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Abstract The celestial mechanics approach (CMA) has its
roots in the Bernese GPS software and was extensively used
for determining the orbits of high-orbiting satellites. The
CMA was extended to determine the orbits of Low Earth
Orbiting satellites (LEOs) equipped with GPS receivers and
of constellations of LEOs equipped in addition with inter-
satellite links. In recent years the CMA was further devel-
oped and used for gravity field determination. The CMA was
developed by the Astronomical Institute of the University
of Bern (AIUB). The CMA is presented from the theoret-
ical perspective in (Beutler et al. 2010). The key elements
of the CMA are illustrated here using data from 50 days of
GPS, K-Band, and accelerometer observations gathered by
the Gravity Recovery And Climate Experiment (GRACE)
mission in 2007. We study in particular the impact of (1)
analyzing different observables [Global Positioning System
(GPS) observations only, inter-satellite measurements only],
(2) analyzing a combination of observations of different types
on the level of the normal equation systems (NEQs), (3)
using accelerometer data, (4) different orbit parametrizations
(short-arc, reduced-dynamic) by imposing different constra-
ints on the stochastic orbit parameters, and (5) using either the
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inter-satellite ranges or their time derivatives. The so-called
GRACE baseline, i.e., the achievable accuracy of the GRACE
gravity field for a particular solution strategy, is established
for the CMA.
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1 Introduction

The celestial mechanics approach (CMA) has its roots in the
Bernese GPS Software (Dach et al. 2007) and it is extensively
used in this context since 1992 for determining the orbits of
GNSS (Global Navigation Satellite Systems) by the Center
for Orbit Determination in Europe (CODE) of the Interna-
tional GNSS Service (IGS). The CMA was generalized to
determine the orbits of Low Earth Orbiting satellites (LEOs)
and constellations of LEOs by Jédggi (2007) using the GPS
observable. In recent years the CMA was extended to grav-
ity field determination, including the use of highly accurate
inter-satellite measurements.

The theoretical foundations of the CMA may be found in
Beutler et al. (2010). Technical aspects like orbit integration,
the efficient solution of the variational equations, etc., are
outlined in that reference.

The present article has the focus on the special features
of the CMA using GPS, K-Band, and, optionally, acceler-
ometer data gathered by the GRACE mission in 2007. It
is not the intention of this article to compare the solutions
generated by the CMA to those generated by other groups.
Such comparisons are, e.g., available in Prange et al. (2010)
and Jaggi et al. (2010), where the emphasis is on particular
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solutions generated with the CMA, which have to be com-
pared and/or validated using solutions generated by other
groups. The results presented here are related to the options
offered by the CMA and, to some extent, to the methods
of celestial mechanics as such—applied to orbit and force
field determination. This article is obliged to the Cartesian
“discours de la méthode” (Descartes 1637).

Section 2 describes the data set analyzed, the a priori
gravity field used and the gravity field to which the solu-
tions are compared. The section introduces moreover the
methods of comparing and validating solutions. Section 3
summarizes the characteristics of all solutions studied sub-
sequently.

Section 4 deals with orbit determination of single satellites
using spaceborne GPS and with orbit determination of close
constellations using inter-satellite distance measurements in
addition to GPS. The analysis scheme presented in this sec-
tion is probably closely related to the one, which would be
used by most analysts when tasked with precise orbit deter-
mination of a GRACE-like constellation of satellites. The
results of this section are also used to define the mutual scal-
ing of the GPS- and K-Band-specific normal equation sys-
tems (NEQs).

Section 5 introduces the standard analysis used so far to
derive gravity fields with the CMA. CMA orbits are continu-
ous by construction over the entire time span of one arc. The
arc-length for analyzing data from the satellite missions is
currently 1day. The orbits are solutions of the deterministic
equations of motion. By introducing instantaneous velocity
changes (pulses) in the radial (R), along-track (), and out-
of-plane (W) directions or, alternatively, piecewise constant
accelerations in these directions, the CMA orbits are given
stochastic properties—for details we refer to Beutler et al.
(2010). Section 6 studies the impact of solutions with free
versus constrained pulses or accelerations.

The accelerometer measurements of the GRACE mission
and their impact on gravity field estimation are studied in
Sect. 7. All gravity field solutions discussed up to Sect. 7
are based on the K-Band range-rate observable. Alternative
K-Band observables, namely, ranges, range differences, and
range double-differences, are studied in Sect. 8.

The K-Band residuals of range and range-rate solutions
are analyzed in Sect. 9. From the theoretical point of view the
K-Band range would be the primary observable—all other
observables are derivatives of it. The standard range solu-
tions presented in Sect. 8, however, cannot cope in quality
with the best range-rate solutions. In Sect. 10 we show that
range solutions of a quality comparable to the range-rate solu-
tions can be generated with the CMA by making extensive
use of the pseudo-stochastic parametrization.

The so-called GRACE-baseline (achievable accuracy of
the gravity field with GRACE) is studied in Sect. 11 as a
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function of the CMA options. The major findings are sum-
marized in Sect. 12.

2 Observations, reference solutions, comparisons

The GPS-derived kinematic satellite positions of the GRACE
satellites, the K-Band measurements (ranges, range-differ-
ences, range-double-differences, range-rates) between them
and, optionally, the accelerometer measurements of the mis-
sion are used for orbit and gravity field determination in this
article. Data from days 50-99 of the year 2007 (DOY 50-99)
are analyzed.

The gravity field AIUB-GRACEO02Sp (Jaggi et al. 2009),
estimated previously at the Astronomical Institute of the
University of Bern (AIUB) with the CMA, is used as a pri-
ori information (and not modified for the orbit determina-
tion runs). The solutions generated in the following sections
are compared to the solution ATUB-GRACEOQ2S (Jaggi et al.
2010). The solution with the suffix “p” is based on the data
from 2007, the solution without this suffix on data from 2006
and 2007. Apart from that the solutions were generated using
the same pattern. The solution AITUB-GRACEQ2S

e is a biennial solution (with data from 2006 and 2007);
was generated using the kinematic positions of GRA-
CE-A and -B, the K-Band range-rates without taking the
mathematical correlations into account, and the acceler-
ometer measurements as empirically given (determinis-
tic) functions (for a discussion of correlations of K-Band
measurements we refer to Beutler et al. (2010));

e was generated with a fixed scaling ratio of okzb drr! Jgh =

1071952 between the daily K-Band- and GPS- NEQs;

e solved for all spherical harmonic coefficients between
degrees 2 < n < 150 without imposing any constraints
or regularization on them;

e used the gravity field EGM96 (Lemoine et al. 1997) as
the a priori field—and the solution was produced in one
step;

e solved for piecewise constant accelerations in the three
directions R, S and W, set up at 15 min intervals;

e constrained the mean residual accelerations to
3 x 1072 m/s? in the R-, S-, and W-directions;

e used accelerometer data in the R- and S- directions, but
ignored them in the W-direction (see Sect. 7);

e constrained the differences between simultaneous accel-
erations of the same type between GRACE-A and
GRACE-B to 3 x 10~!'m/s? for the R-, S-, and W- direc-
tions.

The quality of the estimated gravity fields is assessed by
the so-called difference degree amplitudes Aa;,
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1
Aa? = 3" [(Ciest = Citren)? + (Sikest = Sirer)?] (1)
k=0
where i is the degree of the spherical harmonics coefficients,
k the order; “ref” stands for the reference, “est” for the esti-
mated coefficients. In order to study the behavior of specific
terms of the expansion the definition (1) is generalized in the
following way:

u(i)
. 2
NGy iy = 2. [(Cik’est — Cikret)
k=1()
2
+ (Sik,est - Sik,ref) ] > 2

where /(i) and u (i) are the lower and upper summation lim-
its for each degree. For I(i) = u(i) = O the behavior of
the zonal terms is considered, for [(i) = u(i) = i that
of the sectorial terms. For /(i) = 0 and u(i) = i for-
mula (2) reduces to the normal difference degree ampli-
tudes, for [(i) = iy and u(i) = ig,ir # O the tesseral
terms of a particular order are studied as a function of the
degree.
The square roots of the formal error degree variances,

i

o7 = 3 [02 Cikes) + 0¥ (Siten)]. 3)
k=0

or briefly the error degree amplitudes, are used as a rough
measure of the RMS error of the degree difference ampli-
tude Ag; (covariances neglected). In analogy to Egs. (1, 2)
degree-specific limits will also be used in Eq. (3).

3 Solutions performed

The solutions generated here are based on the a priori gravity
field AIUB-GRACEQ2Sp complete up to degree n = 150,
but determine only the gravity field up to degree n = 60.
Such a set-up might make sense to study monthly variations
in the GRACE gravity field. This aspect is, however, not in the
center of our interests. We use this option to generate many
different solutions in an efficient way (concerning CPU time
and storage requirements).

Table 1 lists all solutions made. The problem type (orbit
or gravity field determination), the observable kind(s), the
NEQ scaling ratio, the satellite(s), the use of the accelerome-
ter data, the type of stochastic parameters, and the constraints
imposed on the mean values and on the differences [definition
see Beutler et al. 2010, Eq. (33)] of the orbit and stochastic
parameters may be reconstructed from the solutions’ names.
The actual solutions are in addition time-tagged (year and day
of the year for daily solutions, DOY/2007 for first and last
day included for gravity field determination). When apply-
ing the constraints, the value o of the weight unit must be

Table 1 Solution with label PTT(GK)SmmSm Sd
Label

Solution characteristics

PTT(GK)ASmmSmSd General problem characterization
P Problem type
P = O: Orbit determination
P = G: Gravity field determination
TT Observables
GA: GPS-derived positions, GRACE-A
GB: GPS-derived positions, GRACE-B
GC: GPS-derived positions, GRACE-A and -B
RG: GPS-derived positions and K-Band ranges

RD: GPS-derived positions and K-Band range-
differences

DD: GPS-derived positions and K-Band range-
double-differences

RR: GPS-derived positions and K-Band range-
rates

GK Ratio oypq : opp (K-Band : GPS) for NEQ
constituents;

Only for types TT = RG, RD, RR

GK = 16: o3pa: opp =1 x 1076 (example)
A Treatment of accelerometer measurements

A = U: Accelerometer measurements Used

A =N: Accelerometer measurements Not used

S Type of stochastic parameters
S = P: Pulses
mm Spacing between stochastic pulses (min)

mm = 15: Spacing between subsequent sto-
chastic epochs 15 min

Sm Ogabsg Of stochastic parameter for mean stochas-
tic parameters

Sm =34: 04y =3 X 1074

Sd Opel = OghsS X 10~ for relative stochastic
parameters

Sd = 12: 0y] = Oypg x 1072

specified. For GPS-only solutions we use og = 2mm for the
L1 (and L2) phase measurements, when analyzing K-Band
range-rates or a combination of GPS and range-rates oy =
0.2 wm/s. Other combinations of observables are considered
in Sect. 8. The corresponding values for oy are specified in
Eq. (12).

Table 2 contains the list of solutions (without time tags)
actually analyzed in each section.

The experiments listed in Table 2 were usually compared
to the biennial solution ATUB-GRACEOQ2. One should keep
in mind that this solution does not contain time variations
of the gravity field. Our results thus might be obstructed
by this neglect. But as we usually compare two or more
solutions, and are in principle only interested in the mutual
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Table 2 Solutions performed

Comments

Label Section
OGXUP15 4
ORRxxUP15 4
GGCUPmm 5
GGCUP053810 5
GRRxxUPmm 5
GRR14UPmm 5

GRR14UP051610 6

GRR14UP051612 6

GGCNPmm 7

GRR14NPmm 7

GRR14NP051612 7

GRD54UP30 8
GDD84UP30 8
GRG34UP30 8
GRG33UP30 8

Orbit det. using kinematic positions of GRACE-X, X € {A, B, C},
pulses with 15 min spacing, no constraints, accelerometers used.

Orbit det. using only K-Band range-rates pulses with 15 min spacing,
weak constraints, accelerometers used.

Gravity field det. using kinematic positions, pulses with spacing of mm
min, mm € {5, 15, 30} min, with accelerometers, no constraints for
30 min, and 15 min solutions, weak constraints for 5 min solutions.
Gravity field det. using only GPS (GRACE-A and GRACE-B), pulses
with 15 min spacing, with accelerometers, weak constraints.

Gravity field det. using only K-Band range-rates pulses with mm min
spacing, mm € {5, 15, 30} min, with accelerometers, weak constraints.
Gravity field det. using GPS and K-Band range-rates ox gp rr/0pn =
1 x 10_4, pulses with spacing of mm min, mm € {5, 15, 30} min, with
accelerometers, weak/no/no constraints.

Gravity field det. using K-Band range-rates and GPS, pulses with 5 min
spacing, with accelerometers, constraints o, = 1 x 10~ m/s for mean
values and for half differences of pulses.

Gravity field det. using only K-Band range-rates, pulses with 5 min
spacing, with accelerometers, constraints o, = 1 x 10~ m/s for mean
values and 0, =1 X 108 m/s for half differences of pulses.

Gravity field det. using only GPS (GRACE-A and GRACE-B), pulses,
without accelerometers, pulses with spacing of mm min, mm €
{5, 15, 30} min, weak/no/no constraints.

Gravity field det. using GPS and K-Band range-rates, pulses with spac-
ing of mm min, mm € {5, 15, 30} min, with accelerometers, weak/no/no
constraints.

Gravity field det. using GPS and K-Band range-rates, pulses with spac-

ing of Az, = 5 min, without accelerometers, constraints o, = 1 X
10~®m/s for mean values and o,, = 1 x 1078 m/s for half differences
of pulses.

Gravity field det. using GPS and K-Band range differences,
OKBD,rd/0ph =35 X 1074, pulses with 30 min spacing, accelerometer
data used, no constraints.

Gravity field det. using GPS and K-Band range-double-differences,
OKBD,rdd/Oph = 8 X 1074, pulses with 30 min spacing, accelerom-
eter data used, no constraints.

Gravity field det. using GPS and K-Band ranges without correlations,
OKBD,r/0Oph = 3.46 X 1074, pulses with 30 min spacing, accelerometer
data used, no constraints.

Gravity field det. using GPS and K-Band ranges with correlations,
OKBD,r1a/0ph = 2.53 % 1073, pulses with 30 min spacing, accel-
erometer data used, no constraints.

performance of them, this neglect does not affect our main
findings.

4 Standard processing for orbit determination

Orbits are determined separately for GRACE-A and
GRACE-B using only the GPS-derived kinematic positions
as pseudo-observations. Solutions OGAUP15, OGBUPI5,
OGAUA1539 (see Table 2), are solutions of this kind. No
attempt was made here to improve the GPS-derived posi-
tion differences between GRACE-A and GRACE-B, e.g., by
solving for the initial phase ambiguities of the GPS phase
difference observations as recorded by the GRACE-A and
-B receivers. Experiments of this type were performed by
Jaggi (2007).
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Orbits for the constellation may be determined using
the kinematic positions and the K-Band observations. In the
experiments performed in this section the accelerometer
measurements were introduced as empirically given
and the following accelerometer-specific parameters were
determined:

one offset parameter per day in the directions R and W,
e apolynomial of degree ¢ = 3 in the S-direction to absorb
slow time variations of the bias parameter,
e once-per-revolution terms in R, S, and W.

It is in principle possible to solve for a scale parameter. This
option was not used subsequently (mainly due to strong cor-
relations with the once-per-rev parameters).

It is not possible to determine the orbits of the two sat-
ellites by analyzing only K-Band data and to solve for all
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Fig. 1 Left: RMS error of orbit determination using GRACE-A kine-
matic positions (m), GRACE-B kinematic positions (m), GRACE-A
and GRACE-B kinematic positions (m), and K-Band range-rates (m/s,

orbit parameters pertaining to the two satellites—the corre-
sponding NEQ-matrix would become singular. A non-sin-
gular differential orbit determination problem using only the
K-Band observations is defined by solving only for the dif-
ferences po [Beutler et al. 2010, Egs. (33)] of the orbit and
stochastic parameters pertaining to the satellites, GRACE-
A and GRACE-B, and by slightly constraining the differ-
ences of the corresponding orbit parameters to the a priori
GPS-derived orbit parameters. This scheme makes sense,
because the K-Band observations are only very weakly
dependent on the mean values p; of the orbit parameters
and because they are almost uniquely sensitive to the
S-direction (see Egs. (33)). The K-Band-only solution bears
the label ORRxxUA 153912, “xx” standing for a zero weight
on the GPS NEQs. The square of the ratio of the GPS-
and K-band-only RMS values a posteriori may subsequently
serve as the weight factor when combining GPS- and K-Band
NEQs.

Figure 1 (left) shows the RMS errors a posteriori [GPS
L1 phase observable, see Beutler et al. 2010, Sect. 3.2] of
the daily orbit determination steps OGAUP15, OGBUP1S5,
OGCUP15, and ORRxxUP15 (the latter multiplied by a fac-
tor of 10%) as a function of the day of the year. The RMS
errors of the GPS-only solutions for GRACE-A and GRACE-
B reveal essentially the same pattern as a function of time
as the two satellites have almost identical properties, are in
nearly the same orbital plane and observe simultaneously
the same GPS satellites. Figure 1 (left) shows in addition
the RMS of the GPS-only solutions using the GRACE-A
and GRACE-B GPS-data together (solution OGCUP15, label
GRACE-C). The latter RMS errors were used as o, to derive
the ratio o',fb i/ agh for each day.

Figure 1 (right) shows the day-specific ratios crkzb J/ agh for
the GPS- and K-Band-specific NEQ contributions derived
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Fig. 2 Residuals of K-Band range-rate observations (jum/s) using a
pulse spacing of 15 and 5 min, respectively, DOY 62

from the RMS errors of solutions OGCUP15yyddd and OR-
RxxUPyyddd in Fig. 1 (left). These values are used when
analyzing GPS- and K-Band range-rate data together and
parametrizing the orbits with pulses (spacing of 15min, no
constraints). Figure 2 shows that the pattern of the range-rate
residuals and the corresponding RMS error depends some-
what on the spacing of the pulses. The systematic effects still
present in the solution with a spacing of 15 min obviously can
be absorbed to some extent by reducing the spacing from 15
to 5 min.

As the orbit and gravity field determinations are not very
sensitive to small variations of the weight ratio within, let
us say, a factor of 3, a general ratio of agh/agh = 108572
will be used subsequently. Note that this ratio does not give
the best consistency of our gravity fields with those of other
GRACE analysis teams. Values of the order of okzb i/ cr]%h A
10719572 in essence de-weighting the GPS-contributions,
make our results more consistent to those of other groups.
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This issue is, however, not of interest for the subsequent
experiments.

Figures 1 and 2 document the simplest analysis scheme in
orbit (and gravity field) determination, the short-arc scheme:
The daily arc is subdivided into contiguous short arcs of
At, min, where A, = 15 min in the example. A simi-
lar experiment was performed by replacing the pulses by
piecewise constant accelerations with the same spacing as the
pulses. Slightly smaller ratios of about okzb g /U,%h

(0.5-1.5) x 1078 s72 could be achieved.

5 Standard processing for gravity field determination

Gravity field analysis may either be based on the GPS alone
or on a combination of the GPS and the K-Band observables.
Although this is not really correct, one may also use only the
K-Band NEQs to derive a gravity field in analogy to the dif-
ferential orbit determination strategy introduced in Sect. 4.
Solutions of this kind will be generated here in order to vali-
date the K-Band-only and the GPS-only contributions of the
estimated gravity fields. As in Sect. 4 the accelerometer mea-
surements are used as empirically given deterministic values.
The same accelerometer-specific parameters are determined
as in Sect. 4.

In this section the CMA is used to determine the spherical
harmonics coefficients between the degrees 2 < i < 60. The
terms of degrees 61 < i < 150 are taken over and kept fixed
from the solution AIUB-GRACEOQ2Sp. The coefficients of
degree n > 150 are set to zero. No constraints or regulariza-
tions are put on the estimated gravity field parameters. The
observations of DOY 50-99/2007 are used in this section—as
in Sect. 4.

Gravity fields determined only by the kinematic positions
are documented in Fig. 3. All solutions are based on pulses
in R, S, and W with a spacing of 5, 15 and 30 min, respec-
tively. The solutions are compared to the biennial solution
AIUB-GRACEOQ2S using Eq. (1). For reference purpose the
solution EIGEN-05S (Forste et al. 2008) is included, as well.
The pulses are unconstrained for the solutions based on the 15
and 30 min intervals. It was necessary to put weak constraints
of 10~* m/s on the 5min solution to avoid true singularities
due to data outages, because a linear dependency is intro-
duced if two pulses are set up at times 7, and 7, and if there
are no kinematic positions in the interval [z,, t,]. The con-
straints imposed on the 5min pulses are weak enough not to
influence the resulting gravity field significantly. The solid
lines in Fig. 3 show the difference degree amplitudes of the
three short-arc solutions w.r.t. the biennial solution AIUB-
GRACEO2S. The quality of the three solutions is almost the
same between the degrees 15 < i < 50. The lower degrees
agree better with AIUB-GRACEOQ2S for a wider spacing of
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Fig. 3 Difference degree amplitudes w.r.t. AIUB-GRACEOQ2S (solid)
and error degree amplitudes (dash-dot) of GPS-only gravity fields based
on short-arcs of 5, 15, and 30 min length; EIGEN-05S difference degree
amplitudes w.r.t. AIUB-GRACEO2S included for reference

the pulses, for the degrees n > 50 the opposite is true. The
dash-dot lines in Fig. 3, showing the error degree amplitudes
according to Eq. (3), explain the quality patterns of the three
solutions for the low degree terms: setting up more and more
unconstrained or only weakly constrained pulses does not
allow it to the parameter estimation process to distinguish
between the long-wave gravity field terms and a long wave-
length signal, which may be absorbed by the pulses. This
has to be expected, because signals with periods P > Az,
may very well be absorbed by the pulses. One might ask the
question whether the offset between the three curves is signif-
icant. Both answers, positive and negative, may be given: The
dash-dot curves in Fig. 3 are computed from the RMS errors a
posteriori, i.e., they reflect the product of the estimated mean
error a posteriori of the observations and the square roots of
the diagonal elements of the corresponding cofactor matrix,
the inverse NEQ matrix. In a covariance study based on the
white noise assumption one would replace the three RMS
errors a posteriori by one and the same RMS error a priori.
In this case the three error degree amplitudes would practi-
cally coincide in the interval of degrees 15 < n < 50. In the
presence of biases in the kinematic positions more and more
of the low-frequency systematics may be absorbed by the
pulses, implying that the mean errors a posteriori decrease
with decreasing pulse separation At, (1.89,1.36,0.89mm
for At, = 30, 15,5 min in our case) —and the three error
degree amplitude curves should be different. The “abnormal”
behavior of the error degree variances for the degrees 59 and
60 is caused by the cut-off degree n = 60 in the estimation
process.

Figure 4 shows that GPS determines the sectorial terms of
the gravity field much better than the zonal terms, because
the sectorial terms generate long-wave perturbations along a
polar orbit. Figure 4 shows that the RMS errors of the grav-
ity field coefficients drop by 1-3 order of magnitude from
the zonal to the sectorial terms. This fact indicates that the
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Fig. 4 Formal RMS errors of spherical harmonics coefficients (loga-
rithmic scale) of solution GGCUP15

difference degree amplitudes and the corresponding error
degree amplitudes in Fig. 3 usually are dominated by the
error amplitudes in the (close to) zonal terms.

Instead of introducing and solving for the two satellite-
specific orbit and stochastic parameter sets 0; and o; their
mean values py = (07 4+ 03)/2 and half differences
P2 = (01 —07)/2 are used as parameters in the CMA [Beutler
etal. 2010, Eq. (33)]. This parameter transformation has sev-
eral advantages. Here we make use of the fact that pj is almost
uniquely determined by the GPS observations, whereas p2
is mainly determined by the K-Band observations. There-
fore, the mean values p; were left out (i.e., kept fixed on
the a priori values determined by GPS) from the full set of
orbit and stochastic parameters for the K-Band-only solu-
tion. Weak constraints were put on the parameters py, i.e.,
on the pulse differences and on the differences of the orbit
elements. The following constraints were applied on half
the differences of the initial osculating elements and of the
pulses: 6, = Imyo, = 1 x 1073, 0; = 0q = 0, =
0. = 10arcsec, og = o5y = ow = 107> m/s. The symbols
a,e,i, 2, w,u stand for the semi-major axis, the numeri-
cal eccentricity, the inclination of the orbital plane w.r.t. the
equatorial plane, the right ascension of the ascending node,
the angular distance of the perigee from the ascending node,
and for the argument of latitude, respectively; the symbols
R, S, and W stand for velocity changes (pulses) in the radial,
along-track, and out of plane directions. All elements refer
to the initial epoch. For more details please consult Beutler
et al. (2010).

The solid lines in Fig. 5 show the degree difference ampli-
tudes of the solutions with 5, 15 and 30min pulse spac-
ing w.r.t. the solution AIUB-GRACEOQ2S, the dash-dot lines
show the corresponding error degree amplitudes. The three
solutions obviously are highly consistent with AIUB-
GRACEOQ02S. The consistency increases with the pulse
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Fig. 5 Difference degree amplitudes w.r.t. AIUB-GRACEQ2S (solid)
and error degree amplitudes (dash-dot) of range-rate-only gravity fields
based on short-arcs of 5, 15, and 30 min length
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Fig. 6 Difference degree amplitudes w.r.t. AIUB-GRACEOQ2S (solid)
and error degree amplitudes (dash-dot) of GPS-only (zonal: red, secto-
rial: green) and K-Band (range-rate)-only (blue zonal, black sectorial)
coefficients based on short-arcs of 15min length

spacing. The error degree amplitudes are in turn roughly con-
sistent with the degree difference amplitudes.

A comparison of Figs.3 and 5 shows that K-Band has
a much higher potential to contribute to a combined grav-
ity field and that the combined gravity field in general is
dominated by the K-Band contribution. The contribution is,
however, substantially different for different types of har-
monic coefficients. Figure 6 illustrates this fact for the 15 min
short-arc solutions: The solid lines of Fig. 6 (red: GPS, blue:
K-Band, range-rate) show the degree differences of the zonal
terms w.r.t. AIUB-GRACEQ2S, the dash-dot-lines of the
same color the corresponding error degree amplitudes. The
green and black lines in Fig. 6 give the same information for
the sectorial terms, where green corresponds to GPS, black
to K-Band. GPS obviously cannot contribute much to the
zonal terms above degree n ~ 5. It has, however, the poten-
tial to contribute up to degree n =~ 60 (and beyond) to the
determination of the sectorial terms.

Figure 6 also tells that it is difficult to assess the mutual
benefits of the GPS- and K-Band technique for gravity field
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determination. The sole use of the difference degree ampli-
tudes (1) is not sufficient for a refined analysis.

The next series of solutions combine GPS and K-Band
NEQs using the weight ratio of Ugh/olzbd = 10%s2. They
may be considered as the normal or standard GRACE solu-
tions. The results are expected to improve w.r.t. those obtained
using only GPS or K-Band. Figure 7 shows that this is the
case, but not by a large margin (when compared to the
K-Band-only contribution). For reference, the correspond-
ing solutions based only on K-Band are included (dash-dot
lines, same color).

The pattern is rather similar for both types of solutions.
The combined solution is slightly superior, in particular for
the low degree terms.

The differences between the K-Band-only and the com-
bined solution are shown in Fig. 8 for a 15 min spacing of the
pulses. The differences show maximum (absolute) values for

10° [ [—GRR14UPO5
- = GRRxxUP05
—GRR14UP15
v |'=="GRRxxUP15
o L & |~—GRR14UP30 .
10 b | - - GRRxxUP30
10—10 E
10’11 1 1 1 1 1 ]
0 10 20 30 40 50 60
degree n

Fig. 7 Difference degree amplitudes w.r.t. AIUB-GRACEOQ2S of the
combined GPS- and K-Band (range-rate)-solution (weight ratio =
1 x 10%); Corresponding K-Band-only solutions included for reference
(dash-dot)
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c
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-13
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-14
6or -15
70 . . . . . . . , B 16
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Fig. 8 Difference between spherical harmonic coefficients of

combined and K-Band-only solutions (short-arcs of 15min) (weight
ratio = 1 x 10%)
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the (close to) sectorial terms, whereas the differences are on
the RMS level or below for the (close to) zonal terms—except
for the terms of very low degree.

Figure 8 shows that GPS has a significant impact on the
gravity field determined from the data of the GRACE mis-
sion, provided the ratio O’I%h /akzb 4 1s defined according to

Sect. 4. For G;h / Ukzb 4 —> 00 the combined gravity field will
asymptotically approach the K-Band-only case.

6 Constraining pulses or accelerations in the CMA

Figure 7 showed that the consistency of the 50-day solution
with solution AIUB-GRACEOQ2S increases with increasing
spacing At, of the pulses, which points to an over-param-
etrization when reducing the pulse spacing to values below
10min. As mentioned it was necessary to weakly constrain
the pulses for the Smin solution in order to avoid true sin-
gularities. Whereas constraining was only applied to avoid
singularities in Sect. 5, this option is used here to constrain
the pulses as tightly as allowed by the “physical facts”.
Figure 9 shows the difference degree amplitudes of two
constrained solutions based on the 5min pulse solution. In
solution GRR14UP051610 (red curves) all pulses are con-
strained to o, (At) = 10~%m/s (RMS error a priori of
the range-rate observations og = 2 X 107 m/s), in solu-
tion GRR14UP051612 (blue curves) the mean values of the
pulses [see Beutler et al. 2010, Eq. (33)], are constrained to
the same value of o,, (At), and half of the differences of
the pulses are more tightly constrained to 10~8 m/s. Note
that velocity changes of 107®m/s with a spacing of 300s
are roughly equivalent to piecewise constant accelerations
of 107°/300 & 3.3 x 10~ m/s> with the same spacing [see
Beutler et al. 2010, Eq. (17), a value which is clearly above
the value recommended by Beutler et al. 2010, Eq. (19)]. The

—GRR14UP051610
10—9 N —GRR14UP051612
- - GRR14UP05

== GRR14UP15

0 10 20 30 40 50 60
degree n

Fig. 9 Difference degree amplitudes of combined and constrained
short-arc solutions (short-arcs of 5 min) w.r.t. AIUB-GRACEO2S. 5 and
15 min unconstrained solutions included for reference (dash-dot curves)
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large value allows it to absorb possible systematic effects in
the kinematic positions emerging from GPS. The constraints
applied to the pulse differences are two orders of magni-
tude smaller than the constraints applied to the mean values
of pulses for solution GRR14UP051612, assuming that the
errors to be absorbed by the pulses are highly correlated for
GRACE-A and GRACE-B.

For reference the unconstrained (weakly constrained)
solutions for the 5 and the 15min short-arcs are included,
as well (green and black curves). Constraining a parameter
to zero with infinite weight is equivalent to leaving it out from
the solution. This explains why the solutions GRR14UP-
051610 and GRR14UP051612 are closer in quality to the
GRR14UP15 solution (i.e., to the unconstrained 15 min solu-
tion). Observe that the consistency with AIUB-GRACEOQ2S
is best for solution GRR14UP051612.

In analogy to Sect. 4 we should generate and discuss the
solutions based on piecewise constant, constrained acceler-
ations (as opposed to pulses). As the results are very close to
those based on pulses—provided the constraints are adapted
according to (Beutler et al., 2010, Egs. (17))—this discussion
is skipped.

7 Using accelerometer data in the CMA

Figure 10 shows the accelerometer values for DOY 90/2007
(mean offsets removed, left: full day, right: 3-h detail view)
in m/s? from top to bottom in the R-, S-, and W-directions for
GRACE-A (red), GRACE-B (blue), and for the differences
GRACE-A minus GRACE-B (green). The original measure-
ments were transformed from the instrument frame to refer to
the R-, S- and W-directions. The GRACE-B data were more-
over shifted by At = 428 s before taking the differences (At
varies slowly from day to day). This time shift of the GRACE-
B data makes the differences GRACE-A minus GRACE-B
refer (roughly) to the same point in space. Assuming that
the atmosphere and the insolation did not change much dur-
ing At = 28s and that the spacecrafts were not acceler-
ated artificially during this time interval (e.g., by thruster
firing), the accelerometers of the two satellites should mea-
sure almost the same signal and the difference of the series
should be at least an order of magnitude smaller than the
individual signals measured by the GRACE-A and -B accel-
erometers.

Figure 10 shows that this expectation is best met for S,
not so well for R, and not at all for W (all figures are drawn
using the same scale). The difference signal in S is gen-
erally well below the 10~° m/s? level (after removal of a
constant offset) and the small spikes usually may be attrib-
uted to one of the two satellites. In R, the signal common
to both spacecrafts is clearly visible, but frequent spikes on
the level of about 1 — 2 x 1078 m/s? (attributable to one of

the two satellites and thus not reduced by forming the dif-
ferences) do occur. In the W-direction the “true” difference
signal is heavily affected by pulses frequently reaching val-
ues of > 5 x 1078 m/s?. The characteristics of the spikes
is visible particularly well in Fig. 10 (right). By consult-
ing the thruster information file (THR1B*-files), described
in Bettadpur (2007), one can associate virtually all of these
spikes in R, S, and W by (series of) thruster firings leaving
their traces in the accelerometer data files. The crucial ques-
tion is of course, whether these accelerations are real or not.
Based on studies of many figures of type Fig. 10 the accel-
erometer measurements in the W-direction were excluded,
because

e the pattern observed for DOY 90/2007 is typical for all
other days of our data set;

e it cannot be excluded that the significantly larger sizes
of the spikes in W are due to the reduced measurement
accuracy in this direction (Touboul et al. 1999);

e the W-measurements only have a small impact on the
K-Band measurements.

Tests made using and not using the W-accelerations did not
reveal significant quality differences.

The differences of the along-track accelerations of
GRACE-A and GRACE-B govern the time development (due
to the non-gravitational forces) of the distance between the
satellites. The differential along-track signal in Fig. 10 (mid-
dle row, green) shows the differential signal (essentially) at
the same location. For describing the inter-satellite distance
the plain difference without time shift has to be used. The
corresponding figure was not included in the interest of short-
ening the article.

Our solutions use accelerometer data in a naive sense, by
just interpreting the data in the accelerometer files as values
of a given empirical function in the numerical integration
process. Parameters which may be considered as accelerom-
eter-specific in the CMA are: offsets and once-per-revolution
parameters for the R-direction, a polynomial of degree ¢ = 3
and once-per-revolution parameters for the S-direction. The
pulsesin R and S may be viewed as accelerometer-specific, as
well. Constant, once-per-revolution parameters, and pulses
are also set up for the W-direction. As the accelerometer
measurements in the W-direction are not used, the mentioned
parameters define the empirical accelerations in the W-direc-
tion. In solutions not making use of accelerometer data the
same parameters in the R- and S-directions are set up as in
the solutions using accelerometer data, but the interpretation
is different: they are now the parameters of the empirical
acceleration model in R and S.

For gravity field estimation without and with accelerome-
ters the pattern set in Sect. 5 is followed: first, the GPS-only
solutions without using accelerometer data are generated and
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Fig. 10 Accelerometer measurements in R-, S-, and W-directions for GRACE-A, GRACE-B and the difference GRACE-A -B, time shifted to
refer the measurements to “the same” point in space. Left: full DOY 90/2007, right: 4"=7", same day

compared to the corresponding solutions making use of the
accelerometer data. Then, the same analysis is performed
with the combined GPS- and K-Band solutions. Apart from
not using the accelerometer data the background models and
the parametrization for the new solutions are identical with
those documented in Sect. 5. We thus expect to isolate the
net impact of the accelerometer data.

@ Springer

Let us start with the GPS-only results: there is no visible
effect in the difference degree amplitudes, when compar-
ing the solutions with and without accelerometer data with
an analogue to Fig. 3. Small differences do, however, exist.
Figure 11 visualizes these differences (absolute values, loga-
rithmic scale) for the 15 min solutions using a color code. We
conclude that the accelerometer data have very little impact
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Fig. 11 Effect of the accelerometer data on spherical harmonics coef-
ficients for the 15 min GPS-only solutions (absolute values, logarithmic
scale)

on the quality of the gravity field using only the GPS mea-
surements. This result confirms the findings of Ditmar et al.
(2007) and Prange et al. (2009).

Figure 12 (left), showing the difference degree ampli-
tudes w.r.t. solution AIUB-GRACEOQ2S for the three short-arc
solutions with a spacing of pulses of At = 5, 15, 30 min
neglecting the accelerometer data (solid lines) and the cor-
responding solutions making use of the accelerometer data
(dash-dot lines), underlines that the accelerometer measure-
ments have a significantimpact on gravity field determination
when using in addition K-Band range-rates, but that solutions
of good quality may also be generated without using these
measurements. This result confirms the finding of Jiggi et al.
(2010). The quality gain is more pronounced for the higher
degrees than for the lower degrees, because the accelerome-
ter-specific parameters successfully remove the low-, but not
the high-frequency systematics. The impact of the acceler-
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Fig. 12 Combined GPS- and K-Band solutions (weight ratio 1 x
108 s2). Left: Difference degree amplitudes w.r.t. ATUB-GRACE02S
(solid lines solutions without accelerometers, dash-dot lines solutions

ometer data becomes more and more prominent with increas-
ing spacing At of the pulses. For the 30 min-arcs the level
of the degree difference amplitudes w.r.t. AIUB-GRACEOQ2S
is reduced by about 0.15-0.30 in the logarithmic scale, cor-
responding to a factor of about 1.4-2.0 in the numeric scale.
Figure 12 (right) visualizes the differences of the individual
terms estimated with and without the use of the accelerom-
eter data. The differences are very small for the low order
terms, they are rather pronounced for the (close to) sectorial
terms and the low-degree terms.

8 Analyzing K-Band ranges, range-rates,
and range-differences

All solutions involving K-Band were till now based on the
range-rate observable without modeling the mathematical
correlations between the observations. Alternative solutions
are studied in this section and they are put in relation to
the range-rate solution. Table 3 lists the processing options
offered by the CMA. Let us point out that all experiments
performed here are based on the assumption of white noise
for the original Level-1A range data. Some results involv-
ing difference degree amplitudes might be slightly different
(worse) when dropping this assumption. The results involv-
ing error degree amplitudes are not affected.

Range (options R and RC), range-differences (options
RD and D D), or range-rate (options RR and RRC) may be
used as the basic K-Band observables. Options R, RD, DD,
and RR disregard the mathematical correlations introduced
by the filtering process to generate Level 1b from Level 1a
data [Beutler et al. 2010, Sect. 3.3], options RRC and RC
take them into account. The generic formulas for filtering are
represented by (Beutler et al., 2010, Eqgs. (6)). The resulting
weight matrices for range and range-rate Level 1b data are
given by (Beutler et al., 2010, Egs. (8) and (9)), respectively.
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with accelerometers); right: difference of estimated spherical harmonics
coefficients with and without accelerometer data for the 15 min solution
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Table 3 CMA processing options for K-Band Analysis

Option Correlations K-band observable

RR No Range-rates

R No Ranges

RD No Range differences

DD No Range-double-differences
RRC Yes Range-rates

RC Yes Ranges

The explicit GRACE filter formulas are given in Thomas
(1999).

Formulas (8, 9) in Beutler et al. (2010) suggest that a cor-
rect processing of a batch of Level 1b K-Band data (in our
case a batch corresponds to one day) implies a fully populated
weight matrix P for range and P’ for range-rate, respectively,
where the dimension of the weight matrices equals the num-
ber of observations. This dimension is d = 86,400/5 =
17,280 when analyzing a full day of 5s data. It is in prin-
ciple trivial to implement a procedure to handle correlations
correctly. Such procedures will, however, become rather inef-
ficient when data spans of the order of one day or more are
dealt with. To the best of our knowledge, nobody made the
attempt to implement correct correlations over intervals of
this length. We do not have the intention to do that either—
also based on the results of this section.

It is, however, easily possible to subdivide the entire time
interval into shorter subintervals of, let us say, 30min to
2 h, and to use the correct correlation matrices P or P’ within
these subintervals. This subdivision may, but need not, be
synchronized with the stochastic epochs ;. This procedure
has to be understood in the CMA under options RC and RRC
for ranges and range-rates, respectively, where the length of
the subintervals is set by the user. In order to get a first idea of
the relevance of correlation modeling the matrices P and P’
are visualized for a time interval of 30 min and a data spacing
of At =5s.

Fig. 13 Weight matrices for a
time interval of 30 min with
At = 5s data spacing (left

@ Springer
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Figure 13 (left) shows that the weight matrix P for range
is “almost diagonal”. It is even closely related to P ~ s x U,
where s is a positive scaling factor and U is the unit matrix,
where the dimension equals the number of K-Band observa-
tions in the subinterval. Using either matrix P or its approx-
imation (scaled unit matrix) therefore cannot have too much
of an impact on the results. Options R and RC therefore are
expected to give similar results. Evidence for this statement
will be provided later in this section.

Figure 13 (right) shows that the weight matrix P’ for
range-rate is far from diagonal. Therefore, one concludes at
first sight that correlations must be taken into account when
analyzing this observable. One may ask the question, how-
ever, whether option RRC is needed at all, when options
R and RC are available: Apart from first and higher order
terms in At range-rate equals range-difference between sub-
sequent ranges divided by the time difference Az separating
the ranges

_ Pit1 — pi

A T O(An), “

where At = 5s for the GRACE Level 1b data. To the same
order in Ar the second time derivative of range may be
approximated as

_ Pi2 = 2pit1 + pi

o + 0(AD). )

Equation (5) simply says that analyzing range-double-dif-
ferences and range-accelerations (both without taking cor-
relations into account) must give almost identical results—
assuming that the factor Ar? is taken into account in the
weight matrix when combining the GPS- and K-Band-spe-
cific NEQs. With option DD it is thus possible to obtain
(almost) identical results as those, which would emerge in an
analysis of range-accelerations. The CMA is thus “in princi-
ple” capable of generating orbits and gravity fields based on
ranges, range-rates and range-accelerations using the options
R, RD, DD. Gravity fields based on the R, RD, and DD

X
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options will be provided at the appropriate place in this sec-
tion. Equation (4) has the following messages:

e The processing options RR and RD are closely related.
One obtains, as a matter of fact, almost identical gravity
fields (evidence provided below) when using weight fac-
tors for the GPS/K-Band combination of NEQs according
to Eq. (4) when analyzing range-rate or range-differences
(both without modeling correlations), respectively.

e The simultaneous use of ranges and range differences
adds no independent information to an analysis based on
ranges, because the latter observables are linear combina-
tions of the former—if the weights of the range-difference
observations are calculated by applying the law of error
propagation to the linear combination of ranges on the
right-hand side of Eq. (4).

e The situation is different, if the weights are set in a dif-
ferent way, e.g., by assigning a much higher weight to
range-differences as compared to ranges (than that emerg-
ing from Eq. (4)). The CMA allows it to combine range,
range-rate solutions, range-accelerations on the NEQ-
level with user-defined weights. This option was, how-
ever, not studied in this work.

e Equation (4) helps to understand Fig. 13 (right): assum-
ing that the Level 1b ranges are independent (not too bad
an assumption by virtue of Fig. 13 (left)) with variance
o2 = 1, the relation between the range differences and
the ranges reads as

-11 0...0 0
0 —-11...00
Ap = p=Dp. (6)
0 0..—-110
0 0...0—-11

Under the assumptions mentioned the covariance matrix
of the range-differences is cov (Ap) = DD, a block
diagonal symmetric matrix with only the diagonal and the
adjacent elements to the diagonal different from zero. Its
inverse (DDT)’I, however, has almost exactly the shape
of Fig. 13 (right)! The shape of matrix P’ is thus mainly
determined by forming the time differences of the Level
1b ranges and does not have much to do with the filter-
ing process to generate the Level 1b range-rates from the
Level la ranges.

Based on these facts options R and RRC are expected to
provide almost identical results:

1. Biased ranges without correlations (option R) and range-
differences with weight matrix (DD7)~! (not available

as a separate option in the CMA) will inevitably lead to
identical results.

2. Because of Eq. (4) the analysis based on range-rate using
the correlation matrix Ar> (DD”)~! will generate, apart
from terms of higher than second order in At, identical
results as that based on range-differences with matrix
(DD7)~! as weight matrix.

3. As the correct weight matrix for range-rates and its
approximation Ar> (DD7)~! are very similar, we are
eventually allowed to conclude that options R and RRC
must give almost the same results, as well (evidence pro-
vided below).

As we have already dealt with option R R, we can in prin-
ciple only hope for the analysis of ranges (options R and RC)
to achieve better (more carefully: other) results than with an
analysis based on option RR. As options R, RD, DD, RC,
and RRC are of theoretical interest, as well, we include
one gravity field solution based on range-differences, one on
range-double-differences, one based on ranges using correct
correlations, one based on range-rates using correct correla-
tions, and a few solutions based on ranges without modeling
correlations.

The gravity fields are determined, to the extent possible,
in a way consistent with that of Sect. 5 based on option RR:
For this purpose the statistical information (weight ratio of
GPS and K-Band and a priori RMS of the weight unit) from
option RR is transformed into information suitable for pro-
cessing range-differences, range-double-differences, ranges,
and range-rates with correlations. Options R and RD, both
neglecting correlations, will be used to analyze range and
range-difference data, respectively. In Fig. 1 we found

_6N 2
(kabd,rr)z — (M) ~1.0x 1078572 (N

Oph 2 x 103

Using Eq. (4) we translate this relation into the following
ratio for range-differences spaced by At = 5s:

2 -6\ 2
5x0.2x 10
(okbd,rd) 2(%) ~25% 1077, (8)
O ph 2 x 10~

Assuming that the ranges needed to form the range differ-

ences are independent—in view of Fig. 13 (left) this is not
too far from the truth—we are left with

(20er) - (ﬁ/z_w) ~2x107

Oph 2 x 1073

for the individual Level 1b ranges. We can now easily
add the consistent weight ratio when analyzing weight
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double-differences (the factor /6 follows from Eq. (9)):

2
(Ukbd,rdd)z . (0.7 x 1070 x \/6) ~72 % 10-7

Oph 2 x 1073
(10)
When using options RC and R RC the K-Band RMS refers
to the Level larange. In order to get comparable results with

the other solutions one has to modify the ratio for combining
the K-Band range and GPS NEQs according to

Okbdria )" (7-25x 0.7 x 107°
Oph 2 x 103

2
) ~ 6.4 x107°

(11)

The factor of 7.25 of noise reduction from Level 1a to Level
1b ranges and range-rates may be extracted from the concrete
filter formulas in Thomas (1999). An order of magnitude cal-
culation gives approximately the same answer: the GRACE
filter for generating Level 1b ranges may be very crudely
approximated by a moving average over a 5s interval con-
taining 50 observations. The RMS of the mean value would
thus be +/50 ~ 7.1.

The RMS values a priori for the individual observables
are:

Oph = 2mm

Okbd,r,la = S M

Okbd,r = 0.7um 12)
Okbd,rd = 1.0 pm

Okbd,rdd = 1.7 pm

Okbd.rr = 0.2um/s

Figure 14 shows the difference degree amplitudes of the
range-difference solution GRD54UP30 w.r.t. the range-rate
solution GRR14UP30. The former solution was produced
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Fig. 14 Difference degree amplitudes of solution GRD54UP30 w.r.t.
solution GRR14UP30, solution AIUB-GRACEOQ2S included for refer-
ence
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with option R D, the latter with R R. Both solutions are based
on pulses with a spacing of 30 min and ignore correlations.
The differences are well below the difference degree ampli-
tudes between solutions AIUB-GRACE(O2S and GRR14
UP30 (by a factor of 10 or more), which represent the con-
sistency of solutions GRR14UP30 and/or GRD54UP30 with
the biennial solution AIUB-GRACEOQ2S. The message of this
figure is simple: Options RR and R D generate close to iden-
tical results when using Egs. (8) and (7), respectively, for
the mutual weighting of the K-Band and GPS-NEQ con-
tributions. Consequently, it would not have been necessary
to include range-rate (neither range-acceleration) in the
GRACE Level 1b data. This result is of interest, as well,
because the analysis of range-differences is a way to circum-
vent the numerical differentiation process for generating the
range-rate observable from ranges (see Beutler et al. 2010,
Eq. (6)).

Figure 15 shows that the correct modeling of correla-
tions or the assumption of independently measured Level 1b
ranges, respectively, does not matter from the standpoint of
the practitioner: The difference degree amplitudes between
the two solutions in Fig. 15, generated with options R and
RC, are well below the degree difference amplitudes of the
individual solutions (with or without correct correlation mod-
eling) w.r.t. the biennial solution ATUB-GRACEOQ2S.

Figure 16 compares the range solution GRG33UP30 (ref-
erence) with correct correlations with the range-rate solu-
tion GRR33UP30 with correct correlations. The difference
degree amplitudes of the biennial solution AIUB-GRACE
02S with solution GRG33UP30 are included for reference.
The two solutions with correct correlations generated with
options RC and RRC, respectively, may be considered as
equivalent from the point of view of the practitioner. As we
already showed the equivalence of options R and RC we may

== GRG34UP (no corr)
6 e — GRG34UP (with corr)
10° - - AIlUB-GRACE02S
10°
L B U ORI
10t \M
10 . . L L 1 )
0 10 20 30 40 50 60
degree n

Fig. 15 Difference degree amplitudes of solution GRG33UP30 (with
correlations) w.r.t. solution GRG34UP30 (without correlations), solu-
tion AIUB-GRACEOQ2S included for reference
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Fig. 16 Difference degree amplitudes of solution GRR33UP30
(range-rate with correlations) w.r.t. solution GRG33UP30 (range with
correlations), solution AIUB-GRACEO2S included for reference
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Fig. 17 Difference degree amplitudes of solutions GRG34UP30,
GRD54UP30, GDD84UP30 w.r.t. solution AIUB-GRACEQ2S; Error
degree amplitudes of the three range solutions included (a priori RMS
values used to define weights)

also conclude thatoptions R, RC, and RRC are equivalent—
provided the parametrization is the same and the mutual
weighting of the K-Band and GPS contributions follows the
rules of this section. The result is based on the assump-
tion that the Level 1b ranges and range-rates are derived
from one and the same set of Level 1a ranges. If range rates
were measured independently (and not generated by taking
the derivatives of the ranges), the result would be differ-
ent.

Figure 17 shows the consistency of the solutions pro-
duced with options R, RD, DD with the solution AIUB-
GRACEO02S. Having shown that the solutions RD and RR
are equivalent (see Eq. (4) and Fig. 14) and that the analysis
of range acceleration and of range-double-differences (see
Eq. (5)) are equivalent, Fig. 17 also illustrates the mutual val-
ues of the range, range-rate, and range-acceleration observ-

ables. The solid lines illustrate what was achieved in relation
to the solution AIUB-GRACEOQ2S (a) with the range solution
(R, red), (b) the range-difference solution (R D, blue), and
(c) the range-double-difference solution (DD, green). The
three alternative K-Band contributions were combined indi-
vidually with the GPS contribution using the weight ratios
in Eq. (9) for range, in Eq. (8) for range-difference, and in
Eq. (10) for range-double-difference. Except for the range
biases in the range solution R the parametrization was the
same in the three solutions (unconstrained pulses with a
spacing of 30min, correlations of the K-Band observables
ignored). The range-difference solution (R D, blue, solid line)
is clearly the best choice for the particular parametrization,
followed by R (red, solid) in second and D D(green, solid)
in the third place. The range solution R and the range-dou-
ble-difference solution D D are of lesser quality (consistency
with the biennial solution), for different reasons, however.
This becomes clear by comparing the error degree-ampli-
tudes (dash-dot lines) of the three solutions, generated with
the RMS errors a priori in Eq. (12), with the corresponding
difference-degree amplitudes (solid lines, same color). The
two green curves are close to each other, implying that the
range-double-difference observable is not capable of provid-
ing more information, but also that the white noise dominates
systematic errors. The R solution (red) promises excellent
results (dash-dot), provided the model adequately represents
the ranges on the 0.7 wm level. This is obviously not the
case—by almost two orders of magnitude! The R D solution
is a good compromise from the point of view of the practi-
tioner: the theoretical expectations (blue, dash-dot) and the
achieved accuracies (blue, solid) are not too far apart. The
actual differences between the three solutions are relatively
small for low degrees, because the GPS-contribution, which
has a large impact in this domain, is the same in the three
solutions.

9 Analysis of the K-band residuals

Let us further explore the characteristics of two solutions
performed in the previous section, which were based on
option R. Figure 18 shows the range residuals without (red)
and with (blue) using accelerometer data of an orbit determi-
nation experiment for DOY 62/2007 based on pulses spaced
by 30 min. Whereas the reduction of the range-rate residuals
was of the order of 10% when using the accelerometer data in
the case of range-rates (not shown), the corresponding gain
is more than a factor of 2 (>100%) in the case of ranges.
The range observable obviously is much more susceptible
to acceleration-induced model deficiencies than the range-
rate observable. This goes hand in hand with the “promised”
higher accuracy when using the ranges under the assump-
tion that there are no systematics on or above the level of the
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Fig. 18 K-Band range residuals, DOY 62/2007. Gravity fild determi-
nation without (red) and with (blue) accelerometer data

accuracy of the range measurements (see Fig. 17). System-
atic effects (periodic excursions with periods of few minutes)
are dominating the range residuals in Fig. 18. This was not
the case when using option RR (see Fig. 2). This differ-
ence explains, as well, why the analysis of range (be it for
orbit or gravity field determination) is less successful than
the analysis of range-rate. Despite the fact that a covariance
analysis tells that the range observable should lead to much
better results than the range-rate observable, the results are
slightly inferior, because range is much more prone to (force)
model deficiencies. This insight can be underpinned with the
following thought experiment. Let us assume that there is a
(non-modeled) effect

N 27
Ap =& cos —t (13)
P
of period P and amplitude £ in the inter-satellite accelera-
tions. Such a periodic signal approximately invokes a signal
of the following kind in range-rate and in range, respectively,

Amplitude spectrum range-rate
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21 14
|Ap| = gn)‘z cos 27”t (14

implying that the amplitudes in the observables, as compared
to the amplitude in the acceleration, are multiplied by a fac-
tor of P/(2m) (changing the units of the amplitude from m/s
to m/s) for range-rate and by the square of this value for
range (changing the units of the amplitude from m/s” to m).
A non-modeled acceleration with amplitude £ = 1 x
10~% m/s? and period P = 600 thus translates into a non-
modeled effect in the range-rate residuals of 9.5 x 1078 m/s,
and into a non-modeled effect of 9.1 x 1075 m in the range
residuals. Whereas the resulting effect in range-rate is well
hidden in the noise in the case of the GRACE range-rate
observable, the effect is almost a factor 10 above the claimed
accuracy level of the GRACE range observable. This short
excursion explains why the prominent periods in the range
(but also the range-rate) residuals are those of few minutes
in our analysis. Non-modeled effects of longer periods are
absorbed by the pseudo-stochastic (and/or dynamic empiri-
cal) parameters, whereas shorter period effects can only be
absorbed by the gravity-field parameters—causing a signif-
icant deterioration of the gravity field.

Figure 19 shows that these order-of-magnitude results are
confirmed by the spectra of the residuals. The amplitudes of
the terms with periods around P = 10 min show the behavior
expected according to Eqs. (13, 14). Figure 19 (left) shows
the amplitude spectrum of the range-rate, Fig. 19 (right) that
of the range residuals of days 50-99. One can see spectral
lines with growing amplitudes for periods 0 < P < 15 min.
If the spectral lines were caused by non-modeled accelera-
tions of the same amplitudes but with different periods one
would expect, according to our argumentation, quadratically
growing amplitudes in the ranges, linearly growing ampli-
tudes in range-rate as a function of the period P. Figure 19
are not in conflict with this statement for periods up to about
15 min. A double-logarithmic version of Fig. 19 would show

Amplitude spectrum range

3.5e-006
3e-006
2.5¢-006
2e-006
1.5e-006
1e-006
5e-007
0 5 10 15 20 25 30
Periods (min)

Fig. 19 Spectra of 50day (DOY 50-99/2007) of range-rate and range residuals using the accelerometer data. Left: range-rate, right: range
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Fig. 20 Difference degree amplitudes (solid) and error degree ampli-
tudes (dash-dot) of constrained range (blue) and range-rate solutions
(black, pulse spacing of 5min) w.r.t. AIUB-GRACEO2S. Red: short-arc
30min range solution; Green: 30 min short-arc range-rate solution

that the growth of the amplitudes in the mentioned domain
approximately meets the expectation (14). The attenuation of
the amplitudes for periods 15 min is caused by the absorption
of these periodic effects by the pseudo-stochastic parameters
(and unfortunately the gravity field parameters).

10 A range solution of good quality

In this section we want to generate a gravity field solution
based on ranges (option R in Table 3), which is comparable in
quality with the best range-rate solutions. The residuals of the
30 min range solution and the spectrum of the residuals asso-
ciated with it (Fig. 19 (right)) indicate how this can be done:
One has to absorb the spectral lines with periods P < 15 min
by pulses using a spacing Af, < 15 min—without losing
too much power for gravity field determination. This is pos-
sible by imposing constraints on the pulses spaced by, let us
say, S min.

This procedure was applied to the range-rate solutions
(see Sect. 6, Fig. 9), but only with limited success: The
constrained range-rate solution based on 5min pulses was
only slightly better than the solutions based on unconstrained
pulses spaced by 15 min.

The constrained range solution GRG34UP051612 (blue),
to be compared to the constrained range-rate solution GRR15
UP051612 (black), is provided in Fig. 20. The difference
degree amplitudes, represented by the solid lines, show that
the range solution based on a 5min spacing of constrained
pulses (blue) is clearly better than the range solution with
unconstrained 30 min pulses (red). The blue curve in turn is
comparable in quality to the two range-rate solutions (green
and black).

The error degree amplitudes in Fig. 20 (dash-dot lines) are
based on the a posteriori RMS errors. The constrained range
solution (blue) is comparable to the unconstrained 30 min

solutions (red) for the low degrees, whereas the solution with
constrained 5 min pulses promises to be slightly better for the
higher degrees. This degree-dependent behavior is not con-
firmed by the error degree amplitudes (blue and red solid
lines). When replacing the a posteriori by the a priori errors,
the dash-dot red curve would be reduced by a factor of about
10, whereas the dash-dot blue curve would be reduced “only”
by a factor of about 107 & 2. The impact of the systematic
errors on the constrained 5 min solution as compared to the
unconstrained 30 min solution is thus considerably reduced,
but at the price of losing resolution power for gravity field
determination. By further reducing the spacing of the pulses
the range residuals will eventually be free from systematic
errors, but the determined gravity field will not improve sub-
stantially due to the difficulty to discriminate between pulses
and gravity field parameters.

11 The GRACE baseline

The so-called GRACE baseline in its original sense stands
for the expected accuracy of the GRACE-derived monthly
gravity fields, established prior to the launch of the mis-
sion. The GRACE baseline is expressed in difference degree
amplitudes. It is based on covariance studies and on “end-
to-end” simulations using realistic error estimates including
white and colored noise for all measurement sensors and
the non-modeled parts of the force field. Crude estimates
may be found in Thomas (1999), a refined analysis, prob-
ably the origin of the official “GRACE baseline”, in Kim
(2000). The latter GRACE performance estimate is based
on a realistic simulation study with three kinds of param-
eters (a) orbit parameters (initial conditions and empirical
dynamic parameters, constant and once-per-revolution peri-
odic terms), (b) gravity field parameters, and (c) so-called
kinematic empirical parameters (offset and drift, once-per-
revolution terms for the range and the range-rate observ-
ables, where the amplitudes are linear functions of time).
Each set of parameters of type (c) and of dynamic empiri-
cal parameters is valid for a time interval varying between
1/2 and 1 revolution period). This processing scheme is still
in use today at some of the GRACE analysis centers, how-
ever, without the once-per-revolution terms with amplitudes
linearly growing with time, see Meyer et al. (2009). The
CMA differs in two essential aspects from the above baseline
estimates:

1. The CMA admits one parameter of type (c) for each
time interval of uninterrupted K-Band Level 1a ranges,
namely the range offset. No parameters of type (c) are
allowed when analyzing range-rates.
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Table 4 CMA processing

options for K-Band analysis Solution oapr/Opost Rel. constraint Characteristics
GRR14UP30 0.2/0.276 - Pulse spacing of 30 min, RR
GRR14UP15 0.2/0.249 - Pulse spacing of 15 min, RR
GRR14UP051612 0.2/0.322 1.0 x 1078 m/s Pulse spacing of 5 min, RR
GRG34UP30 0.7/7.40 - Pulse spacing of 30 min, R
GRG34UP15 0.7/3.53 - Pulse spacing of 15 min, R
GRG34UP051612 0.7/1.87 1.0 x 1078 m/s Pulse spacing of 5 min, R
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Fig. 21 GRACE baselines, expressed in error degree amplitudes, for the solutions in Table 4; 30 days, geoid heights; left range-rate, right range

2. The CMA allows for the estimation of (constrained)
pseudo-stochastic parameters, which have the capabil-
ity to absorb the non-modeled parts of the force field.

From our perspective there is no justification for introducing
other (than offset) parameters of type (c). Kim (2000) justi-
fies the parameters of type (c) in essence with the white and
colored noise present in the accelerometer measurements or
in the background models. The parameters of type (c) thus
play a similar role as the pseudo-stochastic parameters in the
CMA. Both error sources do exist, but from our perspective
they should be dealt with on the level they occur, i.e., they
should be absorbed by empirical dynamic parameters or by
pseudo-stochastic parameters. The constant accelerations in
R, S, W, the once-per-revolution terms, and the pulses or
the piecewise constant accelerations assume this role in the
CMA.

For these reasons it seems appropriate to generate CMA-
specific “GRACE baselines”, also in terms of error degree
amplitudes, for the more important processing strategies dis-
cussed previously. Two kinds of “baselines” are provided:
Those based on the inverted NEQ-matrix multiplied by the
a priori RMS of the observable and those based on the esti-
mated covariance matrix.

As the classical GRACE baseline is usually referred to
data spans of one month and is expressed in geoidal heights,
the CMA-specific GRACE baselines are also provided in
geoidal heights (in m) referring to 30days of data, by
multiplying the dimensionless error degree amplitudes by
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a, x 4/50/30 ~ 1.291 x a,, where a, = 6,378,137 m is the
equatorial radius of the Earth. This re-scaling gives slightly
too optimistic values, as the effect of the improved geograph-
ical coverage from 30 to 50days is not taken into account.

Table 4 summarizes the six solutions, for which “base-
lines” are provided. Three of them are based on range-rate
(without correlations) and three on range (without correla-
tions). Two solutions out of the three in each group are con-
tiguous, but otherwise unconstrained short-arc solutions, the
other one is based on constrained pulses (separated by 5 min).
The constraints may also be found in Table 4. The base-
lines are of a similar order of magnitude for range-rate and
range—if the covariance matrix is used to calculate the error
degree amplitudes (dash-dot curves). If the RMS a priori
is used for scaling the inverted NEQ matrix, the baselines
which are derived from the range observable and which are
based on (comparatively) few pseudo-stochastic parameters
promise to be much better than the corresponding baseline
using the covariance matrix. This statement is best seen in
Fig. 21, red curves. The big difference of course only proves
that

e there are either substantial non-modeled systematics in
the force field not captured by the accelerometers (e.g.,
errors in the background models describing temporal
gravity field variations like tidal effects, de-aliasing prod-
ucts);

e or that the accelerometers do not perform as they should;
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Fig. 22 GRACE baselines, expressed in error degree amplitudes, and corresponding difference degree amplitude w.r.t. AIUB-GRACEOQ2S, left
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e orthat additional information needed to calculate the cen-
ter-of-mass to center-of-mass distance between the two
satellites is substantially wrong;

e or that the reduction of the observations (from the raw
K-Band measurements to the Level la ranges) is not
correct.

Figure 22 shows the difference degree amplitudes of the
30days 5 min constrained solution (range-rates (left), ranges
(right)) w.r.t. the biennial solution AIUB-GRACEQ2S. One
clearly sees a big discrepancy towards the low degrees,
whereas the higher difference degree amplitudes follow the
curve for the error degree amplitudes quite well. There still
is a discrepancy corresponding to a factor varying between 3
and 10 between the achieved and the expected accuracy for
the corresponding range solution in Fig. 22 (right). The miss-
ing time-varying signal in the mean field model (e.g., due to
hydrology) may be responsible for some of the discrepancies
in the region of the low degree harmonics.

12 Summary and conclusions

The CMA was applied to 50 days of GRACE data, namely,
to DOY 50-99/2007. Orbit and gravity field determination
were considered. The gravity fields were always based on
the full set of 50days of data in 2007. The solutions differ
in the underlying observables, in the parametrization, and in
the constraints imposed on the estimated orbit and/or pseudo-
stochastic parameters. No constraints were imposed on the
estimated gravity field parameters. Only the spherical har-
monics within the limits 2 < n < 60 were determined, the
terms 61 < n < 150 were taken over from the solution
ATIUB-GRACEOQ02Sp, which is based on the entire year 2007
of GRACE data.

Orbit determination was studied in Sect. 4. The RMS error
a posteriori of the GPS L1 phase observations was found to
be about 0, ~ 2mm in an orbit determination experiment
using only the kinematic positions (together with the epoch-
specific weight matrix) as pseudo-observations. The RMS a
posteriori of the K-Band range-rate observable was estab-
lished by a “K-Band only” analysis as okpq - =~ 0.2 pm/s,
implying that the correct weight ratio to combine the K-Band
range-rate and GPS NEQs is G;%h /akzbd’rr ~ 108s2. This
ratio was used for orbit and gravity field determination in our
analyses.

It is an open issue to be addressed in future why the best
consistency of gravity fields determined by the CMA with
those of other GRACE analysis teams is achieved with a
weight ratio U;%h / Ulfb dor 1092, which considerably de-
weights the GPS contribution.

Standard procedures for gravity field estimation were dis-
cussed in Sect. 5. GPS-only, K-Band-only, and combined
GPS and K-Band gravity fields were produced. All K-Band
contributions used the option RR in Table 3. Pulses in R, S,
and W with a spacing of either 30, or 15, or 5min were set
up in different solutions. No or only weak constraints (5 min
solution) were imposed on the pulses. The main findings
were:

e GPS-only gravity fields up to a maximum degree of
nmax ~ 60 may be determined using a data span of
50 days—adopting the terms above n = 60 from an a
priori solution of good quality.

e The sectorial terms are much better determined by GPS
than the zonal terms. Actually, the sectorial terms are
determined with GPS with an accuracy comparable to
that of K-Band-only solutions.

e K-Band-only solutions are based on an a priori orbit estab-
lished with K-Band and GPS (in this sense the attribute
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“K-Band-only” is not correct). All terms, except those of
low degree n 5, are established with high accuracy.

In Sect. 6 it was shown that the R R-solution (Table 3) with
strongly constrained 5 min pulses is of comparable quality as
the 30 min pulse solution without constraints.

The impact of accelerometer data on gravity field deter-
mination using option RR (Table 3) was studied in Sect. 7.
The main findings are:

e Gravity fields of good quality may be established even
without using acclerometer data.

e The difference degree amplitudes w.r.t. AIUB-GRACE
02S when using accelerometer data improve by a factor
of about 1-2.

e The S component of accelerometer data has the largest
impact on the K-Band observables.

Alternatives to option RR (Table 3) were studied in Sect. 8.
The key findings are:

e Options RR and RD (Table 3) are equivalent, provided
the statistical information is chosen according to Egs. (7,
8, 12).

e Options R and RC (Table 3) are equivalent, provided the
statistical information is chosen according to Egs. (9, 11,
12).

e Options RRC and RC, thus also R, (Table 3) are equiva-
lent, provided the statistical information is chosen accord-
ing to Egs. (9, 11, 12)

In Sect. 9 the residuals of range and range-rate solutions
were analyzed. Systematic effects dominate the range solu-
tion. It was shown that the use of accelerometer data has
a much larger impact on range residuals than on range-rate
residuals. The overall fit improves roughly by a factor of 2
when using the accelerometer data (the gain is much smaller
for range-rate residuals). The residuals of ranges and range-
rates were spectrally analyzed for the entire interval of
50days. For periods P < 15 min the spectrum is richly
populated with terms of amplitudes of the order of 1078 m/s
for range-rate, of the order of 10~® m for ranges—indicating
the presence of systematic accelerations not absorbed by the
accelerometers.

In Sect. 10 we eventually produced a solution based on
ranges (option R, Table 3), which is of comparable quality as
the best range-rate solutions presented here. Unfortunately,
many constrained pulses spaced by 5min had to be set up,
what weakened the much higher potential of the range solu-
tions to determine the gravity field.

In Sect. 11 the GRACE baseline, as achievable currently
by the CMA, was established. When taking into account the
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non-modeled and/or the stochastic part of the force-field the
discrepancy of the difference degree amplitudes w.r.t. AIUB-
GRACEOQ2 and the error degree amplitudes are small for
degrees n 2, 20 for option R R (Table 3), somewhat larger for
options R and RC. The error degree amplitudes are clearly
too optimistic for low degrees n < 10. More work, in partic-
ular concerning the GPS contribution, is required.
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