. The workloads consists of clients that
repeatedly submit the TATP-GetSubscriberData and
TPCC-StockLevel transactions, respectively, which are
read-only and ideally should impose no contention whatso-
ever.

As expected, PLP shows superior scalability, evidenced by
the widening performance gap with the other two systems as
utilization increases. For example, from Fig. 15b, we see that
for StockLevel, logically partitioned system delivers an
11 % speedup over the baseline case in the 4-socket Quad
x64 system. PLP delivers an additional 26 % over logical
partitioning or nearly 50 % over the conventional. The cor-
responding improvements in the Sun machine’s slower but
more numerous cores are 13 and 34 %. Note that eight cores
of the x64 machine match the fully loaded Sun machine, so

(a) (b)

Fig. 15 Throughput of theStockLevel transaction in two multicore
machines. a Sun Niagara II b 4-socket Quad x86_64

Fig. 16 Performance of a conventional and a logically partitioned sys-
tem in TATP

the latter does not expose bottlenecks as strongly in spite of its
higher parallelism. A significant fraction of the speedup actu-
ally comes from the MRBTree probes, which are effectively
one level shallower, since threads bypass the “root” partition
table node during normal operation.

6.5 MRBTrees in non-PLP systems

The MRBTree can improve performance even in the case of
conventional systems in three ways. First, since it effectively
reduces the height of the index by one level, each index probe
traverses one fewer node and hence it is faster. Second, any
possible delay due to contention on the root index page is also
reduced roughly proportionally with the number of subtrees.
We see the effect of those two in Fig. 16, which highlights
the difference in the peak performance of the conventional
and the logically partitioned system when they run with and
without MRBTrees. The workload is the TATP benchmark.
In both cases the improvement in performance is in the order
of 10 %.

Third, MRBTrees allow each subtree to have a struc-
ture modification operation (SMO) in flight at any time, in

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 167

Fig. 17 Time breakdown of conventional transactions when parallel
SMOs are allowed with MRBTrees

contrast to traditional B+Trees that can have only one SMO in
flight. Consequently, in workloads with high entry insertion
(deletion) rates, the MRBTree improves performance by par-
allelizing the SMOs. Figure 17 shows the time breakdown of
the conventional system with and without MRBTrees as we
run a microbenchmark that consists of either a record probe
or insert, and we increase the percentage of inserts. Without
MRBTrees, the system spends an increasing amount of time
blocked waiting for SMOs to complete as the insertion rate
increases. When MRBTrees are used, there is no time wasted
waiting for SMOs and performance improves by up to 25 %.
Overall, there are compelling reasons for systems other than
PLP to adopt MRBTrees.

6.6 Transactions with joins in PLP

Next we turn our attention to workloads that seem to not fit
well with physiological partitioning. First, we inspect how
PLP behaves with transactions that has join operations.

To evaluate the performance of PLP on transactions with
joins, we slightly modified the StockLevel transaction
from the TPC-C benchmark [54] to determine the number
of tuples joined. In its un-modified version, StockLevel
joins 200 tuples between two tables. We created different
versions of the transaction where 20, 200, 2,000, 20,000,
and 200,000 tuples are joined. For each different number
of tuples joined, Fig. 18 plots the maximum throughput the
conventional, the logically partitioned, and the PLP-Partition
systems achieve, normalized to the maximum throughput of
the conventional. The three systems achieve their maximum
throughput when the 4-socket Quad x64 machine is 100 %
utilized, which means that there is no significant scalability
bottlenecks. Figure 18 shows that the PLP variation achieves
higher performance than the conventional system regardless
of the number of tuples joined. When only 20 tuples are joined

Fig. 18 Maximum throughput normalized to Conventional for
StockLevel when the 4-socket Quad x86_64 is 100 % utilized

PLP achieves 2.1x higher performance than conventional,
while when 200 K tuples are joined PLP achieves 33 % higher
performance. PLP achieves higher performance because it
eliminates the contention for page latches, as Fig. 13 illus-
trates. That is in contrast to the logically partitioned system,
which for large number of tuples joined performs lower than
conventional.

6.7 Secondary index accesses

Non-clustered secondary indexes are pervasive in transaction
processing, since they are the only means to speed up trans-
actions that access records using non-primary key columns.
Nevertheless, secondary index accesses pose several chal-
lenges to PLP, which we explore in Fig. 19. We break this
analysis into two cases: when the secondary index is aligned
with the partitioning scheme and when it is not.

We conduct an experiment where we modify TATP’s
GetSubscriberData transaction to perform a range scan
on the secondary index that is built on the names of the Sub-
scribers and we control the number of matched records.
In the original transaction only one Subscriber is found.
In the modified version, we probe for 10, 100, 1,000, and
10,000 Subscribers, even though index scans for thou-
sands of records are not typical in high-throughput transac-
tional workloads.

If the secondary index columns are a subset of the routing
columns, then the secondary index is aligned with the par-
titioning scheme. In that case, a secondary index scan may
return a large number of matched RIDs (record ids of entries
that match the selection criteria) from several partitions. All
the executors need to send the probed data to a coordination
point where an aggregation of the partial results takes place.
As the range of the index scans become larger (or the selec-
tivity drops), this causes a bottleneck due to excessive data
transfers. When the secondary index is not aligned with the
partitioning scheme, then on top of the above mentioned bot-
tleneck there is also an important overhead. This overhead
is because each record probe becomes a two step process,

123



168 P. Tözün et al.

(b) (c) (d)(a)

Fig. 19 Performance on aligned and non-aligned secondary index scans. a Range = 10, b range = 100, c range = 1,000, d range = 10,000

where the secondary index probe is done by one thread con-
ventionally and then requests from the appropriate executor
threads to retrieve the selected records.

Figure 19 compares the performance of Conventional
system with PLP-Part-Aligned, which performs partitioning
aligned secondary index accesses, and PLP-Part-NonAligned,
which performs non-partitioning aligned secondary index
accesses, as more hardware contexts are utilized in the sys-
tem. PLP-Part-Aligned improves performance over Conven-
tional by 46, 14, 8, and 1 %, respectively, for ranges 10, 100,
1,000, 10,000. On the other hand, even though PLP-Part-
NonAligned improves performance by 11 % when 10 records
are scanned, for larger ranges it hinders performance. PLP-
Part-NonAligned is 3, 11, and 38 % slower than Conventional
for ranges 100, 1,000, and 10,000, respectively.

As expected, the performance improvement for PLP-
Part-Aligned gets smaller as the range of the index scan
increases. However, as long as the index scans of parti-
tioning-aligned secondary indexes are selective and touch
a relatively small number of records, PLP provides decent
performance improvement. For PLP-Part-NonAligned, how-
ever, such workloads are very unfriendly, though unless the
scan range is over 1,000 records it is not disastrous.

6.8 Fragmentation overhead

PLP-Partition and PLP-Leaf, create some fragmentation on
the heap file since they change the regular heap file structure
(see Sect. 3.3). Given the increased number of data pages
due to fragmentation, we expect the heap file scan times to
increase proportionally.

Figure 20 shows the ratio between the number of pages
used in the three PLP variations and the conventional sys-
tem as we increase the database size. The x-axis shows the
total size of the database when each record is 100B (left-hand
side of the graph) and 1000B (right-hand side of the graph).

Fig. 20 Space overhead of the three PLP variations

The y-axis is the ratio between the number of pages used in
each design and the conventional system. The conventional
system has one partition, where the PLP variations have 100
and 10 partitions for the cases where record size is 100B and
1000B, respectively. The heap page size is 8 KB. As expected,
PLP-Regular does not create any fragmentation since it main-
tains the regular heap file format. For PLP-Partition, the
amount of fragmentation becomes negligible as the database
size increases for small records. However, PLP-Leaf uses up
to 80 % more heap pages than a conventional system for the
same case creating a visible fragmentation on the heap file.
On the other hand, as we increase the record size, the frag-
mentation decreases because each heap page is able to keep
fewer records, and thus, the amount of empty space on each
heap page is reduced.

Figure 21 shows the time to scan the heap file for each
PLP variation compared to the conventional system as we
increase the size of the database. The setup is same as in
Fig. 20 when the record size is 100B. The size of the buffer
pool is 4 GB for each measurement. From Fig. 21, the frag-
mentation cost of PLP-Leaf does not significantly increase
the file scan time when there are no I/O operations performed
(from 1 MB to 1 GB) because the total number of records
that are scanned is the same. However, for the larger database

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 169

Fig. 21 Overhead of PLP variations during file scan

(10 GB), PLP-Leaf increases the heap file scan time by 60 %
since there are more I/O requests.

Overall, among the PLP variations, only PLP-Leaf may
introduce some significant fragmentation when a heap page
can keep many database records. As the number of records
a heap page can keep decreases, this cost becomes less
significant. We also note that PLP is a design optimized
for high-performing transactional applications, where entire
heap file scans are rare.

6.9 Overhead and effectiveness of DLB

In this section we first quantify the overhead of the dynamic
load balancing mechanism (DLB) under normal operation.
Then we measure how quickly and effectively DBL re-acts
against skew and load imbalances. All the experiments use
the GetSubscriberData transaction from TATP bench-
mark. We picked this transaction since it probes a record from
the Subscribers table, which provides 10,000 tuples per
scaling factor (and per partition in our experiments). There-
fore, the records that have to change partitions after repar-
titioning will be sufficient enough to understand the record
movement cost among the different PLP variations.

6.9.1 Overhead in normal operation

Under normal operation, DLB should impose minimal over-
head. DLB’s monitoring component performs three opera-
tions: it maintains the histograms with access information,
it continuously monitors the throughput, and it periodically
analyzes the request queues of the worker threads for load
imbalances. Since this monitoring is performed by a sepa-
rate thread, it should not affect the throughput of the system
at all unless all the CPUs in the system are utilized by the
threads executing transactions. Therefore, the main source of
overhead for DLB is updating the histogram.

Figure 22 shows the overhead caused by updating the
aging histogram for each data access. Since the number of
threads that try to update the histogram increases, as we uti-
lize more CPUs, the overhead of updating the histogram

Fig. 22 Overhead of updating histogram for DLB under normal oper-
ation

increases as well. On the other hand, increasing the num-
ber of sub-buckets does not have much effect. We note that
histogram is not a source of contention since each partition
has their own sub-buckets that they update. Therefore, the
overhead in updating the histogram purely comes from the
extra work that a partition’s worker thread has to perform
while updating the histogram.

Overall, the monitoring component of DLB is fairly light-
weight. On average histogram updates cause 6 % drop in
throughput compared to the system running without a his-
togram and maximum drop is 7–8 %. Considering that the
transaction we execute in our system is a read-only trans-
action, we actually evaluate the worst case behavior here.
For a transaction with updates, the number of transactions
executed per second and hence the number of data acces-
ses would be lower. Fewer data accesses would cause fewer
updates in histogram and therefore less overhead.

6.9.2 Reacting to load imbalances

In order to evaluate how effectively DLB handles load imbal-
ances, we execute the same experiment as the one in Fig. 4.
The PLP variations (PLP-Regular, PLP-Reg-DLB, PLP-Part-
DLB, and PLP-Leaf-DLB) use 64 partitions, apply aging in
every 1 s, and the load difference threshold value t is 10 %.
Initially the requests are distributed uniformly and at time
point 10 (s), 30 % of the database starts to receive 50 % of
the requests.

As Fig. 23 shows, the change in the access pattern causes
a 30 % drop in the throughput of PLP-Regular, making its
performance worse than the performance of the non-parti-
tioned Conventional system. On the other hand, the DLB-
integrated PLP variations quickly detect the skew and bring
the performance back to the pre-skew levels in less than 10 s.
In particular, 2 s after the change in the access pattern, DLB
has already decided on the new partitioning configuration,
and around 8 s later it has performed 126 repartition oper-
ations (63 splits and 63 merges). The throughput has some
spikes for a short time after repartitioning, but in the end
settles down.

123



170 P. Tözün et al.

Fig. 23 Dynamic load balancing when at time t = 10, 50 % of the requests are sent to 30 % of the database

In PLP-Reg-DLB, very few index entries are updated,
leading to a shorter dip in throughput during repartition-
ing. PLP-Leaf-DLB experiences an almost equally short dip.
PLP-Part-DLB suffers a much longer dip. For the statically
partitioned PLP, Fig. 23 has only the results for the stati-
cally partitioned PLP-Regular since the drop in throughput
is almost the same for the other two statically partitioned PLP
variations (PLP-Partition and PLP-Leaf).

DLB triggers a global repartitioning process that affects all
the partitions in the system. PLP-Regular and PLP-Leaf can
handle this process very well. However, such global reparti-
tioning is not suitable for PLP-Partition. PLP-Partition is the
closest to a shared-nothing system in terms of repartitioning
cost since it reorganizes a large number of heap pages (see
Sect. 4.2). Therefore, its non-optimal behavior with DLB is
as expected.

6.9.3 Speeding up accesses to hot spots

When DLB is effective, the “hot” regions end up to narrow
partitions. The indexes for these partitions are shallower and
provide shorter access times for the “hot” records. In addi-
tion, “hot” records that could previously belong to the same
partition, due to their key proximity, end up to different parti-
tions. Figure 24 illustrates graphically the impact of DLB on
the ranges of 10 partitions before and after a repartitioning.
The area within the rectangular region highlights the “hot”
range; it is 10 % of the total area that receives the 50 % of
the total load. Initially, labeled Before, the system has equal-
length range partitions. After DLB kicks in and repartitioning
completes, labeled After, the “hot” region has shorter-length
range partitions while the not-so-loaded regions have larger-
length partitions.

Table 3 shows the average index probe time (in micro-
seconds) for a hot record as we increase the skew. For this
experiment we use a single table with 640,000 records for
a total size of around 1 GB. There is an index of this table,
with 8 KB pages and the primary key is an integer (4B).
When there are 10 equal-range partitions, the height of each
partition’s subtree is 3. Each row in the table shows the aver-
age access time of a randomly picked record from a “hot”
region that gets 50 % of all the requests, as the range of the

Fig. 24 Partitions before and after the repartitioning

Table 3 Average index probe times (in microseconds) for a hot record,
as skew increases

Skewed Before After After
region (%) skew skew repartitioning

50 69 67 65

20 67 66 63

10 69 66 62

5 68 64 61

2 68 64 60

“hot” region decreases—and the skew increases. The first
column (“Before skew”) shows the average access time when
the requests are uniformly distributed. The second column
(“After skew”) shows the average access time when DLB
is disabled and the request distribution is skewed. The third
column has the average access time after DLB kicked in and
completed a repartitioning.

As Table 3 shows, the access times for the randomly picked
record is lower after we set the skew. This is probably due
to some caching effect since the record is accessed more fre-
quently when there is skew in data accesses. However, the
access time after repartitioning is the shortest since the height
of the subtree in the new “hot” partition is 2 whereas in the
old partition it was 3 (the height of the subtrees for the other
partitions remains as 3).

Table 4 shows the number of finished requests for the “hot”
record after the skew and after DLB’s repartitioning. Before
repartitioning fewer requests are satisfied for the picked
record because its partition is highly loaded with requests

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 171

Table 4 Average record probes per second for a hot record, as skew
increases

Skewed After After
region (%) skew repartitioning

50 13 13

20 7 29

10 7 73

5 32 108

2 63 155

(a) (b)

Fig. 25 Overhead of updating secondary indexes during repartition-
ing. At time t = 5 50 % of the requests are sent to only 10 % of the
database, which triggers repartitioning. a PLP-Leaf, b PLP-Partition

for other records in the same “hot” partition range. DLB dis-
tributes the “hot” range between multiple shorter-range par-
titions. Therefore, a single partition can serve more requests
for the “hot” record. This results in small throughput increase
after repartitioning in Fig. 23.

6.10 Overhead of updating secondary indexes for DLB

In PLP-Leaf and PLP-Partition, whenever a record moves
every non-clustered index of the table needs to be updated
with the record’s new RID (see Sect. 3.3). In this section,
we measure the overhead of updating the secondary indexes
during repartitioning.

Figure 25 shows the effect of repartitioning on throughput
as we increase the number of secondary indexes for a table for
PLP-Leaf and PLP-Partition. For this experiment we use the
Subscribers table of the TATP database. Initially, there
are 2 partitions of 320,000 records each that receive uniform
requests. After 5 s, 50 % of the requests are sent to only 10 %
of the table and DLB triggers a repartitioning. We measure
the throughput of the system as we increase the number of
secondary indexes on the table, from none up to 4 secondary
indexes.

Figure 25a shows that the overhead for PLP-Leaf while
updating the secondary is relatively low, because very few or

no records need to be moved. On the other hand, the over-
head for PLP-Partition is much higher. PLP-Partition has to
move more records and update more entries in the second-
ary indexes. Therefore, repartitioning in PLP-Partition takes
longer time as we increase the number of secondary indexes
for a table.

6.11 Summary

As the experimental results show, PLP, successfully, man-
ages to eliminate two major sources of unscalable critical sec-
tions in conventional shared-everything systems; locking and
latching. In addition, it provides a good infrastructure for easy
repartitioning and dynamic load balancing. It is important to
note that each PLP variation has its drawbacks. For exam-
ple, PLP-Leaf comes with some fragmentation (Sect. 6.8)
and PLP-Partition cannot repartition efficiently (Sects. 6.9.2,
6.10). Considering the long lasting throughput drops during
repartitioning for the PLP-Partition, we favor PLP-Leaf for
workloads that need dynamic load balancing. If the workload
does not heavily suffer from heap page latching, but only
index page latching, then PLP-Regular is definitely a great
design choice because it neither has fragmentation nor faces
long and sharp drops in throughput during repartitioning.

7 Related work

The related work can be categorized in three; analyzing and
reducing the critical sections in DBMSs, partitioned B+trees
and concurrency control mechanisms, and dynamic load
balancing and repartitioning.

7.1 Critical sections

The complexity and overheads of database management sys-
tems are well-known. For example, [19] shows that, even in
a single-threaded OLTP system, logging, locking, latching,
and buffer pool accesses contribute roughly equal overheads
and together account for the majority of machine instruc-
tions executed during a transaction. Our previous work shows
that these overheads become scalability burdens in multicore
hardware [24]. PLP eliminates entire categories of serializa-
tions, along with the corresponding bottlenecks.

In the shared-everything arena, recent proposals for specu-
lative lock inheritance [23] and data-oriented transaction exe-
cution [40] minimize the need for interaction with a central-
ized lock manager. Where speculative lock inheritance allows
the system to spread lock operations across multiple transac-
tions to reduce contention, data-oriented systems replace the
central lock manager with thread-local lock management.
Reducing lock contention with data-oriented execution is
also studied for data-streams’ operators [12] by making

123



172 P. Tözün et al.

threads delegate the work on some data to the thread that
already holds the lock for that data and move to the next
operation in their queues.

Other proposals tackle the weakness posed by the cen-
tralized log manager; [25] presenting a scalable log buffer
and [9] exploiting flash technology to reduce logging laten-
cies. These proposals show even seemingly pervasive forms
of communication can be reduced or sidestepped to great
effect. However, none of them addresses physical data acces-
ses involving page latching and buffer pool, the other two
major overheads in the system, which PLP eliminates.

Oracle RAC [39], with Cache-Fusion [28], allows data-
base instances in the shared-disk cluster to share their buffer
pools and avoid accesses to the shared-disk. It can also parti-
tion the data to reduce both logical and physical contention on
a particular portion of the data. However, it does not enforce
each partition to be accessed only by a single thread. There-
fore, it does not eliminate physical latch contention while
accessing pages from the shared-cache as much as PLP does.

As discussed previously, shared-nothing [13,49,51] sys-
tems have an appealing design that eliminates critical sec-
tions altogether. However, they struggle both pro-actively to
reduce the need to execute distributed transactions through
efficient partitioning [11] as well as re-actively to reduce
overheads when distributed transactions cannot be avoided
[26]. On the other hand, PLP, in addition to eliminating a big
portion of the unscalable critical sections, offers a less costly
way of load balancing and communication for distributed
transactions since partitions share the same memory space.

7.2 B+trees and alternative concurrency control

Alternatives to traditional B+tree concurrency control are
studied to allow multiple SMOs at the same time [22,34].
The MRBTree index structure provides an alternative to
such techniques, allowing concurrent SMOs with less code
complexity. However, these techniques can be implemented
alongside with MRBTrees to achieve concurrency within a
partition, should that be desirable for a conventional system.
As an addition to these techniques MRBTrees also allow mul-
tiple root split operations in parallel. Several earlier works
propose B+Trees having multiple roots to reduce contention
due to locking [16,37]. However, again none of these pro-
posals targets physical latch contention in the system.

In addition, there are latch-free B+tree implementations
that use alternative synchronization methods. CO B-Tree [5]
uses load-linked/store-conditional (LL/SC) instead of latch-
ing to synchronize operations on a B+tree. However, it does
not eliminate contention on the B+tree. PALM [46] elimi-
nates both page latching and contention on the B+trees by
using Bulk Synchronous Parallel model. However, it has to
perform B+tree operations in batches in order to exploit this

technique, which might not be desirable all the time and
harder to integrate within a database management system.

Finally, optimistic and multiversioning concurrency con-
trol schemes [6,27,29] may improve concurrency by resolv-
ing conflicts lazily at commit time instead of eagerly blocking
them at the moment of a potential conflict. When conflicts are
rare this allows the system to avoid the overhead of enforcing
database locks. On the other hand, if the conflicts occur fre-
quently the performance of the system drops rapidly, since
the transaction abort rate is high. Moreover, there is work
that compares the concurrency control schemes in database
systems. Notable is the work by Agrawal et al. [2], while the
book of Bernstein et al. [7] and Thomasian’s survey [52] are
good starting points for the interested reader. On the other
hand, the focus of PLP is on the contention for latches rather
than the concurrency scheme used.

We also note that there is a large body of work on cache-
conscious index implementations (e.g., [10,43,44]). Such
indexes are not being used on transaction processing systems.
Instead, they target business intelligence workloads, which
lack updates and therefore do not need complicated concur-
rency control mechanisms. PLP eliminates the need for latch-
ing and concurrency control at the index level. Therefore, we
expect to get a significant performance boost if we substi-
tute the index implementation with a cache-friendlier B+tree
alternative, since the B+tree probes are the most expensive
remaining component of PLP.

7.3 Dynamic load balancing

There is a large body of related work, but most of it focuses on
clustered (shared-nothing) environments. For example, [1]
analyzes and compares different approaches for index reor-
ganization during repartitioning in shared-nothing deploy-
ments. Lee et al. [30] propose an index structure similar to
the MRBtree, which eases the index reorganization during
repartitioning in a shared-nothing system and Mondal et al.
[36] extend this design by keeping statistics for each branch
pointed by the root node of a partition’s subtree. While the
structure of [36] enables the observation of access patterns at
a fine granularity all the accesses have the same weight, no
matter how recent or old they are. Our two-level aging-based
histogram assigns higher weight to the recent accesses. This
allows us to have a more accurate view of the skewed access
patterns and detect load imbalances quickly.

Shinobi [55] uses a cost model to decide whether the ben-
efits of a new partitioning configuration worth to pay the cost
of repartitioning. Shinobi focuses on insert-heavy workloads
where data is rarely queried and when queried the queries
focus on a small region of the most recently inserted records.
Its benefits primarily come from avoiding to index the large
infrequently accessed parts of the database. We consider

123



Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 173

mainstream transactional workloads where the entire data-
base is accessed and we cannot drop any indexes.

The histogram-based technique we use is influenced from
previous work on maintaining dynamic histograms on data
distributions for accurately estimating the selectivity of query
predicates [14,15]. In our case, we are interested in the fre-
quency of accesses to a particular region, rather than the data
distribution, and on the access pattern.

Finally, our work is orthogonal to techniques that decide
initial partitioning configuration. Schism [11] creates parti-
tions to minimize the number of distributed transactions by
representing the workload as a graph and using a graph parti-
tioning algorithm. While, in [45] the query optimizer is used
to get suggestions for the initial partitions. These tools only
create the initial configuration; if the workload characteris-
tics change over time, however, the initial configuration is
useless and the system has to re-calculate the partitioning
configuration and perform the repartitioning.

8 Limitations of PLP

While we cannot find weaknesses in the MRBTree access
method, PLP has some, most of them coming from its ances-
tor, data-oriented execution [40].

Applications that have less pressure on the storage
manager. First of all, this system is designed for high perfor-
mance transaction processing that imposes great pressure on
the internal of the database storage layer. Thus, certain clas-
ses of applications may not benefit from it, or even get penal-
ized. For example, for our evaluation we use the specialized
TATP and TPC-B benchmarks instead of the more popular
TPC-C. The reason for that is that our baseline systems (con-
ventional and logically partitioned) does not encounter any
of the issues we try to address in TPC-C and there is less
room for improvement in most of the transactions, unlike
StockLevel (Fig. 18).

Another example, are business intelligence applications
with large file scans or joins. In such workloads PLP may
penalize performance since it may require transferring large
volumes of data among participating threads. It is common
practice, however, to employ dedicated database engines
(usually column-stores [50]) for such workloads.

Non-partition aligned index accesses. PLP partitions
each table using range-based partitioning to the keys of a spe-
cific subset of the columns of the table. The DBA, however,
may have decided to build indexes (usually non-clustered
secondary indexes) that do not contain the columns that PLP
uses for the partitioning. We refer to such indexes as non-par-
titioning aligned indexes and they may become performance
bottlenecks. In data-oriented execution and PLP we handle
such accesses by appending each index leaf entry with the
fields of the record that are needed for identifying the par-

tition-owning thread. The non-partitioning aligned index is
accessed as a conventional index, without avoiding any lock-
ing or latching, in order to retrieve the id of the record to be
accessed in the heap file and then the access is passed to the
appropriate thread.

As Fig. 19 shows, such accesses can be burdensome for
PLP. However, as a proactive measure, we implemented tools
that help the application developer and the DBA to avoid hav-
ing workloads with very frequent such index accesses [41].

Breaking the transactions. As mentioned previously
(Sect. 3.1), the transactions need to be divided into smaller
actions based on the data accessed in different parts of the
transaction. These actions are represented as a directed graph
to understand the transaction flow and dependencies among
the actions. This representation also helps us to exploit intra-
transaction parallelism for the independent actions. However,
it introduces the initial cost of identifying these actions. We
implemented a tool that automatically forms such a transac-
tion flow graph given SQL statement [41] to ease this initial
cost.

9 PLP on future hardware and conclusions

Unlike conventional systems, which either embrace fully
shared-everything or shared-nothing philosophies, physio-
logical partitioning takes the best features of both to produce
a hybrid system that operates nearly latch and lock free, while
still retaining the convenience of a common underlying stor-
age pool and log. We achieve this result with a new multi-
rooted B+tree structure and careful assignment of threads
to data. This design and the MRBtree structure also allow
us to have a lightweight, robust, and efficient dynamic load
balancing and repartitioning mechanism.

As multicore hardware trends evolve, PLP becomes
increasingly attractive for several reasons. Conventional
OLTP is ill-suited to modern and upcoming hardware since;
(a) The code of an OLTP system is full of unscalable criti-
cal sections [24], (b) The access patterns are unpredictable
[48] that even the most advanced prefetchers fail to detect
[47], (c) The majority of the accesses are shared read-write,
and hence, they under-perform on caches with non-uniform
access latency [4,17].

As we have seen, PLP, combined with previous advances
in logging, eliminates all three problems. The majority of
unscalable critical sections are completely eliminated, access
patterns are regularized by the thread assignments, and
threads no longer share data to communicate, eliminating
the shared R/W problem.

This regularity will become increasingly important as
hardware continues to make more and more demands of the
software. For example, it is almost inevitable that proces-
sor cache access latencies will be non-uniform [4,17,18].

123



174 P. Tözün et al.

Unfortunately, OLTP will only be able to utilize effectively
these new architectures if it can eliminate the majority of
accesses that are shared among multiple processors.

In short, by eliminating a large class of communication,
PLP leaves OLTP engines much better-poised to take advan-
tage of upcoming hardware, whatever form it may take.

Acknowledgments The authors are deeply grateful for all the mem-
bers of Data-Intensive Applications and Systems (DIAS) laboratory of
École Polytechnique Fédérale de Lausanne who made this work pos-
sible through their research efforts, helpful feedback, and encourage-
ment. We would also like to thank the anonymous reviewers whose
many thoughtful and constructive remarks helped improve this paper.
This research has been supported by a PhD research fellowship from
IBM; grants and equipment from Intel and Sun; a Sloan research fellow-
ships; an IBM faculty partnership award; NSF grants CCR-0205544,
CCR-0509356, IIS-0133686, and IIS-0713409; an ESF EurYI award;
and Swiss National Foundation funds.

References

1. Achyutuni, K.J., Omiecinski, E., Navathe, S.B.: Two techniques
for on-line index modification in shared nothing parallel databases.
In: SIGMOD, pp. 125–136 (1996)

2. Agrawal, R., Carey, M.J., Livny, M.: Concurrency control
performance modeling: alternatives and implications. ACM
TODS 12(4), 609–654 (1987)

3. Bayer, R., McCreight, E.: Organization and maintenance of large
ordered indices. In: SIGFIDET, pp. 107–141 (1970)

4. Beckmann, B.M., Wood, D.A.: Managing wire delay in large chip-
multiprocessor caches. In: MICRO, pp. 319–330 (2004)

5. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concur-
rent cache-oblivious B-trees. In: SPAA, pp. 228–237 (2005)

6. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—
theory and algorithms. ACM TODS 8(4), 465–483 (1983)

7. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency con-
trol and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1987)

8. Brewer, E.A.: Towards robust distributed systems (abstract).
In: PODC, pp. 7–7 (2000)

9. Chen, S.: FlashLogging: exploiting flash devices for synchronous
logging performance. In: SIGMOD, pp. 73–86 (2009)

10. Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal pre-
fetching B+-Trees: optimizing both cache and disk performance.
In: SIGMOD, pp. 157–168 (2002)

11. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a
workload-driven approach to database replication and partition-
ing. PVLDB 3, 48–57 (2010)

12. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread coopera-
tion in multicore architectures for frequency counting over multiple
data streams. PVLDB 2, 217–228 (2009)

13. Dewitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A.,
Hsiao, H.i., Rasmussen, R.: The Gamma database machine pro-
ject. IEEE Trans. Knowl. Data Eng. TKDE 2(1), 44–62 (1990)

14. Donjerkovic, D., Ioannidis, Y.E., Ramakrishnan, R.: Dynamic his-
tograms: Capturing evolving data sets. In: ICDE, p. 86 (2000)

15. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental
maintenance of approximate histograms. ACM TODS 27, 261–
298 (2002)

16. Graefe, G.: Sorting and indexing with partitioned B-trees. In:
CIDR, pp. 1–13 (2003)

17. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Reactive
NUCA: near-optimal block placement and replication in distrib-
uted caches. In: ISCA, pp. 184–195 (2009)

18. Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N., Ailamaki,
A., Falsafi, B.: Database servers on chip multiprocessors: limita-
tions and opportunities. In: CIDR, pp. 79–87 (2007)

19. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP
through the looking glass, and what we found there. In: SIGMOD,
pp. 981–992 (2008)

20. Helland, P.: Life beyond distributed transactions: an apostate’s
opinion. In: CIDR, pp. 132–141 (2007)

21. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Com-
puter 41, 33–38 (2008)

22. Jaluta, I., Sippu, S., Soisalon-Soininen, E.: B-tree concurrency
control and recovery in page-server database systems. ACM
TODS 31, 82–132 (2006)

23. Johnson, R., Pandis, I., Ailamaki, A.: Improving OLTP scala-
bility using speculative lock inheritance. PVLDB 2(1), 479–
489 (2009)

24. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi,
B.: Shore-MT: a scalable storage manager for the multicore era.
In: EDBT, pp. 24–35 (2009)

25. Johnson, R., Pandis, I., Stoica, R., Athanassoulis, M., Ailamaki,
A.: Aether: a scalable approach to logging. PVLDB 3, 681–
692 (2010)

26. Jones, E., Abadi, D.J., Madden, S.: Low overhead concurrency
control for partitioned main memory databases. In: SIGMOD,
pp. 603–614 (2010)

27. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency
control. ACM TODS 6(2), 213–226 (1981)

28. Lahiri, T., Srihari, V., Chan, W., MacNaughton, N., Chandraseka-
ran, S.: Cache fusion: Extending shared-disk clusters with shared
caches. In: VLDB, pp. 683–686 (2001)

29. Larson, P.A., Blanas, S., Diaconu, C., Freedman, C., Patel, J.M.,
Zwilling, M.: High-performance concurrency control mechanisms
for main-memory databases. PVLDB 5(4), 298–309 (2011)

30. Lee, M.L., Kitsuregawa, M., Ooi, B.C., Tan, K.L., Mondal, A.:
Towards self-tuning data placement in parallel database systems.
In: SIGMOD, pp. 225–236 (2000)

31. Lightstone, S., Surendra, M., Diao, Y., Parekh, S.S., Hellerstein,
J.L., Rose, K., Storm, A.J., Garcia-Arellano, C.: Control theory:
a foundational technique for self managing databases. In: ICDE
Workshops, pp. 395–403 (2007)

32. Lomet, D., Anderson, R., Rengarajan, T.K., Spiro, P.: How the
Rdb/VMS data sharing system became fast. Technical Report
CRL-92-4, Dec (1992)

33. Mohan, C.: ARIES/KVL: a key-value locking method for con-
currency control of multiaction transactions operating on B-tree
indexes. In: VLDB, pp. 392–405 (1990)

34. Mohan, C., Levine, F.: ARIES/IM: an efficient and high con-
currency index management method using write-ahead logging.
In: SIGMOD, pp. 371–380 (1992)

35. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimina-
tion to implement scalable and lock-free FIFO queues. In: SPAA,
pp. 253–262 (2005)

36. Mondal, A., Kitsuregawa, M., Ooi, B.C., Tan, K.L.: R-tree-based
data migration and self-tuning strategies in shared-nothing spatial
databases. In: GIS, pp. 28–33 (2001)

37. Muth, P., O’Neil, P., Pick, A., Weikum, G.: The LHAM log-struc-
tured history data access method. VLDB J. 8, 199–221 (2000)

38. Neuvonen, S., Wolski, A., Manner, M., Raatikka, V.: Telecom
Application Transaction Processing Benchmark (TATP). http://
tatpbenchmark.sourceforge.net/ (2009)

39. Oracle: Oracle real application clusters. Available at http://www.
orace.com/technetwork/database/clustering/overview

123

http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
http://www.orace.com/technetwork/database/clustering/overview
http://www.orace.com/technetwork/database/clustering/overview


Scalable and dynamically balanced shared-everything OLTP with physiological partitioning 175

40. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-ori-
ented transaction execution. PVLDB 3(1), 928–939 (2010)

41. Pandis, I., Tözün, P., Branco, M., Karampinas, D., Porobic, D.,
Johnson, R., Ailamaki, A.: A data-oriented transaction execution
engine and supporting tools. In: SIGMOD, pp. 1237–1240 (2011)

42. Pandis, I., Tözün, P., Johnson, R., Ailamaki, A.: PLP: page latch-
free shared-everything OLTP. PVLDB 4(10), 610–621 (2011)

43. Rao, J., Ross, K.A.: Cache conscious indexing for decision-support
in main memory. In: VLDB, pp. 78–89 (1999)

44. Rao, J., Ross, K.A.: Making B+-trees cache conscious in main
memory. In: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pp. 475–486 (2000)

45. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical
database design in a parallel database. In: SIGMOD, pp. 558–569
(2002)

46. Sewall, J., Chhugani, J., Kim, C., Satish, N., Dubey, P.: PALM:
Parallel architecture-friendly latch-free modifications to b+trees
on many-core processors. PVLDB 4(11), 795–806 (2011)

47. Somogyi, S., Wenisch, T.F., Ailamaki, A., Falsafi, B.: Spatio-tem-
poral memory streaming. In: ISCA, pp. 69–80 (2009)

48. Somogyi, S., Wenisch, T.F., Hardavellas, N., Kim, J., Ailamaki, A.,
Falsafi, B.: Memory coherence activity prediction in commercial
workloads. In: WMPI, pp. 37–45 (2004)

49. Stonebraker, M.: The case for shared nothing. IEEE Database Eng.
Bull. 9, 4–9 (1986)

50. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M.,
Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P.,
Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented DBMS.
In: VLDB, pp. 553–564 (2005)

51. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s time
for a complete rewrite). In: VLDB, pp. 1150–1160 (2007)

52. Thomasian, A.: Concurrency control: methods, performance, and
analysis. ACM Comput. Surv. 30, 70–119 (1998)

53. TPC: TPC benchmark B standard specification, revision 2.0 (1994).
Available at http://www.tpc.org/tpcb

54. TPC: TPC benchmark C (OLTP) standard specification, revision
5.11 (2010). Available at http://www.tpc.org/tpcc

55. Wu, E., Madden, S.: Partitioning techniques for fine-grained index-
ing. In: ICDE, pp. 1127–1138 (2011)

123

http://www.tpc.org/tpcb
http://www.tpc.org/tpcc

	Scalable and dynamically balanced shared-everything OLTP with physiological partitioning
	Abstract
	1 Introduction
	1.1 Dynamically balanced physiological partitioning
	1.2 Contributions and organization

	2 Communication patterns
	2.1 Types of communication
	2.2 Communication patterns in OLTP
	2.3 Physical versus logical partitioning

	3 Physiological partitioning
	3.1 Design overview
	3.2 Multi-rooted B+Tree
	3.3 Heap page accesses
	3.4 Page cleaning
	3.5 Benefits of physiological partitioning

	4 Need and cost of dynamic repartitioning
	4.1 Static partitioning and skew
	4.2 Repartitioning cost
	4.2.1 Splitting non-clustered indexes
	4.2.2 Splitting clustered indexes
	4.2.3 Moving fewer records
	4.2.4 Example of repartitioning cost
	4.2.5 Cost of merging two partitions


	5 A dynamic load balancing mechanism for PLP
	5.1 Monitoring
	5.2 Deciding new partitioning
	5.3 Using control theory for load balancing

	6 Evaluation
	6.1 Experimental setup
	6.2 Page latches and critical sections
	6.3 Reducing index and heap page latch contention
	6.4 Impact on scalability and performance
	6.5 MRBTrees in non-PLP systems
	6.6 Transactions with joins in PLP
	6.7 Secondary index accesses
	6.8 Fragmentation overhead
	6.9 Overhead and effectiveness of DLB
	6.9.1 Overhead in normal operation
	6.9.2 Reacting to load imbalances
	6.9.3 Speeding up accesses to hot spots

	6.10 Overhead of updating secondary indexes for DLB
	6.11 Summary

	7 Related work
	7.1 Critical sections
	7.2 B+trees and alternative concurrency control
	7.3 Dynamic load balancing

	8 Limitations of PLP
	9 PLP on future hardware and conclusions
	Acknowledgments
	References


