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Abstract Much knowledge has been gained for the last
30 years about the effects of pressure on bacteria, and various
pressure-based technologies have been designed. The devel-
opment of modern molecular biology techniques (e.g., DNA
microarrays) as well as the technological advances realized in
the manufacturing of robust sampling and high-pressure devi-
ces has allowed these advances. Not only the direct effects on
cell components (membranes, proteins, and nucleic acids)
have been unraveled, but also the cellular response to pressure
has been investigated by means of transcriptome and pro-
teome analyses. Initially, research was performed by marine
biologists who studied the microorganisms living in the deep
sea at pressures of 1,000 bar. In parallel, food technologists
developed pressure-based methods for inactivating microor-
ganisms without altering the food properties as much as with
temperature treatment. The preservation of specific product

properties is also the rationale for pressure-based methods for
the disinfection of biomaterials and for vaccine production.
Therefore, attention was first focused on the “killing” poten-
tial of high pressure. On the other hand, there has been a
growing interest in using elevated pressures (up to ~10 bar)
for enhancing the productivity of bioprocesses. In this case, no
killing effect was sought, but pressure was applied to “boost”
the process by enhancing the oxygen transfer to the cell
culture. This paper gives an overview on the effects of pres-
sures in the range of 1 bar to 10 kbar on bacteria and presents
the major and most recent achievements realized in the devel-
opment of pressure-based biotechnological applications.
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Introduction

Even though one may be under the impression that pressure
does not vary much from 1 atm (1.025 bar) in nature, high
pressures in the order of several hundreds of bar can be easily
encountered in the deep sea since the hydrostatic pressure
increases by about 1 bar per 10 m. The deep sea starts at a
depth of 1,000 m (100 bar) and represents 75% of the total
volume of the oceans and ~62% of the global biosphere (Fang
et al. 2010). Despite harsh conditions, a surprisingly rich mi-
crobial community of the so-called piezophiles inhabits this
environment. The majority of these piezophiles are Gram-
negative facultative anaerobic and psychrophilic bacteria that
face not only high pressure but also lack of nutrients and cold
temperature (2–3 °C), except for the ones living close to
hydrothermal vents and supporting temperatures up to 400 °C
(Fang et al. 2010).
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Apart from this natural case, microorganisms can be ex-
posed to high pressure in industrial processes, which are used
in their majority for inactivating pathogens in food products.
Scientists from marine biology and food technology thus led
most of the research about high-pressure effects on microor-
ganisms and focused mainly on pressures higher than 200 bar
and on their bactericidal effect. Yet, there has been a growing
interest in applying elevated pressure in the range of 1–10 bar
during bioprocesses in order to increase the oxygen transfer
rate (OTR) and, as a result, achieve higher cell densities. The
potential of these elevated pressures to “boost” bioprocesses is
very promising but still requires deeper knowledge about their
effects on microorganisms. Indeed, studies on elevated pres-
sure are still far scarcer than the ones on high pressure.

An overview on the effects and applications of both ele-
vated and high pressure that are discussed in the following is
given in Fig. 1.

General concepts

Effects of high pressure are driven by volume changes

Most of the effects of pressure on microorganisms can be
explained by the relation between pressure and volume
change. Therefore, a short summary of the thermodynamic

fundamentals behind it is given here. Pressure, like temper-
ature, is an important thermodynamic variable, and its effect
on molecular systems can be predicted based on Eq. 1,
where G is the Gibbs free energy, p is the pressure, T is
the temperature, K is the equilibrium constant, R is the ideal
gas constant, and V is the volume.

@ΔG

@p

� �
T

¼ �@lnK

@p

� �
T

RT ¼ ΔV: ð1Þ

This equation, similarly as the Le Châtelier–Braun principle,
states that when pressure increases, a given equilibrium will be
shifted to the side that occupies the smallest volume (e.g.,
molecules A and B in Fig. 2). In case of a non-equilibrium
process, the pressure dependence of the reaction rate k is given
by the activation volume ΔV≠ (Eq. 2)
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Increasing the pressure can thus either accelerate or decel-
erate reactions depending on the sign of the activation volume
ΔV≠. This feature contrasts with the effect of temperature
increase that is always accelerating (cf., Arrhenius law).

Concerning the effect of pressure on chemical bonds, the
covalent bonds are not affected, at least not up to 10 kbar
(Mozhaev et al. 1996). Therefore, the structure of small

Fig. 1 Overview on the effects of pressures in the range of 1 bar to
10 kbar on microorganisms (left) and on their major applications in
biotechnology (right). The range of pressure corresponding to each

effect and application is expressed by the height of the form surrounding
the text description
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molecules (peptides, lipids, saccharides) and the primary struc-
ture of macromolecules (proteins, nucleic acids, polysacchar-
ides) are not expected to change. In contrast, hydrogen bonds
are stabilized by high pressure, whereas dissociation of neutral
molecules in ions and exposure of charged groups towards
aqueous medium are both favored, the overall volume being
reduced through better hydration (0 electrostriction) (Meers-
man and Heremans 2008). Since pressure affects essentially
weak bonds, it can modify the conformation of macromole-
cules, as well as their interactions, and therefore possibly alter
their function.

Effects of elevated pressure are mainly indirect effects
caused by the increase of gas solubility

Pressures of elevated range (up to ~10 bar) are far too low to
cause noticeable effects on molecular systems. However, they
may indirectly affect microorganisms by inducing variations
in the dissolved gas concentrations, in particular for O2 and
CO2 (see the following discussion). Pressure influences the
solubility of gases according to Henry's law, which states that
“at a constant temperature, the amount of a given gas that
dissolves in a given type and volume of liquid (cg) is directly
proportional to the partial pressure of that gas in equilibrium
with that liquid (pg)” (Eq. 3, with KH being the Henry con-
stant, specific to the gas dissolved).

pg ¼ KH � cg: ð3Þ
It has to be noted that since this law was derived for ideal

conditions, some deviations can be expected for large gas
concentrations. In addition, gas solubility can change if the
gas reacts with the solvent and in culture broths that contain
various chemical compounds (Schumpe et al. 1982) and a large
number of cells. The increase of gas solubility with pressure is
especially relevant for processes that run at elevated pressure
but not so much for those that run at high pressure (> 200 bar)
since they are usually performed in degased systems.

Effects of high pressure on bacteria (> 200 bar)

Cellular components

Nucleic acids are the most stable cell components under high
pressure due to the additional stabilization provided by hydro-
gen bonds. If this seems at first sight positive, it also suggests
that the replication and transcription of DNA that require the
formation of single-strand DNA may become more difficult

upon pressure increase (Macgregor 2002; Oger and Jebbar
2010). Phospholipidic membranes, in contrast, are quite sensi-
tive to pressure which acts in a similar fashion to cooling and
compresses the acyl chains of phospholipids while promoting a
phase change from the liquid crystalline to the gel state (Mackey
and Mañas 2008; Rivalain et al. 2010). Not only can pressure
modify the fluidity and the permeability of the cell membrane
(Hauben et al. 1997), but it can also alter the functioning of
membrane-bound enzymes. Loss of the membrane integrity
generally occurs at rather high pressure, between 1 and 2 kbar
for the more sensitive exponentially growing cells (Pagán and
Mackey 2000). Proteins are also sensitive to pressure, especially
multimeric proteins, since their assembly is stabilized by weak
bonds. In general, protein denaturation has a volume change
of −10 to −100 mL mol−1 and occurs at pressures >4 kbar
(Aertsen et al. 2009; Meersman and Heremans 2008). The
reason for the decrease of volume during denaturation is
not completely understood so far but involves electrostriction
and the elimination of internal cavities present in the native
conformation. Dissociations of multimeric proteins into single
units have larger negative volume changes and occur at lower
pressures (2–3 kbar) (Silva and Weber 1993). Because they
retain most of their secondary structure and adopt a “molten
globule-like structure,” pressure-denatured proteins are actu-
ally quite different from temperature-denatured proteins
(Meersman and Heremans 2008). The pressure–temperature
phase diagram of proteins exhibits an elliptic curve (Hawley
1971; Suzuki 1960), which means that a pressure increase can
either stabilize or destabilize protein structures depending on
the starting value and on temperature (Fig. 3). Remarkably, the

Fig. 3 Pressure–temperature diagram representing the elliptical stability
domain of proteins based on Balny et al. (1997) and Eisenmenger and
Reyes-De-Corcuera (2009). The regions inside and outside of the ellipses
correspond to native and denatured conformations, respectively, and the
intermediate region to a zone of reversible denaturation where the change
of free Gibbs enthalpy upon denaturation (ΔGd)00. Depending on the
initial conditions of pressure and temperature, an increase of pressure can
have either a destabilizing effect (A) or a stabilizing effect (B) on the
protein structure

Fig. 2 Shift of equilibrium state
upon pressure increase towards
the species that occupy the
smallest volume (left)
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pressure–temperature stability diagram of some bacteria such
as Escherichia coli exhibits a similar elliptic shape as well,
and therefore, it was proposed that proteins, and not cell
membranes or nucleic acids, were responsible for the inactiva-
tion of microorganisms by pressure (Rivalain et al. 2010;
Smeller 2002).

Cellular processes

Mesophilic bacteria such as E. coli are able to grow at high
pressures of up to ~500 bar (ZoBell and Johnson 1949),
which implies that the essential cellular processes are still
functional under these conditions. The arrest of cellular
processes is generally due to the dissociation or the change
of conformation of the protein-based machineries. An exam-
ple is protein synthesis that stops at ~700 bar because of the
dissociation of ribosomes (Gross et al. 1993; Schulz et al.
1976). Ribosomes have a large negative volume change (at
least −240 mL mol−1) which makes them the most pressure-
sensitive element of protein synthesis (Gross et al. 1993;
Schulz et al. 1976). However, their dissociation is reversible
below 1 kbar, and protein synthesis can resume once the
pressure is released (Mackey and Mañas 2008). The RNA
polymerase is more stable than ribosomes and dissociates into
its subunits at 1.4 kbar for E. coli (Kawano et al. 2004).
Nevertheless, RNA transcription starts to be affected at
200 bar already and is completely inhibited at 800 bar, prob-
ably because of conformational changes (Yayanos and Pollard
1969). DNA synthesis and chromosome replication are both
very sensitive to pressure, especially chromosome replication
which is inhibited at 500 bar (Bartlett 2002). Despite their
great stability under pressure, DNA can undergo indirect
damages as a result of endonuclease activation (Chilton et
al. 1997). These endonucleases generate double-strand breaks
in DNA that give the signal for inducing an SOS response in
E. coli (Aertsen and Michiels 2005; Aertsen et al. 2004). Cell
division is also sensitive to high pressure and stops before
biomass production does, which can result in filamentous
growth (ZoBell and Cobet 1964). Another well-known
phenotype of high-pressure stress is the loss of motility
(Meganathan andMarquis 1973), possibly due to perturbations
of the cell membrane and flagellum apparatus.

Enzymatic reactions

As stated previously, pressure can accelerate or decelerate a
reaction depending on the activation volume V≠, but it can also
affect an enzymatic reaction rate by modifying the enzyme
conformation and, for instance, its affinity for a substrate.
Advantage can be taken of the increased thermostability of
some enzymes under high pressure: Higher temperatures can
be used to enhance the reaction rate because pressure helps in
maintaining a functional structure (Eisenmenger and Reyes-

De-Corcuera 2009). A comprehensive list of enzymes en-
hanced by high pressure was established by Eisenmenger and
Reyes-De-Corcuera, among which various oxidoreductases
and hydrolases relevant for food processing can be found
(Eisenmenger and Reyes-De-Corcuera 2009).

Gene expression

In order to cope with the stress induced by high pressure,
microorganisms have developed responses which share sim-
ilarities with both cold-shock and heat-shock responses.
Indeed, 4 cold-shock proteins and 11 heat-shock proteins
were found to be transiently up-regulated in E. coli cells
cultivated for 60 to 90 min at 550 bar (Welch et al. 1993),
and this simultaneous expression of cold-shock and heat-
shock proteins was later confirmed by genome-wide tran-
scription studies (Ishii et al. 2005). Induction of apparently
antagonist responses may seem at first contradictory, but
these two classes of proteins actually have complementary
functions: The cold-shock proteins help in maintaining
membrane fluidity and guarantee an accurate protein trans-
lation, whereas heat-shock proteins deal with the refolding
or degradation of denatured proteins (Aertsen and Michiels
2008; Arsène et al. 2000; Thieringer et al. 1998).

As can be expected, rpoS, the general stress response
regulator in E. coli, plays a major role at high pressure
(Aertsen and Michiels 2005; Mackey and Mañas 2008;
Malone et al. 2006; Robey et al. 2001), and the periplasmic
stress response regulator rpoE is up-regulated under these
conditions as well (Malone et al. 2006). More surprising are
the induction of oxidative stress at high pressure (Aertsen
and Michiels 2005), the requirement of intact thioredoxin
activity to cope efficiently with pressure (Malone et al.
2006), and the better pressure resistance of mutants defec-
tive in the assembly of iron–sulfur clusters (Malone et al.
2006). To explain these phenomena, Malone et al. proposed
that (1) pressure denatures proteins in a way that exposes
sulfhydryl groups and disulfide bridges to catalytic agents,
thereby affecting the redox balance, and (2) it releases iron
from Fe–S clusters, thus promoting Fenton reactions and the
formation of reactive oxygen species (Malone et al. 2006).
Furthermore, Aertsen et al. suggested that the inactivation of
E. coli at high pressure might be the consequence of a
suicide mechanism involving an oxidative burst caused by
an imbalanced metabolism, an excess of reducing power,
and derailing electron transfer reactions (Aertsen and Michiels
2005). The SOS stress response, which triggers the production
of DNA repair proteins following DNA damage, was also
found to be induced by high pressure (Aertsen et al. 2004;
Bowman et al. 2008). SOS induction was shown to be at least
partially responsible for the arrest of cell division and the
observed filamentous growth under high pressure since the
SOS protein SulA inhibits FtsZ-dependent ring formation
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and, as a result, the initiation of septum formation (Aertsen and
Michiels 2008; Huisman et al. 1984; Mukherjee et al. 1998).
Interestingly, an E. coli strain harboring an hns deletion
exhibited great pressure sensitivity, suggesting that the DNA-
binding regulatory protein HN-S may be directly or indirectly
involved in high-pressure response regulation (Ishii et al. 2005).

The cell membrane also seems particularly sensitive to
pressure since the proportion of unsaturated fatty acids in
the lipid bilayer was reported to increase with pressure
(DeLong and Yayanos 1985). The production of several
membrane proteins, such as the outer membrane proteins
OmpH and OmpL (Bartlett et al. 1989; Welch and Bartlett
1996), several transporters (Ishii et al. 2005), and even
terminal oxidases (Qureshi et al. 1998a; Qureshi et al.
1998b), was shown to vary with pressure in piezophilic
microorganisms. Lastly, induction of genes associated with
flagella assembly, chemotaxis, as well as lipid and peptido-
glycan biosynthetic pathways was also revealed by transcrip-
tome analyses of Listeria monocytogenes exposed to
pressures of 4 and 6 kbar, whereas many genes involved in
energy production and conversion, carbohydrate metabolism,
and virulence were repressed (Bowman et al. 2008).

Effects of elevated pressure on bacteria (1–10 bar)

Cellular components and cellular processes

A direct effect of pressures below 10 bar on cellular com-
ponents and cellular processes can reasonably be ruled out
since destabilization starts under pressures at least 20 times
larger (see previous discussion). This is supported by the
fact that except for a small decrease in viability, no alteration
of cell physiology (biomass production, carbon and nitrogen
yield, respiratory quotient) was detected in Pseudomonas
putida KT2440 cultivated at 7 bar (Follonier et al. 2012).
Moreover, elevated pressures up to 11 bar have been
successfully applied to cultivations with several yeasts and
bacteria (see the following discussion). Nevertheless, indirect
effects linked to the increase of gas solubility are likely to
occur at elevated pressures. The occurrence of large dissolved
oxygen tension (DOT) can indeed generate oxidative stress
and result in the intracellular accumulation of reactive oxygen
species (ROS) causing damages to RNA, DNA, proteins, and
lipids (Cabiscol et al. 2000). Above a certain level, dissolved
carbon dioxide tension (DCT) may also (1) affect the function
of biological membranes, thus interfering with cell division,
substrate uptake, and transport, (2) acidify the internal pH, (3)
affect carboxylation/decarboxylation reactions, (4) alter the
physico-chemical properties of enzymes and thereby their
function, and (5) regulate virulence and toxin production in
several pathogens (Dixon and Kell 1989; Stretton and
Goodman 1998; Stretton et al. 1996). These effects were

suggested to explain the growth inhibition observed at elevated
DCT for various microorganisms (reviewed byDixon and Kell
(1989)).

Biotechnological applications based on high pressure

Food processing

Pathogen inactivation has been the main target of high-
pressure processes, and research has been focused primarily
on food products. It took about one century after Roger’s
discovery that high pressures were able to inactivate bacteria
(Roger 1895) and Hite’s suggestion that this could be applied
to new food preservation techniques (Hite 1899) until the first
implementation of high-pressure processes in the food indus-
try. Pressure-based food processing has been recently reviewed
in detail (Demazeau and Rivalain 2011; Heinz and Buckow
2010; Yaldagard et al. 2008; Zhang et al. 2011), and it will
therefore only be briefly commented here. Moreover, for a list
of the food pathogens (bacteria, viruses, and bacteriophages)
that can be efficiently inactivated by high-pressure treatment,
the reader is referred to the publication of Black et al. (2011).
Today, 60 companies all over the world are commercializing
more than 250 high-pressure-treated food products of which
about one third corresponds to vegetable products (mainly
avocado), about one third to meat products, and the last third
to juices, seafood, fishes, and other products (Tonello 2011).
Although about five times more expensive than processes
based on heat treatment (Yaldagard et al. 2008), high-
pressure processes have the advantage of preserving the nutri-
tional and organoleptic properties of the food (taste, smell,
appearance, texture) while inactivating pathogens. Indeed,
since high pressure does not damage covalent bonds, it has a
much smaller impact on vitamins and flavor molecules than
temperature, and the processed food maintains fresh-like prop-
erties. Nevertheless, alterations may indirectly occur because
of the enhancement/retardation of chemical or enzymatic reac-
tions at high pressure, and this can have either positive or
negative effects on the food stability (Oey et al. 2008a; Oey
et al. 2008b; Sancho et al. 1999). For instance, the enhanced
activity of lipoxygenase at high pressure is not desired because
this enzyme is responsible for the degradation of chlorophyll
and off-flavor development in frozen vegetables (Tedjo et al.
2000). In contrast, the enhanced activity of naringinase that
hydrolyzes the bitter flavonone glycoside naringin (Ferreira et
al. 2008) can be used to reduce the bitterness of grapefruit
juices. Alteration of protein structures or modification of
enzymatic reaction rates at high pressure can have further
beneficial effects on food such as increasing the digestibility
of milk proteins (Zeece et al. 2008), reducing allergic reac-
tions against bovine gamma globulin (Yamamoto et al. 2010),
and decreasing the viscosity of juices (Sila et al. 2007).
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Disinfection of biomaterials

In the last decade, there has been growing interest for high-
pressure disinfection processes of biomaterials such as bones,
cartilages, and tendons. High-pressure treatment constitutes a
valid alternative to gamma ray irradiation, heat treatment, and
chemical inactivation that tend to deteriorate the biomechan-
ical properties of the material. As a matter of fact, high
pressure was shown not to alter the biomechanical and immu-
nohistochemical properties of the material while being able to
inactivate diverse viruses, bacteria, and fungi (Brouillet et al.
2009; Diehl et al. 2005; Diehl et al. 2006; Gollwitzer et al.
2009; Naal et al. 2008). Nevertheless, Gollitzer et al. showed
that bacteria embedded in bones were less prone to high
pressure inactivation than bacteria in suspension. Therefore,
the establishment of efficient high-pressure disinfectionmethods
of such systems still requires further research.

High-pressure treatments can also be used for the ex vivo
devitalization of tumor-bearing bone segments before their
implantation as an autograft. Indeed, normal eukaryotic cells
and malignant cells, which are more sensitive to pressure than
bacteria, are irreversibly damaged following high-pressure
treatment, while the biomechanical properties of the biomate-
rial remain intact (Diehl et al. 2008). Moreover, the successful
revitalization of high-pressure-treated bone segments has been
demonstrated recently (Schauwecker et al. 2011), which
augurs a successful implementation of this technique in the
future.

Development of vaccines

The potential of high-pressure treatment for the production of
vaccines has been known since 50 years (Basset et al. 1956),
but only since the 1990s has research focused on it. The
rationale behind the use of high pressure for vaccine produc-
tion is that it would inactivate pathogens while keeping intact
the interactions and structures necessary to induce an immune
response. To date, high-pressure-based vaccines have been
studied for a dozen of pathogens (reviewed by Shearer and
Kniel (2009)), ranging from the yellow fever virus (Gaspar et
al. 2008) to the poliovirus (Ferreira et al. 2009), the bacterium
Leptospira interrogans serovar hardjo (Silva et al. 2001), the
chicken parasite Eimeria acervulina (Shearer et al. 2007), and
even mammalian tumor cells (Weiss et al. 2010).

Dissociation of amyloid fibrils

Recently, the use of high pressure for dissociating amyloid
fibrils has been investigated (Foguel et al. 2003; Meersman et
al. 2006; Torrent et al. 2006). Amyloid fibrils are fibrous
protein aggregates characterized by their β-sheet structures
and found in various debilitating diseases such as Alzheimer’s
disease, Parkinson’s disease, and bovine spongiform

encephalopathy. In the latter case, amyloid fibrils are formed
from the scrapie isoform of a prion protein (PrPSc), which is
derived from the cellular isoform (PrPC), and act as the
infectious entity (Collinge and Clarke 2007). Remarkably,
the extremely heat-resistant prion amyloid fibrils were shown
to be less infective and more prone to proteinase K degrada-
tion after being simultaneously treated with high pressure (>
5 kbar) and high temperature (60 °C) (Fernandez Garcia et al.
2004). In addition, applying short high-pressure pulses (6.9–
12 kbar at 121–137 °C) to prion infected meat was demon-
strated to reduce considerably prion infectivity (Brown et al.
2003). More information about the mechanism of the amyloid
fibril alteration under high pressure and the concomitant de-
crease of cytotoxicity can be found in the recent study of El
Moustaine et al. (2011).

Protein refolding

High pressure of slightly lower range (~1–3 kbar) has been
investigated since the last decade for dissolving protein aggre-
gates and refolding proteins to their native state. The formation
of protein aggregates, also called inclusion bodies, is one of the
biggest problems encountered in the production of recombi-
nant proteins. Indeed, biological activity requires soluble and
correctly folded proteins. Applying high pressure to protein
aggregates can simultaneously dissociate inclusion bodies and
refold misfolded proteins, which is clearly more efficient and
time saving than the traditional method consisting first in
solubilizing the aggregates in a concentrated chaotrope solu-
tion and then in refolding the denatured proteins by decreasing
the chaotrope concentration via dialysis, diafiltration, or dilu-
tion (Crisman and Randolph 2009). Moreover, the pressure-
based procedure can, in most cases, be applied independently
of protein concentration and requires little or no chaotropic
agents. To date, about 20 proteins have been successfully
refolded using high pressure (Arana et al. 2010; Balduino et
al. 2010; Chura-Chambi et al. 2008; Fradkin et al. 2010; Fraga
et al. 2010; John et al. 2002; Lee et al. 2006; Lefebvre et al.
2004; Malavasi et al. 2011; Schoner et al. 2005; Seefeldt et al.
2007; Seefeldt et al. 2004; St. John et al. 2001; St. John et al.
1999; Torrent et al. 2003), and high pressure was, in some
cases, the only method allowing the recovery of fully active
proteins. In addition, over a hundred therapeutic proteins were
claimed to have been successfully refolded by pressure in a
commercial setting (Qoronfleh et al. 2007).

Biotechnological applications based on elevated pressure

Enhancement of the OTR for high-cell-density cultivations

One of the major limiting factors of high-cell-density culti-
vations with microorganisms is the oxygen supply. If the
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oxygen supply is insufficient, cell growth is prevented, and
the cell metabolism may also be affected and result, for
instance, in an enhancement of the production of unwanted
by-products such as acetate or ethanol. Among the various
methods studied for enhancing the OTR, applying elevated
pressure in the range of 1 to 11 bar constitutes a relatively
novel, yet simple method. Bioprocesses under elevated pres-
sure have been investigated with various microorganisms,
including yeasts and bacteria (Absidia coerula, Arxula
adeninivorans, Aureobasidium pullulans, Corynebacterium
glutamicum, E. coli, Kluyveromyces marxianus, P. putida,
Saccharomyces cerevisiae, and Yarrowia lipolytica) (Aguedo
et al. 2005; Belo et al. 2003; Dufresne et al. 1990; Follonier et
al. 2012; Jia and Cui 2009; Knabben et al. 2010a; Knabben et
al. 2010b; Knoll et al. 2007; Knoll et al. 2005; Lopes et al.
2008; Lopes et al. 2009; Ma et al. 2010; Matsui et al. 2006;
Noger et al. 2006; Pinheiro et al. 2000; Yang andWang 1992).
In general, applying elevated pressure resulted in larger cell
and product productivities (Table 1), except in some cases
where growth inhibition occurred due to large DCT (Knoll et
al. 2005; Matsui et al. 2006). Since the microorganisms and
their ability to synthesize a product can exhibit different
sensitivities to increased DOT or DCT (Belo et al. 2003), the
effect of pressure on product formation must be evaluated on a
case-by-case basis. For instance, the production of decalac-
tone was apparently quite sensitive to the changes of DOT
occurring upon pressure increase (Aguedo et al. 2005), which
implies that for this process, it is crucial to increase pressure in
parallel with the oxygen demand to avoid the formation of
large DOT. Moreover, it is, in general, recommended to apply
such a careful process control in order to prevent oxidative
stress that may alter not only the product synthesis but also the
cell physiology (Belo et al. 2003; Follonier et al. 2012).

Elevated pressure, oxygen-enriched air, and reduced feed-
ing rate were compared by Ma et al. (2010) in fed-batch

processes with E. coli producing human-like collagen. The
highest cell density and the best volumetric product yield were
achieved with elevated pressure, while the production of ace-
tate (by-product) and the increase in broth viscosity were the
largest with oxygen-enriched air, possibly because of cell lysis.

Bioprocesses that are supposed to be carried out under
elevated pressure (up to approximately 10 bar) require special
equipment (bioreactor, valves, pipes, pumps, aeration system)
capable to work efficiently under these conditions and have
therefore higher investment costs. Maier reported that the cost
of bioreactors smaller than 40 m3 was not influenced by the
operating pressure up to 6 bar, but that it would increase by
about 10% per bar at higher pressures (Maier 2002). Also,
pressure generators more powerful and thus more expensive
than the usual ones may be needed above 5 bar. Nevertheless,
this constitutes a one-time expense, while the operating costs
of bioprocesses at elevated pressure are essentially the same as
at normal pressure. As a result, using elevated pressure instead
of oxygen-enriched air can become much more profitable in
the long run, the continuous use of pure oxygen being ex-
tremely expensive. Lastly, Knoll et al. showed that the energy
efficiency and the cost efficiency of the oxygen transfer rate,
which depend on the agitation power, the aeration rate, and the
operating pressure, could be enhanced by at least 13% when
using elevated pressure instead of ambient pressure (Knoll et
al. 2005). This means that in addition to the benefits arising
from larger volumetric productivities, applying pressure to
bioprocesses may as well reduce to some extent the fermen-
tation costs.

Reduction of explosion risks in two-liquid phase
cultivations with flammable organic solvents

Microorganisms such as pseudomonads are able to grow on
aliphatic and aromatic hydrocarbons and can be used as

Table 1 Major improvements
related to biomass and/or prod-
uct synthesis observed when
applying elevated pressure
during bioprocesses

Strain Improvements upon pressure Reference

E. coli Two-fold increase in cell productivity by
increasing the pressure to 11 bar

(Knoll et al. 2007)

1.7- and 2-fold increase in cell density and product
yield, respectively, by increasing the pressure
to 0.6 bar

(Ma et al. 2010)

A. adeninivorans Maximum cell density (225 gL-1) ever achieved
for this strain by increasing the pressure to 5 bar

(Knoll et al. 2007)

A. pullulans 1.5- and 1.3-fold increase in biomass and product
(pullulan) final concentrations at 6.2 bar

(Dufresne et al. 1990)

S. cerevisiae 1.8- and 2-fold increase in biomass yield and biomass
productivity, respectively, by increasing the pressure
to 10 bar

(Belo et al. 2003)

C. glutamicum Maximum cell density (226 gL-1) ever achieved for
this strain by increasing the pressure to 10 bar

(Knoll et al. 2007)

Y. lipolytica 10-fold increase in lipase specific activity at 8 bar (Lopes et al. 2008)

5-fold and 3.4 fold increase in biomass production
and specific growth rate, respectively, at 6 bar

(Lopes et al. 2009)
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biocatalysts for their oxidation. These bioprocesses are gen-
erally performed in two-liquid phase systems where the cells
grow in the aqueous medium and the hydrophobic oxidation
substrate is dissolved in a second organic solvent phase
(Schmid et al. 1998). However, the combination of aerobic
operating conditions and flammable solvents presents an ex-
plosion hazard that requires special safety measurements. One
strategy that was analyzed by Schmid et al. for the safe
operation of such bioprocesses consisted in applying elevated
pressure (Schmid et al. 1999). Indeed, by working at condi-
tions above the critical pressure and below the critical temper-
ature, the vapor pressure of the flammable solvent could stay
below the explosion limit. For instance, a pressure higher than
4.9 bar at 30 °Cwould be sufficient to prevent the formation of
explosive atmospheres during bioprocesses with octane
(Schmid et al. 1999).

Conclusive remarks

Althoughmost of the research about pressure in biotechnology
has been focused on the development of food processing
methods—which led to the successful implementation of var-
ious industrial processes—a number of studies performed dur-
ing these last decades have demonstrated a much broader
scope of application for both high and elevated pressure.
Technologies for the refolding of aggregated proteins in their
native form are already commercially available, but it will
certainly take somemore time until pressure-based disinfection
methods of biomaterials or vaccines will reach a similar level
of maturity. As a matter of fact, strict regulations apply to
medical products and technologies, and the certification pro-
cedures can be very difficult and time consuming. However, the
early studies seem promising, and it can reasonably be
expected that pressure-based disinfection methods will
be approved in the future. Besides, the application of elevated
pressure in the range of 1–10 bar for bioprocesses is attracting
more and more interest due to its large potential for enhancing
process productivities and its low cost in the long run com-
pared to the use of oxygen-enriched air. While further research
is still needed in this field, there have been an increasing
number of studies for the last 20 years demonstrating the
potential of this method.
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