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Abstract The concentrations of 11 crustal and an-
thropogenic trace metals (Li, Al, V, Mn, Fe, Co,
Ni, Cu, Zn, Cd, Pb) were measured from 2006 to
2008 in the atmospheric aerosol at a northwestern
Mediterranean coast (station of Cap Ferrat, situated
on the southeastern coast of France). Statistical
models (lognormal, Weibull, and gamma) that best
represented the trace metal distribution for this
environment are described. The lognormal model
was selected for the distributions of (in decreasing
strength of the fit) Al, Co, Li, Zn, Mn, Cu, Pb,
and Cd, i.e., metals that are introduced into the
atmospheric aerosol by pulses inducing temporal
variability in their concentrations. The gamma

model was associated with Fe, i.e., metals that
exhibit less inter-annual variability than the former
trace metals. The third mode (Weibull) represented
the distribution of the concentrations of V and Ni.
The statistical approach presented in this study
contributed to better define and constrain the dis-
tribution of the 11 trace metals of the atmospheric
aerosol from the northwestern Mediterranean coast.
In a close future, knowledge of these statistical
distributions will allow using convolution models
to separate their natural and anthropogenic contri-
butions, therefore increasing our ability to study
anthropogenic emissions of trace metals and their
impact on the environment.

Keywords Trace metals . Probability distribution
analysis . Lognormal .Weibull . Gamma .

Likelihood maximization

Introduction

Studies dealing with air pollution or atmospheric de-
position on natural surfaces require a good knowledge
of the statistical behavior of airborne elemental con-
centrations. The concentration of trace metals (TMs)
in the atmospheric aerosol is generally assumed to be
the combined result of land-based emissions and sto-
chastic processes like climatic and meteorological
conditions that govern atmospheric transport (e.g.,
Morel et al. 1999). Trace metal concentrations in the

Environ Monit Assess (2013) 185:9177–9189
DOI 10.1007/s10661-013-3245-9

T. Robin (*)
Transport and Mobility Laboratory, TRANSP-OR Ecole
Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland
e-mail: thomas.robin.epfl@gmail.com

L. Guidi
Department of Oceanography, University of Hawaii,
Honolulu, HI 96822, USA

A. Dufour :C. Migon
Université Pierre et Marie Curie (UPMC), UMR 7093,
Observatoire Océanologique de Villefranche-sur-mer,
06234 Villefranche-sur-Mer, France

A. Dufour :C. Migon
CNRS/INSU, UMR 7093,
Laboratoire d’Océanographie de Villefranche,
06234 Villefranche-sur-Mer, France



atmospheric aerosol are inherently random variables,
and their temporal variations result from stochastic
emission events from various independent sources.
Therefore, their statistical distributions are the product
of a variety of complex processes that are difficult to
model and predict with accuracy. Determination of the
proper distribution of elemental concentrations in the
aerosol allows knowing which type of mean and stan-
dard deviation best fit to describe aerosol dynamics
(Blackwood 1991). Knowledge of the concentration
distribution helps to assess the impact of extreme
events on the mean concentration values and time
lag between extreme events (Georgopoulos and
Seinfeld 1982) or to formulate steady hypothesis in
deconvolution studies (Migon and Caccia 1990). More
generally, this contributes to advance knowledge of
the origin, magnitude, and variability of elemental
concentrations in the aerosol. This is particularly im-
portant for the case of atmospherically transported
TMs because of their environmental and biogeochem-
ical significance. Knowledge of the nature of land-
based emission sources (e.g., natural versus anthropo-
genic), the effects of transport processes, the under-
standing of correlations, etc., are based upon statistical
analysis of aerosol data sets, which requires the spec-
ification of their underlying distributions.

Lognormal distribution is the most common choice
to describe environmental data (Blackwood 1992;
Georgiadis et al. 1998). However, in studies dealing
with the dynamics of atmospheric aerosol in non-
urban coastal environments, the low frequency of
sample acquisition, combined with the long sampling
duration, often results in little discriminating power.
Standard sampling protocols are generally used in
order to obtain results which could be compared with
the literature (Rumburg et al. 2001).

Although Ott (1990) argued that the successive
random dilution of pollutants in the atmosphere
explains why pollutant concentrations fit a lognor-
mal distribution, Bencala and Seinfeld (1976) had
previously shown that other distributions can de-
scribe pollutant concentrations in the atmospheric
aerosol. The present work aims to describe the
models that best fit the distribution of the concen-
trations of 11 TMs (Li, Al, V, Mn, Fe, Co, Ni, Cu,
Zn, Cd, Pb) for the northwestern Mediterranean
coastal environments. The lognormal, Weibull,
and gamma models are evaluated using log-
likelihood maximization.

Material and methods

Sampling

Atmospheric aerosol was continuously sampled at the
Cap Ferrat naval signal station, situated on the south-
eastern coast of France (43°41′ N, 7°19′30″ E; alti-
tude, 130 m; Fig. 1) in 2006, 2007, and 2008. This
sampling site is not affected by local sea spray or local
contamination, as shown elsewhere (Sandroni and
Migon 1997; Guieu et al. 1997; Chester et al. 1997).
Saharan events are episodically superimposed to ho-
mogeneous anthropogenic influences, mainly in the
spring and, to a lesser extent, summer (Marticorena
and Bergametti 1996). Aerosol was sampled at the top
of a 6-m-high mast by pumping air through cellulose
acetate filters (porosity, 0.45 μm; diameter, 47 mm;
Sartorius SM 11106). The mean pumping rate was
25±1 m3 day−1 during approximately 1 week, for a
mean air volume of 175 m3. Atmospheric aerosol was
monitored from 2006 to 2008.

Total suspended particles were sampled instead of
particles <10 μm in diameter (Fang et al. 2010; Kim et
al. 2006) for two reasons: (1) The definition of statis-
tical models that best fit the concentrations of TMs in
the atmospheric aerosol requires large data sets, i.e.,
time series that includes samples collected when the
use of PM10 was not generalized in Europe, and
(2) this study does not deal with particle size
distributions; it aims to describe the concentration
distributions of all the particles that reach the
northwestern Mediterranean coastal troposphere,
including coarse (>10 μm) particles from, e.g.,
Saharan dust emissions.

Sample mineralization and analysis

Samples were dissolved by acid treatment as well as
blank filters and two standard reference materials
(SRMs). Each filter was folded into four and intro-
duced into an acid cleaned Teflon vial (7 mL) in which
1 mL HNO3 (65 %) was added. The vial was closed
and put into a larger Teflon vial (60 mL) and left at
room temperature until complete dissolution of the
membrane. Then, the apparatus was kept tightly
closed for 12 h in an oven at 150 °C. Vials were then
cooled in a laminar airflow hood and left open until
the red smoke had evolved (which indicates that all
HNO3 has evaporated). The remainder was dissolved
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again with 500 μL HNO3 (14 M) and 300 μL HF
(23 M) and left for 24 h (without evaporation) prior to
being stored again in a drying oven for 12 h. A white
residue was obtained and dissolved in 1 mL HNO3

(1 M), ultrasonically agitated for 2 h, and made up to
9 mL with Milli-Q water. The solution was finally
stored in an acid-cleaned polypropylene vial (10 mL)
until analysis. All reagents were Suprapur® grade,
provided by Merck (Darmstadt, Germany). All analy-
ses were carried out under laminar airflow benches in
a class 100 clean room. This mineralization procedure
has been previously validated using different analyti-
cal techniques on SRMs (Heimbürger et al. 2010).

Two analytical techniques were used: Inductively
coupled plasma atomic emission spectroscopy (ICP-
AES) was used for Al and Fe and inductively coupled
mass spectrometry (ICP-MS) was used for Cd, Co, Cu, Li,
Mn, Ni, Pb, V, and Zn. Measurements by ICP-AES were
performed with a Jobin-Yvon JY 138 S Ultrace analyzer.
Measurements by ICP-MSwere performedwith a Thermo
Elemental ×7 device. For eachTM, the analyticalmethods,
detection limits, and the concentrations of blank filters
compared with the aerosol concentration range are given
in Table 1. The analytical procedures (mineralization and
analysis) were regularly checked using two SRMs
(MESS-2 from the National Research Council, Ottawa,
Canada, and NIST-2783 Air particulate on filter media

from the National Institute of Standards & Technology).
The results were always within the quoted confidence
intervals given for the SRMs (Table 1). The concentra-
tion values of blank filters were low (always <10 %)
when compared with the aerosol concentration range.
Additional analytical details can be found in Migon et
al. (2000) and Chiffoleau et al. (2004).

Data processing and time series reconstruction

Aerosol samples were not collected at a constant time
rate; therefore, raw data are difficult to study with
standard time series or distribution analysis. Trace
metal concentrations were measured in nanograms
per liter approximately weekly. The numbers of sam-
ples for 2006, 2007, and 2008 are 37, 35, and 47,
respectively, representing 30 % of the 3 years. In order
to solve this issue, data were concentrated into one
single year (called aggregated year) to study intra-
annual trends. This can be done after ensuring that
yearly distributions are similar. Therefore, we normal-
ized each year of all time series by the median of the
3 years combined. After this step, all TM yearly dis-
tributions were tested as not significantly different
(Kruskal–Wallis: p<0.001). The concentrations were
then averaged for multiple measurements of a single
day of the aggregated year. Missing values of the

Fig. 1 Location of the Cap Ferrat coastal sampling station
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aggregated year were then predicted using a cubic
polynomial interpolation for each TM. Because of
the original time series sampling date and to avoid
extrapolation, we were limited to a reconstructed
year of 356 days instead of 365. However, this
limitation is of little impact on the estimation of
TM concentration distributions since it only repre-
sents a cut of 2.5 % of a full year. The reconstructed
annual time series was sampled at a constant time rate of
a day over 3. The sampling rate was chosen in order to
be consistent with the data collection. Sampled data
correspond to 119 concentrations for each TM equal to
the total number of raw measurements for the 3 years.
Finally, all concentrations were normalized by their
respective maximum, leading to values ranging from
0 to 1 in order to allow TM comparisons.

Stable conditions of element concentrations

Trace metal concentrations should follow constant
statistical properties (i.e., should be controlled by sta-
tionary processes) in order to study their statistical
properties using probability density functions
(PDFs). A stationary process is a stochastic process
whose joint probability distribution does not change
when shifted in time or space (the space cannot inter-
fere here as there is a unique location). Consequently,
we check that there is no or limited temporal relation-
ship between TM concentrations. The stationarity of
each TM was verified looking at their autocorrelation
function. The autocorrelation between Yt and Ys (at

time t and s, respectively) of a random variable Y is
defined as follows:

R t � sð Þ ¼ E Yt � EðY Þð Þ Ys � EðY Þð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Y � EðY Þð Þ2

q ð1Þ

where E stands for the statistical Esperance. R(t−s) is
included in [−1,1]: 1 means that Yt and Ys are perfectly
correlated, −1 means they are perfectly anti-correlated,
and 0 means they are uncorrelated. Pearson’s estimator
was used to calculate the autocorrelation according to

RðpÞ ¼ 1

n� pð ÞE Y � EðY Þð Þ2
� �

�
Xn�p

i¼1

Yi � EðY Þð Þ Yiþp � EðY Þ� � ð2Þ

where p represents the number of days between two
measurements and n corresponds to the total number
of days considered in the aggregated year.
Autocorrelations were computed for p ranging be-
tween 0 and 356 days. Pearson’s correlation coeffi-
cient is chosen as it is the most standard to detect
linear relationships.

Trace metal models in the atmospheric aerosol

The characterization of the distributions of the TM con-
centrations requires a set of PDFs that are likely to
represent the aerosol concentrations. In the following,

Table 1 Analytical methods, detection limits, concentration of blank filters (expressed as percentage of the aerosol concentration
range), and certified and measured levels of SRM, expressed in milligrams per kilogram (MESS-2) and in nanograms (NIST-2783)

TM Analytical
method

Detection limit
(ng L−1)

Contribution of
blank (%)

SRM MESS-2
(certified)

SRM MESS-2
(measured)

SRM NIST
(certified)

SRM NIST
(measured)

Al ICP-AES 1500 0.03–2.9 23,210±530 22,990±90

Fe ICP-AES 600 0.02–0.6 26,500±1,600 26,700±450

Li ICP-MS 1 0.14–6.0 73.9±0.7 74.4±0.5

Mn ICP-MS 5 0.06–2.16 365±21 355±6 320±12 319±4

Co ICP-MS 1 0.16–5.5 13.8±1.4 12.5±1.0 7.7±1.2 7.0±0.8

Ni ICP-MS 8 0.53–9.4 49.3±1.8 50.1±0.3 68±12 68±4

V ICP-MS 21 0.03–0.05 252±10 248±7 48.5±6.0 45.4±4.5

Cu ICP-MS 5 0.27–3.5 39.3±2.0 38.0±1.2 404±42 388±15

Pb ICP-MS 2 0.09–2.4 21.9±1.2 22.9±0.8 317±54 331±30

Cd ICP-MS 1 0.19–2.5 0.24±0.01 0.24±0.01

Zn ICP-MS 9 0.08–1.06 172±16 185±10 1790±130 1820±50
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the term “model” refers to a specific statistical
probability distribution. Based on the literature
review, three models (lognormal, gamma, and
Weibull) were selected (e.g., Georgiadis et al.
1998; Taylor et al. 1986; Bencala and Seinfeld
1976; Georgopoulos and Seinfeld 1982) and their
associated PDF and parameters estimated.

The lognormal model assumes that the loga-
rithm of the considered variable is normal. This
model can only be applied to a variable that is a
multiplicative product of many independent, ran-
dom, and positive variables, which is the case for
TM emissions. Its associated PDF is a function of
two parameters, μ and σ:

f ðxÞ ¼ 1ffiffiffiffiffi
2p

p
σx

exp
logðxÞ � μð Þ2

2σ2

 !
ð3Þ

The gamma model is designed for random vari-
ables that are the sum of independent random
variables following exponential probability models.
The advantage of this model is that it has a less
heavy right tail, which lowers the weight of ex-
treme events. Its PDF is a function of two param-
eters, θ > 0; k > 0.

f ðxÞ ¼ 1

ΓðkÞθ
x

θ

� �k�1
exp � x

θ

� �
ð4Þ

Γ refers to the standard gamma function, which is
a function of the first parameter of the gamma
model, k.

ΓðkÞ ¼
Zþ1

0

tk�1e�t d t ð5Þ

where t is an integration variable.
For the Weibull model, the PDF is a function of

1 > 0; η > 0.

f ðxÞ ¼ 1

η
x

η

� �1�1

exp � x

η

� �1
 !

ð6Þ

This model is flexible in a mathematical sense
because it can simulate the behavior of other models
depending on the value of its first parameter l, such as
the normal (large value for l) and the exponential (l≤1).
The density form is more symmetric than in the lognor-
mal and gamma cases.

For each element, we used a log-likelihood maxi-
mization (Li,d) method to estimate the parameters of
each model. It consists in maximizing the following
function:

Li;d bi;d
� � ¼Y119

t¼1

log fd xi;t=bi;d
� �� � ð7Þ

where i represents the TM; d the model (lognormal,
Weibull, or gamma); t the date of measurement; fd the
PDF of d; xi,t the measurement of the concentration of
the TM i at time t; and βi,d the vector of parameters
associated with the model d for the TM i. Note that the
three considered models have two parameters; there-
fore, the size of βi,d is 2. d=1 corresponds to the
lognormal model bi;1 ¼ μi;σið Þ; d=2 to the Weibull

model bi;2 ¼ λi; ηið Þ; and d=3 to the gamma model
bi;3 ¼ θi; kið Þ.

The likelihood function depends on the model pa-
rameters and can be interpreted as the probability of
obtaining the actually observed TM concentrations,
assuming that the TM concentration follows the given
model.

Analysis of the impact of extreme values on model
adjustments

For each TM, an extreme value (EV) is defined as a
TM concentration larger than the mean concentration
plus 2 standard deviations. After removing EVs to the
TM time series, the remaining signal was analyzed in
order to test the robustness of the models, and the little
influence of the EVs on the adjustment of these
models to the distribution of the TM concentrations.
However, the number of values describing the series
with EVs and without EVs is different, preventing
direct comparison of the adjustments.

Results and discussion

Trace metal model selection

Raw TM concentrations can be found online (ftp://
oceane.obs-vlfr.fr/pub/migon). The autocorrelation
functions for all TMs are presented in Fig. 2. The
sharp decrease of the autocorrelation function indi-
cates that the TMs are not time-dependent (the auto-
correlation function rapidly crosses the 95 %
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confidence interval). The log-likelihood maximization
of the couple of parameters of each model has been
calculated using Matlab software (The Mathworks,

Inc., Natick, MA, USA). Parameters are displayed in
Table 2 for the three models. Note that for each pa-
rameter, lower and upper bounds of the confidence

9182 Environ Monit Assess (2013) 185:9177–9189
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interval at the 95 % level are given. Log-likelihood
values are presented in Table 3.

For each element, one has to choose the model with
the best fit to the observed distributions of TM con-
centrations. The Akaike information criteria (AIC;
Akaike 1974) and Bayesian information criteria
(BIC; Schwarz 1978) are well adapted to deal with
such issues. They are tools commonly used for para-
metric model selection. However, because the three
models have equal numbers of parameters and TMs

have the same sample frequency, computing the AIC
or BIC is equivalent to comparing directly Li;d bi;d

� �
.

Therefore, the model that best fits a given TM distri-
bution is the one with the highest log-likelihood
(Table 3). In addition, data have been normalized,
allowing direct comparison among TMs. Trace metals
can then be ordered in a function of the goodness of
the adjustment of the model to the data (Table 4). The
lognormal model was well adapted to most TMs (Al,
Co, Li, Zn, Fe, Mn, Cu, Pb, and Cd), while the gamma
model was selected for V and the Weibull model for
Ni. However, when EVs are removed from the original
time series, model selections are slightly modified. Fe
changed from lognormal to gamma, while V be-
comes Weibull. The adjustments of the models are
presented in Fig. 3. Each subplot includes the
observed probability distribution compared with
the three models. In most cases, the lognormal
model well fitted the TM distributions. In addition,
the heavy right tail of the lognormal model accounted

Table 2 Estimated parameters of the three models (lognormal, Weibull, and gamma) with STD being the confidence interval at 95 %
with the lower and upper bounds

TM Lognormal Weibull Gamma

μi (STD) σi (STD) li (STD) ηi (STD) θi (STD) ki (STD)

Li −1.94 (−2.06 to −1.82) 0.66 (0.58–0.75) 1.44 (1.27–1.63) 0.20 (0.18–0.23) 2.36 (1.86–3.00) 0.08 (0.06–0.10)

Al −2.42 (−2.57 to −2.26) 0.83 (0.74–0.95) 1.11 (0.98–1.26) 0.14 (0.12–0.16) 1.46 (1.16–1.84) 0.09 (0.07–0.12)

V −1.55 (−1.70 to −1.41) 0.80 (0.71–0.92) 1.51 (1.31–1.74) 0.31 (0.27–0.35) 2.01 (1.59–2.55) 0.14 (0.10–0.18)

Mn −1.75 (−1.87 to −1.64) 0.64 (0.56–0.73) 1.54 (1.36–1.75) 0.24 (0.21–0.27) 2.61 (2.05–3.31) 0.08 (0.06–0.11)

Fe −1.97 (−2.10 to −1.84) 0.73 (0.65–0.84) 1.41 (1.25–1.60) 0.20 (0.17–0.23) 2.17 (1.71–2.75) 0.08 (0.06–0.11)

Co −1.79 (−1.89 to −1.69) 0.56 (0.50–0.65) 1.63 (1.45–1.84) 0.22 (0.20–0.25) 3.15 (2.47–4.01) 0.06 (0.05–0.08)

Ni −1.50 (−1.74 to −1.26) 1.30 (1.16–1.49) 1.60 (1.39–1.84) 0.33 (0.29–0.37) 1.89 (1.49–2.39) 0.16 (0.12–0.21)

Cu −1.15 (−1.23 to −1.07) 0.43 (0.38–0.49) 2.30 (2.02–2.61) 0.39 (0.36–0.43) 5.50 (4.30–7.04) 0.06 (0.05–0.08)

Zn −2.08 (−2.23 to −1.94) 0.79 (0.70–0.91) 1.24 (1.09–1.40) 0.18 (0.16–0.22) 1.72 (1.36–2.18) 0.10 (0.08–0.13)

Cd −1.31 (−1.40 to −1.21) 0.54 (0.48–0.62) 1.87 (1.65–2.13) 0.35 (0.32–0.39) 3.60 (2.82–4.59) 0.09 (0.07–0.11)

Pb −1.24 (−1.33 to −1.14) 0.50 (0.45–0.58) 1.96 (1.72–2.23) 0.38 (0.34–0.41) 4.02 (3.15–5.14) 0.08 (0.06–0.11)

Table 3 Estimated log-likelihoods for each element and each
model, with and without EVs

TM Li;1 bi;1
� �

with
EVs/without EVs

Li;2 bi;2
� �

with
EVs/without EVs

Li;3 bi;3
� �

with
EVs/without EVs

Li 112.37/117.43 97.80/106.18 104.76/112.51

Al 141.22/146.38 124.44/131.96 127.76/135.88

V 43.16/45.79 47.91/51.88 48.15/51.55

Mn 94.11/98.54 82.89/90.17 89.36/95.85

Fe 103.12/107.50 97.60/105.81 102.55/109.82

Co 112.52/118.16 96.42/106.66 105.93/114.66

Ni −21.30/−19.44 42.25/46.18 37.15/40.03

Cu 68.40/75.86 57.23/70.06 65.67/75.24

Zn 107.30/111.57 96.07/102.35 100.25/106.63

Cd 60.32/63.65 50.81/55.51 57.28/61.45

Pb 60.57/63.93 48.48/53.02 56.10/60.19

Li;1 bi;1
� �

corresponds to the lognormal model, Li;2 bi;2
� �

to the

Weibull model, and Li;3 bi;3
� �

to the gamma model

Table 4 Selection of the model for each element following the
strength of the fit decreasing from the first to the last

Model TMs (with EVs) TMs (without EVs)

Lognormal Al, Co, Li, Zn, Fe,
Mn, Cu, Pb, Cd

Al, Co, Li, Zn, Mn,
Cu, Pb, Cd

Weibull Ni V, Ni

Gamma V Fe

Environ Monit Assess (2013) 185:9177–9189 9183



well for the measurements of high concentrations. The
gammamodel was more adapted to the TMdistributions
that were bimodal. This important result suggests that

the observed concentration distribution of these TMs
was a combination of at least two independent signals
with different modal distributions.

9184 Environ Monit Assess (2013) 185:9177–9189

Fig. 3 Distributions of the TMs and models adjusted



Table 4 summarizes the models that were associated
with the TM distributions. Trace metals following a
lognormal distribution can be clustered into two groups:
crustal TMs (Al, Co, Li, Mn) and anthropogenic TMs
(Pb, Cd, Cu, and Zn). Emissions of crustal TMs are
typically associated with Saharan dust events, which
are characterized by pulsed emissions (Bonnet and
Guieu 2006; Guerzoni et al. 1999). Among anthropo-
genic TMs, the peculiarity of Pb, Cd, and Zn lies in their
inter-annual variability. The inter-annual variability of
Pb, Cd, and Zn has been previously evidenced by the
analysis of longer time series at the same site, including
the period considered here (Heimbürger et al., 2010),
which showed decreasing trends in the concentrations of
these TMs in the atmospheric aerosol. The steep de-
crease of Pb concentrations in the environment after the
second half of the 1980s was due to the progressive
phasing out of leaded gasoline (Flament et al. 1996;
Migon et al. 1993). This decrease was still going on
by ∼75 % between 1995 and 2005 (Migon et al. 2008).
More recently, significant changes occurred in Cd and
Zn emissions. Improvements resulting from anti-
pollution policies in industrial sectors (iron and steel
industry, non-ferrous smelters) and in household waste
incineration yielded a decrease of Cd emissions by 80%
over the last 40 years in Europe (Pacyna et al. 2009). As
well, Zn emissions were reduced because of technical
improvements in electric furnace steel plants and stan-
dards of household waste incineration. Decreases by
∼65 % for Cd and by >50 % for Zn were actually
observed between the end of the 1990s and the present
time at the Cap Ferrat sampling station (Heimbürger et
al. 2010). In addition, Zn is a tracer of urban emission
sources, and episodic emissions from the large urban
area that borders the northern shores of the Ligurian Sea
are likely to give off amounts (i.e., extreme anthropo-
genic events) of Zn (Wiesner et al. 1998). The combi-
nation of Zn temporal evolution and its pulsed behavior
might explain the best fit of Zn concentrations with the
lognormal model. To various extents, this also applies to
Pb and Cd: Pulsed emissions coming from the highly
urbanized shore probably contribute to the observed
inter-annual variations of Pb and Cd airborne concen-
trations. Overall, the lognormal model presumably well
describes TMs associated with pulsed emissions (e.g.,
crustal TMs and evolving anthropogenic TMs).
Therefore, the “lognormal group” gathers TMs that are
introduced into the atmospheric aerosol by pulses with
more or less temporal variability in concentrations. For

the case of Pb, another specificity might contribute to its
bimodal pattern, although this metal does not belong to
the “gamma group.” It is now admitted that automotive
emissions of Pb are close to zero in Western Europe
(Migon et al. 2008). The bimodal character of the dis-
tribution of Pb concentrations suggests that two distinct
populations of Pb loads may be identified in the NW
Mediterranean atmosphere: automotive Pb originating
from the East and carried by long-range atmospheric
transport from North Africa, Middle East, or
Eastern Europe (Pirrone et al. 1999), and non-
automotive Pb, which presumably originates from
industrial regions, e.g., mining activities in Poland
or Kazakhstan (Bollhöfer and Rosman 2001), or
the iron and steel industry, which represents, e.g., up to
more than 40 % of anthropogenic Pb emissions in
France (CITEPA 2009).

When EVs are taken into account, Fe belongs to the
lognormal group. This presumably results from the
prevailing importance of some pulsed Saharan dust
inputs that bring very significant amounts of crustal
Fe in the atmospheric aerosol. For example, Bonnet
and Guieu (2006) attributed up to 99 % of the total
2004 flux of total atmospheric Fe at Cap Ferrat to a
few strong pulses of Saharan dust events. Once EVs
are removed, they do not mask any more the signifi-
cance of the anthropogenic component of Fe atmo-
spheric inputs (Migon et al. 2000). This component
then appears and Fe follows the gamma model. As a
consequence, the temporal variability of Fe aerosol
concentrations is lowered due to the removal of EVs
(i.e., pulsed Saharan episodes) that are responsible for
the great variability, in particular the inter-annual var-
iability (Marticorena and Bergametti 1996).

However, the main feature of the gamma group
may be the bimodal concentration pattern, which re-
sults, for the case of Fe, from the removal of a pre-
vailing component that previously masked another
component. Interestingly, the bimodal pattern is well
known for particle size distributions (e.g., Chrysikou
and Samara 2009; Venkataraman et al. 1999) and
generally mirrors two distinct size groups (fine versus
coarse particles), particularly when the atmospheric
aerosol is affected by both anthropogenic and natural
emission sources (Salma et al. 2002). Seasonal pat-
terns clearly show that Fe aerosol concentrations are
composed of two distinct populations resulting from
two distinct seasonal atmospheric pathways: On the one
hand, crustal Fe is transported by Saharan dust episodes
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that generally (but not always) occur in spring and
summer (Moulin et al. 1997). On the other hand, an-
thropogenic Fe is probably transported by northern and
northeastern anthropogenic inputs, which are generally
observed in winter, in agreement with the transport of
European polluted air masses described by Duncan and
Bey (2004). Reproducible and significant peaks are also
observed at the end of summer/beginning of autumn.
These anthropogenic concentrations presumably result
from autumnal equinox changes, when the polar front
moves to the south, yielding the transport of polluted air
masses from northern and northeastern Europe to the
western Mediterranean Sea. Barnaba and Gobbi (2004)
have used satellite data to suggest that the Ligurian Sea
may bemore affected by anthropogenic air masses in the
autumn than in the winter. This has been observed at the
Cap Ferrat sampling site for the case of Pb (Migon et al.
2008). Therefore, these two different atmospheric trans-
port pathways may explain the succession of distinct Fe
concentration peaks (i.e., the Fe bimodal pattern) in the
Ligurian atmospheric aerosol.

Vanadium belongs to the gamma group when EVs
are taken into account (Table 4). Long-range atmo-
spheric transport is supposedly responsible for V in-
puts from both geogenic and anthropogenic emission
sources, hence its bimodal distribution and its belong-
ing to the gamma group: At global scale, anthropo-
genic sources of V slightly exceed natural ones (Hope
1994), oil combustion being among the most signifi-
cant anthropogenic contributions (Chiffoleau et al.
2004). However, the most significant concentrations
of V seem associated with geogenic influences, as
suggested in Fig. 4: The highest V concentration peaks
are associated with episodes of the highest Al concen-
tration, i.e., Saharan events. Without EVs, V joins the
Weibull group. The Weibull model seems more

suitable to represent distributions close to the lognor-
mal model (Aleksandrapoulou et al. 2012), i.e., close
to the unimodal pattern (Lu 2003). It is hypothesized
that, after the removal of extreme concentrations of V,
which result from the occurrence of Saharan dust
episodes, one of the contributions (most likely the
anthropogenic one) prevails upon the other. Besides,
Mijic et al. (2012) have suggested that the Weibull
distribution might reflect, for the case of atmospheri-
cally transported TMs, a strong influence of transport
processes. This is in agreement, at the Cap Ferrat
sampling station, with Vof which the emission sources
(Saharan dust and anthropogenic derived from ship-
ping) are far from the coastal receptor site.

This also applies to Ni, which belongs to the
Weibull group, with and without EVs. The main
sources of Ni are comparable with those of V, i.e.,
both geogenic and anthropogenic. On the one hand,
Chester et al. (1984) have pointed out relatively low
Ni enrichment factors normalized to Al in the north-
western Mediterranean aerosol, suggesting that Ni can
be found in geogenic material. The Ligurian region
might also be affected by a disused open chrysotile
asbestos mine, operating until 1965 near the village of
Canari (northeastern Corsica), which still generates
Ni-rich waste (Andral et al. 2004). On the other hand,
major emissions of anthropogenic Ni affect the whole
Mediterranean Sea (Pirrone et al. 1999), and Ridame
et al. (1999) have stated that the non-terrigenous frac-
tion of atmospherically deposited Ni varies between
58 and 89 % in the northwestern Mediterranean basin.
Moreover, it is known that oil combustion is respon-
sible for the spreading of significant amounts of Ni
(Anwari et al. 1992). Indeed, high concentrations are
mainly observed between May and November
(Fig. 4), i.e., when cruising and pleasure ships fre-
quent northwestern Mediterranean waters. More gen-
erally, combustion processes generate particulate
anthropogenic TMs, including Ni (Xie et al. 2005;
Caggiano et al. 2011). Despite the coexistence of two
distinct emission sources of Ni, it is believed that the
anthropogenic source prevails upon the geogenic one,
leading to a lognormal-like pattern.

Note that seasonal effects are not involved in the
model fitting, but can be used to explain the form of
the observed TM distributions. Data sets of anthropo-
genic TMs collected in the atmospheric aerosol with
higher frequency hourly or daily (e.g., Georgiadis et al.
1998; Georgopoulos and Seinfeld 1982) necessarily

Fig. 4 Seasonal patterns of Cu, Ni, and V aerosol relative
concentrations compared to Al
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exhibit a higher variability and, therefore, better fit the
lognormal model. Rumburg et al. (2001) have discussed
the impact of sampling frequency on the model and
found that sampling frequency affects the robustness
of the adjustment of the model to the data. Indeed, the
higher the frequency of sampling, the stronger the fit.
However, there is no evidence that different models
could be selected depending on the sampling frequency.
In the present study, raw data have been interpolated
using a cubic method and the sampling frequency is
1 day over 3. To ensure results, we have tested different
interpolation methods, such as linear or nearest, when
rebuilding TM signals. Moreover, other sampling fre-
quencies have been used such as 1 day over 6 and every
day. It appears that those two aspects do not significantly
affect the model selection. The results remain stable,
showing the stability of the approach.

Conclusion and perspectives

TM concentrations were used to define PDF and then
to study their adequacy with models, allowing a better
description of TM concentration dynamics in the en-
vironment. Good knowledge of the statistical distribu-
tions that rule TM concentrations in the atmospheric
aerosol permits better identifying the emission sources
in relation to the seasonal variability of concentrations
(e.g., TMs that belong to the lognormal group exhibit
temporal variations in their concentrations and should
be distinguished from TMs of the gamma group,
which are characterized by heterogeneous emission
sources). This is particularly important in marine envi-
ronments that are strongly constrained by atmospheric
forcing: Owing to numerous and intense land-based
emission sources that affect its pelagic environment,
the Ligurian Sea is particularly constrained by Aeolian
deposition compared with remote oceanic locations. A
frontal zone characterized by rapid horizontal changes
of density isolates the offshore Ligurian area from the
coast (Lévy et al. 1998). As a result, surface waters in
the central Ligurian Sea are sheltered from lateral inputs.
Therefore, the atmosphere is taken as the only signifi-
cant source of TMs to the open Ligurian Sea.

Another important perspective for such improved
definitions of PDF may be the evaluation of natural
and anthropogenic contributions to TM concentrations
in the atmospheric aerosol. Assuming that the mea-
sured atmospheric signal results from the convolution

of two statistically independent random variables
(natural and anthropogenic emissions), the statisti-
cal numerical analysis of experimental PDF per-
mits discriminating and assessing these respective
contributions, at least when large data sets are
available (Migon and Caccia 1990). This is partic-
ularly important if one considers that the most
widely used tools for such studies are enrichment
factors, the reliability of which is sometimes ques-
tionable, in particular when they are normalized to
so-called average soils or rocks, hence the crucial
need to improve our knowledge of statistical
models that best fit the distribution of a given
TM. Among many others, the present work may
be a preliminary step to deconvolution studies.
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