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Abstract We study the anomalous flux ratio which is ob-
served in some four-image lens systems, where the source
lies close to a fold caustic. In this case two of the images
are close to the critical curve and their flux ratio should be
equal to unity, instead in several cases the observed value
differs significantly. The most plausible solution is to in-
voke the presence of substructures, as for instance predicted
by the Cold Dark Matter scenario, located near the two im-
ages. In particular, we analyze the two fold lens systems
PG1115+080 and B1555+375, for which there are not yet
satisfactory models which explain the observed anomalous
flux ratios. We add to a smooth lens model, which repro-
duces well the positions of the images but not the anom-
alous fluxes, one or two substructures described as singular
isothermal spheres. For PG1115+080 we consider a smooth
model with the influence of the group of galaxies described
by a SIS and a substructure with mass ∼105 M� as well
as a smooth model with an external shear and one substruc-
ture with mass ∼108 M�. For B1555+375 either a strong
external shear or two substructures with mass ∼107 M� re-
produce the data quite well.

Keywords Cosmology: theory · Dark matter ·
Gravitational lensing · Galaxies: haloes · Substructures

1 Introduction

The standard lens models, although reproduce in general the
relative positions of the images quite accurately, often have
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difficulties explaining the relative fluxes of multiply-imaged
sources. Several possible explanations have been considered
in the literature, the most plausible being that the lensing po-
tential of real galaxies are not fully described by the simple
lens models used to compute the lens characteristics. The
most often invoked solution is to consider additional small-
scale structures, which if located near the images can modify
significantly the observed flux ratio between different im-
ages, in particular the so-called cusp or fold relations.

The presence of substructures is naturally expected
within the Cold Dark Matter (CDM) model, which has
been successful in explaining a large variety of observa-
tional results like the large scale structure of galaxies on
scales larger than 1 Mpc or the fluctuations of the CMB
(Spergel et al. 2003). However, one of the predictions of this
scenario is a distribution of matter, with a large number of
small-mass compact dark matter (DM subhalos) halos, both
within virialized regions of larger halos (Moore et al. 1999;
Klypin et al. 1999) and in the field (DM extragalactic ha-
los, Metcalf 2005). At the same time, the observed num-
ber of dwarf galaxy satellites in the Local Group is more
than an order of magnitude smaller than expected. Many
theoretical studies suggest models to reduce the abun-
dance of substructure or to suppress star formation in small
clumps via astrophysical mechanisms (as feedback), mak-
ing them dark (Bullock et al. 2000; Kravtsov et al. 2004;
Moore et al. 2006). Anyway, if the CDM paradigm is cor-
rect, we expect ∼10–15% of the mass of a present-day
galactic halo (∼1012M�) within the virial radius to be in
substructures with mass ≥107M�. Thus in the CDM model
anomalous flux ratios should be common.

At present, the only way to detect these subclumps is
through gravitational lensing, which is directly sensitive to
the mass. This is because substructures (like globular clus-
ters, gas clouds or satellite galaxies) can strongly mod-
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ify the fluxes of lensed images relative to those predicted
by smooth lens models. Even a clump as small as a star
can perturb the image of small sources (∼100 AU), but
in this case we would see a microlensing effect such as
variability in the image brightness with a time scale of or-
der months. Some authors tried to fit systems (for exam-
ple the radio system B1422+231) with anomalous flux ra-
tios using smooth lens and multipole models: although it
seems necessary to investigate further whether the multi-
poles can fit the lens configurations, these methods are not
exhaustive (Evans and Witt 2003; Kochanek and Dalal 2004;
Congdon and Keeton 2005) and it is not yet possible to con-
clude that the multipole approach can explain the anomalous
flux ratios. Indeed, Kochanek and Dalal (2004) showed that
the flux anomaly distributions display the characteristic de-
magnifications of the brightest saddle point relative to the
other images expected for low optical depth substructure,
which they conclude cannot be mimicked by problems in
the “macro” models for the gravitational potential of the lens
galaxy. Mao and Schneider (1998), Keeton (2001), Metcalf
and Madau (2001), Bradač et al. (2002), Dobler and Keeton
(2006) noted that a simple way of solving the puzzle was to
put a satellite near the images, and they found that this could
explain the anomaly in B1422+231.

Generally the flux ratios between the images do not de-
pend on wavelength since they are independent of the in-
trinsic flux and variability of the source (Keeton et al. 1997;
Mao and Schneider 1998; Keeton 2001; Metcalf and Zhao
2002). Such discrepancies would probably be due to sub-
lensing or microlensing effects. On the other hand when
modeling a multiple QSO lens system, one can either in-
clude or disregard the flux ratios of the images. As pointed
out by Chang and Refsdal (1979) (and in the following by
several authors, as for instance Metcalf 2005; Keeton et al.
2005; Mortonson et al. 2005) we have to pay attention to the
fact that the projected (on the lens plane) sizes of the opti-
cal continuum emitting regions of QSOs are expected to be
of the same order as the Einstein radius of a star in the lens
galaxy (∼100 AU), so that the optical magnitudes may well
be affected by gravitational microlensing (see Metcalf et al.
2004; Mortonson et al. 2005, and references therein), even
if averaged over long periods of time. The radio and mid-IR
regions, when projected on the lens plane, are typically of
the order of 10 pc and change in their magnification should
be dominated by larger scales than stars (Metcalf 2005;
Chiba et al. 2005). If the lens galaxies contain substruc-
tures with an Einstein radius comparable or greater than
the projected size of the radio component (corresponding
for the substructure to masses ≥108M�) we should see im-
age splitting and distortions if they lie close enough to the
images (see Sect. 3.2, Wambsganss and Paczyński 1994;
Mao and Schneider 1998), which have not yet been detected
(this might be the case for B0128+437, Biggs et al. 2004).

The existence of anomalous fluxes in many lens systems
has been known since some time. The substructure lensing
effects have been studied by considering single substruc-
tures (Mao and Schneider 1998; Metcalf and Madau 2001),
by assuming a statistically distributed sample of substruc-
tures (Chiba 2002; Chen et al. 2003; Keeton et al. 2005) or
by simulations (Amara et al. 2006; Macciò et al. 2006).1

An explanation by lensing of substructures for the anom-
alous flux ratio for the PG1115+080 system has already
been considered (Chiba 2002; Dalal and Kochanek 2002;
Chen et al. 2003; Kochanek and Dalal 2004; Keeton et al.
2005), however, mainly within a statistical treatment to de-
termine whether a plausible collection of mass clumps could
explain the strange flux ratio. As pointed out by Chiba
(2002), even if it seems difficult to reproduce anomalous flux
ratios with CDM subhalos, he concluded that the main role
in reproducing the observed flux ratio is played by the one
satellite which is located in the vicinity of an image (either
A1 or A2 in PG1115+80).

In this paper we analyze in detail the lens system by
adding one or two subclumps nearby one of the images and
by solving the lens equation. In Sect. 2 we review the main
observation and analysis done so far on the two lens sys-
tems PG1115+080 and B1555+375. In Sect. 3 we briefly
recall the relevant formalism for gravitational lensing and
how we proceed when we consider a lens model with a per-
turbation induced by one or more substructures. Assuming
a SIS model for the substructures we can then get an esti-
mate on their position and Einstein radius (or mass) such as
to modify the flux of the image pair near the critical curve
due to a source located close to a fold. In Sect. 4 we present
the numerical simulations and fits to the two considered lens
systems. We conclude with a short summary and discussion
of our results in Sect. 5.

2 About PG1115+080 and B1555+375

PG1115+080 is the second gravitationally lensed quasar
which was discovered (Weymann et al. 1980; Impey et al.
1998 and references therein). The source is at redshift zs =
1.722 and the lens galaxy at zl = 0.310. It is an optically
selected, radio-quiet quasar. Hege et al. (1981) first resolved
the four quasar images (a close pair A2/A1, B and C), con-
firming the early model of Young et al. (1981) that the lens
is a five-images system, one image being hidden by the core
of the lens galaxy.

Young et al. (1981) noted that the lens galaxy seems
to be part of a small group centered to the southwest
of the lens, with a velocity dispersion of approximately
270 ± 70 km s−1 based only on four galaxy redshifts (Tonry

1These works deal with violations of the cusp relation.
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Fig. 1 PG1115+080: images, source and galaxy (G) positions are
shown assuming a SIEγ + SIS model. The position of the substruc-
ture for both models is also given: note that S1 is closer to the A1
image, while S2 to A2. The critical curve and the caustic are for the
SIEγ model without the modifications induced by the substructure.
The analytic solutions as discussed in the Appendix are also shown.
The solutions labeled as 3 and 4 are so close that on the figure they
coincide

1998 also confirmed the group velocity dispersion by us-
ing five galaxies and getting a value of 326 km s−1). The
group is an essential component of any model to success-
fully fit the lens constraints (Keeton et al. 1997; Schechter
et al. 1997). Also two time delays between the images were
determined by Schechter et al. (1997) and confirmed by
Barkana (1997). Their results were analyzed by Keeton and
Kochanek (1997) and Courbin et al. (1997) by assum-
ing power law mass distributions and leading to a value
of H0 = 53+15

−7 km s−1 Mpc−1, with comparable contribu-
tions to the uncertainties both from the time delay mea-
surements and the models. Recently, Read et al. (2007),
assuming a non parametric mass distribution, found H0 =
64+8

−9 km s−1 Mpc−1 consistent with the currently accepted
value of about 70 km s−1 Mpc−1.

We take the data for the PG1115+080 system from Im-
pey et al. (1998) (their Fig. 1 and Tables 1 and 2) who pre-
sented a near-infrared observation of the PG1115+080 sys-
tem obtained with the Hubble Space Telescope (HST) NIC-
MOS camera. The flux ratio of the close pair of images (A1
and A2, see Fig. 1) is approximately 0.67 and showed lit-
tle variation with wavelength from the multiple wavelength
observations by Impey et al. (1998).2 Simple lens models re-

2Pooley et al. (2006), however, report that there has been some varia-
tion also in the optical.

quire instead an A2/A1 flux ratio close to 1, because the im-
ages are symmetrically arranged near a fold caustic. There is
no smooth lens model that can explain this anomalous flux:
while each of such models can differ in complexity or in
parameterization, the observed discrepancy in the flux ratio,
compared with the expected universal relations for a cusp or
fold singularity, suggests that it is an intrinsic difficulty for
smooth lens models, not associated with a particular choice
of the parameters (Yoo et al. 2005).

Recently, Chiba et al. (2005) analyzed observations of
the PG1115+080 system done in the mid-infrared band
and found a flux ratio A2/A1 of 0.93 for the close pair,
which is virtually consistent with smooth lens models but
clearly inconsistent with the optical fluxes. The observa-
tions indicated that the measured mid-infrared flux origi-
nate from a hot dust torus around a QSO nucleus. Based
on the size estimate of the dust torus, they placed limits on
the mass of the substructure causing the optical flux anom-
aly.3 For a substructure modeled as a SIS the subclumps
should have a mass of at most 2.2 × 104M� inside a ra-
dius of 100 pc to prevent anomalies in the mid-infrared
band. However, it has to be pointed out that this latter re-
sult is based on several assumptions and few observations
(Minezaki et al. 2004), so that the given value may be sub-
ject to substantial modifications. Indeed, if the size of the
cooler dust torus causing the mid-infrared flux is underes-
timated then the above limit gets increased. Furthermore,
Pooley et al. (2006) analyzed the system using recent X-
ray observations, which show also a strong anomalous flux
ratio. They do not exclude the microlensing hypothesis in
order to explain the anomaly in the X-ray band, nonethe-
less they conclude that the optical emission region should be
much larger (by a factor ≈10–100) than predicted by a sim-
ple thin accretion disk model. Within this model the source
size should be Rs ≈ 1015 cm (e.g. Wambsganss et al. 1990;
Rauch and Blandford 1991; Wyithe et al. 2000). Therefore,
if it is 10–100 bigger, Rs ≈ 0.01–0.1 pc, the effect of stellar
microlensing could be ruled out (Metcalf 2005).

An interesting quadruply imaged lens system is
B1555+375 with a maximum separation of only 0.42 arc-
sec, which was discovered some years ago (Marlow et al.
1999). It has an anomalous flux ratio in the radio: the system
was observed at 8.4 GHz at VLA and with MERLIN 5 GHz
snapshot observations. There are only few observations in
the optical and near-infrared band. Marlow et al. (1999)
considered a model for B1555+375, which describes well
the positions of the images but fails to reproduce accurately

3They also considered for this system the microlensing hypothesis and
estimated the time variability of the images flux in the mid-infrared
band, which turned out to be rather long (more than a decade). This es-
timate is consistent with the fact that the optical flux ratio has remained
unchanged over the past decade. It is thus clearly not yet possible to as-
sess the microlensing hypothesis.
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the flux ratio between the two images near the fold critical
point (labeled by A and B, see Fig. 3). The observed ratio is
about B/A ∼ 0.57. This anomaly has also been discussed by
Keeton et al. (2005) and Dobler and Keeton (2006). As the
redshifts of lens and source have not yet been measured we
will adopt the same values as used by Marlow et al. (1999):
zl = 0.5 and zs = 1.5.

3 Analytical treatment

We briefly recall the general expressions for the gravitational
lensing and refer, e.g., to the book by Schneider et al. (1992)
(which we will denote afterwards with SEF) and the review
by Kochanek (2004). The lens equation is

�β = �θ − �α(�θ), (1)

where �β(�θ) is the source position and �θ the image position.
�α(�θ) is the deflection angle, which depends on κ(�θ) the di-
mensionless surface mass density or convergence in units of
the critical surface mass density Σcrit, defined as

Σcrit = c2

4πG

DS

DLDLS

, (2)

where DS,DL,DLS are the angular diameter distances be-
tween observer and source, observer and lens, source and
lens, respectively.

3.1 Lens mapping

In the vicinity of an arbitrary point, the lens mapping can be
described by its Jacobian matrix A:

A = ∂ �β
∂ �θ =

(
δij − ∂αi(�θ)

∂θj

)
=

(
δij − ∂2ψ(�θ)

∂θi∂θj

)
. (3)

Here we made use of the fact (see SEF), that the deflec-
tion angle can be expressed as the gradient of an effective
two-dimensional scalar potential ψ : �α = �∇θψ , which car-
ries information on the Newtonian potential of the lens. The
magnification is defined as the ratio between the solid angles
of the image and the source (since the surface brightness is
conserved) and is given by the inverse of the determinant of
the Jacobian A

μ = 1

detA . (4)

The Laplacian of the effective potential ψ is twice the
convergence:

ψ11 + ψ22 = 2κ = tr ψij . (5)

With the definitions for the components of the external
shear γ :

γ1(�θ) = 1

2
(ψ11 − ψ22) = γ (�θ) cos[2ϕ(�θ)] (6)

and

γ2(�θ) = ψ12 = ψ21 = γ (�θ) sin[2ϕ(�θ)] (7)

(where the angle ϕ gives the direction of the shear) the Ja-
cobian matrix can be written as

A =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
(8)

= (1 − κ)

(
1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

)
, (9)

where γ =
√

γ 2
1 + γ 2

2 . With (8) the magnification can be
expressed as a function of the convergence κ and the shear
γ at the image point:

μ = (detA)−1 = 1

(1 − κ)2 − γ 2
. (10)

Locations at which detA = 0 have formally infinite magni-
fication are the critical curves in the lens plane. The corre-
sponding locations in the source plane are the caustics. For
spherically symmetric mass distributions the critical curves
are circles, whereas for elliptical lenses or spherically sym-
metric lenses with external shear, the caustics can have cusps
and folds.

Near a fold the lens equation can be reduced to a one-
dimensional model and a Taylor expansion can be per-
formed (see SEF, Kochanek 2004), for which we get

β − β0 = ∂β

∂θ
(θ − θ0) + 1

2

∂2β

∂θ2
(θ − θ0)

2, (11)

i.e.

β = θ
(
1 − ψ ′′) − 1

2
ψ ′′′θ2 → −1

2
ψ ′′′θ2 (12)

and inverse magnification

μ−1 = (
1 − ψ ′′) − ψ ′′′θ → −ψ ′′′θ. (13)

We choose the coordinate system such that there is a critical
line at θ = 0 (i.e. 1 − ψ ′′ = 0) and the primes denote deriva-
tives with respect to θ . These equations are easily solved and
one finds that the two images are at θ± = ±(−2β/ψ ′′′)1/2

with inverse magnifications μ−1± = ∓(−2βψ ′′′)1/2 that are
equal in magnitude but with opposite sign. Hence, if the as-
sumptions for the Taylor expansion hold, the images merg-
ing at a fold should have identical fluxes. Using gravity to
produce anomalous flux ratios requires terms in the poten-
tial with a length scale comparable to the separation of the
images to significantly violate the rule that they should have
similar fluxes.
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3.2 Perturbing the system

Let’s consider a general lens system configuration for which
we know flux ratios and image positions and we assume to
be able to reproduce with a smooth lens model, such as a
singular isothermal ellipsoid (SIE), the main features of the
lens, besides the anomalous flux ratio. Adding an external
potential term in the lens equation and correspondingly in
the Jacobian matrix such as induced by singular isother-
mal sphere (SIS) substructures perturb the system. Keeton
(2001) analyzing the system B1422+231 (cusp case), could
put limits on the subclump mass range by considering the
different effects they would induce on optical and radio
bands. For the same system Bradač et al. (2002) suggests
a way to estimate the minimum value for the convergence k

in order to get agreement with the observed flux ratios.
Here we constrain the mass and the position of a sub-

structure by considering its effects on the flux of the images.
At each image position the perturbed Jacobian matrix can be
written as

A =
(

1 − κ1 − γ̃1 −γ̃2

−γ̃2 1 − κ1 − γ̃1

)
, (14)

where κ1 = (κ + κ), γ̃1 = (γ1 + γ1), γ̃2 = (γ2 + γ2)
and κ,γ1 and γ2 are the perturbations induced by a
substructure.

If the substructure is modeled by a SIS, it is possible to
express the shear components as a function of κ (this is
true for models that have radial symmetry, Kormann et al.
1994): γ1 = κ cos θsis and γ2 = κ sin θsis, where

κ = Rsis

2
√

(xsis − xP )2 + (ysis − yP )2
. (15)

(xsis, ysis) is the position of the substructure and (xP , yP )
is the considered image position. Rsis is the Einstein radius
of the substructure, which depends on its mass and the dis-
tances (or redshifts) to the lens and the source, the latter ones
being known quantities. The θsis is given through the relation
tg θsis = (xsis − xP )/(ysis − yP ) and it is the angle between
the SIS and the considered image position (xP , yP ). We first
consider a model with one additional substructure located
at the same distance as the lens. Its mass and position have
to be determined such that the substructure does not signifi-
cantly (within the observational errors) modify the positions
of all the images as well as the fluxes of the images which lie
far from the two ones near the fold critical point. These re-
quirements clearly put constraints on the mass and position
of the substructure.

For the determination of the magnification of an image
the additional terms due to the substructure depend only on
the position (xsis, ysis) and the mass (Einstein radius Rsis)
of the subclump, thus we have 3 unknown quantities (see

Appendix). We consider only three images, thus getting a
system with three equations for three unknown quantities,
and assume that the 4th image is far enough such as not to
be perturbed by the substructure. We then verify a posteriori
that the found solution satisfies this latter assumption within
the measurement errors. It turns out indeed to be the case,
as the subclump is located far from the 4th image, which is
chosen as being the most distant one from the two near the
fold. The system of equations is non-linear, so that the solu-
tion is not unique (see Appendix). However, some solutions
have to be discarded as being not physical (imaginary val-
ues or a negative Einstein radius). All acceptable solutions
are taken as input parameters for the simulations, as will be
discussed in the next section (see also Fig. 1).

Note that the substructure could produce further multi-
ple images of the original one. In our case, where we model
the substructures as SIS, necessary and sufficient condition
for multiple images formation is that the Einstein radius (of
the subclump) θEsub has to be greater than half of θI , the
distance of the image from the subclump (θEsub ≥ (1/2)θI )
(Narayan and Schneider 1990). In Tables 4 and 7 we give
the positions of the substructures and of the images for the
two considered lens systems as obtained from the simula-
tions as discussed in the next section. From these data one
easily verifies that the Einstein radius of the substructures,
as given in Tables 2 and 6, do not satisfy the above condi-
tion, thus ruling out the formation of further images. As no-
ticed by Keeton (2003), for SIS subclumps positive-parity
images get always brighter, whereas negative-parity images
get fainter. In our case for PG1115+080 (B1555+375) A1
(A) is the positive-parity image and A2 (B) the negative-
parity one.

4 Numerical simulations

In this section we present our simulations and results. We
use the gravlens code developed by Keeton (2001),4 mod-
eling the main galaxy acting as lens (in both cases) by a
SIE and then by adding an external shear term (which we
will in the following denote by SIEγ ) and/or a SIS term to
take into account the influence of the group in which the
galaxy is embedded. Moreover, we add one or two substruc-
tures to take into account the effects on small scales. For
PG1115+080 we use data in H band (see Table 1) taken
from Impey et al. (1998), and for B1555+375 the data in the
5 GHz radio band (see Table 6) from Marlow et al. (1999).
We allowed a conservative 1 σ error in the relative x- and
y-positions of the image components (corresponding to an
error of at most 5 mas), and 1 σ error on the values of the

4The software is available via the web site: http://cfa-
www.harvard.edu/castles.
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Table 1 Photometric data in 3 bands for the four images of
PG1115+080, from Impey et al. (1998)

Image H mag I mag V mag

A1 15.75 ± 0.02 16.12 16.90

A2 16.23 ± 0.03 16.51 17.35

B 17.68 ± 0.04 18.08 18.87

C 17.23 ± 0.03 17.58 18.37

Lens 16.57 ± 0.10 18.40 −

fluxes (corresponding to a variation by 20%). In each model
we have different parameters and constraints, and the good-
ness of the fit is given by the χ2 value, evaluated on the
image plane (χ2

img), and is a sum of different contributions:

image positions and fluxes, and main galaxy position.5

4.1 PG1115+080

We model the main lens galaxy as a SIE and take into ac-
count the contribution due to the group of which the galaxy
is part of either by adding a SISgroup component (Keeton
2003; Chen et al. 2003) or an external shear term. We con-
sider both models to which we add one substructure de-
scribed as a small SIS.

The results for PG1115+080, modeled as a SIE and an
external shear or a SIS, are given in Tables 2, 3 and 4 (in the
following we indicate with M the mass inside the Einstein
radius) and in Fig. 1. In both cases we find good agreement
with previous results (Impey et al. 1998; Chiba 2002). In the
case SIEγ we find for the external shear γ = 0.11 and for
its direction an angle of φ = 56◦, which agree well with the
results of Chiba (2002).

In a further step we add one substructure, using as start-
ing parameters for its position and mass the analytic results
as determined following the method outlined in the previous
section.6 In the model SIEγ + SIS we have 11 parameters,
i.e. for the main galaxy: Einstein radius (i.e. mass), elliptic-
ity e and orientation PA, shear γ and its direction φ; for the
substructure: the Einstein radius, position (corresponding to
2 parameters) and, moreover, the source position (2 para-
meters) and its flux. The observational constraints are 12,
namely the 4 × 2 image positions and 4 fluxes.

5There is an alternate way to define the χ2 that is evaluated in the
source plane (χ2

src) (e.g., Kayser et al. 1990), which is an approximate
version of χ2

img: when using the minimization within this approxima-
tion the formation of additional images is not excluded, maybe yield-
ing to a not realistic model. However, the approximation inherent χ2

src,
should properly be used only if a good model is already known, not in
an initial search for a good model (Keeton 2001).
6Moreover, since we don’t know a priori the source flux, we take the
value we get from the SIEγ model and, considering the observational
fluxes with respect to the A1 image, we use them as starting values in
the analytical system.

In the model SIE + SISgroup + SIS, in which the group is
modeled by a SIS, the substructure (denoted in Fig. 1 by S2)
is close to A2, whereas for the previous model it is close to
A1 (denoted as S1 in Fig. 1). By adding one substructure the
value of the anomalous flux ratio improves substantially for
both models: getting lowered from 0.91 to 0.69 for the first
model and to 0.66 for the second model, with χ2

tot = 1.3 and
≈0.4, respectively, which is quite good.7

The results from the simulations agree, as expected, quite
well with the analytical ones. Since the mass of the sub-
structures is very small as compared to the mass of the lens
galaxy, the approximation used in the analytical approach to
neglect the influence induced on the positions of the images
by the substructures is quite well fulfilled. We checked this,
indeed, on the results obtained from the numerical simula-
tions.

Since the positions and magnifications of the images are
only known within a certain accuracy, we computed the cor-
responding 1σ and 2σ ranges for the value of the mass of
the substructure. Starting from our best model we consider
two approaches. In the first we let all parameters (i.e. the
main galaxy ones and the position of the substructure) vary,
whereas in the second one we keep the main galaxy para-
meters fixed at the values given by the best fit model and
let the remaining parameters vary. The high values for the
total χ2 are due to the bad galaxy position fit (in the first
case) and to the bad image position fit (in the second case).
In Fig. 2 we report χ2 as a function of the substructure
Einstein radius for the SIE + SISgroup + SIS model for both
cases mentioned above. We do not consider larger values for
the Einstein radius as this would correspond to masses for
the substructure of order M(<RE) ≈ 109–1010M�, too big
to be realistic and for which one would see effects on the
image position or even image splitting. On the other hand
we can also exclude Einstein radius that are too small. In
fact, if it is true that with a standard accretion disk model we
get a source size radius Rs ≈ 1015 cm (Chiba et al. 2005)
and that for the PG1115+080 system the real source size
should be about 10–100 times bigger (Pooley et al. 2006),
we can estimate roughly the limit of the Einstein radius for
which the effects on the images become negligible. For a
stellar RE ≈ 10−5 arcsecs, that corresponds to 0.03 pc (on
the lens plane), there would be no (or little) effect on an im-
age of a source with RS ≈ 0.1 pc. The minimum value of the
curve corresponds to an Einstein radius ≈0.001 arcsec. Any-
way, the curve within the 2σ range is rather constrained (in
both cases), leading thus in practice to a small degeneracy,
with a rather narrow range for acceptable values of the sub-
structure mass. The 2σ range is within an Einstein radius of

7By further adding a second substructure to the first model, we find
even a lower value for the flux ratio, however, χ2

tot and χ2
flux increase,

which indicates that this model does not correspond to a global mini-
mum, but rather to a local minimum of the χ2

tot surface.
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Table 2 PG1115+080:
Parameters for different models,
with and without substructure.
γ and φ are the values of the
external shear and its direction.
RE is expressed in arcsec
(1 arcsec = 3.19 kpc h−1). The
1D velocity dispersions for the
main component and
substructures are also reported.
By adding a substructure the
agreement between predicted
and observed fluxes increases
substantially

Parameter SIEγ SIE + SISgroup SIEγ + SIS SIE + SISgroup + SIS

RE,gal 1.03 1.14 1.12 1.03

Mgal(M�) 1.23 × 1011 1.05 × 1011 1.24 × 1011 1.05 × 1011

RE,group – 2.30 – 2.11

Mgroup (M�) – 4.10 × 1011 – 4.0 × 1011

RE,sub1 – – 0.033 0.001

Msub1(M�) – – 1.00 × 108 1.00 × 105

σ SIE
v (km s−1) 232.3 245.4 243.5 232.3

σ SIS
v (km s−1) – – 39.2 6.8

A2/A1 0.91 0.95 0.69 0.66

γ 0.11 – 0.11 –

φ 560 – 560 –

χ2 77 3.9 1.30 0.08

Table 3 PG1115+080: Values of shear, convergence and amplifica-
tion for A1 and A2 images from simulations for the considered models

Model Image κ γ μ A2/A1

SIEγ A1 0.498 0.421 13.35 0.91

A2 0.535 0.545 −12.17 –

SIE + SISgroup A1 0.534 0.411 20.21 0.95

A2 0.551 0.504 −19.31 –

SIEγ + SIS A1 0.554 0.372 16.54 0.69

A2 0.561 0.531 −11.54 –

SIE + SISgroup + SIS A1 0.531 0.410 19.46 0.66

A2 0.565 0.517 −12.83 –

Table 4 PG1115+080: positions of the lens galaxy center, the close
pair A1 and A2, as well as the substructure with respect to the C image
(see Fig. 1). Also ellipticity e and orientation PA of the semi major axis
with respect to x-axis (as measured from East to North and centered in
the C image) are given. The distances between the substructure and the
images A1 and A2 are bigger than twice their corresponding Einstein
radius. Thus no further images will be formed

Object x (arcsec) y (arcsec) e PA

Galaxy −0.381 −1.345 0.14 −84◦

A1 −1.328 −2.037 – –

A2 −1.478 −1.576 – –

Sub1 −1.33 −2.20 – –

Sub2 −1.52 −1.57 – –

Table 5 B1555+375: Positions and photometric data of the 4 images
as given by CLASS (from Marlow et al. 1999)

Image x (arcsec) y (arcsec) S5 (mJy)

A 0.0 ± 0.005 0.0 ± 0.005 17.0

B −0.073 ± 0.005 0.048 ± 0.005 9.7

C −0.411 ± 0.005 −0.028 ± 0.005 8.3

D −0.162 ± 0.005 −0.368 ± 0.005 1.3

0.0005 and ≈0.005 arcsec corresponding to ∼2.5 × 104M�
and ∼2.5 × 106M�.

The 2σ range for the SIEγ + SIS model is somewhat
larger. Considering for example the first case, the Einstein
radius for the substructure could be as high as 0.1 arcsecs,
leading to quite a big mass (≈109M�).

4.2 B1555+375

B1555+375 is another lens system for which the agreement
between observations and model can be improved. Already
by adding an external shear one can quite substantially im-
prove the flux fitting, assuming for the lens galaxy a SIE
model. Anyway, Dobler and Keeton (2006) consider this
model unphysical (since ellipticity and shear turn out to be
almost perpendicular) and discuss other models, adding sub-
structures and giving lower limits on their masses. They find
an acceptable model using two substructures in front of B
and C images, respectively. Adding one substructure to the
model SIEγ does not improve the fit further.8 On the other
hand, adding two substructures (modeled as SIS with com-
parable masses and located near the pair of images due to
the fold) to the simple SIE model, we get a value for the
flux ratio B/A of 0.59, which is only slightly higher then
the observed one of 0.57 The results are reported in Ta-
bles 6, 7 and 8 and in Fig. 3. For the model of a SIEγ we
get χ2 = 1.29 and χ2

flux = 0.35. For the solution with two
substructures we find a χ2 ≈ 5, with Ndof = 5.

As we pointed out above, in the radio band up to now the
only successful explanation for the flux anomalies is to con-
sider substructures. Moreover, we notice that the SIE model
does neither fit very well the fluxes of the other images be-
sides the close pair ones.

8We tried, as in the previous case, also analytically to estimate mass
and position for a single SIS added to a SIE model, but the system of
equations does not have in this case real solutions.
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Fig. 2 1σ and 2σ limits for the Einstein radius for the model
SIE + SISgroup + SIS: a letting all parameters fixed but the position
of the subclump; b letting all parameters vary

As mentioned in the SIEγ model we get a rather high
value for the ellipticity (0.85) and for the external shear
(0.23): such a strong shear can be induced by a group of
galaxies located around the main lens. One has also to
consider possible effects due to groups of galaxies which
lie on the line-of-sight, both in the foreground and in the
background (Williams et al. 2006). Other systems (like
B1608+656 or HST 12531-2914) show such a high value
for the external shear (see (Witt and Mao 1997)). In particu-
lar, B0128+437 seems to be quite similar to B1555+375 (see
Philipps et al. 2000). Anyway, there are still not enough ob-

Table 6 B1555+375: Results from the simulations for two models
without substructures and one model with two substructures. (Notice
that for the latter model the χ2 is higher, see text.) The Einstein radii
are expressed in arcsec. The system is well fitted already by adding
external shear

Parameter SIE SIEγ SIE + 2SIS

RE,gal 0.22 0.165 0.21

Mgal(M�) 0.50 0.45 0.50 × 1010

RE,sub1 – – 0.009

RE,sub2 – – 0.012

Msub1(M�) – – 8.1 × 106

Msub2(M�) – – 1.4 × 107

σ SIE
v (km s−1) 170.1 147.3 165.6

σ sub1
v (km s−1) – – 23.3

σ sub2
v (km s−1) – – 24.7

B/A 0.93 0.61 0.59

e 0.53 0.85 0.53

PA −2.42◦ −6.39◦ 0.41◦

γ – 0.23 –

φ – −78◦ –

χ2 13.9 1.9 5.2

Table 7 B1555+375: Parameters of the lens model and of the added
substructures. e and PA are ellipticity and orientation of the semi ma-
jor axis with respect to x-axis (as measured from East to North and
centered in the A image)

Object x (arcsec) y (arcsec) e PA

Lens −0.162 −0.246 0.53 0.75◦

A 0.0 0.0 – –

B −0.075 0.043 – –

Sub1 −0.060 0.094 –

Sub2 0.101 0.001 –

servations neither about the main galaxy nor about its envi-
ronment, so that it is not possible to choose among the differ-
ent solutions. However, our solution with two substructures
involves a SIE lens model with an angular structure which
is in agreement with previous works (Marlow et al. 1999
and Keeton et al. 2005). Also for this model we computed
the confidence intervals for the various parameters. As an
example in Fig. 4 we show the contour ellipses for the con-
fidence intervals of the Einstein radii of the substructures as
obtained fixing the main galaxy parameters.

5 Discussion

We have analyzed two lens systems, PG1115+080 and
B1555+375, which show an anomalous flux ratio for the
two images near the critical curve, due to a fold configura-
tion. These systems cannot be modeled using only smooth
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Fig. 3 B1555+375: images, source and galaxy (G) positions are
shown assuming a SIE + 2SIS model. The positions of the two sub-
structures are also given. The critical curve and the caustic are for the
SIE model alone without the modifications induced by the two sub-
structures

Fig. 4 B1555+375: Contour plot for the 1,2 and 3σ confidence inter-
vals for the Einstein radii (in arcsec) of the substructures

lens models like SIE, although they fit well all the positions
of the images. We added one or two substructures, taking as
starting parameters for our numerical simulations the ones
obtained by an approximated analytical treatment.

In this way we reproduce well, in addition to the posi-
tions, also the fluxes of the pair of images near the criti-
cal curve. In the PG1115+080 case we get a ratio of 0.69

as compared to the observed one of 0.65 if we consider a
model SIEγ + SIS or 0.66 for a model SIE + SISgroup + SIS
and for B1555+375 a ratio of 0.59 instead of 0.57 with a
SIE + 2SIS model. We point out that for PG1115+080 when
we consider the model SIE + SISgroup + SIS we find that the
substructure needed to explain the anomaly in the optical
band lies close to the A2 image and has a mass ≈105M�.
On the other hand, the model SIEγ requires a mass ≈108M�
close to the A1 image that could in principle affect also
larger λ bands, for which no anomaly has been reported yet
(Chiba et al. 2005). Therefore, this latter model is certainly
less plausible if not already excluded. Clearly, new observa-
tions are still needed to better constrain the models.

In the case of B1555+375 we also explored simpler mod-
els (i.e. SIE, SIE plus simple external shear, or SIE + SIS)
but we did not find any acceptable solution. We note that
our best model is similar to the one found by (Dobler and
Keeton 2006): in their analysis, they concluded that the sys-
tem B1555+375 has two anomalous images. Their approach
is different, since they try to identify anomalies by relaxing
the flux constraints on an image and fit all the others, im-
age positions and fluxes. When a good model is found, they
than conclude that the unconstrained image is anomalous
and give a lower mass limit on the subclump likely respon-
sible for the anomalous flux by optimizing χ2 as a function
of the subhalo Einstein radius and the source size. Neverthe-
less, they also need two substructures close to two different
images (either in front of images A and C or close to images
B and C) to fit the fluxes. Despite the fact that one of their
models has Ndof = 0, the values of the subhalo masses are
similar to ours (e.g. ∼105−6M� within the Einstein radius).
Finally, we would like to point out that the current obser-
vations towards B1555+375 seem not to reveal any nearby
group to which the lens system belongs, so a SIE model plus
external shear might be inadequate to describe the effect due
to substructures, which are rather better modeled by a SIS.

In both cases the best models are the ones with additional
substructures. Previously, the best models gave values for
the anomalous flux ratio of 0.91 for PG1115+080 and 0.93
for B1555+375, respectively. The improvement achieved by
just adding substructures is remarkable.

Our approach, although leading to better values for the
anomalous flux ratios, is not completely new and indeed, as
mentioned in the introduction previous works attempted to
solve the anomalous flux ratios problem by adding pertur-
bations until a good model was found. In particular, Keeton
(2003), Inoue and Chiba (2005) studied the effect of sub-
structures, modeled as SIS, in a convergence and shear field
describing the main lens galaxy (or galaxies along the line
of sight, e.g. Keeton 2003). Mao and Schneider (1998), Met-
calf and Madau (2001), Keeton (2001) analysed the problem
by directly adding subclumps, in form of point masses, SIS,
or plane-wave perturbations, in order to explain the observed
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anomalies. Chen et al. (2003), Metcalf (2005), Keeton et al.
(2005), Macciò and Miranda (2006) (and references therein)
studied the problem by using statistical approaches and nu-
merical simulations.

The masses of the substructures are in the range ≈105–
108M�, and distant enough from the images not to induce
the formation of additional ones. Given the mass range the
perturbers could be globular clusters or small satellite galax-
ies, but also CDM dark substructures. In order to com-
pare the masses we obtained with dark substructures as pre-
dicted by CDM, we notice that our values correspond to
the mass enclosed within the Einstein radius, while CDM
subhalo masses are defined as the mass enclosed within the
tidal radius, which is usually much larger than RE . How-
ever, without going too much into details, it is still possi-
ble to get a rough estimate of the mass within the tidal ra-
dius by calculating the 1D velocity dispersion of the sub-
halos from their Einstein radius and then by considering
the M ∝ v3

c (with the approximation vc = σv/
√

3) rela-
tion found in numerical simulations (Bullock et al. 2001;
Diemand et al. 2004). Although current simulations achieve
a lower limit for CDM subhalo masses of M ≈ 1010–11M�,
we assume this relation to hold for lower values of the ve-
locity dispersion and of the masses. Clearly, the extrapo-
lation to lower velocities could suffer from resolution ef-
fects and numerical noise. In the system PG115+080 for
the SIEγ + SIS model the substructure has a σv ≈ 39 km/s,
which leads to a mass of ∼7 × 108M� (the mass within the
Einstein radius, as given in Table 2, is instead 1 × 108M�),
while in the model SIE + SISgroup + SIS the substructure
has σv ≈ 6.8 km/s corresponding to ∼4 × 106M� (instead
of 1 × 105M�). In the system B1555+375 the substruc-
tures have σv1 ≈ 23 km/s and σv2 ≈ 25 km/s respectively,
which leads for both a corresponding mass of about 108M�
(whereas, as given in Table 6, the mass within the Einstein
radius is ≈107M�). We roughly find that the mass within
the tidal radius is about 10 times bigger than the one within
the Einstein radius.

To get a rough estimate of the number of substructures
expected to lie close to the images we follow the work of
Diemand et al. (2004). They compute the two dimensional
radial number density of subhalos inside a galaxy virial ra-
dius, from which it is then possible to get an estimate of the
number of substructures inside a small area surrounding an
image in a lens system. The number of subhalos with a mass
greater than m inside an area A at a distance r from the cen-
ter of the galaxy is given by (Macciò and Miranda 2006)

NA(> m, r) = 〈Nrv (>m0)〉m0
m

N(r)A

πr2
v

, (16)

where 〈Nrv (>m0)〉 is the average number of subhalos with
m > m0 inside the virial radius rv of the galaxy and N(r)

describes the radial dependence of the number of substruc-
tures. The cumulative mass function of subhalos within the
virial radius of an halo scales as ∝m−1.

As an example for PG1115+080, we consider m ≥
105M�, (m0 ≈ 107) and a distance of the images from
the center r ≈ 1.5 arcsec (N(r) ≈ 2–6, 〈Nrv (>m0)〉 ≈
166, rvir = 268 kpc, see simulations G0 and G1 in Table 1
of Diemand et al. 2004 and Macciò and Miranda 2006).
Typically, a substructure is expected to lie at a distance from
an image comparable to the separation between the close
pair, which is about ≈0.5 arcsec. We, therefore, consider an
area corresponding to a small disc with a radius about twice
the separation distance, thus ≈1.0 arcsec (corresponding at
zl = 0.31 to A ≈ π(4.5)2 kpc2). With these assumptions
we expect 10 to 30 substructures in the considered area. If
instead we require m ≥ 106M� then we find about 1 to 3
substructures, and 0.1 to 0.3 for m ≥ 107M�. From these
considerations we see that the expected number of substruc-
tures within the CDM model seems, in particular, to be lower
than required when considering the model with a 108M�
mass subclump or even bigger, whereas for models with a
106M� mass subclump it might be in better agreement.

For B1555+375 the above considerations apply as well:
at zl = 0.5, 1.0 arcsec = 6.114 kpc, thus the area around the
image pair is A ≈ π(6.114)2 kpc2. By using the same val-
ues as in the previous case the expected number of CDM
subhalos bigger then 108 being close to the image pair is
between 0.02 and ∼0.1. Clearly, given the rough approxi-
mation used, some of them depending on extrapolations of
numerical simulations of limited resolution, it is not possible
to draw firm conclusions.

It is obviously also not possible to distinguish between
different models, moreover it could be that some of the sub-
structures are actually located along the line of sight rather
than being in the surroundings of the lens galaxy. To this
respect it is interesting to notice that with future ALMA ob-
servations one could solve this latter problem as pointed out
by Inoue and Chiba (2005). They proposed a method to re-
alize a 3D mapping of CDM substructures in extragalactic
halos, based on astrometric shift measurements (at submil-
limeter wavelengths) of perturbed multiple images with re-
spect to unperturbed images, with which it should be possi-
ble to break the degeneracy between the subhalo mass and a
position along the line of sight to the image.

Also other explanations of the flux anomaly in multi-
ple QSOlens systems have been considered in the literature,
however the best solution, seems to be the presence of sub-
structures in the halo of the lens galaxy.

For the second case (B1555+375) there are two accept-
able solutions: with and without any substructure. Even if
a high shear value seems implausible, we cannot yet rule
out this possibility. A recent work (Williams et al. 2006)
shows the importance of galaxy groups along the line of
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sight that can significantly impact the lens model. High-
resolution VLA radio observations could help to constrain
the lens model further. On the other hand, starting from the
simple SIE model, we find a real good fit for the image po-
sitions and fluxes, if we add two substructures, still keeping
acceptable values for the main lens parameters (in agree-
ment with Marlow et al. 1999). We note also that for the
B1555+375 system we assumed the redshifts of the source
and the lens to be known. Even if these values might not
be exact the uncertainties do not change the result signif-
icantly. For instance, if we let the redshifts (zs = 1.5 and
zl = 0.5) vary by ±0.3 and use a source redshift of zs = 1.8
with zl = 0.2 we get a mass for the first substructure of
3.3 × 106M�(<RE). By considering instead zs = 1.2 and
zl = 0.8 the mass is 2.7 × 107M�(<RE). All other combi-
nations will give a mass value within this range, and simi-
larly for the second substructure.

Finally, we observe that the PG1115+080 system is radio-
quiet, so that the microlensing hypothesis can not be ruled
out (Pooley et al. 2006). However, given the different obser-
vations at the various wavelengths it might also be possible
that both microlensing and millilensing are at work. A more
accurate analysis about the source size could cast some light
in constraining the substructure size. Since there are discus-
sions about it, more high resolution observations are needed
to definitely rule out the millilensing or microlensing hy-
pothesis. On the other hand, for the B1555+375 system
anomalies are evident in the available radio data, for which
the most plausible explanation are CDM substructures in
galactic halos.
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Appendix: Analytic estimates for convergence and
shear due a substructure

We briefly present here the formalism used for the analyti-
cal approximation of the total convergence κtot and the total
shear γtot in the presence of one perturber, located in the
main lens plane. At each point of the lens plane we can eval-
uate the total amplification using the quantities:

κtot = κsie + κ, (17)

γ1tot = γ1sie + γ1, (18)

γ2tot = γ2sie + γ2, (19)

μ−1 = (1 − κtot)
2 − [(γ1tot)

2 + (γ2tot)
2]. (20)

κsie is the convergence due to the main lens and κ is due
to the perturber and similarly for the shear γsie and γ (see

Table 8 Analytic solutions for PG1115+080 as discussed in the text

RE (arcsec) x (arcsec) y (arcsec)

1 0.030 −1.199 −2.65

2 0.035 −1.825 −2.352

3 0.049 −1.363 −2.421

4 0.050 −1.76 −2.332

Sect. 3.2). Dealing with a SIE model allows us to write (see
Kormann et al. 1994):

κsie = Rsie

2

√
(

2q2

1+q2 )(xsie − xP )2 + (ysie − yP )2

, (21)

where q is the axis ratio of the elliptical model used for the
galaxy acting as lens. The values for κsie, γ1sie and γ2sie are
taken, for instance in the PG1115+080 case, from the SIEγ

model (which corresponds to the zero order approximation),
computed in A1 and A2 (see Table 3) as well as the magnifi-
cation factors with respect to the image A1 (and keeping the
source flux as obtained from SIEγ model). In this way the
system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ−1
A1 = (1 − κtotA1)

2 − [(γ1totA1)
2 + (γ2totA1)

2],
μ−1

A2 = (1 − κtotA2)
2 − [(γ1totA2)

2 + (γ2totA2)
2],

μ−1
B = (1 − κtotB)2 − [(γ1totB)2 + (γ2totB)2]

(22)

has only three unknown quantities, namely Rsis and the per-
turber position given by (xsis, ysis). Since the system is non-
linear, we get different sets of solutions, some of which turn
out to be unphysical. The allowed solutions are near the
close pair (see Table 8). We marked their positions on Fig. 1.
We used then these solutions as input parameters for the nu-
merical simulation. It turns out that all converge to the same
model SIEγ + SIS discussed in Sect. 4.1.
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