
Journal of Global Optimization 25: 305–319, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

305

An Adaptive Algorithm for Vector Partitioning

KOMEI FUKUDA1∗
, SHMUEL ONN2 and VERA ROSTA3

1IFOR, ETH Zurich, Ch-8092, Switzerland; 2Technion – IIT, Haifa, Israel (e-mail:
onn@ie.technion.ac.il); 3McGill University, Montreal, Canada; (e-mail: rosta@math.mcgill.ca);
(∗Corresponding author. e.mail: fukuda@ifor.math.ethz.ch)

Abstract. The vector partition problem concerns the partitioning of a set A of n vectors in d-space
into p parts so as to maximize an objective function c which is convex on the sum of vectors in each
part. Here all parameters d , p, n are considered variables. In this paper, we study the adjacency
of vertices in the associated partition polytopes. Using our adjacency characterization for these
polytopes, we are able to develop an adaptive algorithm for the vector partition problem that runs
in time O(q(L) · v) and in space O(L), where q is a polynomial function, L is the input size and
v is the number of vertices of the associated partition polytope. It is based on an output-sensitive
algorithm for enumerating all vertices of the partition polytope. Our adjacency characterization
also implies a polynomial upper bound on the combinatorial diameter of partition polytopes. We
also establish a partition polytope analogue of the lower bound theorem, indicating that the output-
sensitive enumeration algorithm can be far superior to previously known algorithms that run in time
polynomial in the size of the worst-case output.

Key words: partition polytope, vertex enumeration, output-sensitive, polytope diameter, combinat-
orial optimization

1. Partition problems and partition polytopes

The vector partition problem concerns the partitioning of a multiset A of n vectors
in d-space into p parts so as to maximize an objective function which is convex
on the sum of vectors in each part. More precisely, with each p-partition of A,
namely, an ordered tuple π = (π1, . . . , πp) of p pairwise disjoint (possibly empty)
multisets whose union is A, we associate the d × p matrix

Aπ :=

∑
a∈π1

a, . . . ,
∑
a∈πp

a


 ∈ IRd×p;

given now a convex functional c : IRd×p −→ IR, the problem is to find a p-
partition π maximizing the objective value c(Aπ) over all p-partitions of A. Such
partition problems arise in a variety of areas ranging from economics to symbolic
computation – (see [9, 10, 13] and references therein).



306 K. FUKUDA, S. ONN AND V. ROSTA

Formally we are concerned with the following combinatorial optimization prob-
lem (with the reals replaced by the rationals when the Turing computation model
is considered).

Vector Partition Problem: Given positive integers p, d, n, a multisetA of n points
in IRd , and a convex functional c : IRd×p −→ IR, find a p-partition π∗ attaining
maximum objective value,

c(Aπ
∗
) = max { c(Aπ) : π is a p-partition of A } .

The problem can be reduced to maximizing the same objective over the p-
partition polytope P p

A ofA defined to be the convex hull in IRd×p of all pn matrices
Aπ associated with p-partitions,

P p

A := conv {Aπ : π is a p-partition of A } ⊂ IRd×p.

There will always be an optimal solution which is a vertex of P p

A , so the partition
problem can be solved by picking the best vertex. When the functional c is presen-
ted by an evaluation oracle, it is necessary in worst case to query the oracle on
every vertex. Thus, the complexity of the partition problem is intimately related to
the vertex complexity of the corresponding partition polytope.

Much of the previous work has concentrated on worst case analysis: let vp,d(n)
denote the maximal number of vertices of P

p

A for any set A of n points in d-space.
Since a partition π is separable whenever Aπ is a vertex [7], an upper bound on
vp,d(n) follows from the results of [1] where the maximal number of separable
partitions was determined to be �(nd(

p
2)) for every fixed p � 2 and d � 3. This

bound was exploited in [10] to provide an efficient procedure for solving the more
general class of shaped partition problems, where partitions are restricted to be
those π whose shape (|π1|, . . . , |πp|) lies in a prescribed (but arbitrary) set of
shapes of n.

More recently, using methods suitable for partitions without shape restrictions,
it was shown in [3] and [12] that, for every fixed d and p � 2, the number vp,d(n)
obeys the sharper bounds

�(n� d−1
2 �p) � vp,d(n) � O(nd(p−1)−1).

The main purpose of the present article is to provide an efficient adaptive al-
gorithm – that is – one whose running time depends on the complexity of the actual
problem instance at hand. Thus, the running time of the algorithm will be propor-
tional to the vertex complexity of the specific partition polytope corresponding to
the given instance of the vector partition problem. We prove:

THEOREM 1. For any variable d, p, n, the partition problem with an oracle
presented c can be solved in time O(q(L) · v) and in space O(L), where q is
a polynomial function, L is the input size and v is the number of vertices of the
associated partition polytope.



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 307

In order to prove Theorem 1, we first obtain a characterization of vertex adjacency
in partition polytopes (Lemmas 2.2 – 2.5). Our characterization allows us to gen-
erate all neighbor vertices of a given vertex in polynomial time, see Theorem 2.6.
Another byproduct of our adjacency characterization is a polynomial upper bound
on the combinatorial diameter of partition polytopes:

THEOREM 2. The diameter of the p-partition polytope P p

A of any n-set A in IRd

is at most n
(
p

2

)
.

It is not clear whether or not Theorem 1 can be extended to the shaped parti-
tion problems. It appears that the characterization of vertex adjacency in partition
polytopes does not extend in the straightforward manner, except when p = 2
(where 2-partitions of shape (k, n − k) are known as k-sets), there is a similar
characterization of k-set adjacency and it yields an efficient adaptive algorithm,
see [2].

As we show, considering on the way a partition-analogue of the so-called Lower
Bound Theorem, partition polytopes may have much fewer vertices than the worst
case vp,d(n), in which case the algorithm provided in the present article drastically
outperforms available ones. We say that A is a free set if it is a finite set of nonzero
vectors, no two of which are positive multiples of one another. If A is not free than
P p

A may have as few as pd extreme points independent of n = |A| (see Section 5);
on the other hand, any set can be replaced by a free set with no more points without
affecting the corresponding partition problem and partition polytope (See Lemma
2.1 in the next section). Consequently it is natural to consider the lower bound the-
orem for free sets and maximal dimensional partition polytopes. Let lp,d (n) denote
the minimal number of vertices of a maximal dimensional p-partition polytope P p

A

of any free set A of n vectors in d-space. We show:

THEOREM 3. For every d, p and n � d we have lp,d(n) � pd−1(n− d + 2)p−1.

Theorem 3 implies that for every fixed d and p we have lp,d (n) � O(np−1) while

vp,d(n) � �(n� d−1
2 �p), indicating that the output-sensitive enumeration algorithm

can be far superior to previously known algorithms that run in time polynomial in
the size of the worst-case output.

In Section 2, we give crucial properties and a characterization of edges of parti-
tion polytopes. Some of the properties will be used to prove Theorem 2 in Section 3.
In Section 4, by exploiting our characterization of edges, we prove Theorem 1
which provides an efficient vertex enumeration algorithm for partition polytopes.
Finally, we give a proof of Theorem 3 in Section 5.

2. Constructing the neighborhood of a vertex

Throughout, ei stands for the ith standard unit vector in Euclidean real space. The
tensor product of an ordered pair u, v of vectors is the matrix u⊗ v whose (i, j)th



308 K. FUKUDA, S. ONN AND V. ROSTA

entry is uivj . The inner product of two matrices U,V of the same dimensions is
〈U,V 〉 := ∑

i,j Ui,j ·Vi,j . We make the convention that a sum over an empty set of
vectors (matrices) is the zero vector (matrix) of dimension which is clear from the
context. An edge E = [u, v] of a polytope P is in direction e if v − u is a scalar
multiple of the vector e, that is, E = P ∩ (u + lin(e)). The direction of an edge
E = [u, v] is defined as lin(u− v).

A p-partition π = (π1, . . . , πp) of a multiset A of vectors in IRd will be also
interpreted as the function from A to {1, . . . , p} with π(a) being the index for
which a ∈ ππ(a). With this notation, the matrix associated with π is

Aπ =

∑
a∈π1

a, . . . ,
∑
a∈πp

a


 =

∑
a∈A

a ⊗ eπ(a) ∈ IRd×p .

We start by showing results that enable us to impose certain restrictions on the
multiset A without losing generality.

LEMMA 2.1. Let π be a p-partition of a multiset A of vectors in d-space with Aπ

a vertex of P p

A . Suppose a, b ∈ A satisfy b = α · a. If α > 0 then π(b) = π(a)

whereas if α < 0 then π(b) �= π(a).

Proof. We prove the claim for α > 0 and leave the analogous proof for α < 0
to the reader. Let 〈C, ·〉 be a linear functional uniquely maximized over P p

A at
A. Suppose indirectly π(b) �= π(a). Let π̄ be obtained from π by the single
modification π̄(a) := π(b) and let π̂ be obtained from π by the single modification
π̂(b) := π(a). Then

〈C, a ⊗ (eπ(a) − eπ(b))〉 = 〈C,Aπ − Aπ̄ 〉 = 〈C,Aπ 〉 − 〈C,Aπ̄ 〉 > 0,

and

〈C, b ⊗ (eπ(a) − eπ(b))〉 = 〈C,Aπ̂ − Aπ 〉 = 〈C,Aπ̂ 〉 − 〈C,Aπ 〉 < 0.

But 〈C, b⊗ (eπ(a)−eπ(b))〉 = α · 〈C, a⊗ (eπ(a)−eπ(b))〉 which is a contradiction. �
The lemma implies that any vector partition problem has an optimal partition

containing all points of A which are positive multiples of one another in the same
part. Thus, all such points can be replaced by the single point which is their sum,
giving the same partition polytope. Thus, without loss of generality we may assume
that no point of A is a positive multiple of another. In particular, A contains no
multiple points hence is a set rather than a multiset. We may also assumeA contains
no zero vectors, as these can be placed in an arbitrary part of the partition without
affecting the objective function. So, from now on, we shall always assume that A is
a free set, defined to be a finite set of nonzero points, no two of which are positive
multiples of one another.

We proceed to determine a characterization of vertex neighborhoods of partition
polytopes.



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 309

LEMMA 2.2. Let A be a free set in IRd and let π be a p-partition of A with Aπ a
vertex of P

p

A . Then any edge of P
p

A containing Aπ is in direction a ⊗ (et − eπ(a))

for some a ∈ A and t �= π(a).

Proof. Consider any edge E = [Aπ,Aτ ] of P p

A with τ another p-partition of
A. Pick any a ∈ A with t := τ(a) �= π(a) and let 〈C, ·〉 be any linear functional
uniquely maximized over P p

A at E. Let π̄ be obtained from π by the single modi-
fication π̄ (a) := τ(a) and let τ̄ be obtained from τ by the single modification
τ̄ (a) := π(a). Then

〈C, a ⊗ (eπ(a) − eτ(a))〉 = 〈C,Aπ − Aπ̄ 〉 = 〈C,Aπ 〉 − 〈C,Aπ̄ 〉 � 0,

and

〈C, a ⊗ (eτ(a) − eπ(a))〉 = 〈C,Aτ − Aτ̄ 〉 = 〈C,Aτ 〉 − 〈C,Aτ̄ 〉 � 0.

Thus, 〈C, a ⊗ (eπ(a) − eτ(a))〉 = 0 hence 〈C,Aπ̄ 〉 = 〈C,Aπ 〉. Since C is uniquely
maximized over P p

A at E, it follows that Aπ̄ ∈ E hence E is indeed in direction
Aπ̄ − Aπ = a ⊗ (et − eπ(a)). �

One direct outcome of Lemma 2.2 is a polynomial bound on the number of edge
directions of P p

A .

THEOREM 2.3. The number of edge directions in P p

A is at most n
(
p

2

)
.

Let A be a free set in IRd . For each p-partition π of A, vector a ∈ A, and index
t �= π(a), let LP(π, a, t) be the following system of linear inequalities in the d×p
matrix of variables C:

LP(π, a, t) :



〈C, b⊗ (eπ(b) − ek)〉 � 1 ∀ b ∈ A ∀ k �= π(b) s.t.
b �∈ lin(a) or {k, π(b)} �= {t, π(a)}

〈C, a ⊗ (eπ(a) − et )〉 = 0

LEMMA 2.4. Let A be a free set in IRd , let π be a p-partition of A, and consider
any a ∈ A and t �= π(a). ThenAπ lies on an edge of P

p

A in direction a⊗(et−eπ(a))
if and only if the system of linear inequalities LP(π, a, t) has a solution C ∈ IRd×p
(the linear program LP(π, a, t) is feasible).

Proof. Suppose first Aπ lies on an edge E in direction a ⊗ (et − eπ(a)), and let
〈C, ·〉 be a linear functional uniquely maximized over P p

A at E. Since its value on
E is constant we do have 〈C, a ⊗ (eπ(a) − et )〉 = 0. Now, consider any b ∈ A and
k �= π(b) such that b �∈ lin(a) or {k, π(b)} �= {t, π(a)} and let π̄ be obtained from
π by the single modification π̄(b) := k. Then

Aπ̄ − Aπ = b⊗ (ek − eπ(b)) �∈ lin(a ⊗ (et − eπ(a)))

hence Aπ̄ �∈ E, which implies

〈C, b ⊗ (eπ(b) − ek)〉 = 〈C,Aπ − Aπ̄ 〉 = 〈C,Aπ 〉 − 〈C,Aπ̄ 〉 > 0.



310 K. FUKUDA, S. ONN AND V. ROSTA

Therefore, a suitable positive multiple of C satisfies the linear inequality system
L(π, a, t).

Conversely, suppose C is a d × p matrix satisfying L(π, a, t). Then the linear
functional 〈C, ·〉 vanishes on the line L := lin(a⊗ (et −eπ(a))) and is constant over
the segment E := P p

A ∩ (Aπ +L). We show that 〈C, ·〉 is uniquely maximized over
P p

A at E which is therefore an edge of P p

A .
Consider any p-partition τ with Aτ �∈ E. Let S := {b ∈ A : b ⊗ (eτ(b) −

eπ(b)) ∈ L } and note that b ∈ A \ S if and only if τ(b) �= π(b) and either
b �∈ lin(a) or {τ(b), π(b)} �= {t, π(a)}. Thus 〈C, b ⊗ (eπ(b) − eτ(b))〉 is 0 if b ∈ S
and is greater or equal 1 if b ∈ A \S. Now

∑
b∈S b⊗ (eτ(b)− eπ(b)) is in L whereas∑

b∈A b⊗(eτ(b)−eπ(b)) = Aτ−Aπ is not, so S is strictly contained inA. Therefore,

〈C,Aπ − Aτ 〉 = 〈C,
∑
b∈S

b⊗ (eπ(b) − eτ(b))〉+

〈C,
∑
b∈A\S

b⊗ (eπ(b) − eτ(b))〉 � |A \ S| · 1 > 0.

Thus, 〈C,Aπ 〉 > 〈C,Aτ 〉 for every Aτ �∈ E, completing the proof. �
Let a ∈ A be a point in a free set. While A contains no positive scalar multiple

of a, it may contain one negative scalar multiple of a, which will be denoted by
ā. We say that a is single in A if lin(a) ∩ A = {a} whereas a is double in A
if lin(a) ∩ A = {a, ā}. For each p-partition π of A, vector a ∈ A, and index
t �= π(a), let τ(π, a, t) be the p-partition of A defined as follows:

τ(π, a, t) := τ :



τ(a) := t

if a is double in A then: if π(ā) = t then τ(ā) := π(a)

else τ(ā) := π(ā)

∀ b �∈ lin(a) τ(b) := π(b)

LEMMA 2.5. Let A be a free set in IRd , let π be a p-partition of A, and consider
any a ∈ A and t �= π(a). If P p

A has an edge E = [Aπ,Aτ ] in direction a ⊗ (et −
eπ(a)) then τ = τ(π, a, t).

Proof. Suppose P p

A has such an edge E. By Lemma 2.4 there is a d × p matrix
C satisfying LP(π, a, t), and the linear functional 〈C, ·〉 is uniquely maximized
over P p

A at E.
Consider any b ∈ A with τ(b) �= π(b). If b �∈ lin(a) or {τ(b), π(b)} �=

{t, π(a)} then, letting τ̄ be obtained from τ by the modification τ̄ (b) := π(b), we
get 〈C,Aτ̄ −Aτ 〉 = 〈C, b⊗ (eπ(b) − eτ(b))〉 � 1 contradicting the fact that 〈C, ·〉 is
maximized at Aτ . It follows that whenever τ(b) �= π(b), we must have b ∈ lin(a)
and {τ(b), π(b)} = {t, π(a)}. Thus, τ and π can differ only on b ∈ {a, ā} and must
differ on at least one such b.

If τ(a) �= π(a) then the condition {τ(a), π(a)} = {t, π(a)} implies τ(a) = t . If
a is double and τ(ā) �= π(ā) then, since π(ā) �= π(a) by Lemma 2.1, the condition



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 311

{τ(ā), π(ā)} = {t, π(a)} implies π(ā) = t and τ(ā) = π(a); so if π(ā) �= t then
necessarily τ(ā) = π(ā). Thus, if either a is single or a is double but π(ā) �= t ,
then τ and π differ only by τ(a) = t hence τ = τ(π, a, t) as claimed.

Suppose now that a is double and π(ā) = t . Let α > 0 be the scalar such that
ā = −α · a. Let πa be obtained from π by the single modification πa(a) := t , let
πā be obtained from π by the single modification πā(ā) := π(a), and let πaā =
τ(π, a, t) be obtained from π by both modifications. Now τ and π can differ only
on b ∈ {a, ā} hence τ is one of πa, π ā, πaā, and Aπ

a

,Aπ
ā

, Aπ
aā ∈ E, hence

E = [Aπ,Aτ ] = conv{Aπ,Aπa , Aπā , Aπaā }. But now Aπ
a −Aπ = a⊗(et −eπ(a)),

Aπ
ā −Aπ = α · a⊗ (et − eπ(a)), and Aπ

aā −Aπ = (1 +α) · a⊗ (et − eπ(a)), hence
[Aπ,Aτ ] = E = conv{Aπ,Aπa , Aπā , Aπaā } = [Aπ,Aπaā ] implying τ = πaā =
τ(π, a, t) as claimed. �

Lemmas 2.2 – 2.5 yield at once the following characterization of neighborhoods
of vertices of partition polytopes, which leads to an efficient procedure for gener-
ating the neighborhood of any given vertex of P p

A , providing the basic engine for
the adaptive algorithm developed in next section.

THEOREM 2.6. Let A be a free set in IRd and let π be a p-partition of A with Aπ

a vertex of P p

A . Then the set of neighbors of Aπ is

N(Aπ) = {Aτ(π,a,t) : a ∈ A, t �= π(a), and LP(π, a, t) is feasible }.

3. Parametric paths and the diameter of partition polytopes

In the previous section, we studied the neighbors of a given vertex of a p-partition
polytope. Here we combine the results of Section 2 with results on parametric
linear programming and establish Theorem 2, which generalizes a result of [2] on
k-set polytopes that correspond to the special case of p = 2.

We start by reviewing the fundamental facts on parametric linear programming.
Throughout this section we assume A and C are given matrices in IRd×n and in
IRd×p, respectively, and the columns of A form a free set.

The parametric linear programming method [8] starts with any vertex of P p

A ,
say V 0, and an objective function 〈C0, X〉 which is maximized uniquely at V 0 over
P p

A . For the moment, we assume that such V 0 and C0 are given. We shall show
later how one can find such vectors efficiently for the partition polytope. The key
idea is to solve a sequence of the parametric LP problem

LP(λ) : max f λ(X) := 〈λC + (1 − λ)C0, X〉
subject to X ∈ P p

A ,

for increasing values of λ until it reaches one. More specifically, we compute an
increasing sequence of parameter values λ0 < λ1 < · · · < λs < 1 and vertices
V 0, V 1, . . . , V s of P p

A such that for each k = 0, 1, . . . , s − 1,



312 K. FUKUDA, S. ONN AND V. ROSTA

(P1) the consecutive vertices V k and V k+1 are adjacent in P
p

A ,

(P2) V k is optimal for LP(λ) with all λk � λ � λk+1,

(P3) V s is optimal for LP(1).

The existence of such a sequence is guaranteed by the following lemma.

LEMMA 3.1. Assume that the function f λ(X) is not constant on any 2-faces of
the polytope P p

A , for any fixed 0 � λ � 1. Let V k be a vertex of P p

A and let
0 � λk < 1 be a number such that the functional f λ(X) is maximized uniquely at
V k for any λ larger than λk but sufficiently close. Then, V k maximizes f 1(X) over
P p

A or there is a unique λk+1 such that

(a) λk < λk+1 < 1,

(b) f λ
k+1
(X) is uniquely maximized over P p

A at an edge [V k, V k+1] for some
neighbor V k+1 of V k.

Proof. Suppose that all assumptions are satisfied. If V k maximizes f 1(X) over
P
p

A , then we are done. So let us assume that this is not the case. This implies that
there is a vertex V adjacent to V k such that f 1(V ) > f 1(V k). Let us define a
partition (N+, N−) of the neighbor set N(V k) by

N+ := {V ∈ N(V k) : f 1(V ) > f 1(V k)} ,

N− := {V ∈ N(V k) : f 1(V ) � f 1(V k)} .

For each V ∈ N+, define λ(V ) as the unique number satisfying

f λ(V )(V ) = f λ(V )(V k) . (1)

To see why λ(V ) is well-defined, consider the linear function F(λ) := f λ(V ) −
f λ(V k). It is negative for all λ > λk sufficiently close to λk since f λ(X) is max-
imized uniquely at V k over P p

A for all such λ, and it is positive for λ = 1 since
f 1(V ) > f 1(V k). Therefore there is a unique λk < λ(V ) < 1 with F(λ(V )) = 0.
In fact, by solving Equation (1) in terms of λ(V ), we have

λ(V ) = 〈C0, V − V k〉
〈C0 − C,V − V k〉 . (2)

One can also verify that for V ∈ N+,

f λ(V ) � f λ(V k) ∀λ satisfying λk � λ � λ(V ). (3)

Furthermore, for V ∈ N−,

f λ(V ) � f λ(V k) ∀λ satisfying λk � λ. (4)



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 313

Now, set λk+1 := min{λ(V ) : V ∈ N+} and V k+1 to be a vertex in N+ attaining
this minimum. Using the relations (3), (4), we conclude

f λ
k+1
(V k+1) = f λ

k+1
(V k) � f λ

k+1
(V ) ∀V ∈ N(V k).

This implies that the halfspace {X : f λk+1
(V k+1) � f λ

k+1
(X)} contains all edges

incident to V k and thus all points in P p

A . Consequently, with Equation (1), we know
that the function f λ

k+1
(X) is maximized at [V k, V k+1] over P p

A . By the assumption
that f λ(X) is not constant on any 2-faces of the polytope P p

A , the vertex V k+1, a
minimizer of λ(V ) in N+, must be unique. This proves (b). Finally, since V k is not
a maximizer of f 1(X), λk+1 < 1, and (a) follows, completing the proof. �

The assumption that the function f λ(X) is not constant on any 2-faces of the
polytope P p

A can be easily satisfied by a symbolic perturbation of the initial matrix
C0. Therefore, a parametric LP path exists between any two vertices of a convex
polytope in general.

LEMMA 3.2. Let V 0, V be any two vertices of P
p

A and let 〈C0, X〉 and 〈C,X〉 be
linear functionals maximized uniquely at V 0 and V , respectively. Then the length
s of any parametric LP path V 0, V 1, . . . , V s = V is at most the number of edge
directions in P p

A .
Proof. Let V 0, V be any two vertices of P p

A , and let 〈C0, X〉 and 〈C,X〉 be
linear functionals maximized uniquely at V 0 and V , respectively. By Lemma 3.1,
one can construct a parametric LP path V 0, V 1, . . . , V s = V with parameters
λ0 = 0 < λ1 < · · · < λs < 1. The parameter λk is determined by the equation (2)
and uniquely by any nonzero multiple of V k+1 − V k. Thus, no two distinct edges
of the same direction can appear in a parametric LP path, and the result follows.

Combining Lemmas 2.2 and 3.2, we can now deduce Theorem 2.

Proof of Theorem 2. By Lemma 3.2 the diameter of P p

A is at most the number of
edge directions of P p

A which, by Lemma 2.2 (see Theorem 2.3) is at most n
(
p

2

)
. �

One might expect that LP(1) can be solved efficiently by numerically tracing
the parametric LP path from any initial vertex V 0. In fact it is possible to design
such an algorithm so that it runs in strongly polynomial time. However, there is a
much simpler way to solve LP(1).

LEMMA 3.3. Given a matrix C ∈ IRd×p, let π be any p-partition of A defined as
follows: for each a ∈ A, let π(a) ∈ {1, . . . , p} be any index such that 〈C, a ⊗
eπ(a)〉 = max{〈C, a ⊗ ei〉 : i ∈ {1, . . . , p}}. Then Aπ maximizes the linear
functional 〈C,X〉 over P p

A . Moreover, if π(a) is uniquely defined for every a ∈ A

then Aπ is the unique vertex of P
p

A at which 〈C,X〉 is maximized.
Proof. For every p-partition τ of A, the value of the linear functional 〈C,X〉 at

Aτ is given by

〈C,Aτ 〉 =
∑
a∈A

〈C, a ⊗ eτ(a)〉 .



314 K. FUKUDA, S. ONN AND V. ROSTA

Any p-partition π as defined in the lemma maximizes every term of this sum
and hence the entire sum. Moreover, each summand 〈C, a ⊗ eτ(a)〉 is uniquely
maximized by π if there is a unique index π(a) maximizing 〈C, a ⊗ ei〉, in which
case the entire sum is uniquely maximized at Aπ . �

It should be remarked that, in the more general context of shaped partitions,
linear optimization is more involved and had been studied in [11].

The following corollary gives a simple way to find one vertex of P p

A , which will
be used in the next section for the intialization of a vertex enumeration algorithm.

COROLLARY 3.4. Let π0 be the p-partition of A defined by

π0
1 := {a ∈ A : the first nonzero coordinate of a is positive}
π 0

2 := {a ∈ A : the first nonzero coordinate of a is negative}
π 0
i := ∅, 3 � i � p ,

let V 0 := Aπ
0
, and let C0 = C0(ε) be the d × p matrix defined by

C0
ij :=



εi if j = 1,

−εi if j = 2,

0 otherwise.

Then the linear functional 〈C0, X〉 is maximized uniquely at V 0 over P p

A for suffi-
ciently small ε > 0. Consequently, V 0 is a vertex of P p

A .
Proof. Consider any a ∈ A (which is nonzero sinceA is free). If the first nonzero

coordinate of a is positive then for all sufficiently small ε > 0, the value 〈C, a⊗ei〉
is positive if i = 1, negative if i = 2, and zero for all other i. Thus, by Lemma 3.3,
any π for whichAπ maximizes 〈C,X〉 over P p

A must have π(a) = 1. Similarly, we
conclude that if the first nonzero coordinate of a is negative then any π for which
Aπ maximizes 〈C,X〉 over P

p

A must have π(a) = 2. By Lemma 3.3 it follows that
V = Aπ

0
is indeed the unique maximizer of 〈C,X〉 over P p

A .

4. The adaptive algorithm: output sensitive vertex enumeration

Generation of all vertices of a given polytope is often a very demanding task,
because the size of output is in general an exponential function of the size of
input representation. To perform such a task, it is highly desirable to have time
complexity polynomially bounded in the size of input and output, while memory
requirement is kept as small as possible.

In this section, we present a polynomial algorithm which requires very little
memory. To design such an algorithm, we exploit both the idea of reverse search
[4, 5] and the efficient recognition of neighbors of a vertex in partition polytopes.



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 315

The main idea of reverse search is extremely simple. For a successful applica-
tion of reverse search, we need a finite local search algorithm that can be initiated
with any feasible object and find the optimal object in a finite sequence of operation
to move from one feasible object to an “adjacent” feasible object. By reversing the
finite algorithm from the optimal object in all possible ways, one can generate all
feasible objects.

For the vertex enumeration of a convex polytope P , one can set a finite local
search as the simplex algorithm with a finite pivot rule [6] to find an optimal
vertex minimizing a given linear objective function. Below we give one particular
implementation of reverse search which is appropriate for the case when P is a
p-partition polytope P p

A . All the assumptions we shall make on P are naturally
fulfilled for this special case, due to the results we proved in Section 2.

First let us assume that the graph G(P ) = (V (P ),E(P )) of a polytope P is
given in the sense that the neighbor set N(v) of each vertex v ∈ V (P ) is easily
computable. We will make this point more precise later. For the moment, N(v) is
given by an oracle which lists the members in a linear order. Also, we assume that a
linear function g(x) = cT x which is not constant on any edge of P is given, and the
unique maximizer s ∈ V (P ) of g(x) over P is also given. Define our local search
function f : V (P ) \ {s} → V (P ) by f (v) := min{v′ ∈ N(v) : g(v′) > g(v)}. The
trace Tf = (V (P ),Ef ) of the local search function f is the directed spanning tree
of G(P ) rooted at s whose directed edge set is defined by

Ef := {(v, f (v)) : v ∈ V (P ) \ {s}}.
An enumeration algorithm follows the trace Tf from the optimal vertex s in the

depth-first-search manner. Going down the tree means following an edge against
its orientation, and going up is merely applying the function f . In order to make the
procedure concrete, we now make the neighbor listing oracle precise. An adjacency
oracle is a function Adj(v, k) defined at each v ∈ V (P ) for k = 1, . . . , δ. Here δ
is a given constant bounding the maximum degree of vertices in G(P ). There are
three conditions that an adjacency oracle must satisfy:

(a) for each vertex v and each number k with 1 � k � δ the oracle returns
Adj(v, k), a vertex adjacent to v or extraneous 0 (zero),

(b) if Adj(v, k) = Adj(v, k′) �= 0 for some v ∈ V , k and k′, then k = k′,

(c) for each vertex v, {Adj(v, k) : Adj(v, k) �= 0, 1 � k � δ} = N(v).

The meaning of these conditions should be clear. Essentially, an adjacency oracle
must give the complete unduplicated list of neighbors of a given vertex v after
evaluating the δ neighbor indices k = 1, . . . , δ.

The reverse search algorithm is uniquely determined by a quadruple (Adj,δ,s,f ),
see Figure 1. The complexity of the algorithm is given by the following theorem.

THEOREM 4.1. [5] The time complexity of ReverseSearch isO(δ t (Adj)|V (P )|+
t (f )|E(P )|), where t (g) denotes the time to evaluate the function g.



316 K. FUKUDA, S. ONN AND V. ROSTA

procedure ReverseSearch(Adj,δ,s,f );
v := s; j := 0; (* j : neighbor counter *)
repeat

while j < δ do
j := j + 1;
next := Adj(v, j);
if next �= 0 then

if f (next) = v then (* reverse traverse *)
v := next ; j := 0

endif
endif

endwhile;
if v �= s then (* forward traverse *)

u := v; v := f (v);
j :=0; repeat j :=j+1 until Adj (v, j)=u (*restore j*)

endif
until v = s and j = δ.

Figure 1. The reverse search algorithm.

To apply this general result to the special case of partition polytopes, we must
specify how we implement a quadruple (Adj,δ,s,f ) for P = P p

A . Here we assume
that a free point set A ∈ lQd×n is given. We can use Theorem 2.6 to define an
adjacency oracle Adj by

Adj(Aπ, (a, t)) :=
{
Aτ(π,a,t) if t �= π(a) and LP(π, a, t) is feasible,

0 otherwise.

The function Adj is defined for any V ∈ V (P p

A ) and any pair (a, t) ∈ A ×
{1, . . . , p}. The neighbor index (a, t) is doubly indexed and the maximum degree
bound δ can be taken to be n · p.

To define a local search function f for P p

A , we need to fix a linear functional
g(X) = 〈C,X〉 which is not constant on any edge of P p

A and find the unique vertex
S maximizing g over P p

A . For this we simply apply Corollary 3.4 and set C := C0

and S := V 0 as defined in the lemma. A local search function f (V ) is easily fixed
by using any rule to determine the “best neighbor” of a vertex v that has larger g
value. Typically, one uses a lexicographic ordering of pairs(a, t) to break ties.

We are now finally in position to establish the main result of this article, The-
orem 1.

Proof of Theorem 1. We only need to show that the particular implementation
of reverse search we presented above does exactly what is claimed in the the-
orem. According to Theorem 4.1, the time complexity is O(δ t (Adj)|V (P p

A )| +



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 317

t (f )|E(P p

A )|). Since |E(P p

A )| � δ
2 |V (P p

A )| and δ = n ·p is polynomially bounded
by the input size L, it is left for us to show that both t (Adj) and t (f ) are polynomi-
ally bounded in L. Clearly the hardest computation in these evaluations is to check
whether a given neighbor candidate of a vertex is actually a neighbor vertex. By
Theorem 2.6, this is an LP problem whose input size is polynomially bounded by
L, and thus is polynomially solvable in L. Finally, the reverse search algorithm
stores only two vertices at once, hence the space complexity of the algorithm
coincides with that of implementing Adj and f , which can be, by the polynomial
solvability of LP, proportional to the input size. This completes the proof. �
5. A lower bound theorem for partition polytopes

In the previous section, we provided an output sensitive algorithm that enumerates
all extreme points of a partition polytope. When the polytope has much fewer
vertices than the worst-case vp,d(n), our algorithm significantly outperforms any
algorithm that runs in time polynomial in the size of the worst-case output. In this
section we give a construction of partition polytopes with few vertices, demonstrat-
ing that the instances in which our algorithm is more efficient are abundant.

Recall that lp,d(n) denotes the minimal number of vertices of a maximal dimen-
sional p-partition polytope P p

A , where A is a free set of n vectors in d-space. It
is easy to see that the dimension of P p

A is at most d(p − 1), as in every d × p

matrix Aπ ∈ P p

A the sum of any row i is constant, 0p

j=10a∈πj ai = 0a∈Aai . If
we do not require P p

A to be of maximal dimension then, for every n, the partition
polytope P p

A of the n-set A = {j · e1 : j = 1, . . . , n} ⊂ IRd equals the partition
polytope of the single-point set {(n+1

2

) · e1} hence P p

A is the (p − 1)-simplex and
has p vertices independent of n. If we do require maximal dimensionality but we
do not require A to be a free set then for every n, the partition polytope P p

A of the
nd-set A = {j · ei : j = 1, . . . , n, i = 1, . . . , d} equals the partition polytope of
the d-set {(n+1

2

) · e1, . . . ,
(
n+1

2

) · ed} hence P p

A is the d-fold product of the (p − 1)-
simplex and has pd vertices independent of n. Consequently it is natural to have a
lower bound theorem for free sets and maximal dimensional partition polytopes.

To prove Theorem 3, we first compute the maximal number of separable p-
partitions of a point set that lies on a straight line. An ordered p-partition of a set
of n points in the d-dimensional Euclidean space IRd is called separable [1] if the
convex hulls of the p parts are pairwise disjoint.

LEMMA 5.1. Let B be a free set of t points on a straight line in d-space. The
number of separable p-partitions of B is at most p tp−1.

Proof. Let B = {b1, b2, . . . , bt } be a free set of t points on a straight line
indexed in order along the line. It is easy to see that if π is a separable partition of
B then any nonempty part of π consists of consecutive points, i.e. is of the form
{bi, . . . , bj } for some 1 � i � j � n. Thus, for 1 � m � p, the number of sep-
arable p-partitions having exactly m nonempty parts is

(
t−1
m−1

)(
p

m

)
m!. Substituting



318 K. FUKUDA, S. ONN AND V. ROSTA

k := m− 1, we find that the total number of separable p-partitions of B is

p−1∑
k=0

(
t − 1

k

)
p

(
p − 1

k

)
k! = p

p−1∑
k=0

(t − 1)(t − 2) · · · (t − k)

(
p − 1

k

)

< p

p−1∑
k=0

(t − 1)k
(
p − 1

k

)
= ptp−1. �

Proof of Theorem 3. First, note that if a set A contains a basis {a1, a2, . . . , ad}
of IRd then P p

A is of maximal dimension d(p − 1): indeed, for i = 1, . . . , d and
j = 1, . . . , p − 1 let πi,j be the partition having two nonempty parts πi,jj := {ai}
and πi,jp := A \ {ai}; then the d × p matrices corresponding to these partitions
together with the p-partition (∅, . . . ,∅, A) form an affine basis of P p

A .
Now, let A := B ∪ C, where B is a set of t = n − d + 2 points on an affine

line, say B := {e1 + i · e2 : 0 � i � n − d + 1}, and C is a set of d − 2
linearly independent vectors such that B ∪ C is a free set spanning IRd , say C :=
{e3, e4, . . . , ed}, so that P p

A is of maximal dimension. By Lemma 5.1, there are at
most p(n − d + 2)p−1 separable p-partitions of B. Moreover the number of p-
partitions of C is clearly at most pd−2, hence the number of separable partitions of
A is at most pd−2 · p(n− d + 2)p−1. Since a p-partition π is separable whenever
Aπ is a vertex [7], P p

A has at most that many vertices and the theorem follows. �
Theorem 3 implies that for every fixed d and p we have lp,d (n) � O(np−1) while
the worst case number of vertices vp,d(n) obeys the much larger lower bound

vp,d(n) � �(n� d−1
2 �p). Thus, even under the restriction of fixed dimension d and

fixed number of parts p, our new output sensitive enumeration algorithm can be far
superior to the previously known algorithms of [3, 10, 12].

Acknowledgements

K.F.’s research supported in part by the Swiss National Science Foundation Grant
21-58977.99.
S.O.’s research supported in part by a grant from the Israel Science Foundation, by
a VPR grant at the Technion, and by the Fund for the Promotion of Research at the
Technion.

References

1. Alon, N. and Onn, S. (1999), Separable partitions, Discrete Applied Mathematics 91, 39–51.
2. Andrzejak, A. and Fukuda, K. (1999), Optimization over k-set polytopes and efficient k-set enu-

meration, In: Proc. 6th International Workshop on Algorithms and Data Structures (WADS’99),
LNCS 1663, p. 1–12. Springer, Berlin.

3. Aviran, S.and Onn, S. (2002), Momentopes and the vertex complexity of partition polytopes,
Discrete and Computational Geometry 27, 409–417.



AN ADAPTIVE ALGORITHM FOR VECTOR PARTITIONING 319

4. Avis, D. and Fukuda, K. (1992), A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete and Computational Geometry 8, 295–313.

5. Avis, D. and Fukuda, K. (1996), Reverse search for enumeration, Discrete Applied Mathemat-
ics 65, 21–46.

6. Bland, R.G. (1977) New finite pivot rules for the simplex method, Mathematics of Operations
Research 2, 103–107.

7. Barnes, E.R., Hoffman, A.J. and Rothblum, U.G. (1992), Optimal partitions having disjoint
convex and conic hulls, Mathematical Programming, 54, 69–86.

8. Chvátal, V. (1983), Linear Programming, W.H.Freeman and Company, New York.
9. Granot, D. and Rothblum, U.G. (1991), The Pareto set of the partition bargaining game, Games

and Economic Behavior 3, 163–182.
10. Hwang, F.K., Onn, S. and Rothblum, U.G. (1999), A polynomial time algorithm for shaped

partition problems, SIAM Journal on Optimization 10, 70–81.
11. Hwang, F.K., Onn, S. and Rothblum, U.G. (2000), Linear-shaped partition problems, Opera-

tions Research Letters 26, 159–163.
12. Onn, S. and Schulman, L.J. (2001), The vector partition problem for convex objective functions,

Mathematics of Operations Research 26, 583–590.
13. Onn, S. and Sturmfels, B. (1999), Cutting corners, Advances in Applied Mathematics, 23, 29–

48.


