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Abstract: We consider a recurrent random walk (RW) in random environment (RE)
on a strip. We prove that if the RE is i. i. d. and its distribution is not supported by an
algebraic subsurface in the space of parameters defining the RE then the RW exhibits
the (log 1)* asymptotic behaviour. The exceptional algebraic subsurface is described by
an explicit system of algebraic equations.

One-dimensional walks with bounded jumps in a RE are treated as a particular case
of the strip model. If the one dimensional RE is i. i. d., then our approach leads to a
complete and constructive classification of possible types of asymptotic behaviour of
recurrent random walks. Namely, the RW exhibits the (log#)? asymptotic behaviour
if the distribution of the RE is not supported by a hyperplane in the space of parame-
ters which shall be explicitly described. And if the support of the RE belongs to this
hyperplane then the corresponding RW is a martingale and its asymptotic behaviour is
governed by the Central Limit Theorem.

1. Introduction

The aim of this work is to describe conditions under which a recurrent random walk
in a random environment (RWRE) on a strip exhibits the log? # asymptotic behaviour.
This slow, lingering movement of a walk was discovered by Sinai in 1982 [18]. At the
time, this work had brought to a logical conclusion the study of the so called simple
RWs (SRW) started by Solomon in [19] and by Kesten, Kozlov, and Spitzer in [14]. The
somewhat misleading term “simple” is often used as an abbreviation describing a walk
on a one-dimensional lattice with jumps to nearest neighbours.

Our work was motivated by a question asked by Sinai in [18] about the validity of
his (and related) results for other models. Perhaps the simplest extension of the SRW is
presented by a class of one-dimensional walks whose jumps (say) to the left are bounded
and to the right are of length at most one. These models were successfully studied by a
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number of authors and the relevant references can be found in [2]. We would like to quote
one result concerning this special case since it is perhaps most close to our results stated
below in Theorems 2 and 3. Namely, Bremont proved in [3] that if the environment is
defined by a Gibbs measure on a sub-shift of finite type, then the asymptotic behaviour
of a recurrent RW is either as in Sinai’s theorem, or it is governed by the Central Limit
Law.

General IDWBJ were also studied by different authors. Key in [15] found conditions
for recurrence of a wide class of IDWBJ. Certain sufficient conditions for the Sinai
behaviour of IDWBJ were obtained by Letchikov in [17]. The results from [17] will
be discussed in a more detailed way in Sect. 1.1 after the precise definition of the one-
dimensional model is given. We refer the reader to [20] for further historical comments
as well as for a review of other recent developments.

The main object of this paper is the RWRE on a strip. We prove (and this is the main
result of this paper) that recurrent walks in independent identically distributed (i. i. d.)
random environments on a strip exhibit the log® # asymptotic behaviour if the support
of the distribution of the parameters defining the random environment does not belong
to a certain algebraic subsurface in the space of parameters. This subsurface is defined
by an explicit system of algebraic equations.

The one dimensional RW with bounded jumps can be viewed as a particular case
of a RWRE on a strip. This fact was explained in [1] and we shall repeat this expla-
nation here. Due to this reduction, our main result implies a complete classification of
recurrent IDWBJ in i.i.d. environments. Namely, the corresponding system of algebraic
equations reduces in this case to one linear equation which defines a hyperplane in the
space of parameters. If the support of the distribution of parameters does not belong to
this hyperplane, then the RW exhibits the Sinai behaviour (see Theorem 2 below). But if
it does, then (Theorem 3 below) the corresponding random walk is a martingale and its
asymptotic behaviour is governed by the Central Limit Law. In brief, recurrent IDWBJ
are either of the Sinai type, or they are martingales.

In the case of a strip, a complete classification can also be obtained and it turns out that
once again the asymptotic behaviour is either the Sinai, or is governed by the Invariance
Principle. However, this case is less transparent and more technical even to describe in
exact terms and we shall leave it for a future work.

The paper is organized as follows. We state Sinai’s result and define a more gen-
eral one-dimensional model in Sect. 1.1. Section 1.2 contains the definition of the strip
model and the explanation of the reduction of the one-dimensional model to the strip
case. Main results are stated in Sect. 1.3. Section 2 contains several statements which
are then used in the proof of the main result, Theorem 1. In particular, we introduce
random transformations associated with random environments in Sect. 2.2. It turns out
to be natural to recall and to extend slightly, in the same Sect. 2.2, those results from [1]
which are used in this paper. An important Lemma 5 is proved in Sect. 2.3; this lemma
allows us to present the main algebraic statement of this work in a constructive form. In
Sect. 2.4 we prove the invariance principle for the log of a norm of a product of certain
matrices. This function plays the role of the so-called potential of the environment and
is responsible for the Sinai behaviour of the random walk. It is used in the proof of our
main result in Sect. 3.

Finally the Appendix contains results of which many (if not all) are not new but it
is convenient to have them in a form directly suited for our purposes. Among these,
the most important for our applications is the Invariance Principle (IP) for “contract-
ing” Markov chains (Sect. 4.1.3). Its proof is derived from a well known IP for general
Markov chains which, in turn, is based on the IP for martingales.
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Conventions. The following notations and terminology shall be used throughout the
paper. R is the set of real numbers, Z is the set of integer numbers, and N is the set of
positive integers.

For a vector x = (x;) and a matrix A = (a(i, j)) we put

def def ..
el = max |l AI'S max > laG, j)l.
J

Note that [|A[| = sup|,—; [|Ax||. We say that A is strictly positive (and write A > 0),
if all its matrix elements satisfy a(i, j) > 0. A is called non-negative (and we write
A > 0),if all a(i, j) are non negative. A similar convention applies to vectors.

1.1. Sinai’s result and some of its extensions to IDWBJ. Let w def (Pn)—co<n<oo be

a sequence of independent identically distributed (i. i. d.) random variables, satisfying
& < pp <1—e¢,wheree > 0.Putg, =1 — p, and consider a random walk £(#) on a
one-dimensional lattice with a starting point £(0) = 0 and transition probabilities

Pro{§+ 1) =n+118() =n}=pn, Prol§+1)=n—1[§0)=n}=qn,

thus defining a measure Pr{-} on the space of trajectories of the walk. It is well known
(Solomon, [19]) that this RW is recurrent in almost all environments o if and only if
Eln g—: = 0 (here [E denotes the expectation with respect to the relevant measure [P on

the space of sequences). In [18] Sinai proved that if E(In Z—’;)z > 0 and &(-) is recurrent
then there is a weakly converging sequence of random variables b;(w), t = 1,2, ...
such that
(logt)"2£(1) — b—0 as 1 — oo. (1.1)
The convergence in (1.1) is in probability with respect to the so-called annealed probabil-
ity measure P(dw) Pr,, (for precise statements see Sect. 1.3). The limiting distribution
of b; was later found, independently, by Golosov [7,8] and Kesten [13].
The one-dimensional walk with bounded jumps on Z is defined similarly to the sim-

ple RW. Namely let w o (p(n,-)), n € Z, be a sequence of non-negative vectors with
" pn,k)=1andm > 1.Put£(0) = 0 and
k=—m

ProE+1) =n+k|6@) =n) < po, k), neZ. (1.2)

Suppose next that p(n, -) is a random stationary in » (in particular it can be i. i. d.)
sequence of vectors. Sinai’s question can be put as follows: given that a RW is recurrent,
what kind of asymptotic behaviour would one observe, and under what conditions?

There were several attempts to extend Sinai’s result to the (1.2) model. In particular,
Letchikov [17] proved that if for some ¢ > 0 with P-probability 1

-2

m
pn, 1) > Z pn,k)+¢e and p(n,—1) > Zp(n, k)+e
k=—m k=2

and the distribution of the i. i. d. random vectors p(n, -) is absolutely continuous with
respect to the Lebesgue measure (on the relevant simplex), then the analogue of Sinai’s
theorem holds. (In [17], there are also other restrictions on the distribution of the RE but
they are much less important than the ones listed above.)

The technique we use in this work is completely different from that used in
[2,3,15,17]. It is based on the methods from [1] and [6] and this work presents further
development of the approach to the analysis of the RWRE on a strip started there.
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1.2. Definition of the strip model. The description of the strip model presented here is
the same as in [1].

Let (P,, On, Ry), —00 < n < o0, be a strictly stationary ergodic sequence of tri-
ples of m x m matrices with non-negative elements such that for all n € Z the sum
P, + O, + R, is a stochastic matrix,

(Pn""Qn"'Rn)l = la (1.3)

where 1 is a column vector whose components are all equal to 1. We write the compo-
nents of P, as P,(i, j), 1 < i, j < m, and similarly for Q, and R,. Let (2, F,P,7T)
be the corresponding dynamical system with €2 denoting the space of all sequences
w = (wy) = ((Py, On, Ry)) of triples described above, F being the corresponding
natural o -algebra, P denoting the probability measure on (2, ), and 7 being a shift
operator on 2 defined by (7 w), = wy+1. For fixed ® we define a random walk &(7),
t € Nonthe stripS = Z x {1, ..., m} by its transition probabilities Q,,(z, z1) given by

Py, j) ifz=mi), z1=m+1,)),
d_ef Rn(laj) ifz:(nal)a Zl :(na,])a
Qo2 =10 0,G,7) ifz=00), 21=0—1,)),

0 otherwise.

(1.4)

This defines, for any starting point z = (n, i) € S and any w, alaw Pr,, ; for the Markov
chain £(-) by

Pro. W) =21 ... 60) =200 © Qu(z,21)Qw(z1.22) - - Qw(zr—1, z1).  (L1.5)

We call w the environment or the random environment on a strip S. Denote by E, the
set of trajectories &(-) starting at z. Pr,, ; is the so-called quenched probability measure
on E;. The semi-direct product P(dw) Pr, ;(d§) of P and Pr,,  is defined on the direct
product 2 x E; and is called the annealed measure. All our main results do not depend
on the choice of the starting point z. We therefore write Pr,, instead of Pr,, ; when there
is no danger of confusion.

The one-dimensional model (1.2) reduces to a RW on a strip due to the following
geometric construction. Note first that it is natural to assume (and we shall do so) that
at least one of the following inequalities holds:

Plw : p(x,m) >0} >0 or P{lw : p(x,—m) > 0} > 0. (1.6)

Consider the one-dimensional lattice as a subset of the X-axis in a two-dimensional
plane. Cut this axis into equal intervals of length m so that each of them contains exactly
m consecutive integer points. Turn each of these intervals around its left most integer
point anti-clockwise by 7 /2. The image of Z obtained in this way is a part of a strip
with distances between layers equal to m. Re-scaling the X-axis of the plane by m ™!
makes the distance between the layers equal to one. The random walk on the line is thus
transformed into a random walk on a strip with jumps to nearest layers.

The formulae for matrix elements of the corresponding matrices P,, Q,, R, result
now from a formal description of this construction. Namely, presentx € Z asx = nm+i,
where 1 < i < m. This defines a bijection x < (n, i) between the one-dimensional
lattice Z and the strip S = Z x {1, ..., m}. This bijection naturally transforms the
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&-process on Z into a walk on Z x {1, ..., m}. The latter is clearly a random walk of
type (1.5) and the corresponding matrix elements are given by

P,(i,j)=pmm+i,m+j—1i),

Ry(i, j) = plnm +1i, j — i), (1.7)
On(, j) = plnm +i, —m + j —1i).

1.3. Main results . Denote by J the following set of triples of m x m matrices:

JEP.Q.R): P>0,0>0,R>0and (P+Q+R)1=1}.
Let Jo C J be the support of the probability distribution of the random triple (P,, O,
R,,) defined above (obviously, this support does not depend on n). The two assumptions
C1 and C2 listed below will be referred to as Condition C.

Condition C
C1 (Py, On, Ry), —00 < n < 00, is a sequence of independent identically distributed
random variables.

C2 Thereisane > 0andapositive integer numberl < oo suchthat forany (P, Q, R) €
Joandalli, j €[1,m],

IR <1—e (I—-R7'PYi,j)=e (I-R'QG ) >e

Remarks. 1. We note that say ((1 — R)~IP)G, J) is the probability for a RW starting
from (n, i) toreach (n+1, j) atits first exit from layer n. The inequality | |Rfl | <1—eis
satisfied in essentially all interesting cases and, roughly speaking, means that the prob-
ability for a random walk to remain in layer n after a certain time / is small uniformly
with respect to n and w.

2. If the strip model is obtained from the one-dimensional model, then C2 may not
be satisfied by matrices (1.7). This difficulty can be overcome if we replace C2 by a
much milder condition, namely:

C3 For P - almost all w:
(a) the strip S is the (only) communication class of the walk,
(b) there is an ¢ > 0 and a triple (P, Q, R) € Jy such that at least one of the
following two inequalities holds: (I — R)™'P)(i, j) = e forall i, j € [1,m], or
(I = R0V, j) > eforalli, je[l,m].

Our proofs will be carried out under Condition C2. They can be modified to make
them work also under Condition C3. Lemma 6 which is used in the proof of Theorem 1
is the main statement requiring a more careful treatment under Condition C3 and the
corresponding adjustments are not difficult. However, the proofs become more technical
in this case, and we shall not do this in the present paper. If now vectors p(x, -) defining
matrices (1.7) are P-almost surely such that p(x, 1) > € and p(x, —1) > € for some
€ > 0, then it is easy to see that Condition C3 is satisfied. We note also that if in addition
the inequalities p(x,m) > € and p(x, —m) > € hold P-almost surely, then also C2 is
satisfied.

For a triple of matrices (P, Q, R) € Jp denote by m = m(p, g, ) = (71, ..., 7Tm) a
row vector with non-negative components such that

m
7(P+Q+R)=m and an =1.
j=1
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Note that the vector 7 is uniquely defined. Indeed, the equation for 7 can be rewritten
as

MI—&(U—RYUH{L—M”Q):HU—R)

According to Condition C2, the stochastic matrix (1 — R)"'P+(I—R)"'Qhas strictly
positive elements (in fact they are > 2¢). Hence w (I — R) is uniquely (up to a multi-
plication by a number) defined by the last equation and this implies the uniqueness of
.

Consider the following subset of 7:

Jal o {(P,O,R) e J : n(P— Q)1 =0, where n(P+ Q +R) =}, (1.8)
where obviously 7 (P — Q)1 = > | 7; ZTZ](P(i, j) — 0O(, j)). Note that J; is an
algebraic subsurface in 7.

We are now in a position to state the main result of this work:

Theorem 1. Suppose that Condition C is satisfied, the random walk £(-) = (X (-), Y ())
is recurrent, and Jo ¢ Ju. Then there is a sequence of random variables b;(w),

t =1,2,..., which converges weakly as t — 00 and such that for any € > 0,
X (1)
Plw : Pro\|——= —b| <€) >1—€; —> las t - oo. (1.9)
(log1)?

Remarks. The algebraic condition in this theorem requires a certain degree of non-
degeneracy of the support [Jp of the distribution of (P,, Q,, R,). It may happen that
relations (1.9) hold even when Jy C J,;. However Theorem 3 shows that there are
important classes of environments where relations (1.9) (or (1.11)) hold if and only if
this non-degeneracy condition is satisfied.

We now turn to the one-dimensional model. It should be mentioned right away that
Theorem 2 is essentially a corollary of Theorem 1.

Denote by J the set of all 2m + 1-dimensional probability vectors:

T EAPG)-mzjzm + pO) =0 and > p(j) =1}.

j==m

Remember that in this model the environment is a sequence of vectors: @ =

(P(X, ) _so<x<oo» Where p(x,:) € J. Let Jo C J be the support of the distribu-
tion of the random vector p(0, -). Finally, put

def

Ja S p()ed : > jp(j) =0} (1.10)

j=—m

Theorem 2. Suppose that:

(@) p(x,-), x € Z, is a sequence of i. i. d. vectors,

(b) thereisane > Osuchthat p(0, 1) > ¢, p(0, —1) > ¢, p(0, m) > ¢, and p(0, —m) >
e for any p(0. ) € Jo,

(c) for P almost all environments w the corresponding one-dimensional random walk
&(-) is recurrent,

(d) Jo & Tar.
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Then there is a weakly converging sequence of random variables by (w), t = 1,2, ...
such that for any € > 0,

(1)
]P’Ia):Prw(|(10g—t)2—b,|§e)zl—e]—>1ast—>oo. (1.11)

Proof. Since the one-dimensional model reduces to a model on a strip, the result in
question would follow if we could check that all conditions of Theorem 1 follow from
those of Theorem 2.

It is obvious from formulae (1.7) that the i. i. d. requirement (Condition C1) follows
from condition (a) of Theorem 2. We have already mentioned above that Condition C2
follows from condition (). The recurrence of the corresponding walk on a strip is also
obvious.

Finally, condition (d) implies the algebraic condition of Theorem 1. Indeed, formulae
(1.7) show that matrices P,, Q,, R, are defined by probability vectors p(nm+i, -) € jo,
where 1 < i < m. Put n = 0 and choose all these vectors to be equal to each other,
say p(i,-) = p(-) € jo, where 1 < i < m. A direct check shows that the triple
of matrices (P, @, R) built from this vector has the property that P + Q + R is dou-
ble-stochastic and irreducible (irreducibility follows from the conditions p(1) > ¢ and
p(—1) > ¢). Hence the only probability vector r satisfying (P + Q + R) = m is given
by m = (m_l, R m_l). One more direct calculation shows that in this case

ma(P— Q1= D" jp(j).

j=—m

Hence the condition Jy ¢ J4 of Theorem 1 is satisfied if there is at least one vector
p() € Josuchthat 377 jp(j) #0. O

We conclude this section with a theorem which shows, among other things, that the
algebraic condition of Theorem 2 is also necessary for having (1.11). This theorem does
not require independence as such but in a natural sense it finalizes the classification of
the one-dimensional recurrent RWs with bounded jumps in the i. i. d. environments.

Theorem 3. Consider a one-dimensional RW and suppose that

(@) p(x, ), x € Z, is a strictly stationary ergodic sequence of vectors,

(b) there is an € > 0 such that p(0, 1) > ¢ and p(0, —1) > ¢ for any p(0, -) € jo,
(©) Jo C Jai, that is

> ip() =0 forany p(-) € J .

j=—m

Then:
(i) The random walk &(-) is asymptotically normal in every(!) environment

w = (p(x, ) —00<X<00*
(i) There is a o > 0 such that for P-a. e. w,

. &(r) 1 Yo
lim Pry,{— <x} = e 22du, (1.12)
1—00 Jt 2o J-o0o

where x is any real number and the convergence in (1.12) is uniform in x.
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Remarks about the proof of Theorem 3. The condition of this theorem implies that £ (¢)
is a martingale:

E,(E@) =& =10 1) =k) = z jpk, j) =0,

j=—m

where E,, denotes the expectation with respect to the probability measure Pr,, on the
space of trajectories of the random walk (we assume that £(0) = 0). Let U, = §€(n) —
&(n — 1) and put

2 def

Eo(U2 |60 — 1) = Z PpEn -1, )).

j——m

def
Obviously ¢ < 02 < m?, where ¢ is the same as in Theorem 3. Next put V2 = Z;’: 1 ajz
def
and s2 = E w(Vnz) = CU(S(n)z). It is useful to note that ne < Vnz, s,zl < nm?. Let

T; = inf{n : Vn2 > t}.

Statement (i) of Theorem 3 is a particular case of a much more general theorem of
Drogin who in particular proves that r~!/2£(T;) converges weakly to a standard normal
random variable. We refer to [12], p. 98 for more detailed explanations.

Statement (ii) of Theorem 3 is similar to a well known result by Lawler [16]. The
main ingredient needed for proving (i) is the following claim:

The limit lim »n 1V2 lim n 1s,% exists for P-almost all w. (1.13)

n—0o0 n— o0

Once this property of the variance of £(-) is established, (ii) becomes a corollary of
Brown’s Theorem (see Theorems 9 and 10 in Appendix or Theorem 4.1 in [12]).

However proving (1.13) is not an entirely straightforward matter. The proof we are
aware of uses the approach known under the name “environment viewed from the par-
ticle”. This approach was used in [16] for proving properties of variances similar to
(1.13); unfortunately, the conditions used in [16], formally speaking, are not satisfied in
our case. Fortunately, Zeitouni in [20] found the way in which Lawler’s result can be
extended to more general martingale-type random walks in random environments which
include our case. O

2. Preparatory Results

2.1. Elementary corollaries of Condition C. We start with several elementary observa-
tions following from C2. Lemma 3 and a stronger version of Lemma 1 can be found in
[1]. Lemmas 2 and 4 are borrowed from [6].

Lemma 1. If Condition C2 is satisfied then for P-almost every environment w the whole
phase space S of the Markov chain &(t) constitutes the (only) communication class of
this chain.

Proof. Fix an environment w and consider matrices

~df _ ~  def _
= —-R) P, 0, (I -R)Q,.
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Remark that P, (i, j) is the probability that the random walk & starting at (n, i) would
reach (n + 1, j) at the time of its first exit from layer n; the probabilistic meaning of
0., j) is defined similarly. P,(, j) > e > 0and Q,,(i,j) > ¢ > 0 because of
Condition C2. It is now obvious that a random walk & (-) starting from any z € S would
reach any z; € S with a positive probability. O

Matrices of the form (I — R — Qy)~ ', (I —R— Q)" 'P,and I —R— Qy)~'Q
arise in the proofs of many statements below. We shall list several elementary properties
of these matrices.

Lemma 2. If Condition C2 is satisfied, (P, Q, R) € Jo and V is any stochastic matrix,
then there is a constant C depending only on ¢ and m such that

H(l —R—oy)"! H <c. 2.1)

Proof. Note first that ||R'|| <1 —¢ implies that for some Cj uniformly in R,
o0
lo-w7 ] <X]&]=<cn
k=0

Next, it follows from (P + Q + R)1 = 1that ({ — R)"'P1+ (I — R)~!01 =1 and
(I —R)~'Q1=1- (I - R)"'P1. Condition C2 implies that (/ — R)~' P1 > mel.
Hence

H(I - R)—1QH = H(I - R)—1Q1H - Hl— (I — R)—1P1H <1—me.

Similarly, |

(I —R)~'P| <1 —me. Hence
[a-r-ow | =|a-a-ponu-r|

< (1 — H(I —R)"! quH r)_l H(I —R)"! H <cm el =C.

Lemma is proved. O

Lemma 3. ([1]). If Condition C2 is satisfied, (P, Q, R) € [J, and V' is a stochastic
matrix, then (I — R — Q) P is also stochastic.

Proof. We have to check that (I — R — Qv¥)~' P1 = 1 which is equivalent to P1 =
(I—-0¥—R)1< (P+Qyv+R)1=1.Since y1 =1and P+ Q + R is stochastic,
the result follows. O

Lemma 4. Suppose that Condition C2 is satisfied and (P, Q, R) € Jy and let a matrix
@ > 0 be such that 1 < 1. Then

(I=R—=Q0¢) 'P)i.j)>¢ and (I — R — Q¢) ' Q). j) > e. (2.2)
Proof. (I—R—Q@) 'P>U—-R'Pand(I —R—-Q¢) '0>U—-R)'0. O

2.2. Random transformations, related Markov chains, Lyapunov exponents, and recur-
rence criteria. The purpose of this section is to introduce objects listed in its title. These
objects shall play a major role in the proofs of our main results. They shall also allow
us to state the main results from [1] in the form which is suitable for our purposes.
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Random transformations and related Markov chains. Let W be the set of stochastic

. . . . def
m x m matrices, X be the set of unit vectors with non-negative components, and M =
W x X the direct product of these two sets. Define a distance p(-, -) on M by

def

(W, x), (W', x)) = (1Y =¥l + llx — x|l (2.3)
For any triple (P, Q, R) € Jy denote by g = g(p,0,r) a transformation

¢: M M, where g.(¥,x) & (I = R— Qu)~'P, ||Bx||" Bx), (2.4)

and
B=BrornW = (I—-R-0y)"'0. (2.5)

The fact that g maps M into itself follows from Lemma 3.

Remarks. Here and in the sequel the notation g.(¥, x) is used instead of g((y, x)) and
the dot is meant to replace the brackets and to emphasize the fact that g maps (i, x)
into another pair from M. In fact this notation is often used in the theory of products

. def _ . -
of random matrices, e. g. B.x = ||Bx||~! Bx; we thus have extended this tradition to
another component of g.

If w € Q is an environment, ® = (Wy,)—oo<n<oo, Where w, def (Py, On, Ry) € Do,
then (2.4) allows us to define a sequence g, = g, of random transformations of M.
Given the sequence g,, we define a Markov chain with a state space Jy x M. To this
end consider an a € Z, and a (Y, x,) € M and put for n > a,

def _ _
(Va1 Xns1) = &n-(Wn, xp) = (U — Ry — Oun) 1Pn , 1 Buxall anxn)a (2.6)
where we use a concise notation for matrices defined by (2.5):

def
By = Bu, (Yn) = B(p,.0,.k) (¥n)- 2.7)

Theorem 4. Suppose that Condition C is satisfied. Then:
a) For P-a.e. sequence w the following limits exist:

o lim v, v S lim o, (2.8)
a——0o0 ——00

a
and (&, yn) does not depend on the choice of the sequence (Y4, yq). Furthermore, the
convergence in (2.8) is uniform in (Y4, xXq).

b) The sequence of pairs (¢n, Yn) = (n(®), yp(@)) —00 < n < 00, is the unique
sequence of elements from M which satisfy the following infinite system of equations

Gut ywe) = (( = Ra = Qut) ™' Po l1Aw@yal T An@)ya), meZo 29)

where

An=An(@) E (I = Ry — 0080) " On. (2.10)

c) The enlarged sequence (wy, &n, yn), —00 < n < 00, forms a stationary and ergodic
Markov chain with components w, and (¢, yn) being independent of each other.
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Proof. The first relation in (2.8) is the most important statement of our theorem and it
also is the main content of Theorem 1 in [1]; it thus is known.

The main difference between this theorem and Theorem 1 from [1] is that here we
consider the extended sequence (v, x,), n > a, rather than just (,), n > a. The
proof of the second relation in (2.8) is based on two observations. First note that the first
relation in (2.8) implies that lim,_, o, B, = A,. Next, it follows from the definition of
the sequence x,, that

xn = Bu_t ... Baxall "' By_i...Buxg. (2.11)

Estimates (2.1) and (2.2) imply that min;; ;, i3,y B,;] (i1, i2) Bi (i3, i4) > & for some
& > 0 and hence also min;, ;, i5.i, A,:l (i1, 1) A (i3, i4) > €. It is well known (and can
be easily derived from Lemma 15) that these inequalities imply the existence of

lim [|ApAn_ ... Agxall ™ ApAn_i ... Auxa
a——0o0

and this limit does not depend on the choice of the sequence x, > 0, ||x,|| = 1. Com-
bining these two limiting procedures we obtain the proof of the second relation in (2.8).

Part b) of the theorem is proved exactly as part b) of Theorem 1 from [1].

The Markov chain property and the independence claimed in part ¢) are obvious
corollaries of the independence of the triples (P,, Q,, R,). And, finally, the ergodicity
of the sequence (w,, &,, y,) is due to the fact that the sequence w, is ergodic and the
(&n, yn) 1s a function of (wg)k<p—1. O

Remarks. The proof of Theorem 1 in [1] was obtained under much less restrictive
assumptions than those listed in Condition C of this work. In particular, the i. i. d. con-
dition which we impose on our environments (rather than having them just stationary
and ergodic) is unimportant for parts a) and b) of Theorem 4 as well as for Theorem 5.
However, the i. i. d. property is important for the proof of our main results.

The top Lyapunov exponent of products of matrices A, and the recurrence criteria. The
top Lyapunov exponent of products of matrices A, will be denoted by A and it is defined
by
def . 1

A= lim —logl|lA,An—1...A¢]l. (2.12)

n—-oon
The existence of the limit in (2.12) with P-probability 1 and the fact that A does not
depend on w is an immediate corollary of Kingman’s sub-additive ergodic theorem; it
was first proved in [5]. The Furstenberg formula states that

= [ el - k=00 oy, @y
JoxM

where v(d(¢, y)) is the invariant measure of the Markov chain (2.6) and p(dg) is the
distribution of the set of triples (P, Q, R) supported by Jy (defined in Sect. 1.3). We use
the shorter notation dg rather than d(P, Q, R) because, as we have seen above, every
triple (P, Q, R) € Jy defines a transformation g. Besides, this notation is consistent
with the one used in Sect. 4.1.3.

We remark that a proof of (2.12) and (2.13) will be given in Sect. 2.4 as a natu-
ral part of the proof of the invariance principle for the sequence of random variables
IOg lAnAp—1...A1ll.

We finish this section by quoting the recurrence criteria proved in [1].
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Theorem 5. Suppose that Condition C is satisfied. Then
a) A 2 0 if and only if for P-a.e. environment w one has (respectively)

lim &(t) = Foo Pry-almost surely.
11— 00

b) A = 0 if and only if for P-a.e. w the RW &(-) is recurrent, that is

limsup&(¢) = +0o and liminf&(t) = —oco Pry-almost surely.
t—00 I—>o0

2.3. One algebraic corollary of Theorems 4 and 5. Theorems 4 and 5 combined with a
simple probabilistic observation lead to an algebraic result which plays a very important
role in the proof of our algebraic condition.

Suppose that the matrices (P,, Q,, R,) donotdependonn: (P,, O, R,)=(P,Q,R),
and the triple (P, Q, R) satisfies Condition C2. In this case relations (2.8) mean that
¢n = ¢ and y, = y, where ¢ is a unique stochastic matrix and y > 0 a unique unit vector
such that

t=—R—Qr)7'P, and Ay = ¢y, (2.14)

where the matrix A is defined by

def

A= I-R-007"0.

Theorem 5 now states that a random walk in a constant environment is recurrentif A = 0,
transient to the right if A < 0, and transient to the leftif 1 > 0.

But the fact that the random environment does not depend on n allows one to analyse
the recurrence and transience properties of the random walk in a way which is much
more straightforward than the one offered by Theorems 4 and 5.

Namely, suppose that £(¢) = (X(¢), Y (¢)) = (k, i). Then the conditional probability
PriY(t) = jl&@ —1) = (k,i)} = P(@,j)+ Q(, j)+ R(i, j) does not depend on
X (t — 1) and thus the second coordinate of this walk is a Markov chain with a state
space (1, ...,m) and a transition matrix P + Q + R. Hence, if 1 = (1, ...7,) isa
probability vector such that 7 (P + Q + R) = m then 7; is the frequency of visits by the
RW to the sites (-, i) of the strip.

def

Consider next the displacement n(¢) = X () — X(t — 1) of the coordinate X of
the walk which occurs between times ¢ — 1 and ¢. The random variable n(z) takes val-
ues 1, —1, or 0 and the following conditional distribution of the pair (n(z), Y (¢)) is
given by Pri(n(),Y()) = (1, j) 1§t — 1) = (k, i)} = P(, j), Pri(n@®), Y (1)) =
LI =1 = (kD)) = QG j), and Pr{(n@®),Y(®)) = (0, )¢ - 1) =
(k,i)} = R(, j). It is essential that this distribution depends only on i (and not on k)
and thus this pair forms a time-stationary Markov chain. Let us denote by E ;y the cor-
responding conditional expectation with conditioning on (n(t — 1), Y (t — 1)) = (k, i),
—1 <k <1, 1 <m.Wethen have

Ewin((®) =D PG, j)— D 0G, )
j=1 j=1

and the expectation of the same random variable with respect to the stationary distri-
bution is thus given by >\ m; 377, (P (i, j) — Q(, j)). Applying the law of large
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numbers for Markov chains to the sequence 7(#) we obtain that with Pr-probability 1,

t m m
lim 171X @) = lim 7' ) = D m Y (PG ) = QL))
k=1 1

=1 j=

and this limit is independent of the £(0). Since this result is equivalent to the statements
of Theorems 4 and 5, we obtain the following

Lemma 5. Suppose that (P, Q, R) satisfies Condition C2. Then (¢, x) € M satisfies
Eq. (2.14) with . = 0 if and only if

S S PG ) - 06, ) =0. 2.15)
i=1 =1

Moreover i > 0 if and only if 377y 7; 27 (P (i, j) — Q(, j)) < 0 (and thus % <0
if and only if 37y 7 37 (P, j) = @, j)) > 0).

2.4. The CLT and the invariance principle for S,’s. The main goal of this section is to
prove an invariance principle (IP) (and a CLT) for the sequence

Sy S log|IB, ... Bixill — na, (2.16)

where matrices B, are defined by (2.7) and A is given by (2.13). Obviously, S,, depends
on (Y1, x1) € M. We shall prove that in fact the IP (and the CLT) are satisfied uniformly
in (Y1, x1) € M. Moreover, exactly one of the two things takes place if the random walk
is recurrent: either the asymptotic behaviour of S, is described by a non-degenerate
Wiener process, or the support of the distribution of matrices (P, Q, R) belongs to an
algebraic manifold defined by Eq. (1.8).

To make these statements precise we first recall one of the definitions of the invari-
ance principle associated with a general random sequence S, = > ;_, fk, with the
convention So = 0. Let {C[O0, 1], B, Py} be the probability space where C[0, 1] is the
space of continuous functions with the sup norm topology, B being the Borel o -algebra
generated by open sets in C[0, 1], and Py the Wiener measure. Define for ¢ € [0, 1] a
sequence of random functions v, (¢) associated with the sequence S,,. Namely, put

@) 07 (S + frar(tn—k) ifk<tn<k+1, k=0,1,....n—1. (2.17)

Forao > Olet {7} be the sequence of probability measures on {C[0, 1], B} determined
by the distribution of {o v, (1), 0 <t < 1}.

Definition. A random sequence S, satisfies the invariance principle with parameter
o > 0if P — Pw weakly as n — oo. If the sequence S, depends on (another)
parameter, e.g. 71, then we say that S,, satisfies the invariance principle with parameter
o > 0 uniformly in zy if for any continuous functional on | : C[0, 1] — R one has:
E? () — Ew(f) uniformly in z1 as n — oo. Here E,, and Ew are expectations with
respect to the relevant probabilities.
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Let us state the invariance principle for the sequence S, given by (2.16). Note that in
this case

n
Sy =Y (logl|Bexell — 1), where xi = ||Br_1xi—1ll™" Bioixi—1, k= 2. (2.18)
k=1

Put z, = (¥, x,) and f, = f(gu, zn), where the function f is defined on the set of
pairs (g, z) = ((P, Q, R), (¥, x)) by
fg.2) Etog | = R= 0w~ 0x| — 2. 2.19)

Obviously in these notations S, = > ;_, fx. Denote by 2 the Markov operator associ-
ated with the Markov chain z,+1 = g,.z, defined by (2.6): if F is a function defined on
the state space Jp x M of this chain then

@AF)(g.2) € / F(g, g.2u(dg).
JoxM

Using these notations we write v(dz) (rather than v(d (i, x))) for the invariant measure
of the chain z,, and we denote by My C M the support of v(dz).

Theorem 6. Suppose that Condition C is satisfied and the function f is defined by (2.19).
Then:
(i) The equation

F(g,2) — (AF)(g.2) = f(g.2) (2.20)

has a unique solution F (g, z) which is continuous on Jo X Mg and

/ Fg. )u(dg)v(dz) = .
JoxM

Denote by

o2 = / AF? — AF)D) (g, y)u(dg)v(dy).
JoxMp

(i) If o > O then Oi;;l converges in law towards the standard Gaussian distribution

N (0, 1) and the sequence S, satisfies the invariance principle with parameter o uni-
formly in (Y1, x1) € M.
(iii) Ifo = O, then the function F (g, y) depends only on'y and for every (g, y) € JoxMpy
one has

f(&y)=F(@)—Fg.y. (2.21)

(iv) If o = 0and A = 0 then
Jo C TJat, (2.22)

with J,; given by (1.8).

Proof. Statements (i), (ii), and (iii) of our theorem follow from Theorem 12. In order
to be able to apply Theorem 12 we have to show that the sequence of random transfor-
mations g, has the so called contraction property. Lemma 6 establishes this property.
Relation (2.22) is then derived from (2.21) and one more general property of Markov
chains generated by products of contracting transformations (Lemma 8).
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Lemma 6. Suppose that Condition C is satisfied and let

Wt Xne1) = &n-(Uny Xn), (10,/”1, x;H_l) = gn'(w;/p x,;), n>1,

be two sequences from M. Then there is a ¢, 0 < ¢ < 1, such that for any (Y1, x1),
(Y1, x)) €M,
o ((Yn, x), (Y, x},)) < constc”, (2.23)

where p(-, -) is defined by (2.3).

Proof of Lemma 6. We shall first prove that there is a co < 1 such that ||y, — ¢, || <
const cjj. The control of the x-component would then follow from this result.
Letus introduce a sequence of m x m matrices ¢,,, n > 1, which we define recursively:
¢1 = 0 and
@nit = (I = Ry — Qupy) ™' Py, ifn > 1. (2.24)

Remarks. Matrices ¢, and ¥, were defined in a purely analytic way. Their probabilistic

meaning is well known (see [1]) and shall also be discussed in Sect. 3.

Put Ay &ef Yr — k. To control the -part of the sequence (¥, x,) we need the

following

Lemma 7. Suppose that Condition C is satisfied. Then there is a co, 0 < co < 1, such
that for any stochastic matrix yr1 € WV the matrix elements of the corresponding A1
are of the following form:

Ant1 (i, J) = an(Den(j) + €, J). (2.25)

Here a, (i) and ¢, (j) depend only on the sequence (Pj, Q;, R;), 1 < j < n, the matrix
€, = (€,(, J)) is a function of Y| and of the sequence (P;, Q;,R;), 1 < j < n,
satisfying ||€,|| < Clcg for some constant C1.

Corollary. If Condition C holds then

1¥ns1 — Yyl < 2C1 cp. (2.26)

Proof of Corollary. Consider a sequence v, which differs from v, in that the starting

value for recursion (2.6) is ¥{. Put A} o ¥, — ¢k Applying the result of Lemma 7 to

A ., we obtain:
Ay Gy ) = an(Den()) + &3, ). (2.27)

It follows from (2.25), (2.27), and the definition of A,y and A/ | that |[[y,01 — v, || =
An+1 — ALl Z léll + I, <2C1cg. O

Proof of Lemma 7. The main idea of this proof is the same as that of the proof of The-
orem 1 from [1]. A very minor difference is that here we have to control the behaviour
of vy, when n is growing while v is fixed; in [1] n was fixed while the starting point
of the chain was tending to — co. A more important difference is that here we state the
exponential speed of convergence of certain sequences and present the corresponding
quantities in a relatively explicit way while in [1] the speed of convergence was not very
essential (even though the exponential character of convergence had been clear already
then).
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To start, note that it follows from (2.6) and (2.24) that

Anst = (I = Ry — Q)" = (I — Ry — Qu) " H P,

1 1 (2.28)
= =Ry — Ou¥n)” OnAy( — Ry — Onn)™ Py = By Aygna.
Iterating (2.28), we obtain
Apt1 = By ... B1A1@2 ... 0ps1 = By ... B1Y1¢n ... @ual. (2.29)

It follows from Lemma 4 that ¢,,1 < 1. The matrix elements of the matrices ¢,, n > 2,
are strictly positive and, moreover, according to estimates (2.2) we have: ¢, (i, j) > ¢
(and hence also ¢, (i, j) <1 — (m — 1)e). We are in a position to apply to the product
of matrices ¢, the presentation derived in Lemma 15 (with a,,’s replaced by ¢,,’s). By
the first formula in (4.16), we have:

@2 @ns1 = Dul(cn (D1, ..., cp(m)1) + @],

where D, is a diagonal matrix, ¢, (j) > & with ZT:] cn(j) = 1, and ||¢y] < (1 —
m8)"~! with § > 0 (and of course m8 < 1). One can easily see that § > m~ €2 (this
follows from (4.15) and the above estimates for ¢, (i, j)). We note also that the estimate

for ¢, (j) follows from (4.17) and (4.18).

Putcop = 1 — mé and let 3, & By, ... BiA1D,. We then have

Ayt = Bul(ea(D1, ..., cp(m)1) + @], (2.30)

and thus Aper (i, ) = cn(j) S0, Bl k) (1 + "’C(—’(‘jg)) But all B,(i,k) > 0 and

maxy, ; |¢n(k, j)lc, '(j) < constcf. Hence

Ape1( ) cn(D)
A1y J)  cn()

+e€,(, j, 1), (2.31)

where |e, (i, j, )| < Ccj with C being some constant. It follows from (2.31) that

+e€,(i, j).

(At Gy )7 D A ) =

=1

cn(J)

On the other hand remember that

m m m m

. . . . def .
> Apt D) =D Y1 (D) = D @unt (D) = 1= D" 01 (i, 1) = a(0).
=1 =1 =1 =1

Comparing these two expressions we obtain that

Aps1 (05 J) = an(D)en () +€n (L, J), (2.32)

where |€,(i, j)| < Cicj. Lemma 7 is proved. O
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We now turn to the difference ||x,+1 — x,,,||. Let us denote by b, the transformation
of the set X of unit non-negative vectors defined by

bu(x) = ||Bux|| ™' Bux, where B, = (I — Ry — Qi)' Qu. (2.33)

and v, are the same as above. The sequence b}, is defined in a similar way with the only
difference that ¥, is replaced by v, . Inequality (2.26) implies that for some C»,

_ def
p(bu, b)) = sup ||by(x) — b (x)]] < Cacp.
xeX

A very general and simple Lemma 16 from the Appendix now implies that
101 = X411 < C(€)(co + )" (1 +[|x1 — x{lD)

and this proves Lemma 6. O
We can now easily prove the existence of the limit in (2.12) as well as Furstenberg’s
formula (2.13) for A. To this end note that

n

S def

5u(c1, 1) S logl|Ay ... Aill =logl|A, ... Ailll =D fer,zp),  (234)
k=1

where the notation is chosen so that to emphasize the dependence of the sum S, (¢, 1)
on initial values x; = 1 and ¥ = ¢; of the Markov chain. (Remark the difference
between S, ({1, 1) and the sum S, in (2.16).) Lemma 6 implies that

1S4 (21, 1) = S, (Y1, x1)| < C3, (2.35)

where the constant C3 depends only on the parameter ¢ from Condition C. But then,
according to the law of large numbers applied to the Markov chain (wy, &y, yp) =
(gn> Cn, yn) defined in Theorem 4 we have that the following limit exists with probability
1:

.1 N
lim _10g||An~~Al|| = lim _SVl(é‘lv )’1) = A,
n—>00 n n—>00 n

where A is given by (2.13).

Formula (2.13) implies that the mean value of the function f (g, z) defined by (2.19)
is 0. Also, it is obvious that this function is Lipschitz on [Jyp x M in all variables. Hence,
Theorem 12 applies to the sequence S, and statements (i), (ii), and (iii) of Theorem 6
are thus proved.

The case 0 = 0 and ). = 0. Derivation of the algebraic condition for (P, O, R). We
start with a statement which is a corollary of a very general property proved in Lemma 13
from the Appendix.

Lemma 8. Suppose that Condition C is satisfied and let g € Jo, zo € M be such that
8.2g = Zg. Then zg € Mo = suppv.

Proof. According to Lemma 6, Condition C implies that every g € Jp is contracting.
Hence, by Lemma 13, z, € My. O
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Derivation of the algebraic condition. According to Theorem 12 (see formula (4.10)),
the equality o = 0 implies that f(g, z) = F(z) — F(g.z). Hence, if z can be chosen to
be equal to zg, then it follows that f (g, zg) = 0.

In the context of the present theorem the function f is given by f (g, z) = log||({ —
R — Qy)~'Qx||, where g = (P, Q,R) € Joand z = (¥, x) € My C ¥ x X. The
equation g.zy = 7, is equivalent to saying that z, = (¥, x) satisfies

I-R—-Qy) "=y and || —R-Qy)'Ox||7'U - R- Qy) ' Ox =x.

The equation f(g, zg) = 0 now reads log ||(/ — R — QI//)_1 QOx|| = 0 or, equivalently,
I|(I = R— Qv¥)~'Qx|| = 1. Hence the conditions o = 0 and A = 0 imply that all pairs
(g, 2¢) € Jo x My satisfy

(I—-R—0Qy)'P=vy and I —R—0Qv¥) ' Qx =x.
But, by Lemma 5, this implies that Jy C J,;, where J,; is defined by (1.8). O

3. Proof of Theorem 1

As we are in the recurrent situation, we have that the Lyapunov exponent A = 0.

Throughout this section we denote by C a generic positive constant which depends
on nothing but ¢ and m and which may vary from place to place. If f, g > 0 are two
functions, depending on n € Z, i € {1, ..., m}, and maybe on other parameters, we
write

f = g if there exists a C > 1 such that Cilf <g<Cf
Potential and its properties. As before, S, is defined by (2.16). We put

det log||Ay ... A1l ifn>1
D) =D, = {0 ifn=0 , (3.1
—log||Ag...Apll ifn<—1

where the matrices A, are defined in (2.10). If n > 1, then obviously &, = S, 1, 1)
defined in (2.34). The random function ®,, is the analog of the potential considered first
in [18]. Forn > a,a € Z, put

def
Sa,n(w§ Ya, Xq) = Sa,n (w) = log||By ... Baxqll, (3.2)

where the matrices B, are defined by (2.7). Similarly to (2.35), one has that

‘Sa,n(wQ Ca> 1) — Sa.n(@; Ya, xa)| <C, (3.3)

which implies:
[San (@) = (Pn(@) — @4())| < C. (3.4)

Since one of the conditions of Theorem 1 is Jy ¢ J,1, it follows from Theorem 6, part
(iv) that &, satisfies the invariance principle with a strictly positive parametero : o > 0.
The importance of the potential {®,}, .7 is due to that fact that it governs the sta-
tionary measure of our Markov chain; in fact it defines this stationary measure up to
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a multiplication by a bounded function (see (3.7). Namely, if @ < b, we consider the

Markov chain {S,“ ‘b} L, on
te

Sapr S ia, ... by x {1,...,m) (3.5)

with transition probabilities (1.4) and reflecting boundary conditions at L, and Lj.
This means that we replace (P, Q4, R;) by (Z,0,0) and (Pp, Qp, Rp) by (0, 1,0).
This reflecting chain has a unique stationary probability measure which we denote by
T b = (na,b (k, i))(k,i)eS,, ) A description of this measure was given in [1]. We repeat

. . . . def
it here for the convenience of the reader. To this end introduce row vectors vy =
Z (na,b (k, i))1<l.<m, a <k < b,and Z is a (normalizing) factor. In terms of these
vectors the invariant measure equation reads

Ve = Vi1 Pt + Vi R + Vg1 OQpyr, if @ <k < b, (3.6)
Vg = Va1 Qa+l, Vb = Vp—1Pp_1.

To solve Eq. (3.6), define for a < k < b matrices ax by

00 & Qper, and ax & Qper (I — Ry — Qi) ™", when a <k < b,

where {Y¥};~44+1 are given by (2.6) with the initial condition ¥, = I (we take into
account that R, = Q, = 0 in our case). We shall now check that vy can be found
recursively as follows: vi=viy10x, a < k < b,, where v, satisfies v, = vp. Indeed,
the boundary condition at » in (3.6) reduces to v, = vpop—1 Po—1 = vpp, Where we
use the fact that a1 Pp—1 = v because Qp = I (and also due to (2.6)). But i3, is an
irreducible stochastic matrix and therefore v, > 0 exists and is uniquely defined up to
a multiplication by a constant. We now have for a < k < b that

Vk—1Pr—1 + Vg R + iy 1 Qa1 = Vir1 (@gotk—1 Pr—1 + o Ry + Qrs1)
= V10 (Qr¥i + R + (I — Ry — Ox i)
= V410 = Vg.

Finally v; = vg41 Qq+1 With oy = Q441 and this finishes the proof of our statement.
We now have that

Tab (k, ) = 7ap (b, ") ap—10p—2 - -+ 7
where as before 7, j, (k, -) is a row vector. Note next that
Op—10p—2 ="~ ok =By Bt (I — Re — Quve) ™
From this, we get
Ta,p (k,+) <X | Bp—1 -+ Baill 7ap (B, ),
and using (3.2), (3.4), we obtain fora < k,l < b,

7Ta,h (kv )

m = exp [q)k - @[] (37)
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We also consider the “mirror situation” by defining for n < a the matrices ¥, in a
similar way as in (2.6) by setting

v = —Ri—Puy;) " Qu n<a,

and a boundary condition v/, . Then, as in Theorem 4 a), one has that ,” def limg— o0 ¥,
exists almost surely, and does not depend on the boundary condition ¥, . We then put

_ def -1
An é(I_Rn_Pné‘n) Pn’
and the potential @, as (3.1):

wer |1ogllAg - Ayl ifn =1
¢, =10 iftn=0
—log|lA, ... A" ||| ifn<-1

We could as well have worked with this potential, and therefore we obtain

ﬂah(kv ) _ _
——— =xexp|P, — P, |.
rup 00 P10~ ]
As &g = &, =0, we get

@, — @, | <C (3.8)

uniformly in n.

It is convenient to slightly reformulate the invariance principle for the potential. For
that consider Cq (—o0, 00), the space of continuous functions f : (—oo,00) — R
satisfying f (0) = 0. We equip C¢ (—o00, 0o) with a metric for uniform convergence on
compacta, e.g.

d(f.9)E > 2 min[1sup,erp |f @) — g WI]. (3.9)
k=1

and write B for the Borel-o-field which is also the o-field generated by the evaluation
mappings Cp (—oo, co) — R. We also write Py for the law of the double-sided Wiener
measure on Cq (—00, 00).

For n € N, we define

N

and define W, (t), t € R, by linear interpolation. W,, is a random variable taking values
in Cg (—00, 00).

Weak convergence of {W,, (¢)};cr on Co (—oo, 00) is the same as weak convergence
of {W,, (1)},ej—n vy forany N € N, and therefore, we immediately get

2
Wn([k”])d_zfﬂ -
n

Proposition 7. W, converges in law to Py .

Let V be the subset of functions f € Cy (—00, 0o) for which there exist real numbers
a < b < c satisfying
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1.
0 € (a,0).
2.
fl@—fb)y=fle)—fb) =1
3.

fla) > f(x) > f(b), Vx € (a,b),
f©) > fx) > f(b), Vx e (b, o).

4. For any y > 0,

sup  f(x) > f(a),

xe(a—y,a)
sup  f(x) > f(c).
xe(c,c+y)
It is clear that for f € V, a, b, ¢ are uniquely defined by f, and we write occasion-

ally a(f), b(f), c(f). f(b) is the unique minimum of f in [a, c]. It is easy to prove that
V € B, and

Py (V) =1.
If§ > 0and f € V, we define
cs(f) S inf {x > ¢ 1 f(x) = f(c) +8),
as(f) < sup{x <a: f(x) = fla)+3).

If y > 0, we set Vs ,, to be the set of functions f € V such that

1.
cs(f) < 1/8, as(f) = —1/8. (3.10)
2.
, sup  [f(x)—fM]I=<1-3, (3.11)
Sx<y=cs
sup b[f(x) —fMl=1-34. (3.12)
as<y<x=<
3.

f(x) > f(b)+8. (3.13)

inf
x€las,csI\(b—y,b+y)
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It is evident that for any y > 0, we have Vs, 1 V for 6 | 0, and therefore, for any
8,1 > 0 we can find 8¢ (y, 1) such that for § < gy,

Pw (Vsy) = 1—n.
It is easy to see that
Py (BV(syy) =0,

where 9 refers to the boundary in C (—o0, 00). Therefore, given y, n > 0, we can find
No (y, n) such that for n > Ny, § < §p, we have

P (W, € Vsy)>1-2n. (3.14)
def 2
Fort € N, wesetn =n (1) = [log?t]. If W, € Vs, then we put

det b (Wny) log? det a5 (Wa)1og?t  ger ¢s (W) log?t
b; = 0_2 , Ay = , Ctr = .

o2 o?

Remark that on {Wn(l) € V,;,y}, we have the following properties, translated from
(3.10)-(3.13):

¢ = %’ a = —1(0,%23[’ (.15

Dy — Oy < (1 -8 logt, by <s <5 <c, (3.16)

Oy — Oy < (1—=208)logt, a; <s' <s < by, (3.17)

@y > Dy, +8logt, s € [ar, ¢\ [br — y log?t, by +y log? ¢], (3.18)
min (®g,, O, ) — Pp, > (1+8)logt. (3.19)

Furthermore, if O € [a;, b;], then

sup P, — Py, <logt, (3.20)

0<s<b;

and similarly if O € [b;, ¢;].
(We neglect the trivial issue that a;, b;, ¢; may not be in Z.) The main result is

Proposition 8. For o € {W,) € Vs, }, we have foranyi € {1, ..., m},

Pry 0,0 (X ) ¢ [b, —ylog?1, b; +y log? t]) < 417%2,
if t is large enough.

Together with (3.14), this proves our main result Theorem 1.

In all that follows, we keep y, 8 fixed, and assume that € {Wy() € Vs, }. We
will also suppress w in the notation, and will take ¢ large enough, according to ensuing
necessities.

We first prove several estimates of probabilities characterizing the behaviour of a RW
in a finite box in terms of the properties of the function S,,.
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Lemma 9. Consider a random walk on S, j, with reflecting boundary conditions (see
the discussion around (3.5)), and let a < k < b. Then

b
Praiy (ta < ) < C D _exp (®y — Dy), (3.21)
y=k
k
Praiy (T < Ta) < C D exp (@ — ®y). (3.22)
y=a

Here t,, Tp are the hitting times of the layers Ly, Ly.

Proof. We only have to prove (3.21). Equation (3.22) then follows in the mirrored situ-

ation and using (3.8).

Put hi (i) = Pr.iy (tp < 74) and consider column-vectors hy def (he () 1<i<m- In

. . def -
order to find h; we introduce the matrices @k = (or+1(, j)1<i, j<m» where

..o def )
i1y ) = Pro.giy (Terl < Ta, E(ma1) = (k+ 1, ). (3.23)

These matrices satisfy (2.24) (with @ = 0) with the modified boundary condition
@ar1 = 0. Equation (2.29) with ¥y’s defined by (2.6) now yields Agy = Bg...
Bui1Va+19a+2 - - - Pk+1, and hence

I Ak+tll < 1B ... Ball < Cexp(Pp — D). (3.24)
The Markov property also implies that hy = @i+1hg+1, and hence
hy = k19042 ... @p1 since h, = 1. (3.25)

We view the probabilities Pr..) (T, < 7) as the column vector 1 —hy. Then, presenting
op = V¥ — Ap, we can have
Proy(ta<wm)=1—gr...op11=1— @1 ...0p1(¥p — Ap)1
=1—= @1 @o—1 1+ Qi1 - .. Pp—18p1
<1—@r+1 - op—11+][Ap][1.

Iterating this inequality, we obtain that

b

Prg.y (ta < ) < Z 1A, 11
y=k+1

and (3.21) follows from (3.24). O

Lemma 10. Let a < b, and t be the hitting time of L, U Ly, — the union of two layers.
Thenifa <k < b, we have

Ewin(t)<COb— a)? exp |:min( sup (P(s)—D (@), sup (@) — @ (s))):|.

<s<t<b a<s<t<b
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Proof. To prove that, consider column-vectors e; = (E (k,i)r) . These vectors sat-

isfye, =e, =0, and fora < k < b:

1<i<m

e, = Preri + Rrep + Qrer—1 + 1. (3.26)

To solve (3.26), we use an induction procedure which allows us to find a sequence of
matrices ¢, and vectors dy such that

€, = Qk+1€k+1 +dg. (3.27)
Namely, we put ¢,+1 = 0, d, = 0 which according to (3.27) implies that e, = 0.
Suppose next that ¢ and dr_; are defined for some k > a + 1. Then substituting
er—1 = ¢rex + dg_1 into the main equation in (3.26) we have

e = Preps1 + Riep + Or(prer +di—1) +1,
and hence
ec = (I — Qupr — RO~ (Peerar + Qrdi—y +1)

which makes it natural to put

o1 = (I — Qo — R Py (3.28)

and
di = By (gr)di—1 + g, (3.29)

where
w = (I — Qkor — R, Bi(pr) = (I — Qi — Ri) ™' Ok

The existence of matrices ¢y follows from the fact that ¢ > 0 and g1 < 1.
Iterating (3.27) and (3.29) we obtain

e = di + Qs1dis1 + -+ Qa1 - @p—1dp)
and
di = wi + Br(gr)ug—1 + - + Br(@k) - - . Bar1(@a+1)0g.
Hence

lexll < ldll + ldgsrll + - -+ + ldp—1 || < C(b —k) max [|d;]].
k<j<b-1

But || Bi (@) - .. Bi(@)]| < Csup, < <pp €xp (P (s) — P (7)), and therefore

Eg.i) (t) < C(b —a)” exp |: sup (P (s) — @ (t))]-

a<s<t<b

We obtain the same estimate with ® replaced by ®~, and using (3.8), we get the
desired estimate. O
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Lemma 11. Leta < k < b and £(t) be as in Lemma 9. Then for any x > 0,

C(b —a)?
Priiy(tp > x, T < 7) < T exXp [supa§s<t§b (@) —@ (S))]

Proof. Let again t being the hitting time of L, U L. It is obvious that
Priy (T =2 x, 1y < 7)) < Preiy (T = x).
By the Markov inequality and Lemma 10, the result follows. 0O

Lemma 12. Let a < b, and consider the chain {&} on S, with reflecting boundary
conditions on a, b, as above. Then for any t € N, (k, i), (I, j) € S4.p, we have

Priy & = (U, ) < Cexp[P; — Dy].

Proof.

Tap (L J) =D 7ap (K.i') Procin & = (. )))

(k',i")
> Tab (k, 1) Priy (& = (1, J))
for all (k, i), (I, j) € Sa,p, and all # € N. The lemma now follows with (3.7). O
‘We have now all the ingredients for the
Proof of Proposition 8. We may assume that 0 € (a;, b;]. The case of 0 € (by, ¢;) is

handled similarly. We will write a, b, ¢ for a;, by, c;, to simplify notations. We write J;
for the interval [b — y log? ¢, b + y log? t].

We have
Pro,in (X (@) ¢ Jp) < Pro,) (X (@) ¢ Ji, v < min (14, 1)) + Pr,i) (1o > Ta)
(3.30)
+ Pr,i (tp > 1, T4 > Tp).
First we see that from Lemma 9, and (3.15), (3.19), (3.20),
Pro,iy(tp > 1q) <C (b —a)exp| sup @, — P, (3.31)
0<x<b
Clog2t Y
< Wexp [—(SIOgt] <t ,

if 7 is large enough, and from Lemma 11 and (3.17),

Clog*t

Pro.) (th > 1,74 > 1) < exp [Supy<g—y<p (P (1) — @ (5))] (3.32)

Clog*t 5/2

IA

exp[(1 —8)logt] <1~
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By the Markov property, we get
Pro,iy (X (1) & J;, ©p <min (14,1)) < max o, Prep, jy (X (s) ¢ Jr). (3.33)

s<t,1<j=<

Now
Projy (X (5) ¢ J) < Pro.j (min (t4. 70) < 1)+ Pro,.j) (X(‘"”) (s) ¢ J,), (3.34)

where X @€ is the chain with reflecting boundary conditions at L, and L.. The second
summand is estimated by Lemma 12 and (3.18), which give

Pro.j (X(’”) (s) ¢ J,) < Cexp |:sup o — @b} <Ct7% <1792, (3.35)
1¢J;

To estimate the first summand in (3.34) we observe that by (3.19),

Prop_1,i) (ta < 1) < Cexp[—P,] (exp [q)b,l] + exp [<I>b]) < Cexp [— (1+9) logt]
—1-28/3
=t )

and similarly

Priperiy (te < ) <t~ 172505,

If, starting in (b, j), the chain reaches L, or L. in time 7, there is at least one among
the first /2 of the excursions from Lj; which reaches L, U L.. By the above estimates,
each such excursion has at most probability r~1723/3 to be “successful”, and therefore

12
Pr, ) (min (z4.7c) <1) < 1— (1 - t_l_28/3) <172 (3.36)
Combining (3.30)-(3.36), we get

Pro. (X (1) ¢ Jp) < 467/,

This proves the claim.

4. Appendix

Most (if not all) of the results in this appendix are not new. The main reason for including
them is that we want to present them in the form which is needed for our purpose; this
is particularly relevant in the case of Markov chains generated by contracting transfor-
mations. We also hope that a more self-contained paper makes an easier reading.

4.1. The CLT and the invariance principle (IP) for stationary Markov chains. We first
recall, in Subsect. 4.1.1, the classical results of B. M. Brown [2] about the CLT and the
IP for martingales. We then explain in Subsect. 4.1.2 that the reduction of the proof of
the CLT for Markov chains to the martingale case invented by Gordin and Lifshits [10]
can be easily extended to obtain the IP for Markov chains. Finally, in Subsect. 4.1.3,
we prove that the Gordin-Lifshits conditions are satisfied for a class of Markov chains
generated by contracting transformations.
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4.1.1. The CLT and the IP for martingales (by B. M. Brown [2]). Let{S,, Fn}, n =
1, 2,... be a martingale on the probability space (2, F,P). Put U, = S, — S,—1
with So = 0. The expectation with respect to IP is denoted by [E, and E;_; stands for
the conditional expectation E(- | F;_1). Let o,% = En_l(U,%), Vn2 = Z;f:l 0]2, and
s,% = ]E(Vnz) = IE(S,%). The main assumption in [2] concerned with martingales is:

V2572 — 1 in probability as n — ooc. 4.1)

We says that the Lindeberg condition holds for the class of martingales satisfying (4.1)
if for any ¢ > 0,

n
5.2 ZEU}1(|U,-| > esy) —> 0 as n — oo, 4.2)
j=1

where I (-) is a characteristic function of a set.
Fort € [0, 1] define a sequence of piecewise linear random functions

un(t) = 5, (Sk + Upat (852 — sP)(s2 —sH7Y)

ifs,%fts,%gslgﬂ,k:O,l,...,n—l. @3)

The following two theorems from [2] describe the asymptotic behaviour of the sequences
S, and u, (-).

Theorem 9. If (4.1) and (4.2) hold, then S, is asymptotically normal:

X
lim P{s;'S, <x}= Q)2 / e dy (4.4)
n—0o0

—00
for all x. Furthermore, all finite dimensional distributions of u,,(t) converge weakly, as

n — oo, to those of a standard Wiener process W(t) on 0 <t < 1 (that is W(0) =0
and EW2(1) = 1).

Theorem 10. Let { C[0, 1], B, Pw } be the probability space where C|0, 1] is the space
of continuous functions with the sup norm topology, B being the Borel o -algebra gen-
erated by open sets in C[0, 1], and Py the Wiener measure. Let {IP,} be the sequence
of probability measures on { C[0, 1], B} determined by the distribution of { u,(t), 0 <
t < 1}. Then if (4.1) and (4.2) hold, P,, — Pw weakly as n — oo.

4.1.2. The CLT and the IP for general Markov chains. In their famous work [10], Gor-
din and Lifshits reduced the proof of the CLT for Markov chains to that of martingales.
They then applied the same approach to the proof of the invariance principle for Markov
chains in [11]. We shall explain their method here for the sake of completeness.

Letzx, k = 1, 2, ..., be astationary ergodic Markov chain with a phase space (X, A),
transition kernel K (z, dy), and initial distribution «. Let f : X + R be a real valued
function on X such that [E f(z) = 0 and Var f (z) < oo (all expectations are taken with
respect to the measure «). Let L (X, A, k) be the natural Hilbert space associated with

X, A, k. By I we denote the identity operator in this space, and by 2 the transition

operator of the Markov chain: A F (z) def f% F(y)K(z,dy).Put

Sy = f(z1) +---+ f(z,) with the convention Sy = 0. (4.5)
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Theorem 11. Let z; be a Markov chain described above and suppose that the function f
with E f = 0 can be presented as f = (I1—2A)F, where F € Ly(X, A, k) and EF = 0.
Put 6 = ||F||? — ||UF||?> = EF? — EQUF)? and suppose that o > 0. Then %
converges in law towards the standard Gaussian distribution N (0, 1) and the sequence
Sy satisfies the invariance principle with parameter o in the sense of the definition given

in Sect. 2.4.

Proof. Consider the identity which is due to Gordin ([9]) and was used by Gordin
and Lifshits in [10]: f(zx) = U(2k, 2k+1) + F(2k) — F(zg+1), where U (zk, 2k+1) =
F(zg+1) — (AF)(zx). This identity holds true because of the conditions imposed on
f. Obviously, E{U (zx, zk+1) | 2k» - - - » 21} = 0. Denote Uxy1 = U (zk, zk+1)- In these
notations we can write

Sy = Sn + F(z1) — F(zn+1), Where Sn = ZZ:I Uy.

It is clear that if F, is a o-algebra generated by the variables zi, ..., z,, then the
sequence S,, n = 1, 2, .. is a martingale with respect to the filtration F,,, n = 1,2, .. ..
Let us check that all conditions required by Theorems 9 and 10 are satisfied. Indeed,
sz = IE{UJZ lz;} = (Qle)(zj) - [(QlF)(z.,‘)]2 is a stationary sequence with ]EJJZ =
||F||? — ||2LF||? = o2. Relation (4.1) takes the form

n
(no’z)_1 Za} — 1

j=1

and is satisfied with probability 1 because of the Birkhoff Ergodic Theorem. The
Lindeberg condition (4.2) takes the form

]EU121(|U1| > eno?) — 0 as n — oo,

and is obviously satisfied. Finally, functions (4.3) are now given by

Un () =n" 20" (S +(tn—K)Upsy) if k<tn<k+1, k=0,1,....n—1,

and hence fork <tn <k+1,

Unt) = un(0) +n 20~ (F(z1) = F(zra) + (tn — K)(F (@) — F@ra))),

where v, (¢) is as in (2.17). Since F is square integrable and z;, is a stationary sequence,
it follows that n~Z max 1<k<n | F(zx)| = 0 with probability 1 as n — oo. Hence also
the supg<; <1 [vn(t) — u, ()] — 0 as n — oo with probability 1. All statements of our
theorem follow now from Theorems 9 and 10. O

4.1.3. The CLT and the IP for Markov chains generated by contracting transformations.
Consider the following setup:

(2, F, P) is a probability space; the related expectation is denoted E.
M is a compact metric space equipped with a distance p(-, -).

‘B is a semigroup of continuous Lipschitz transformations of M: for any g € ‘B there
is a constant [, such that p(g.y, g.y") < lgp(y, ) forany y, y’ € M. Here and in the
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sequel g.y denotes the result of the action of g € 28 on y € M; this notation will be used
most of the time but in some cases we may write g(y) rather than g.y.

_ def . _
For any g1, g2 € B put 5(g1, 82) = sup,cy £(81.y, £2.y). Obviously, (-, -) de-

fines a distance on ‘B. We can now consider a Borel sigma-algebra generated by the

corresponding open subsets of B; this sigma-algebra will be denoted by &.

Consider a measurable mapping g : Q2 — B, w — g®and fora B € & put u(B) o
P{w : g” € B}. We say that g is a random transformation of M. Let gx € B, k > 1 be
a sequence of independent copies of g. Without loss of generality we can assume that
gk are defined on the same probability space (€2, F, IP).

Denote by g/) o gj - - - &1 the product of random transformations g1, ..., g; and let
) be the probability distribution of the product g/, This measure on 9B is often called
the j™ convolution power of the measure 4 and is denoted by /) = u*/ = ps---*xp
(j times).

A sequence of random transformations gy is said to be contracting if there are con-
stants C > O and ¢, 0 < ¢ < 1 such that for any y, y' € M and any n > 1,

/% p(g.y, gy )™ (dg) =Ep(gn...81.5,8n-..81.y) < Cc. (4.6)

Remarks. Perhaps it would be more natural to say that the contraction property holds if
J p(g-y. gy ™ (dg) < Cc"p(y,y'). However, (4.6) is sufficient for our purposes
and is what we check in our applications.

As usual, products of random transformations generate a Markov chain with a state
space M. Namely, let v = v(dy) be a probability measure on M and let y; € M be
chosen randomly according to the distribution v and independent of all g;’s. For k > 1

define yx+; € M by yr+1 def Sk-Vk = g(k).yl. The sequence of pairs (gk, vk), k > 1
forms a Markov chain with a phase space ‘B x M; this chain will be denoted (g, y).
Note that the (y)-component of this chain, the sequences yx, k > 1, is itself a Markov
chain with the phase space M. Since M is a compact space the chain (y) has an invariant
measure; we shall suppose from now on that v is such a measure which, in turn, implies
that ;(dg)v(dy) is an invariant measure of the chain (g, y). It is well known (and easy
to see) that if g is a contracting sequence of random transformations then the Markov
chain (y) has a unique invariant measure.

Let £o(®B x M) be the Hilbert space of i x v square integrable real valued functions
and C(2B x M) be its subset of continuous functions.

Given an f € C(®8 x M) let S, denote the related Birkhoff sums along a trajectory
of the Markov chain (g, y):

Su= > (8 )

k=1

By 2 we denote the following Markov operator acting in £,(%8 x M) and preserving
C(B x M):

@Af)(g.y) & /% (& g-n)u(dg). @.7)
It follows from (4.7) that

@ f)(g. y) = / S Fennde V). 48)

X
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Theorem 12. Suppose that the sequence of random transformations gy is contracting
and f is a continuous bounded function on ‘B x M such that
(i) f% f (g, y)u(dg) is Lipschitz on M, that is for some C ¢

'A(f(g,y) — f(g. yNuldg)| < Crp(y, y).

(ii) [ f(g, Y)(dg)v(dy) = 0.
Then the equation
(I —-2)F = f, (4.9)

has a solution F (g, y) which is continuous on 8 x M and

/ F(g. v)u(dg)v(dy) = 0.
BxM

Besides, this solution is unique in Lo(B x M).
Denote by

o’ = / @AF? — (AF)*) (g, y)iu(dg)v(dy).
BxM

Ifo > Othen GS"n converges in law towards the standard Gaussian distribution N (0, 1)

and the sequence S,, satisfies the invariance principle with parameter o. If o > 0 and, in

additionto (i), | f (g, y)— f(&. Y| < Cr(@)p(y, y) with [log(1+C r(g))u(dg) < oo,
then the invariance principle for the sequence Sy, is satisfied uniformly in y; € M.

If o = O, then the function F (g, y) depends only on y and for every (g, y) in the
support of L X v one has

f(g. y) =F(y)— F(g.y). (4.10)

Proof. The existence of F. Equation (4.9) can be rewritten as F' = 2 F + f and, iterating
this relation, one obtains a formal series:

F=> af (4.11)

Condition (ii) of the theorem and the invariance of the measure p(dg)v(dy) imply that

/ @ £)(g. y)u(dg)v(dy) = /
BxM

Bx

u J(g. y)u(dg)v(dy) = 0.
Hence, the convergence in (4.11) would follow if we prove that

K o
12X £)(g, y) — AF £)(g, 7)| < conste™ for any (g, y), (g, ¥) € support of i X v.
(4.12)
But it follows from (4.8) and condition (i) of the theorem that
| (g, y) — @)@ D)

B VB (/sB (F(s' 88.3) = (5. 83.9) M(dg’)) p*=dg)

<Cy /Qg 0(gg.y, gg.nu* Vg < cc",
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where the last inequality is due to the contraction property (4.6). The existence and
continuity of F (g, y) is proved.

Uniqueness. As usual, to prove the uniqueness we have to show that the homogeneous
equation F' = 2F has only a trivial solution ' = 0 in the class of functions sat-
isfying the condition f%XM F(g, y)u(dg)v(dy) = 0. To check that this is the case
assume that, to the contrary, there is an F € L>(®8B x M) such that F' # 0, satis-
fies the homogeneous equation, and has a zero mean value. For a given € > 0 find
a function F which is Lipschitz on B x M and approximates F in the sense that
||F — F|| < e, where || - || denotes the £5(% x M) norm. The F can always be
chosen so that f%xM ﬁ(g, y)u(dg)v(dy) = 0. Next, forany n > 1,

F=U"F=A"(F - F)+A"F.

But then A" F — 0 uniformly in (g, y) and || (F — F)|| < €. Since € can be made
arbitrarily small, we conclude that F = 0.

Proof of the CLT and the IP in the case o > 0. According to Theorem 11 the existence of
F € L7(®B x M) satisfying Eq. (4.9) is the main condition under which both the Central
Limit Theorem and the Invariance Principle hold for Birkhoff sums picked up along
a realization of a trajectory of a Markov chain. The ergodicity of the Markov chain is
the other condition which is needed and which in our case follows from the contraction
property. The CLT and the IP is thus proved.

Proof of the uniform IP in the case o > 0. We write S, (y1) for S, in order to emphasize
the dependence of this sequence on y;. Clearly,

12 = Sa DI < D1 gk 310 = fgr 3D < D Crlen)pGn, yp)- - (413)
k=1 k=1

It follows from (4.6) (due to the Chebyshev inequality) that P almost surely p(yk, y;) <
e~ for some ¢ > 0 and k > k(e, ). It is essential that k(e, @) does not depend on
V1, yi. Next, due to the condition imposed on the function f, the sequence k1 log(1 +
Cr(gr)) — 0as k — oo IP almost surely. Hence the right-hand side of (4.13) is P
almost surely bounded and the corresponding estimate does not depend on yj, y}.

Let us now consider the dependence on y; of the relevant v,(¢t) = v,(¢; y1) (see
(2.17)).Fort € [0, 1],andk <tn <k+1, k=0,1,...,n — 1 we have:

1

a5 y1) — v ) =072 (Scn) — Sk () + (fre1 (1) — fern D) (tn — k)

with the obvious meaning of fi4+1(y1) and fi+1( y; ). It is now clear that P almost surely
Un (15 y1) — v, (t; y]) — Oasn — oo uniformly in y;, y;. This proves that the uniformity
of the invariance principle.
The case o = 0. Note that

2
AP =2 = [ (F(g’, 0= [ F@ g.ymwg)) nidg).
Hence o = 0 implies that for i x v-almost all (g, y) and p-almost all g’

F(g' g.y) = /% F(g,g.y)udg). (4.14)
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But F (-, -) is a continuous function of both variables and hence (4.14) holds for any
(g, y) from the support of u x v. This proves that F depends only on the second
variable: F(g’, g.y) = F(g.y) (we note that g.y runs over the whole of the support of v
when (g, y) runs over the support of ;& x v). Finally, one obtains (4.10) by substituting
F (y) (rather than F (g, y))into (4.9). O

4.1.4. Markov chains generated by contracting transformations: characterization of the
support of the invariant measure. The aim of this section is to give a characterization
of the support of an invariant measure of a Markov chain generated by contracting
transformations in terms of fixed points of these transformations.

We work here within the same setup as in Sect. 4.1.3. This applies to the sequence g,
j > 1, the metric space (M, p), the semigroup B of transformations of M, the Markov
chain y; defined by y;+1 = g;.y;, j = 1 (with y; being a random element independent
of all g;’s). However, we shall suppose that 95 is generated by the transformations
belonging to the support Jy of the distribution p of g;’s. This difference is important
for Lemma 14.

Let v be the stationary measure of our chain and My be the support of v.

As usual, we say that a transformation g € ‘B is a contraction on a subset My C M
if there isann > 1 and a ¢ € [0, 1) (both n and ¢ may depend on g) such that
p(g"x', g"x") < cp(x’, gx) for any x’, x” € My. If g € B, then by x, we denote a
fixed point of the transformation g: g.x, = x,.

Lemma 13. If g € ‘B is a contraction on M then its fixed point x; € M, belongs to the
support My of the invariant measure v of the Markov chain y ;.

Proof. Consider a random infinite sequence g1, g2, . . .. Since g € Jp, almost every such
sequence has the property that for any £ > 1 and any 6 > O there are infinitely many
i’s such that each element of the part g;, ..., gi+nk—1 of the sequence approximates g
so closely that

— k k) def
p(g", g™y <5 where oY= g ... g

Moreover, by the law of large numbers these i’s have a positive frequency. Since

p(xg, 8" .x") = p(g™xg, g™ ') < Fp(xg, x)
for any x” € M, we have that

p(xg. ggnk).x/) < ck,o(xg, x) +p(g"™ X/, gl("k).x') < ck,o(xg, x)+6.

Hence any (small) neighbourhood of x, is visited by the sequence g(lj ).x’, Jj =1, infi-
nitely many times and, moreover, this happens with a positive frequency for almost every
sequence g;, j > 1. This implies that x, € Mg and (g, x¢) € Jo x Mg. O

Note that if the invariant measure v of our Markov chain is ergodic, then the support
My of this measure is a minimal set of 8. The latter by definition means that the orbit
{g.x : g € B} of any x € My is everywhere dense in My.

Lemma 14. Let My C M be a minimal set of B. Suppose that there exist a § € B which
is a contraction on My. Consider the set of all fixed points of ‘B belonging to My:

Fixm, (B) def {x : x € Mg and there is a g € B such that g.x=x }.

Then Fixm, (2B) is everywhere dense in My.
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Proof. The contraction ¢ given to us by the condition of the lemma has a fixed point
X € My (it may have other fixed points too, but we are interested only in this one). Since
My is minimal it coincides with the closure of the orbit {g.x : g € B}. For a given
g € ‘B let us consider the point g.x. We shall now show that for a sufficiently large n
the transformation gg" has a fixed point which we shall denote x,;.. Indeed, for any
x', x" € My,

p(g8"x', 88" x") <lgp(§" X', " x") < L p(x', x").

If n is such that [;c" < 1, then there is a fixed point x,z: of gg". On the other hand,
it is obvious that gg".x’ — g.Xx as n — oo uniformly in x’ € My because g".x" — *
uniformly in x” € M. It follows that in particular xgen — g.% and this proves the
lemma. O

4.2. Products of positive matrices. Lemma 15 below explains two versions of a well
known contraction property of products of positive matrices (see, e.g. [5]). The first
version of this property has already been explained and proved in the Appendix to [1]
and we therefore prove here only the second version. There is a slight difference in the
notations used in this paper and those we have introduced in [1] and no difference in the
proof; we emphasize once again that this is done for the purposes of completeness and
convenience of references in the proofs of other theorems.

Lemma 15. Leta, = (a,(i, j)), n = 1,2, ... be a sequence of positive m x m matrices,

a, > 0. Put I:In def aya,_1 ...ay, Hy def ayay . ..a, and denote
-1
5 =mina, (i, a,1(j. k) [ D arG. a1k | . 2<r <n,
i,j.k -
j
-1
8 = minar (i, Para (k) | D_arli. Dara (k) | T<r<n—1. (415)
i,j.k -
J
Suppose that

9]
35 = co.
r=2

Then the products H, and H, can be presented as follows:
Hy = Dal(cn(D1, ..o, camD) + ], Hy = Du[@E(D1, ..., Em)1) + ], (4.16)

where: _
D,, and Dy, are diagonal matrices with positive diagonal elements;

lpull < TIZH (1 = m8y), | < TT7on (1 — méy);

c(j) are strictly positive numbers which are uniquely defined by the sequence {ai }i>1,
do not depend on n, and such that Zj c(jH=1;

cn(j) are strictly positive numbers with Zj cn(j) = 1 (note that c,(j), unlike the
¢(j), do depend on n and, generally, do not have a limir).




286 E. Bolthausen, I. Goldsheid

Proof. Present H,, as follows:
H, = D,D,'aiD,_1D, " \a>... D{ " a, = Dyéras .. .G,

where &, = D! a,D,_,, Do = I,and D,_, = diag (D, (1), ..., Dy_,(m)) are

diagonal matrices, with D,,_, (i) chosen so that to make matrices a, stochastic. It is very
easy to see that the only such choice is given by

Duy@) = D ara1 (ira)) @pre (ipat ira2) -y (in-1. in)

Lrtlsesln

and

,,,,,

- . ar(i, j) Zir+l in Ar+l (Jyire1) oo an (in—1,1n)
ar(i, j) = = — , — >4 (4.17)
zirsir+ls"-sin ar (i,iy) ary1 (iyy ipg1) - o2 Gy (in—1, In)

It is well known that the last estimate implies the following presentation of the product
of stochastic matrices d,,:

ayay ...a, = (cp,(H1, ..., c,(m)1) + ¢y,

where
mind, (i, j) < ea(j) < Maxa, (i, j) (4.18)
1 1

and the matrices ¢, are such that

n—1

Ignll <[]0 = msp).

r=1

4.3. A stability estimate. The stability property which we explain below is definitely
well known to specialists in the relevant field. Given that the proof is very short, it seems
that it is easier for us to prove it than to find a relevant reference.

Let b, and b}, be two sequences of transformations of a metric space (X, t) and

def def . . e
Xnet = bp(xy), x,,, = b (x;), n > 1, with given initial values x;, x| € X. For any

two transformations b and b’ put p(b, b') f sup,.ex t(b(x), ' (x)).

Lemma 16. Suppose that

(a) b, are uniformly contracting, that is there is a ¢, 0 < ¢ < 1, such that for any
x,y € Xwe have t(b,(x), by,(y)) < ct(x, y);

(b) p(bp, b)) — 0asn — oo.

Then t(x,, x,) — 0asn — oo.

If, instead of (b), a stronger property holds, namely p(b,, b)) < Cacjp(by, b)) for
some Co and cy < 1, then for € > 0 there is a constant C3 such that

t(xn, x,) < C37"(p(b1, b)) +t(x1, x})), where ¢ = max(c, cp) + €. (4.19)
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Proof Putd, & 5(by, b)) and r, & v(x,, x!). Since

1, Xp) = 0(bn (Xn), by, () = € (By (), b (x) + (B (), by (X))
SCt(xnv 'xy/z) + ﬁ(bns b;),

we have that

Fuel <crp+d, <d,+cdy_1+---+ ckdn_k + ck+1rn_k. (4.20)

For a given € > 0 choose k so that c*r,_x < € (which is possible because X is a
compact space and thus r,_x is a uniformly bounded sequence). Next choose N (e, k)
sothat d,—; < e whenn — j > N(e, k) — k. It follows now from (4.20) that r, <

(2 —¢)(1 —¢) 'e whenn > N(e, k). This proves the first statement of the lemma.
To prove the second statement substitute k = n into (4.20) and take into account the
stronger estimates for d,,. Estimate (4.19) follows with an evident choice of C3. O

Remarks. The second statement of this lemma does not use the fact that X is a compact
space.
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