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Abstract We prove a limit theorem for the maximum interpoint distance (also
called the diameter) for a sample of n i.i.d. points in the unit d-dimensional
ball for d ≥ 2. The results are specialised for the cases when the points have
spherical symmetric distributions, in particular, are uniformly distributed in the
whole ball and on its boundary. Among other examples, we also give results
for distributions supported by pointed sets, such as a rhombus or a family
of segments.
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1 Introduction

Asymptotic behaviour of random polytopes formed by taking convex hulls
of samples of i.i.d. points has been thoroughly investigated in the literature,
see, e.g., Gruber (1993), Schneider (1988) for surveys of classical results and
(Reitzner 2005) for more recent studies. Consider a random polytope Pn

obtained as the convex hull of n i.i.d. points ξ1, . . . , ξn sampled from the
Euclidean space R

d.
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Most of results about random convex hulls are available in the planar case,
i.e. for d = 2. The typical questions about random polytopes Pn concern the
limit theorems for the geometric characteristics of Pn, for instance the area,
the perimeter and the number of vertices of Pn, see Bräker and Hsing (1998),
Groeneboom (1988), Schneider (1988). Further important results concern
the quantities that characterise the worst case approximation, notably the
Hausdorff distance between K and Pn, see Bräker et al. (1998), Dümbgen and
Walther (1996). It is well known (Schneider 1993) that the Hausdorff distance
between two convex sets equals the uniform distance between their support
functions defined on the unit sphere, i.e.

ρH(Pn, K) = sup
u: ‖u‖=1

(h(K, u) − h(Pn, u)) ,

where ‖u‖ is the Euclidean norm of u ∈ R
d,

h(K, u) = sup{〈u, x〉 : x ∈ K}

is the support function of K (and similar for Pn) and 〈u, x〉 is the scalar product
in R

d. For instance, Dümbgen and Walther (1996) shows that ρH(Pn, K)

is of order O((n−1 log n)2/(d−1)) if the points are uniformly distributed in a
sufficiently smooth K.

The results on the best case approximation concern the behaviour of the
infimum of the difference between h(K, u) and h(Pn, u). One of the few results
in this direction states that if K is smooth, then n(h(K, u) − h(Pn, u)) (as a
stochastic process indexed by u from the unit sphere S

d−1) epi-converges in
distribution to a certain process derived from the Poisson point process on
S

d−1 × [0, ∞), see Molchanov (1995), and Molchanov (2005, Th. 5.3.34). The
epi-convergence implies the weak convergence of infima on each compact
set. In particular, n infu∈Sd−1(h(K, u) − h(Pn, u)) converges in distribution to an
exponentially distributed random variable, i.e. the best approximation error
is of the order of n−1. If the points are uniformly distributed in K, then this
exponential random variable has the mean being the ratio of the volume of K
and its surface area, see Molchanov (2005, Ex. 5.3.35). Further results along
these lines can be found in Schreiber (2003).

The best case approximation can be also studied by considering how fast the
diameter of Pn, diam Pn, approximates diam K. By diameter we understand the
maximum distance between any two points from the set. Note that diam K is
not necessarily equal to the diameter of the smallest ball that contains K, e.g.
if K is a triangle.

A limit theorem for the diameter of Pn was proved in Appel et al. (2002)
for uniformly distributed points in a compact set K with unique longest chord
(whose length is the diameter) and such that the boundary of K near the
endpoints of this major chord is locally defined by regularly varying functions
with indices strictly larger than 1

2 . These assumptions are fairly restrictive
and exclude a number of interesting smooth sets K, in particular balls and
ellipsoids.
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For K being the unit disk in the plane, Appel et al. (2002) provides only
bounds for the limit distribution, even without proving the existence of the
limit. In particular, Appel et al. (2002, Th. 4) states that

1 − exp

{
− 4t5/2

35/2π

}
≤ lim inf

n→∞ P{n4/5(2 − diam Pn) ≤ t}

≤ lim sup
n→∞

P{n4/5(2 − diam Pn) ≤ t}

≤ 1 − exp

{
−4t5/2

π

}
, t > 0 . (1.1)

In the classical theory of extreme values it is possible to consider the
maximum of random samples with bounded or unbounded supports. Quite
similarly, in the extreme problems for random polytopes one can consider
samples supported by the whole R

d or by a compact convex subset K in R
d.

In this paper we consider only the latter case. The limit theorems for the
largest interpoint distances for samples from the whole R

d have been proved
in Matthews and Rukhin (1993) for standard normally distributed samples and
in Henze and Klein (1996) for more general spherically symmetric samples.

In this paper we obtain a limit law for the diameter of Pn, where Pn is the
convex hull of a sample �n = {ξ1, . . . , ξn} of independent points distributed in
the d-dimensional unit ball

B = {x ∈ R
d : ‖x‖ ≤ 1}

according to some probability measure κ . The diameter of a set F ⊂ R
d is its

largest interpoint distance, i.e.

diam F = sup
x,y∈F

‖x − y‖ ,

and it is obvious that the diameter of F equals the diameter of its convex hull.
In the special case when κ is the uniform distribution, the following result
provides a considerable improvement of Appel et al. (2002, Th. 4).

Theorem 1.1 As n→ ∞, the diameter of the convex hull Pn of n independent
points distributed uniformly in the d-dimensional unit ball B, d ≥ 2, has limit
distribution given by

P
{

n
4

d+3 (2 − diam Pn) ≤ t
}

→ 1 − exp

{
− 2dd�

( d
2 + 1

)
√

π(d + 1)(d + 3)�
( d+1

2

) t
d+3

2

}
,

t > 0,

where �(x) =
∫ ∞

0
sx−1e−sds denotes the Gamma function.

This theorem is proved by showing that the same limit distribution is shared
by the diameter of the set of points that form a homogeneous Poisson process
� of constant intensity λ = n/μd(B) restricted on B, so that the total number
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of points in � has mean n. See Section 3 for a more general de-Poissonisation
argument, which implies that the diameter of the support of a general binomial
process with n points and of the corresponding Poisson process share the same
limiting distribution (if it exists).

The problem in dimension 1 is easy to solve, see e.g. Galambos (1978). It is
interesting to note that if all

(n
2

)
random distances ‖ξi − ξ j‖ are treated as an

i.i.d. sequence of random variables with the common distribution determined
by the length of the random chord in K, then the maximum of these distances
has the same limit law as described in Theorem 1.1. This is explained by the fact
that only different pairs of points contribute to diam Pn, while the probability
that a point has considerably large interpoint distances with two or more other
points is negligible. This argument stems from Silverman and Brown (1978)
and was used in the proofs in Matthews and Rukhin (1993) and Henze and
Klein (1996). Our proof relies on properties of the Poisson process with a
subsequent application of the de-Poissonisation argument. Lao (2006) gave
an alternative proof of Theorem 1.1 based on the results from Silverman and
Brown (1978).

The paper is organised as follows. In Section 2 we establish the asymptotic
behaviour of the diameter for a Poisson point process in B with growing
intensity. The conditions on the intensity κ of the Poisson point process require
certain asymptotic behaviour of the distance between two typical points of the
process and a certain boundedness condition on κ .

In Section 4 we investigate the asymptotic behaviour of the diameter of the
set of points that form the Poisson point process with intensity nκ , where κ is
a spherically symmetric distribution. Section 5 describes several examples, in
particularly, where κ is the uniform measure on B and on S

d−1, respectively.
Further examples concern distributions which are not spherically symmetric.
Note that in general it is not required that κ is supported by a convex set.

The ball of radius r centred at the origin is denoted by rB, so that B is
the unit ball. By μd we denote the d-dimensional Lebesgue measure in R

d.
Furthermore, μd−1 is the surface area measure on the unit sphere S

d−1. By κ

we understand a certain fixed probability measure on B and ξ1, ξ2, . . . are i.i.d.
points distributed according to κ . Finally, �ν denotes the Poisson process on
B of intensity measure ν, where we write shortly � if no ambiguity occurs
or the intensity measure is immaterial. Note that � is a counting measure, so
that �(F) denotes the number of points of a point process inside a set F and
�(F) = 0 is equivalent to the fact that the support of � misses F. We write
diam � for the diameter of the support of � and call it shortly the diameter
of �.

2 Diameters for Poisson Processes

Consider a Poisson process � = �nκ with the intensity measure proportional
to a probability measure κ on the unit ball B. Consider the convolution of
κ with the reflected κ , i.e. the probability measure κ̃ that determines the
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distribution of ξ̃ = ξ1 − ξ2 for independent ξ1 and ξ2 distributed according to κ .
Assume throughout that the support of κ̃ contains points with norms arbitrarily
close to 2, so that the diameter of �nκ approaches 2 as n→ ∞. In this section
we determine the asymptotic distribution of 2 − diam �nκ as n→ ∞.

For any set F in R
d, F̌ denotes the reflected set {−x : x ∈ F} and �̌ is

defined by �̌(F) = �(F̌) for all Borel F. Furthermore, let �̃ be the convolu-
tion of � and �̌, i.e. the counting measure whose atoms are located at pairwise
differences of the points from �.

The distribution of the diameter of � is closely related to the probability
that the inner s-shell 2B \ (2 − s)B of the ball of radius 2 contains no points
from the support of �̃. Indeed

P{diam � ≤ 2 − s} = P{�̃(2B \ (2 − s)B) = 0} ,

and by the symmetry of �̃,

P{diam � ≤ 2 − s} = P{�̃((2B \ (2 − s)B) ∩ H) = 0} , (2.1)

where H is any half-space bounded by a (d − 1)-dimensional hyperplane
passing through the origin.

For each A ⊂ S
d−1 define

As = {rx : x ∈ A, r ∈ [2 − s, 2]} . (2.2)

For each point u ∈ S
d−1 define a cap of the unit ball of height s ∈ (0, 1) by

Ds(u) = B ∩ {x ∈ R
d : 〈x, u〉 ≥ 1 − s} ,

where 〈x, u〉 denotes the scalar product. For A ⊂ S
d−1 define

Ds(A) = ∪u∈A Ds(u) , s ∈ (0, 1) .

The following lemma implies that Ds(A) and Ds(Ǎ) are subsets of B \ (1 − s)B
with the property that x1 − x2 ∈ As for some x1, x2 ∈ B yields that x1 belongs
to Ds(A) and x2 to Ds(Ǎ).

Lemma 2.1 For each A ⊂ S
d−1, s ∈ (0, 1) and each x1 ∈ B \ Ds(A) and x2 ∈ B,

we have x1 − x2 /∈ As.

Proof By definition of Ds(u) and the fact that ‖x2‖ ≤ 1, the inequality

〈u, x1 − x2〉 = 〈u, x1〉 + 〈u, −x2〉 < 2 − s

holds for each u ∈ A. If x1−x2 ∈ As, then ‖x1−x2‖ ≥2− s and u0 = (x1−x2)

‖x1 − x2‖−1 ∈ A. Now write 2 − s ≤ ‖x1 − x2‖ = 〈u0, x1 − x2〉, which is a con-
tradiction to the first inequality, and hence the claim. ��

Lemma 2.2 For each s ∈ (0, 1) and A ⊂ S
d−1, the set Ds(A) lies inside the√

2s-neighbourhood of A.
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Proof Consider arbitrary u ∈ A. Since

‖x − u‖2 = ‖x‖2 + ‖u‖2 − 2〈x, u〉 ≤ 2 − 2(1 − s) = 2s ,

every point x ∈ Ds(u) is located within distance at most
√

2s from u. ��

Lemma 2.3 For any A ⊂ S
d−1 and s ∈ (0, 1),

P{�̃(As) ≥ 1} = P{�̃(As) ≥ 1, �(Ds(A)) ≥ 1, �̌(Ds(A)) ≥ 1} . (2.3)

If A′, A′′ ⊂ S
d−1 and

Ds(Ǎ′) ∩ Ds(A′′) = Ds(A′) ∩ Ds(Ǎ′′) = ∅ ,

then the random variables �̃(A′
s) and �̃(A′′

s ) are independent.

Proof The statement follows from Lemma 2.1 and the independence property
of the Poisson process. ��

Lemma 2.4 For each A ⊂ S
d−1 and 0 < s < 1, we have

n2e−n(a+ǎ)P{ξ̃ ∈ As} ≤ P{�̃nκ(As) ≥ 1}
≤ n2(1 + naǎ(a + ǎ))P{ξ̃ ∈ As} ,

where a = κ(Ds(A)), ǎ = κ(Ds(Ǎ)) and ξ̃ = ξ1 − ξ2 for ξ1 and ξ2 being inde-
pendent points distributed according to κ .

Proof Note that ζ1 = �(Ds(A)) and ζ2 = �(Ds(Ǎ)) are Poisson distributed
with means na and nǎ respectively. By Eq. 2.3,

P{�̃(As) ≥ 1} = P{�̃(As) ≥ 1, ζ1 ≥ 1, ζ2 ≥ 1}
≥ P{�̃(As) = 1, ζ1 = 1, ζ2 = 1} .

An upper bound follows from

P{�̃(As) ≥ 1} = P{�̃(As) ≥ 1, ζ1 ≥ 1, ζ2 ≥ 1}
≤ P{�̃(As) = 1, ζ1 = 1, ζ2 = 1} + I ,

where

I =
∑

k1 ,k2≥1
max(k1 ,k2)≥2

P{�̃(As) ≥ 1, ζ1 = k1, ζ2 = k2} .

The subadditivity of probability and the fact that ζ1 and ζ2 are independent
immediately imply that

P{�̃(As) ≥ 1|ζ1 = k1, ζ2 = k2} ≤ k1k2P{ξ1 − ξ2 ∈ As} .
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Thus,

I ≤ P{ξ1 − ξ2 ∈ As} (E(ζ1ζ2) − P{ζ1 = 1}P{ζ2 = 1})
= P{ξ1 − ξ2 ∈ As}(n2aǎ − n2aǎe−n(a+ǎ))

≤ P{ξ1 − ξ2 ∈ As}n3aǎ(a + ǎ) .

Now write

P{�̃(As) = 1, ζ1 = 1, ζ2 = 1} = P{�̃(As) = 1 |ζ1 = 1, ζ2 = 1}n2aǎe−n(a+ǎ)

= P{η1 − η2 ∈ As}n2aǎe−n(a+ǎ) ,

where η1 and η2 are independent points distributed according to the nor-
malised measure κ restricted onto Ds(A) and Ds(Ǎ) respectively. Because of
Lemma 2.1,

P{η1 − η2 ∈ As} = 1

aǎ
P{ξ1 − ξ2 ∈ As} ,

and the proof is complete. ��
Let

C(u, r) = {x ∈ S
d−1 : ‖x − u‖ ≤ r} , u ∈ S

d−1, r > 0 ,

denote the spherical ball, i.e. the subset of S
d−1 that consists of all points within

distance at most r from u. Then

Cs(u, r) = {ax : x ∈ C(u, r), a ∈ [2 − s, 2]}
in accordance with Eq. 2.2.

Introduce the following assumption on the distribution of the difference
ξ̃ between two independent points in B distributed according to κ . Assume
that for a finite non-trivial measure σ on S

d−1, some γ > 0 and [δ′, δ′′] ⊂ (0, 1
2 )

we have

lim
s↓0

P{ξ̃ ∈ Cs(u, zs)}
sγ σ (C(u, zs))

= 1 (2.4)

and

lim
s↓0

s−γ /2κ(Ds(C(u, zs))) = 0 (2.5)

uniformly in u ∈ S
d−1 and zs ∈ [sδ′′

, sδ′ ]. If u does not belong to the support of
σ , then the denominator in Eq. 2.4 equals zero for all sufficiently small s, and
Eq. 2.4 is understood as the fact that the numerator also equals zero for all
sufficiently small s. Since ξ̃ has a centrally symmetric distribution, the measure
σ is necessarily centrally symmetric.

Lemma 2.5 If Eq. 2.4 holds with γ < d + 1, κ is absolutely continuous on
B \ (1 − s)B for some s > 0 and possesses there a bounded density, then Eq. 2.5
holds with

γ − 2

2(d − 1)
< δ′ ≤ δ′′ <

1

2
. (2.6)
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Proof It suffices to show that, for any given u ∈ S
d−1,

lim
s↓0

s−γ /2μd
(
Ds

(
C

(
u, sδ

))) = 0 .

By Lemma 2.2, noticing that δ < 1
2 , this would follow from

s−γ /2μd−1(C(u, 2sδ))s → 0 as s ↓ 0 .

The latter is justified by Eq. 2.4, since − 1
2γ + δ(d − 1) + 1 > 0 for all δ ∈

[δ′, δ′′]. Finally, γ < d + 1 implies that γ−2
2(d−1)

< 1
2 , so that Eq. 2.6 makes sense.

��

In general, Eq. 2.5 is weaker than the boundedness of the density of κ with
respect to the Lebesgue measure, which, e.g., excludes the case of κ supported
by S

d−1.

Lemma 2.6 Let Eqs. 2.4 and 2.5 hold, and let δ ∈ [δ′, δ′′]. Then, for each t > 0
and n = ts−γ /2,

P{�̃nκ(As) ≥ 1} ≤ ct2σ(Asδ

) , (2.7)

holds with a certain constant c for all sufficiently small s > 0 uniformly over all
measurable A ⊂ S

d−1.

Proof By Besicovitch’s covering theorem (Mattila 1995, Th. 2.7), it is possible
to cover the unit sphere with spherical balls C(ui, sδ), i = 1, . . . , m, of diameter
sδ , such that each point is covered at most pd times for a certain constant pd.

By the choice of n, Lemma 2.4 and Eq. 2.4,

P
{
�̃nκ

(
Cs

(
ui, sδ

)) ≥ 1
}

≤ t2s−γ P
{
ξ̃ ∈ Cs

(
ui, sδ

)}
(1 + naiǎi)

≤ t2(1 + ε)σ
(
C

(
ui, sδ

))
(1 + naiǎi)

for any ε > 0 and all sufficiently small s, where ai = κ
(
Ds

(
C

(
ui, sδ

)))
and

ǎi = κ
(
Ds

(
C

(−ui, sδ
)))

. Condition 2.5 implies that naiǎi → 0 as s ↓ 0 uni-
formly in ui. Therefore,

P
{
�̃nκ

(
Cs

(
ui, sδ

)) ≥ 1
}

≤ t2(1 + ε)2σ
(
C

(
ui, sδ

))
for all sufficiently small s.

If IA is the subset of {1, . . . , m} such that C
(
ui, sδ

) ∩ A �= ∅ for i ∈ IA, then

P{�̃nκ(As) ≥ 1} ≤
∑
i∈IA

P
{
�̃nκ

(
Cs

(
ui, sδ

)) ≥ 1
}

≤ t2(1 + ε)2
∑
i∈IA

σ
(
C

(
ui, sδ

))

≤ pdt2(1 + ε)2σ(Asδ

)

for all sufficiently small s, so that Eq. 2.7 holds with c = pd(1 + ε)2. ��
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We often impose the following assumption on σ :

(S) σ is a finite measure on S
d−1 such that

σ(A) ≤ f (μd−1(A)) (2.8)

for all measurable A ⊂ S
d−1 with a function f such that f (x) → 0 as

x ↓ 0.

It is easy to see that Eq. 2.8 holds if σ is absolutely continuous with respect
to μd−1 and has a bounded density. An atomic σ clearly violates (S).

Theorem 2.7 Assume that Eqs. 2.4 and 2.5 hold with δ′ < δ′′ and a σ that
satisfies (S). Then

lim
n→∞ P{n2/γ (2 − diam �nκ) ≤ t} = 1 − e− 1

2 tγ σ0 , t ≥ 0 , (2.9)

where σ0 = σ(Sd−1).

Proof Let S
d−1+ denote the half-sphere, obtained by intersecting S

d−1 with any
fixed half-space H. Fix any ε > 0 and consider disjoint spherical balls C

(
xi, sδi

)
,

i = 1, . . . , m, where xi ∈ S
d−1
+ and δi ∈ [δ′, δ∗] for any fixed δ∗ ∈ (δ′, δ′′). Since

these spherical balls are constructed using varying scales of s, it is possible to
pack them arbitrarily dense as s ↓ 0, i.e. assume that the Lebesgue measure
of the uncovered part is smaller than ε. This can be seen by constructing such
families of balls that cover at least the (1 − ε)th part of the Euclidean space
and then using the fact that an arbitrarily large part of the unit sphere can be
realised as a bi-Lipschitz map from the Euclidean space.

Define the spherical balls

A(i) = C
(

xi, sδi − √
2s

)
, i = 1, . . . , m .

Since
√

2s ≤ sδi for all sufficiently small s, Lemma 2.2 implies that Ds(A(i)),
i = 1, . . . , m, are pairwise disjoint and nonempty for all sufficiently small s. By
Lemma 2.3, the random variables �̃(A(i)

s ), i = 1, . . . , m, are independent.
Denote

�(s) = S
d−1
+ \ (A(1) ∪ · · · ∪ A(m)) (2.10)

to be the uncovered part of S
d−1+ left by the A(i)’s. Let �(s; sδ′′

) denote the
sδ′′

-neighbourhood of �(s) on the sphere. The (d − 1)-dimensional Lebesgue
measure of �(s; sδ′′

) is bounded from above by the sum of the μd−1-measure of
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the part left uncovered by C
(
xi, sδi

)
, i = 1, . . . , m, and the sum of the measures

of C
(
xi, sδi

) \ C
(

xi, sδi − √
2s − sδ′′

)
for i = 1, . . . , m. Thus

μd−1(�(s; sδ′′
)) ≤ ε +

m∑
i=1

c1sδi(d−2)(
√

2s + sδ′′
)

≤ ε +
m∑

i=1

c1sδi(d−1)s−δ∗
(
√

2s + sδ′′
)

≤ ε + c2s−δ∗
(
√

2s + sδ′′
) ≤ 2ε

for all sufficiently small s, where c1 and c2 are positive constants. Condition (S)
implies that σ(�(s; sδ′′

)) is smaller than f (2ε) for all sufficiently small s. In turn,
f (2ε) can be made smaller than any given ε′ > 0.

For any fixed t > 0 consider the Poisson process � with intensity measure
nκ with n = ts−γ /2 for a fixed t. By Lemma 2.6,

lim
s↓0

P{�̃(�s(s)) ≥ 1} ≤ ct2ε′ . (2.11)

By Eq. 2.1,

P{diam � ≤ 2 − s} = P
{
�̃

(
A(i)

s

) = 0, i = 1, . . . , m, �̃(�s(s)) = 0
}

.

By the independence of �̃(A(i)
s ), i = 1, . . . , m,

I ≤ P{2 − diam � ≤ s} ≤ I + P{�̃(�s(s)) ≥ 1} ,

where

I = 1 −
m∏

i=1

P
{
�̃

(
A(i)

s

) = 0
}

.

By Lemma 2.4,

m∏
i=1

(
1 − n2(1 + y1(s))P

{
ξ̃ ∈ A(i)

s

})
≤

m∏
i=1

P
{
�̃

(
A(i)

s

) = 0
}

≤
m∏

i=1

(
1 − n2e−2y2(s)P

{
ξ̃ ∈ A(i)

s

})
,

where

y1(s) = max
1≤i≤m

nκ
(
Ds(A(i))

)
κ

(
Ds(Ǎ(i))

)
,

y2(s) = max
1≤i≤m

nκ
(
Ds(A(i))

)
.
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By Eq. 2.5, y2(s) (and thereupon also y1(s)) converge to zero as s ↓ 0 for
n = ts−γ /2. By Eq. 2.4 with zs = sδi − √

2s,

n2P
{
ξ̃ ∈ A(i)

s

}
σ(A(i))

→ tγ as s ↓ 0 .

Since y1(s) → 0 and y2(s) → 0,

lim
s↓0

m∏
i=1

(
1 − n2(1 + y1(s))P

{
ξ̃ ∈ A(i)

s

})
= lim

s↓0

m∏
i=1

(1 − tγ σ (A(i))) ,

and

lim
s↓0

m∏
i=1

(
1 − n2e−2y2(s)P

{
ξ̃ ∈ A(i)

s

})
= lim

s↓0

m∏
i=1

(1 − tγ σ (A(i))) .

By taking logarithms, and using the inequality | log(1 + x) − x| ≤ x2 for |x| < 1,
we see that

lim
s↓0

m∏
i=1

(1 − tγ σ (A(i))) = exp

{
−tγ lim

s↓0

m∑
i=1

σ(A(i))

}

= exp

{
−1

2
tγ σ0

}
. (2.12)

For this, note that σ is necessarily symmetric, so that σ(Sd−1+ ) = σ0/2. Finally,
Eq. 2.9 is obtained from Eq. 2.11 and the choice of n = ts−γ /2. ��

Instead of imposing (S) it is possible to require that for every s > 0 there
exists a covering of S

d−1 by spherical balls C(xi, sδi) of radii sδi with δi ∈
[δ′, δ′′] ⊂ (

0, 1
2

)
such that σ(�(s; sδ′′

)) → 0 as s ↓ 0, where �(s) is given by
(2.10). Since this condition always holds in dimension d = 2 with δ′ = δ′′, we
obtain the following result for interpoint distances in the unit disk.

Theorem 2.8 Assume that d = 2 and Eqs. 2.4 and 2.5 hold with zs = sδ for some
fixed δ ∈ (

0, 1
2

)
uniformly over u ∈ S

1. Then Eq. 2.9 holds.

Furthermore, (S) can be relaxed for σ supported by a lower-dimensional
part of the unit sphere, for instance, obtained as the intersection of S

d−1 with a
certain hyperplane. Then in Eq. 2.8 one has to consider the Hausdorff measure
of A of a lower order than (d − 1).

Finally, note that if σ1, σ2, . . . satisfy (S) and have total mass bounded by a
fixed number then sup piσi also satisfies (S) if

∑
pi < ∞. This construction is

useful if σ is supported by a countable family of great circles on the unit sphere.
Instead of imposing Eqs. 2.4 and 2.5, it is possible to deduce the limiting

distribution in Eq. 2.9 using a direct assumption on the asymptotic distribution
of �̃nκ and assuming (S) only for the non-atomic part of σ .
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Theorem 2.9 Assume that, for [δ′, δ′′] ⊂ (
0, 1

2

)
with δ′ < δ′′,

lim
s↓0

P{�̃nκ(Cs(u, zs)) ≥ 1}
σ(C(u, zs))

= g(t, u) (2.13)

for some function g uniformly in u ∈ S
d−1 and zs ∈ [sδ′′

, sδ′ ], where n = (t/s)γ/2

and σ is a finite measure on S
d−1. If the non-atomic part σ ′ of σ satisfies (S), then

lim
n→∞ P{n2/γ (2 − diam �nκ) ≤ t}

= 1 − exp

{
−1

2

∫
Sd−1

g(t, u)σ ′(du)

} ∏
xi∈Sd−1

σ({xi})>0

(
1 − g(t, xi)σ ({xi})

) 1
2

(2.14)

for all t ≥ 0.

Proof For the proof we use the same partition of the unit sphere and the sets
A(i) as in the proof of Theorem 2.7. If σ has an atomic part, choose the points
x1, . . . , xm in such a way that they have so many atoms of σ among them that
the total σ -content of the remaining atoms is less than ε.

In the remainder of the proof we need to split the product in the left-hand
side of Eq. 2.12 into the factors that correspond to the non-atomic and the
atomic parts of σ . Notice that Lemma 2.4 is no longer needed to derive the
asymptotics for P

{
�̃

(
A(i)

s

) = 0
}

from the distribution of ξ̃ . The square root
of the product in Eq. 2.14 appears because the atoms of σ form centrally
symmetric pairs of points. ��

The cases when σ has atoms often appear if κ is supported by a subset K
of B and such that K is sufficiently “sharply pointed” near the points where
its diameter is achieved. The typical example of such K is a segment, see
Section 5.5. Other such examples appear if K satisfies the conditions imposed
in Appel et al. (2002).

Note that the limiting distribution of the diameter remains unchanged if κ is
arbitrarily changed inside sB for any fixed s < 1.

3 De-Poissonisation

Let � be the Poisson process with intensity measure nκ . Given �(K) = n,
the distribution of � coincides with the distribution of �n = {ξ1, . . . , ξn} being
the binomial process on K, i.e. n i.i.d. points sampled from κ . In the other
direction, the distribution of � coincides with the distribution of �N , where
N is the Poisson random variable of mean n independent of the i.i.d. points
ξi’s distributed according to κ . This simple relationship makes it possible to
use the de-Poissonisation technique (Penrose 2003) in order to obtain the
limit theorem for functionals of �n. The key issue that simplifies our proofs
is the monotonicity of the diameter functional. Indeed, the diameter of �n is
stochastically greater than the diameter of �m for n > m. Another useful tool
is provided by the following lemma from Penrose (2003, p. 18).
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Lemma 3.1 Let N be a Poisson random variable with mean λ. For every γ > 0
there exists a constant λ1 = λ1(γ ) ≥ 0 such that

P
{
|N − λ| ≥ 1

2
λ

1
2 +γ

}
≤ 2 exp

{
−1

9
λ2γ

}

for all λ > λ1.

Theorem 3.2 Let � : N → R be a non-increasing (resp. non-decreasing) func-
tional defined on the space N of counting measures on R

d. Furthermore, let �nκ

be a Poisson process with intensity measure nκ where κ is a probability measure
on R

d. If, for some non-decreasing (resp. non-increasing) sequence an satisfying

lim
n→∞

a[n(1±n−β )]
an

= 1 (3.1)

for some β ∈ (
0, 1

2

)
, the random variable an�(�nκ) converges in distribution to

a random variable with cumulative distribution function F, then the distribution
of an�(�n) also weakly converges to F, where �n is a binomial process of n
i.i.d. points with common distribution κ .

Proof Without loss of generality assume that � is non-increasing. Define
γ = 1

2 − β and εn = n−β for some β ∈ (
0, 1

2

)
. By Lemma 3.1 and the mono-

tonicity of �,

P{�(�nκ) ≤ s} ≤ P{�(�nκ) ≤ s, |N − n| ≤ nεn} + P{|N − n| > nεn}

≤ P{�(�[n(1+εn)]) ≤ s} + 2 exp

{
−1

9
(2n)2γ

}
. (3.2)

for sufficiently large n. Now Eq. 3.1 yields that

lim
n→∞ P{an�(�n) ≤ t} = lim

n→∞ P{a[n(1+εn)]�(�[n(1+εn)]) ≤ t}
≥ lim

n→∞ P{an�(�[n(1+εn)]) ≤ t − ε}

for any ε > 0. By Eq. 3.2,

lim
n→∞ P{an�(�n) ≤ t} ≥ lim

n→∞ P{an�(�nκ) ≤ t − ε} − 2 exp

{
−1

9
(2n)2γ

}

= F(t − ε) .

By similar calculations and

P{�(�) ≤ s} ≥ P{�(�[n(1−εn)]) ≤ s}P{|N − n| ≤ nεn}

≥ P{�(�[n(1−εn)]) ≤ s} − 2 exp

{
−1

9
(2n)−2γ

}
,
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we get

lim
n→∞ P{an�(�n) ≤ t} ≤ F(t + ε) .

The proof is finished by noticing that ε > 0 is arbitrary and t can be chosen to
be any continuity point of F. ��

In particular, Theorem 3.2 is applicable for the functional �(�n) =
2 − diam �n, so that all results available for diameters of Poisson processes can
be immediately reformulated for binomial processes. Note that Assumption
3.1 is e.g. fulfilled for an = cnα with any c > 0 and α ∈ R.

4 Spherically Symmetric Distributions

Let ξ1, . . . , ξn be independent points distributed according to a spherically
symmetric (also called “isotropic”) distribution κ restricted on B. Spherically
symmetric distributions are closed with respect to convolution, so that
ξ̃ = ξ1 − ξ2 is spherically symmetric too. Since ‖ξ̃‖ and ξ̃ /‖ξ̃‖ are independent
(see e.g. Gneiting 1998),

P{ξ̃ ∈ As} = P{‖ξ̃‖ ≥ 2 − s} μd−1(A)

μd−1(Sd−1)
.

holds for any measurable A ⊂ S
d−1. Therefore Eq. 2.4 is fulfilled if, for some

γ > 0,

lim
s→0

P{‖ξ̃‖ ≥ 2 − s}s−γ = σ0 ∈ (0, ∞) , (4.1)

where σ0 then becomes the total mass of σ , so that σ is the surface area measure
on S

d−1 normalised to have the total mass σ0.
Furthermore, Eq. 2.5 holds if

lim
s↓0

sδ(d−1)−γ /2P{η ≤ s} = 0 , (4.2)

where η = 1 − ‖ξ1‖.

Lemma 4.1 If η1 and η2 are independent random variables distributed as
1 − ‖ξ1‖ and ζ = η1 + η2, then

lim
s↓0

P{‖ξ̃‖ ≥ 2 − s}
E((s − ζ )(d−1)/21ζ≤s)

= 2d−1�
( d

2

)
(d − 1)π

1
2 �

( d−1
2

) . (4.3)

Proof By the cosine theorem and the fact that ξ̃ has the same distribution as
ξ1 + ξ2, we write

P{‖ξ̃‖ ≥ 2 − s} = P{‖ξ1‖2 + ‖ξ2‖2 + 2‖ξ1‖‖ξ2‖ cos β ≥ (2 − s)2},
where β denotes the angle between ξ1 and ξ2. Hence,

P{‖ξ̃‖ ≥ 2 − s} = P{cos β ≥ 1 − q} ,
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where

q = (2 − ζ )2 − (2 − s)2

2‖ξ1‖‖ξ2‖ .

If q ≥ 0 (i.e. ζ ≤ s)

P{‖ξ̃‖ ≥ 2 − s} = 1

2
P{cos2 β ≥ (1 − q)2, ζ ≤ s} = 1

2
E

(∫ 1

(1−q)2
f (t)dt1ζ≤s

)
,

where the probability density function

f (t) = �
( d

2

)
π

1
2 �

( d−1
2

) t−
1
2 (1 − t)

d−3
2 , t ∈ [0, 1] ,

of cos2 β corresponds to the Beta-distribution with parameters 1
2 and (d − 1)/2,

see Matthews and Rukhin (1993, Prop. 2). Substituting x = 1 − t leads to

P{‖ξ̃‖ ≥ 2 − s} = c1E
( ∫ 2q(1− q

2 )

0
(1 − x)−

1
2 x

d−1
2 −1dx1ζ≤s

)
,

where

c1 = 1

2

�
( d

2

)
π

1
2 �

( d−1
2

) .

The inequality

1 ≤ (1 − x)−
1
2 ≤ (1 − q)−1 ≤ ((1 − s)2 − 2s)−1

leads to the bounds

c1E(I1ζ≤s) ≤ P{‖ξ̃‖ ≥ 2 − s} ≤ c1((1 − s)2 − 2s)−1E(I1ζ≤s) , (4.4)

where

I =
∫ 2q(1− q

2 )

0
x

d−1
2 −1dx = 2

d − 1
(2q)

d−1
2

(
1 − q

2

) d−1
2

.

By the fact that

1 ≤ (‖ξ1‖‖ξ2‖)−1 ≤ (1 − s)−2

and

1 − s
(1 − s)2

≤ 1 − q
2

≤ 1 ,

we further get the bounds

2

d − 1
((2 − ζ )2 − (2 − s)2)

d−1
2

(
1 − s

(1 − s)2

) d−1
2

≤ I

≤ 2

d − 1
((2 − ζ )2 − (2 − s)2)

d−1
2 (1 − s)−(d−1) .
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Since

(4 − 2s)(s − ζ ) ≤ (2 − ζ )2 − (2 − s)2 ≤ 4(s − ζ ) ,

the following bounds for I hold

2d

d − 1
(s − ζ )

d−1
2

(
1 − s

(1 − s)2

) d−1
2 (

1 − s
2

) d−1
2 ≤ I

≤ 2d

d − 1
(s − ζ )

d−1
2 (1 − s)−(d−1) .

Plugging these bounds in Eq. 4.4 yields the result. ��

The following result settles the case when the density of η is equivalent to a
power function for small arguments.

Theorem 4.2 Assume that d ≥ 2 and for some α ≥ 0 the cumulative distribution
function F(x) = P{η ≤ x} of η = 1 − ‖ξ‖ satisfies

lim
s↓0

s−α F(s) = a ∈ (0, ∞) . (4.5)

Then

lim
n→∞ P{n2/γ (2 − diam �nκ) ≤ t} = 1 − e− 1

2 tγ σ0 , t ≥ 0 , (4.6)

where γ = 1
2 (d − 1) + 2α and

σ0 = a2c
�(α + 1)2�

(
1
2 (d + 1)

)
�

(
2α + 1

2 (d + 1)
) (4.7)

with c given by the right-hand side of Eq. 4.3.

Proof The integration by parts leads to

E((s − ζ )(d−1)/21ζ≤s)

= F(0)2s(d−1)/2+ (d − 1)(d − 3)

4

∫ s

0

∫ s−x1

0
F(x1)F(x2)(s−x1− x2)

(d−5)/2dx1dx2 .

If F(0)>0, then (4.5) implies that α=0, so that Eq. 4.1 holds with γ = 1
2 (d − 1)

and σ0 = F(0)2c = a2c by Lemma 4.1, which corresponds to Eq. 4.7.
If F(0) = 0, then Eq. 4.5 yields that E((s − ζ )(d−1)/21ζ≤s) is equivalent as

s ↓ 0 to

sγ a2 (d − 1)(d − 3)

4

∫ 1

0

∫ 1−t1

0
tα1 tα2 (1 − t1 − t2)(d−5)/2dt1dt2

= sγ a2 (d − 1)(d − 3)

4
B

(
α + 1, α + d − 1

2

)
B

(
α + 1,

d − 3

2

)

= sγ a2α2�(α)2 �
(

1
2 (d + 1)

)
�

(
2α + 1

2 (d + 1)
)
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with γ = 1
2 (d − 1) + 2α. Finally, Eq. 4.1 follows from Lemma 4.1. It remains to

show that Eq. 4.2 holds, i.e.

δ(d − 1) − 1

2
γ + α > 0 .

Using the expression for γ , it suffices to note that δ(d − 1) − 1
4 (d − 1) > 0 if

δ ∈ (
1
4 , 1

2

)
, so it is possible to choose [δ′, δ′′] ⊂ (

1
4 , 1

2

)
. ��

It should be noted that Eq. 4.5 can be weakened by requiring that F is
regular varying at zero. However, in this case the normalising factors for the
diameter and the constants involved in the formula for σ0 are influenced by the
slowly varying part of F.

Using similar arguments, it is possible to check Eqs. 2.4 and 2.5 if ξ = ηυ for
independent η and u, where η is distributed on [0, 1] and υ is distributed on
S

d−1 with a bounded density with respect to the surface area measure, see also
Lao and Mayer (2007). An example of υ having a purely atomic distribution is
considered in Section 5.5.

5 Examples

5.1 Uniform Distribution on the Ball

Consider the case of random points uniformly distributed in B.

Theorem 5.1 As n → ∞, the diameter of the convex hull of a homogeneous
Poisson process �λ with intensity λ = n/μd(B) restricted on the d-dimensional
unit ball, d ≥ 2, has limit distribution

P{n 4
d+3 (2 − diam �λ) ≤ t} → 1 − exp

{
−1

2
c t

d+3
2

}
, t > 0 , (5.1)

where

c = 2d+1d�
( d

2 + 1
)

√
π(d + 1)(d + 3)�

( d+1
2

) . (5.2)

Proof The tail behaviour of ‖ξ1‖ is determined by

P{‖ξ1‖ ≥ 1 − s} = 1 − μd((1 − s)B)

μd(B)
= 1 − (1 − s)d ,

so that Theorem 4.2 is applicable with α = 1 and a = d. ��

By the de-Poissonisation argument, Theorem 5.1 yields Theorem 1.1. Note
that in case d = 2 the constant c equals 16/(15π), which also corresponds to
the bounds given in Eq. 1.1. The tail behaviour of ‖ξ̃‖ can also be obtained
from the explicit formula for the distribution of the length of a random chord
in the unit ball, see Kendall and Moran (1963, 2.48).
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5.2 Uniform Distribution on the Sphere

Another example of a spherically symmetric distribution is given by the
uniform distribution on S

d−1, i.e. if

κ(A) = μd−1(A)/μd−1(S
d−1)

for all measurable A ⊂ S
d−1. The following result follows from Theorem 4.2 in

case a = F(0) = 1 and α = 0.

Theorem 5.2 If � is the homogeneous Poisson process on S
d−1 with the total

intensity n, then for any d ≥ 2

lim
n→∞ P{n 4

d−1 (2 − diam �) ≤ t} = 1 − exp

{
−1

2
c t

d−1
2

}
, t > 0 ,

where

c = 2d−1�
( d

2

)
(d − 1)π

1
2 �

( d−1
2

) . (5.3)

Alternatively, the tail behaviour of ‖ξ̃‖ may be derived from the explicit
formula for the distribution of the distance between two uniform points on the
unit sphere, see Alagar (1976).

5.3 Distribution in Spherical Sectors

Define ξS = ηυS, where η ∈ [0, 1] and υS is uniformly distributed on a set
S ⊂ S

d−1 of positive surface area measure. The distribution ξS can be con-
sidered as the conditional distribution of ξ = ηυ given that υ ∈ S, where υ is
uniformly distributed on S

d−1. Since only symmetric points of S contribute to
the maximum interpoint distance, define

S0 = {u ∈ S : −u ∈ S} = S ∩ Š .

Assume that S0 coincides with the closure of its relative interior on S
d−1.

Writing ξ̃ = η′υ ′ − η′′υ ′′ for every u from the relative interior of S0 and i.i.d.
υ ′, υ ′′ uniformly distributed on S

d−1, we arrive at

P{ξ̃S ∈ Cs(u, zs)} = P{ξ̃ ∈ Cs(u, zs) | υ ′, υ ′′ ∈ S}

= P{ξ̃ ∈ Cs(u, zs), υ
′, υ ′′ ∈ S}μ

2
d−1(S

d−1)

μ2
d−1(S)

= P{ξ̃ ∈ Cs(u, zs)}
μ2

d−1(S
d−1)

μ2
d−1(S)

for all sufficiently small s. If Eq. 4.5 holds, then Eq. 4.6 holds with σ0 replaced
by σ0qS with

qS = μd−1(S0)μd−1(S
d−1)

μ2
d−1(S)

.



Limit theorems for the diameter of a random sample in the unit ball 147

Note that qS = μd−1(S
d−1)/μd−1(S) if S is centrally symmetric, i.e. S = S0. For

instance, if ξ is uniformly distributed inside the spherical sector

K = {tu : u ∈ S, t ∈ [−1, 1]}
with a centrally symmetric S ⊂ S

d−1 of positive surface area measure, then
Eq. 5.1 holds with c replaced by cqS.

5.4 Non-uniform Angular Distributions

Assume that ξ is distributed on the boundary of the unit circle in R
2 according

to some not necessarily symmetric probability measure κ , which can be then
considered a measure on [0, 2π). If ξ1 and ξ2 are distributed on [0, 2π)

according to κ , then

P{1 − cos(ξ1 − ξ2) ≤ 2s(1 − s/2)(1 − s)−2, |ξ1 + ξ2 − 2u| ≤ 2sδ}
≤ P

{
ξ̃ ∈ Cs(u, sδ)

}

≤ P
{
1 − cos(ξ1 − ξ2) ≤ 2s, |ξ1 + ξ2 + π − 2u| ≤ 2sδ

}
,

where the addition of angles is understood by modulus 2π . Thus, P
{
ξ̃ ∈

Cs(u, sδ)
}

is equivalent as s ↓ 0 to

P{|ξ1 + ξ2| ≤ 2
√

s, |ξ1 + ξ2 + π − 2u| ≤ 2sδ} .

Assume that the distribution κ has bounded density f with respect to the length
measure on the unit circle. Then the probability above is equivalent to

2
√

s4sδ f (u) f (u + π) = 4sγ (2sδ) f (u) f (u + π) .

Thus, Eq. 2.4 holds with γ = 1
2 and

σ0 = 4
∫ 2π

0
f (u) f (u + π)du .

The boundedness of f also implies that Eq. 2.5 holds, so that the limit
distribution is given by Eq. 2.9. In particular if κ is uniform on the circle, then
f (u) = (2π)−1, so that σ0 = 4/(2π) = 2/π , so that

lim
n→∞ P{n4(2 − diam �nκ) ≤ t} = 1 − e− 1

π

√
t , t ≥ 0 ,

which also corresponds to the result of Theorem 5.2 for d = 2.

5.5 Segments and Disks in the Unit Ball

Assume that L1, . . . , Lm are segments that are obtained by intersection the
unit ball with m different lines passing through the origin. Assume that
P{ξ ∈ Li} = pi for i = 1, . . . , m, and conditionally on ξ ∈ Li, ξ is distributed
according to the length measure on Li = [−xi, xi]. The one-dimensional result
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for the range of a uniform random sample (Galambos 1978, Sec. 2.9) implies
that

lim
s↓0

P{�̃nκ(Cs(xi, zs)) ≥ 1} = 1 −
(

1 + 1

2
tpi

)
e− 1

2 tpi = g(t, xi) ,

where n = t/s, i.e. Eq. 2.13 holds with γ = 2 and σ being a purely atomic
measure with unit atoms at {±xi, i = 1, . . . , m}. Theorem 2.9 implies that

lim
n→∞ P{n(2 − diam �nκ) ≤ t} = 1 − e− 1

2 t
m∏

i=1

(
1 + 1

2
tpi

)
. (5.4)

If L1, . . . , Lm are obtained as intersections of the unit ball with linear
subspaces of possibly different dimensions, then only those of these subspaces
with the smallest dimension contribute to the asymptotic distribution of the
maximum interpoint distance. If the smallest dimension is at least 2, then
σ is non-atomic and Theorem 2.7 is applicable as in the case of uniformly
distributed points in a lower-dimensional unit ball. Otherwise, we arrive at the
above formula for segments.

Consider now a countable family of segments Li = [−xi, xi], i ≥ 1. Without
loss of generality assume that xi → x0 as i→ ∞ and xi �= x0 for all i. Let ν

be the measure on S
d−1 with atoms ±xi with ν({xi}) = ν({−xi}) = pi, i ≥ 1. In

comparison with the case of a finite number of segments, we need also to find
the limit of P{�̃nκ(Cs(x0, zs)) ≥ 1} as s ↓ 0. Notice that ν(Cs(x0, zs)) = qs → 0
as s ↓ 0. Thus, P{�̃nκ(Cs(x0, zs)) ≥ 1} is bounded above by the probability that
the Poisson point process with the total intensity nqs on [−x0, x0] has diameter
that exceeds 2 − s. Using the one-dimensional result, it is easy to see that the
corresponding limit is zero if γ = 2. In order to arrive at a non-trivial limit, we
need to set γ > 2, which is impossible, since the normalisation nγ is too big for
the diameters of the Poisson processes restricted on the individual segments
Li, i ≥ 1. Therefore, Eq. 5.4 holds in this case with the infinite product, i.e. for
m = ∞.

For instance, assume that pi = 6π−2i−2, i ≥ 1, where ζ is the zeta-function.
Using a formula for infinite product (Hansen 1975, 89.5.16) we obtain

lim
n→∞ P{n(2 − diam �nκ) ≤ t} = 1 − e− 1

2 t sinh
√

3t√
3t

.

5.6 Distributions Supported by Pointed Sets

Let κ be a probability measure supported by a closed (not necessarily convex)
set K ⊂ B. Assume that K has a unique diameter of length 2, i.e. K contains
exactly two symmetric points u0 and −u0 with norm 1. Define

E1(s) = {x ∈ K : 〈x, u0〉 ≥ 1 − s} ,

E2(s) = {x ∈ K : 〈x, −u0〉 ≥ 1 − s} ,

q(s) = max{| arc u1| + | arc u2 − π | : ui ∈ Ei(s), i = 1, 2} ,
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where arc u denotes the angle between u and u0. Note that E1(s) ↓ {u0} and
E2(s) ↓ {−u0} as s ↓ 0. By Wa(β) we define a random variable with the Weibull
distribution given by

P{Wa(β) ≤ t} = 1 − e−atβ .

The following result generalises the main result of Appel et al. (2002) for the
multidimensional case.

Theorem 5.3 Assume that

lim
s↓0

s−βκ(Ei(s)) = ai

for some βi, ai ∈ (0, ∞), i = 1, 2. Further assume that s− 1
2 q(s) → 0 as s ↓ 0. If

β1 �= β2, then n
1
β (2 − diam �nκ) converges in distribution to Wa(β), where β is

the smaller of β1, β2 and a equals the corresponding ai. If β1 = β2 = β, then
n

1
β (2 − diam �nκ) converges in distribution to the sum Wa1(β) + Wa2(β) of two

independent Weibull-distributed random variables.

Proof Since lims↓0 s− 1
2 q(s) = 0, we get

P
{
�̃nκ

(
Cs(u0, sδ)

) ≥ 1
}

= P{diam �nκ ≥ 2 − s} ,

for sufficiently small s > 0 and any δ < 1
2 . The following inequalities are

obvious for some c > 0

P{diam �∗ ≥ 2 − s − cq2(s)} ≤ P{diam �nκ ≥ 2 − s}
≤ P{diam �∗ ≥ 2 − s} ,

where

�∗ = {〈ξi, u0〉 : ξi ∈ �nκ}
is the orthogonal projection of �nκ onto the line passing through −u0 and u0.
By the properties of the Poisson process and the assumptions of the theorem
we get

P{diam �∗ ≥ 2 − s} = P{max �∗ − min �∗ ≥ 2 − s} ,

where

P{max �∗ ≥ 1 − s} = 1 − exp{−nκ(E1(s))} ,

P{− min �∗ ≥ 1 − s} = 1 − exp{−nκ(E2(s))} .

An application of Theorem 2.9 yields the result with t = sn1/ min{β1,β2}. ��

This result could easily be extended to cover cases where the support K of
κ contains countably many disjoint chords of length 2, e.g. if κ is the uniform
measure on a hexagon.
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