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University of Zürich, Switzerland
pajarola@acm.org

E. Gobbetti
Visual Computing Group,
Center for Advanced Studies, Research,
and Development in Sardinia (CRS4),
09010 Pula (CA), Italy
gobbetti@crs4.it

Abstract Rendering high quality
digital terrains at interactive rates
requires carefully crafted algorithms
and data structures able to balance the
competing requirements of realism
and frame rates, while taking into
account the memory and speed
limitations of the underlying graphics
platform. In this survey, we analyze
multiresolution approaches that
exploit a certain semi-regularity of
the data. These approaches have
produced some of the most efficient
systems to date. After providing
a short background and motivation
for the methods, we focus on illus-
trating models based on tiled blocks
and nested regular grids, quadtrees

and triangle bin-trees triangulations,
as well as cluster-based approaches.
We then discuss LOD error metrics
and system-level data management
aspects of interactive terrain visu-
alization, including dynamic scene
management, out-of-core data organ-
ization and compression, as well as
numerical accuracy.
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1 Introduction

Efficient interactive visualization of very large digital ele-
vation models (DEMs) is important in a number of appli-
cation domains, such as scientific visualization, GIS, map-
ping applications, virtual reality, flight simulation, military
command and control, or interactive 3D games. Due to
the ever increasing complexity of DEMs, real-time display
imposes strict efficiency constraints on the visualization
system, which is forced to dynamically trade rendering
quality with usage of limited system resources. The inves-
tigation of multiresolution methods to dynamically adapt
rendered model complexity has thus been, and still is,
a very active computer graphics research area. The con-
cept has extensively been studied for general 3D triangle
meshes and has been surveyed, for instance, in [10, 18,
25, 38, 39], and more recently in [11]. While general data
structure and algorithms are also applicable to digital ter-

rain models, the most efficient systems to date rely on
a variety of methods specifically tailored to terrain models,
i.e., 2.5-dimensional surfaces.

In this survey, we present and analyze the most com-
mon multiresolution approaches for terrain rendering that
exploit a certain semi-regularity of the data to gain max-
imum efficiency. De Floriani et al. [13] provide a classic
survey focusing more on multiresolution terrain models
over irregular meshes.

After providing a short background and motivation
for the methods (Sect. 2), we provide an overview of the
most common approaches. Section 3 provides examples
of models based on tiled blocks and nested regular grids,
Sect. 4 surveys quadtree and triangle bin-trees triangu-
lations, while Sect. 5 is devoted to recent GPU-friendly
cluster-based approaches. We then discuss error metrics
(Sect. 6) and system-level aspects of interactive terrain
visualization (Sect. 7), including dynamic scene manage-
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ment, out-of-core data organization and compression, as
well as numerical accuracy. The paper concludes with
a short summary in Sect. 8.

2 Background and motivation

A multiresolution terrain model supporting view-depend-
ent rendering must efficiently encode the steps performed
by a mesh refinement or coarsening process in a com-
pact data structure, from which a virtually continuous set
of variable resolution meshes can be extracted, loaded on
demand, and efficiently rendered at run-time. The basic
ingredients of such a model are a base mesh that de-
fines the coarsest approximation to the terrain surface,
a set of updates that, when applied to the base mesh, pro-
vide variable resolution mesh-based representations, and
a dependency relation among updates, which allows com-
bining them to extract consistent intermediate representa-
tions [11]. Interactive rendering of large data sets consists
of extracting at run-time, through a view-dependent query
a consistent minimum complexity representation that min-
imizes a view-dependent error measure, eventually load-
ing it on demand from external memory. Different spe-
cialized multiresolution models, of various efficiency and
generality, are obtained by mixing and matching different
instances of all these ingredients.

In the most general case, the multiresolution model
is based on a fully irregular approach in which the base
mesh is an irregular triangulation with unrestricted con-
nectivity, and updates are encoded either explicitly in
terms of sets of removed and inserted triangles [12] or
implicitly by the operations through which the model is
refined or coarsened, i.e., edge collapse/split or vertex
insertion/removal [27]. A dimension-independent frame-
work fully covering this kind of model is multitessella-
tion [14, 48]. Because of their flexibility, fully irregular ap-
proaches are theoretically capable of producing the min-
imum complexity representation for a given error meas-
urement. However, this flexibility comes at a price. In
particular, mesh connectivity, hierarchy, and dependencies
must explicitly be encoded, and simplification and coars-
ening operations must handle arbitrary neighborhoods. By
imposing constraints on mesh connectivity and update op-
erations it is possible to devise classes of more restricted
models that are less costly to store, transmit, render, and
simpler to modify. This is because much of the infor-
mation required for all these tasks becomes implicit, and
often, because stricter bounds on the region of influence of
each local modification can be defined.

Using meshes with semi-regular or regular connectiv-
ity, together with fixed subdivision rules, is particularly
well adapted to terrains, since input data from remote
sensing most often comes in gridded form. Moreover, as
the cost of 3D transformations is becoming negligible on
current hardware, controlling the shape of each rendered

triangle starts to become negligible, favoring methods
with the most compact and efficient host-to-graphics inter-
face. For all these reasons, regular or semi-regular ap-
proaches have produced some of the most efficient sys-
tems to date.

3 Non-conforming and limited adaptivity
techniques: tiled blocks and nested
regular grids

A number of successful large scale terrain visualization
systems are based on data structures that do not support
fully adaptive surfaces but are simple to implement and ef-
ficient in communicating with the I/O subsystem and with
the underlying graphics hardware.

3.1 Multiple static level-of-detail rendering based
on tiled blocks

Early LOD terrain rendering methods used a fixed repre-
sentation approach. With these methods, multiple repre-
sentations of parts of the terrain, typically square blocks,
are precomputed and stored off-line. At run-time, the ap-
propriate approximation mesh is assembled from precom-
puted blocks based on the current view-parameters. Be-
cause different parts of the terrain may be using different
representations in the current approximation, cracks can
occur at the boundaries between different-resolution rep-
resentations.

The NPSNET military simulation system [17], for in-
stance, decomposes the terrain into adjacent blocks repre-
sented at four different levels of detail. The representations
are precomputed and stored on disk. A 16 ×16 grid of
blocks is kept in memory, and a simple distance metric is
used to determine the resolution at which each block will
be rendered (Fig. 1). No effort is made to stitch blocks.
As the viewer moves, an entire row or column is paged
out while the opposite one is paged in. This technique is
also used in the most recent and general work on geometry
clipmaps [37]. As the number of LODs is fixed, the model
provides very limited adaptivity and is tuned to particular
applications with narrow fields of view.

In [32, 50], rather than dividing the terrain into a grid,
the authors represent it using a quadtree. Each level of
the quadtree has a single LOD representation that con-
sists of a uniform grid over a fixed number of sample
points. The root-level mesh represents the entire terrain,
while deeper levels represent one quarter of the previous
level’s area. At run-time, the quadtree is traversed and
a decision is made about which blocks of terrain should
be used to represent the terrain. To visually deal with dis-
continuities at tile boundaries, vertical wall polygons are
constructed between the tile edges. This work was then
extended in [6] by associating at each block a precom-
puted fixed representation, which is chosen among uni-
form meshes, non-uniform grids, and TINs. This allows
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Fig. 1. Multiresolution rendering in NPSNET

nodes that are deep in the tree to represent fine-grained
features (such as river beds or roadways) using a TIN rep-
resentation, while allowing a uniform mesh representation
to be at shallower levels in the tree. As in [32], cracks
between adjacent blocks of terrain are filled by vertical
wall polygons. Other visual crack filling methods include
adding flanges around blocks, so that neighboring meshes
interpenetrate slightly, as well as joining blocks with spe-
cial meshes at run-time [59].

Even if these methods may seem overly simplistic,
since they do not produce continuous levels-of-detail and
require work to fix the cracks at block boundaries, and
introduce hard to control visual artifacts, they are still very
popular, especially for networked applications, mostly be-
cause of scalability, ease of implementation, and simpli-
city of integration with an efficient tile-based I/O system.

3.2 Nested regular grids

Losasso and Hoppe [37] have recently proposed the geom-
etry clipmap, a simple and efficient approach that parallels

Fig. 2. Geometry clipmap

with the LOD treatment of images. A prefiltered mipmap
pyramid is a natural representation of terrain data. The
pyramid represents nested extents at successive power-of-
two resolutions. Geometry clipmaps cache in video mem-
ory nested rectangular extents of the pyramid to create
view-dependent approximations (see Fig. 2). As the view-
point moves, the clipmap levels shift and are incrementally
refilled with data. To permit efficient incremental updates,
the array is accessed toroidally, i.e., with 2D wraparound
addressing using mod operations on x and y. Transition re-
gions are created to smoothly blend between levels, and
T-junctions are avoided by stitching the level boundaries
using zero-area triangles. The LOD transition scheme al-
lows independent translation of the clipmap levels, and
lets levels be cropped rather than invalidated atomically.
Since LODs are purely based on 2D distances from the
clipmap center, the terrain data does not require precom-
putation of refinement criteria. Together with the simple
grid structure, this allows the terrain to be synthesized on-
the-fly, or to be stored in a highly compressed format. For
compression, the residuals between levels are compressed
using an advanced image coder that supports fast access to
image regions.

Storing in a compressed form only the heights and re-
constructing at run-time both normal and color data (using
a simple height color mapping) provides a very compact
representation that can be maintained in main memory
even for large data sets. The pyramidal scheme however
limits adaptivity. In particular, as with texture clipmap-
based methods, the technique works best for wide field of
views and nearly planar geometry, and would not apply
to planetary reconstructions that would require more than
one nesting neighborhood for a given perspective.

3.3 Discussion

The methods surveyed in this section strive to provide
a simple and efficient implementation at the cost of im-
posing limitations in adaptivity and approximation qual-
ity. In the next sections we will see methods that rely on
more complex, but also more powerful data structures. We
will first survey quadtree and bin-tree triangulations, i.e.,
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methods able to construct fully continuous levels of de-
tails by imposing consistency rules on local subdivision.
We will then show how these methods can be made more
efficient in terms of raw triangle throughput by employing
a cluster-based approach.

4 Variable resolution triangulation using quadtree
and triangle bin-tree subdivision

From the point of view of the rapid adaptive construction
and display of continuous terrain surfaces, some of the most
successful examples are based on quadtree or triangle bin-
tree triangulation. As we will see, the scheme permits the
creation of continuous variable resolution surfaces with-
out having to cope with the gaps created by other regular
grid schemes, as those in Sect. 3. The main idea shared by
all of these approaches is to build a regular multiresolution
hierarchy by refinement or by simplification. The refine-
ment approach starts from an isosceles right triangle and
proceeds by recursively refining it by bisecting its longest
edge and creating two smaller right triangles. In the sim-
plification approach the steps are reversed: given a regular
triangulation of a gridded terrain, pairs of right triangles
are selectively merged. The regular structure of these op-
erations enables to implicitly encode all the dependencies
among the various refinement/simplification operations in
a compact and simple way.

Depending on the definition of the triangulation rule,
there is potentially a difference in the adaptive triangu-
lation power of quadtree-based triangulations versus tri-
angle bin-trees. Generally, any of the discussed quadtree
triangulations can be considered a special case of recursive
triangle bisection. Nevertheless, from the refined defin-
ition of a restricted quadtree triangulation as presented
in [57, 58] and the following works [34, 42], one can ar-
guably consider the restricted quadtree triangulation and
triangle bin-tree to produce the same class of adaptive grid
triangulations. Hence we use the term restricted quadtree
triangulation more in line with [57] rather than with the
more strict definition as in [49].

4.1 Quadtree triangulation

In this section we discuss the various algorithms of
quadtree-based adaptive triangulation of height-fields (or
parametric 2D surfaces). The closely related triangle bi-
section approaches are discussed in Sect. 4.2. A typical
example of a simplified triangulated surface that can be
constructed using this class of multiresolution triangula-
tion methods is given in Fig. 3.

Restricted quadtrees. Hierarchical, quadtree-based adap-
tive triangulation of 2-manifold surfaces was first pre-
sented in [62] and applied to adaptively sample and tri-
angulate curved parametric surfaces. In parameter space,

Fig. 3. Adaptive quadtree based terrain triangulation

the quadtree subdivision is performed recursively until for
each sampled region the Lipschitz condition for the para-
metric curve is met that bounds the accuracy of the result-
ing polygonal approximation. Furthermore, the quadtree
subdivision is restricted such that neighboring regions
must be within one level of each other in the quadtree hier-
archy as shown in Fig. 4.

The basic approach for triangulation and visualization
uses the following steps:

1. Initial sampling of function on a uniform grid
2. Evaluation of each region with respect to some accept-

ance criteria (approximation error metric)
3. A 4-split of unacceptable regions
4. Repetition of Steps 2 and 3 until adaptive sampling sat-

isfies acceptance criteria over the entire surface
5. Triangulation and rendering of all quadtree regions.

To prevent possible cracks in the polygonal represen-
tation of a restricted quadtree as shown in Fig. 5, every
quadtree region is triangulated with respect to the reso-
lution of its adjacent regions. Due to the constraint of the
restricted quadtree hierarchy that the levels of adjacent

Fig. 4. a Example of an unrestricted quadtree subdivision in param-
eter space. b The restricted subdivision
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Fig. 5. Cracks (shaded in gray) resulting from a quadrilateral
polygonal representation of a restricted quadtree

regions differ at most by one, the regions can be triangu-
lated such that no cracks appear as outlined below. Such
a crack-free triangulation is also called conforming.

The triangulation rule as stated in [62] is the follow-
ing: Each square is subdivided into eight triangles, two
triangles per edge, unless the edge borders a larger square
in which case a single triangle is formed along that edge.
Figure 6 shows a triangulation of a restricted quadtree fol-
lowing this rule.

No detailed algorithms and data structures are given
in [62] to construct and triangulate a restricted quadtree.
Nevertheless, the presented restricted quadtree subdivi-
sion and its triangulation forms the fundamental basis on
which a number of the surveyed triangulation approaches
are built.

Quadtree surface maps. In [57, 58], the restricted quadtree
technique is refined and applied to 2.5-dimensional surface
data consisting of points on a regular 2D-grid and each hav-
ing a height value associated with it. This is the common
representation of grid-digital terrain elevation models. In
addition to the basic method as presented in [62], in [58]
two efficient construction algorithms to generate and tri-
angulate a restricted quadtree from a set of points on a regu-
lar grid are provided. One method is performed bottom-up
and the other top-down to generate the restricted quadtree
hierarchy. Furthermore, in [58] it is also observed that edges
shared by two quadtree nodes on the same hierarchy level do
not have to be split to guarantee a conforming triangulation
as shown in Fig. 7 in comparison to Fig. 6.

Fig. 6. Conforming triangulation of a restricted quadtree subdivi-
sion as in [62]

Fig. 7. Improved conforming triangulation of a restricted quadtree
subdivision as in [58]

Fig. 8. Atomic leaf node for bottom-up construction of restricted
quadtree

In the bottom-up construction method, the (square) in-
put grid is partitioned into atomic nodes of 3×3 elevation
points as shown in Fig. 8. These nodes form the leaf nodes
of a complete and balanced quadtree over the entire input
grid.

The main phase of this method then consists of co-
alescing all mergible nodes bottom-up to create the re-
stricted quadtree. Nodes must pass two main criteria be-
fore they can be merged:

1. Error measure. The approximation error introduced by
removing the edge midpoint vertices of the nodes be-
ing merged must be within the tolerance of a given
error threshold.

2. Quadtree constraints. The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any smaller
sized neighbors.

The approximation error of Criterion 1 used in [58] is
further discussed in Sect. 6. The algorithm terminates if no
further merges can be performed, and it has a linear space
and time cost O(n) in the size n of the input data set.

The second algorithm presented in [58] is a top-down
construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simpli-
fied by one root node and splits nodes recursively, never
merges any, as necessary to approximate the data set. The
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method maintains at all time the restricted quadtree prop-
erty that adjacent leaf nodes do not differ by more than one
level in the hierarchy.

Vertices that can conceptually be removed by merging
four sibling nodes are called non-persistent. Starting with
the root node as shown in Fig. 9a, for each node of the
partially constructed restricted quadtree the non-persistent
vertices are identified in the input data set and their error
metric compared to the given approximation threshold. If
any non-persistent vertex is not within the tolerated thresh-
old it is added to the current quadtree. However, insertion
of vertices can lead to complex updates of the quadtree as
outlined below.

To permanently maintain a restricted quadtree, the in-
sertion of a vertex can lead to propagated splits in the
parent and adjacent quadtree nodes. As shown in Fig. 10,
it may happen that a node on level l is not split because no
vertices of level l +1 are inserted; however, a vertex v2 on
level l +2 has to be added. This insertion cannot be per-
formed directly since no parent node covering v2 has been
created yet on level l +1. First the parent node of v2 and its
siblings on level l +1 have to be inserted by splitting the
smallest node on level l enclosing v2 into four nodes. Such
propagated splits can occur over multiple levels.

For further details, in particular of the top-down algo-
rithm we refer to the detailed description of surface maps
from restricted quadtrees in [57].

Fig. 9a–c. Vertices of the root node (level 0) (a) as well as the non-
persistent vertices of level 1 (b) and level 2 (c)

Fig. 10a,b. Starting triangulation of a node on level l (a). No ver-
tices are initially selected on level l +1. The selection of a vertex
on level l +2 leads to forced splits and added vertices on previous
levels (b)

The proposed top-down algorithm to create an adaptive
surface mesh processes the entire data set and thus its cost
is O(n), linear in the size n of the input. While the number
of generated quadtree nodes is indeed output-sensitive, the
overall run-time is still directly proportional to the input
data set since all vertices have to be visited. However, in
contrast to the bottom-up algorithm, this top-down method
correctly calculates the approximation error at each vertex
as discussed in Sect. 6.

Both methods presented in [57, 58] operate on a hier-
archical quadtree data structure that must provide func-
tionality for inserting vertices, calculating distance of
a vertex to a piece-wise linear surface approximation,
neighbor-finding, and for merging and splitting nodes.
Furthermore, the restricted quadtree nodes must be post-
processed to generate the resulting conforming triangu-
lation. The presented algorithms are capable of creating
adaptive and continuous LOD triangulations within the
limits of the error metric. However, efficiency is not op-
timized for real-time rendering of very large terrain data
sets due to the input sensitiveness of the basic triangula-
tion algorithms.

Continuous LOD quadtree. A different approach to gener-
ate and triangulate a restricted quadtree is presented in [34]
based on the notion of triangle fusion. Starting with a tri-
angulation of the entire grid-digital terrain data set the tri-
angle mesh is simplified bottom-up by consecutive merging
of symmetric triangle pairs. The full resolution grid tri-
angulation as shown in Fig. 11a is equivalent to the atomic
leaf nodes of the bottom-up triangulation method in [58].
Triangle merging is performed in two phases as shown in
Figs. 11b, c. First, in an atomic node pairs of isosceles trian-
gles (i.e., al and ar in Fig. 11b) sharing a short edge are co-
alesced and the midpoint on the boundary edge of the quad
is removed. In the second phase the center vertex of a quad
region is removed by merging isosceles triangle pairs along
the diagonal (i.e., el and er in Fig. 11c). However, to prevent
cracks from occurring due to triangle merging, two pairs
of isosceles triangles that all share the same removed base
vertex must always be coalesced simultaneously (i.e., both
pairs el, er and fl, fr in Fig. 11c).

One of the main contributions of [34] is the introduction
of vertex dependencies that can be used to prevent cracks

Fig. 11. a Full resolution triangulation. Merging of triangle pairs
along b the bottom boundary edge and c along the diagonal
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Fig. 12a–d. Dependency relation of a restricted quadtree triangulation. The center vertex in a depends on the inclusion of two corners of
its quad region. The boundary edge midpoints in b depend on the center vertex of the quad region. Dependencies within and between the
next resolution levels are shown in c and d

and create conforming triangulations at variable LOD. For
example, considering Fig. 11b, c it is clear that the mid-
point of the bottom edge on level l, the base vertex of tri-
angles al and ar , cannot be part of a conforming triangu-
lation if the center vertex of the quad region, the base ver-
tex of el, er , is missing. Or from the opposite viewpoint,
the base vertex of triangles el, er and fl, fr cannot be re-
moved if any of the base vertices of triangle pairs al, ar ,
bl, br , cl, cr or dl, dr persist. These constraints of a con-
forming restricted quadtree triangulation define a binary,
hierarchicaldependency relation between vertices as shown
in Fig. 12. Each vertex to be included in a triangulation
depends on two other vertices (on the same or lower reso-
lution level) to be included first. Therefore, a triangulation
of a (restricted) quadtree is a conforming triangulation only
if no such dependency relation is violated. The triangula-
tion method proposed in [34] recursively resolves the de-
pendency relations of a set S of selected vertices (i.e., all
vertices exceeding a given error tolerance) as follows: For
each vertex v ∈ S, all its dependent parents according to the
dependency rules shown in Fig. 12 are recursively activated
and included in the triangulation as well.

Another important feature presented in [34] is the con-
struction of triangle strips, similar to the earlier work
in [24], for fast rendering. In fact, a triangulation of a re-
stricted quadtree can be represented by one single gener-
alized triangle strip.1 The triangle strip generation method
described in [34] is based on a recursive preorder traver-
sal of the triangular quadrants of quadtree blocks. Starting
with a counterclockwise ordering of triangular quadrants
of the root node as shown in Fig. 13a, each quadrant is
recursively traversed and the traversal is stopped when
a triangle is not further subdivided. In alternating order,
children of triangular quadrants are visited left-first as for
quadrant q0 (and in Fig. 13c), or em right-first as for the
triangles in the next level shown in Fig. 13b. Based on this
traversal, vertices can be ordered and output to form a gen-
eralized triangle strip for efficient rendering (see [34] for
code details).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle

1 generalized triangle strips allow swap operations

Fig. 13a–c. Recursive quadtree traversal for triangle strip gen-
eration. a Initial order of triangular quadrants, with b left-first
traversal for odd subdivisions and c right-first traversal of even
subdivision steps

strips are formed for individual blocks only in [34]. For
each frame a block-based view-dependent image-space
error metric is used (see Sect. 5) to form a (non-restricted)
quadtree subdivision S of the terrain. For each block b ∈ S
of this subdivision, a vertex-based error metric is applied
to achieve a fine-grain selection of vertices to be included
in the triangulation. Furthermore, the vertex dependen-
cies are resolved at this stage to guarantee a conforming
triangulation. Finally, for each quadtree block b ∈ S a tri-
angle strip is generated and used for rendering.

The triangulation method presented in [34] is very effi-
cient in terms of rendering performance. The triangulation
algorithm is output-sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, effi-
cient rendering primitives in the form of triangle strips are
generated for optimized rendering. Despite the fact that
the view-dependent error metric does not provide a guar-
anteed error bound, it is very efficient in practice and pro-
vides good terrain simplification while maintaining plausi-
ble visual results.

Restricted quadtree triangulation. The restricted quad-
tree triangulation (RQT) approach presented in [42, 43] is
focused on large scale real-time terrain visualization. The
triangulation method is based on a quadtree hierarchy as
in [57, 58] and exploits the dependency relation presented
in [34] to generate minimally conforming quadtree tri-
angulations. Both, top-down and bottom-up triangulation
algorithms are given for a terrain height-field maintained
in a region quadtree, and where each vertex has an ap-
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proximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array
of the regular grid input data set by appropriate point in-
dexing and recursive functions, and no hierarchical data
structure actually needs to be stored. For such an implicit
quadtree, this reduces the storage cost effectively down to
the elevation and approximation error values per vertex.

As shown in [43], for each point Pi, j of the 2k +1 ×
2k +1 height-field grid its level l in the implicit quadtree
hierarchy can efficiently be determined by arithmetic and
logical operations on the integer index values i and j (see
also Fig. 14). Furthermore, it is also observed that the
dependency relation of Fig. 12 can be expressed by arith-
metic expressions as functions of the points index i, j . The
implicit definition of quadtree levels and dependency re-
lations between points by arithmetic functions allows the
top-down and bottom-up algorithms presented in [42] to
run very quickly and directly on the array of the height-
field grid data instead of relying on a hierarchical pointer-
based data structure. (See also [56] for efficient operations
on quadtrees.)

An optimal output-sensitive triangulation algorithm is
presented in [42] that exploits the strict error monotonic-
ity achieved by error saturation (see Sect. 6). This allows
for a simple top-down vertex selection algorithm, which
does not have to resolve any restricted quadtree dependen-
cies or propagate triangle splits at run-time. The proposed
saturated error metric guarantees that the set of initially
selected vertices for a given threshold automatically sat-
isfy the restricted quadtree constraint and hence allow for
a crack-free conforming triangulation.

To improve rendering performance, a triangle strip con-
struction algorithm is presented in [42] that traverses the
entire quadtree hierarchy instead of blocks as proposed
in [34]. As shown in Fig. 15, the RQT triangle strip that
recursively circles counterclockwise around each quadtree
block center vertex is a space filling curve that visits all tri-
angles exactly once. It also represents a Hamiltonian path
in the dual graph of the triangulation. This triangle strip can
be generated by a depth-first traversal of the quadtree in
linear time, proportional to the size of the generated trian-
gle strip. Moreover, the proposed error saturation technique
in [42] and the quadtree-based triangle strip generation sup-

Fig. 14. Implicit quadtree hierarchy and point indexing defined on
the height-field grid

Fig. 15. a Generalized RQT triangle strip. b Its Hamiltonian path
on the dual graph

port a highly efficient unified vertex selection, triangle strip
generation and rendering algorithm based on a single depth-
first traversal of the implicit height-field quadtree.

The 4-8 meshes. The class of 4-8 meshes [3, 60, 61] is
based on a quadtree subdivision and triangulation as il-
lustrated in Fig. 16, which in its triangulation power is
basically equivalent to the other outlined quadtree and tri-
angle bin-tree meshing approaches.

However, instead of a vertex dependency graph as
in [34], a merging domain Mv is defined for each vertex v
in [3] for the purpose of satisfying the triangulation con-
straints that avoid cracks in the surface mesh. As shown
in Fig. 17, the merging domain Mv is basically the transi-

Fig. 16. Recursive 4-8 triangle mesh subdivision

Fig. 17. a A vertex v and its merging domain Mv are highlighted.
b The adaptive triangle mesh after removal of v and Mv
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tive hull of all vertices depending on v in the dependency
graph [34]. Consequently Mv is used to define all ver-
tices that must be removed from the triangulation jointly
with v. And hence, the removal of multiple vertices is con-
strained by the joint removal of the union of their merging
domains. A similar concept, the splitting domain, is intro-
duced for inserting vertices into the triangulation.

The triangulation algorithms presented in [2, 3] require
O(n log n) time to refine or merge n nodes. This is in con-
trast to the algorithms presented in [34] and [42], which
can generate an adaptive mesh of n triangles optimally in
linear O(n) time.

Irregular quadtree hierarchy. In [60, 61] it has been
shown that arbitrary 3D surfaces can adaptively be trian-
gulated by a hierarchical 4-8 triangulation approach, given
a parameterization of the manifold surface is known. The
QuadTIN approach presented in [44] goes one step further
and defines a restricted quadtree hierarchy on top of any
irregular point set in 2D, i.e., given from a preprocessed
triangulated irregular network (TIN). As in [60, 61], the
idea of QuadTIN [44] is based on the fact that points do
not have to lie on a regular grid to allow for a regular
hierarchical triangle subdivision as shown in Fig. 18.

At each subdivision step, the diagonal edge of a quadri-
lateral is not necessarily split at its midpoint, but using
a nearby point from the input data set as shown in Fig. 19a.
To avoid badly shaped triangles and inversion of orien-
tation, however, the domain for searching for good in-
put vertices is restricted as illustrated in Fig. 19b. If no
good candidate vertices exist, artificial Steiner points are

Fig. 18. Irregular recursive QuadTIN subdivision

Fig. 19. a Vertex closest to the midpoint of diagonal edge et,t′ is se-
lected for recursive subdivision. b Only vertices from a restricted
search domain are considered

Fig. 20. Adaptive QuadTIN triangulation of an irregular distribu-
tion of elevation samples

inserted to guarantee a coherent restricted quadtree trian-
gulation hierarchy.

An example adaptive QuadTIN-based terrain triangu-
lation is shown in Fig. 20, which demonstrates its flexibil-
ity to adapt to an irregular input point data set. This added
flexibility comes at the expense of extra points inserted
into the data set.

4.2 Triangle bin-trees

In this section we discuss triangle bisection-based algo-
rithms which generate equivalent triangulations of grid-
digital terrain height-fields as the methods presented pre-
viously.

Real-time optimally adapting meshes. The real-time op-
timally adapting meshes (ROAM) triangulation method
presented in [15] is conceptually very close to [34]. How-
ever, it is strictly based on the notion of a triangle bin-tree
hierarchy as shown in Fig. 21, which is a special case
of the longest side bisection triangle refinement method
described in [51, 52]. This method recursively refines tri-
angles by splitting their longest edge at the base vertex
(see also Fig. 11).

As shown in Fig. 22, for a refinement operation a pair
of triangles are split at the common base vertex of their
shared longest edge, and a simplification operation consists
of merging two triangle pairs at their common base vertex.

An important observation is that in a conforming tri-
angulation, all neighbors of a triangle t on level l in the

Fig. 21. Binary longest side bisection hierarchy of isosceles trian-
gles with indicated split vertices on the longest side
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Fig. 22. Split and merge operations on a bin-tree triangulation

bin-tree hierarchy must be either on the same level as t, or
on levels l +1 or l −1 of the bin-tree hierarchy. Therefore,
two pairs of triangles ta, tb and tc, td sharing the same base
vertex can only be merged if they are all on the same level
in the bin-tree hierarchy as shown in Fig. 22. Furthermore,
a triangle t cannot be split immediately if its neighbor tlong
across its longest edge is from a coarser level as shown
in Fig. 23. In that case, triangle t can only be split if its cor-
responding neighbor is forced to split first. These forced
splits are conceptually the same as the split propagation
of [58] shown in Fig. 10. Moreover, the dependency re-
lation of [34] in Fig. 12 denotes exactly the same forced
split propagation of a bin-tree or restricted quadtree tri-
angulation. All these concepts for assuring a conforming
triangulation are equivalent in this context.

The run-time triangulation algorithm of ROAM is
based on a greedy algorithm using two priority queues
of the triangles t ∈ T of the current mesh T : The split
queue Qs stores the triangles t ∈ T according to their pri-
ority to be split next, and the merge queue Qm maintains
the mergible triangle pairs of T . For each frame the pri-
ority queues Qm and Qs are consulted and the current
triangle mesh is adaptively refined or simplified accord-
ingly to satisfy the given error threshold τ . The priorities
are based on an error metric defined on triangles.

To guarantee a τ-approximation with respect to a par-
ticular error metric, the proposed greedy algorithm re-
quires the error metric, and thus the priorities of Qm
and Qs, to be strictly monotonic. This means that the error
or priority of any triangle in the bin-tree hierarchy cannot
be larger than its parent’s priority. This monotonicity re-
quirement limits the direct applicability of many standard
error metrics. For example, neither the view-dependent
error metric in [34] nor the vertical distance measure
of [58] or the Hausdorff distance error metric defined hier-

Fig. 23. Propagation of forced triangle splits

archically on removed vertices or triangles initially satisfy
this monotonicity requirement (see also Sect. 6). Special
care has to be taken to enforce monotonicity of any error
metric by a bottom-up traversal of the triangle bin-tree hi-
erarchy in a preprocess and calculating bounding priorities
at each node.

Besides the two main contributions of ROAM which
are the priority-queue driven triangle bin-tree-based trian-
gulation method and a screen distortion error metric, the
work in [15] contains a number of interesting contribu-
tions. A list of twelve criteria is given that generally ap-
ply to mesh simplification and in particular to large scale
terrain visualization. Furthermore, a few performance en-
hancements that are implemented in ROAM are described
including view frustum culling, incremental triangle strip
generation, deferred priority recomputation, and progres-
sive optimization.

Right-triangulated irregular networks. The right-triangu-
lated irregular network (RTIN) as presented in [16] is
a multiresolution triangulation framework for the same
class of triangle bin-tree meshes [15] as presented above.
The RTIN approach is particularly focused on the efficient
representation of the binary triangle hierarchy, and fast
mesh traversal for neighbor-finding. Starting with a square
triangulated by choosing one diagonal, triangles are split
recursively at the base vertex or midpoint of their longest
edge, identical to the method described above. To guar-
antee a conforming triangulation without cracks the same
propagation of forced splits as shown in Fig. 23 is imposed
on the RTIN triangulation. In [16] it is observed that split
propagation caused by splitting a triangle t on level lt can-
not cause triangles smaller than t to be split (on levels
l > lt), and that at most two triangles on each level l ≤ lt
are split. Thus split propagation terminates in the worst
case in O(log n) steps, with n being the size of the triangle
bin-tree hierarchy (number of leaf nodes).

One of the main contributions of [16] is an efficient
data structure to represent right-triangular surface approxi-
mations. Similar to Fig. 11, child triangles resulting from
a split are labeled as left and right with respect to the split
vertex of their parent triangle. A binary labeling scheme
as shown in Fig. 24 is used in RTIN to identify triangu-
lar regions of the approximation. A RTIN triangulation is
thus represented by a binary tree denoting the triangle splits
and the elevation values (z coordinate) of the triangle ver-
tices. The geographical (x and y) coordinates do not have
to be stored for each vertex but can be computed from the
triangles label. As noted in [16], a main memory imple-
mentation of such a binary tree structure with two pointers
and three vertex indices2 per node is space inefficient if used
to represent one single triangulated surface approximation.
However, a triangle bin-tree actually represents an entire

2 This could be reduced to only one vertex index, others are known from
parent triangle nodes.
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Fig. 24. RTIN triangle bin-tree
labelling using 0 for left and 1
for right

hierarchy of triangulations. To reduce the storage cost of
a triangle bin-tree hierarchy it is proposed to remove child
pointers by storing the nodes in an array and using an array
indexing scheme based on the node labels.

Based on the binary tree representation of the RTIN
hierarchy as shown in Fig. 24, an efficient neighbor-
finding scheme is the second main contribution of [16].
Given a counterclockwise numbering from v1 to v3 of
the vertices of triangle t with vertex v3 being the right-
angled vertex, the i-neighbor of triangle t is defined as
the adjacent triangle ti that does not share vertex i . Fur-
thermore, the same-size i-neighbors of any triangle are
the edge adjacent triangles at the same level in the bin-
tree hierarchy. For example, triangle 10 in Fig. 24 is the
same-size 1-neighbor of triangle 11, and triangle 001 is the
3-neighbor of triangle 0000 but not a same-size neighbor.
The neighbor-finding function NI (t) presented in [16] first
finds the same-size i-neighbor of a triangle and then deter-
mines the actual i-neighbor for a particular triangulation.
The recursive neighbor-finding function NI (t), that returns
the label of the same-size i-neighbor of a given triangle t,
is conceptually identical to a recursive tree traversal for
finding adjacent regions in any binary space partition
(BSP-tree; see also [53, 54]). An efficient non-recursive
implementation of NI (t) based on arithmetic and logical
operations is also given in [16].

For terrain visualization, each triangle is assigned an
approximation error during the preprocess phase of con-
structing the RTIN hierarchy. At run-time, starting with
the two triangles at the root of the RTIN hierarchy a depth-
first traversal recursively splits triangles whose approxi-
mation errors exceed a given tolerance threshold. Forced
splits are propagated to the corresponding i-neighbors to
avoid cracks in the triangulated surface approximation.

The main focus of RTIN is efficient representation
of the triangle bin-tree hierarchy and neighbor-finding
techniques on the adaptively triangulated surface. Simi-
lar to [15, 34, 42], RTIN is efficient in creating an adap-
tive surface triangulation since its top-down algorithm is
output-sensitive. In fact, the RTIN approach is almost
identical to the ROAM method and only differs in notation

and representation of the triangle bin-tree hierarchy. No
detailed algorithms are given in [16] on how to incorpo-
rate propagation of forced splits to generate a conforming
triangulation.

Right-triangular bin-tree. In [19], the class of restricted
quadtree or right-triangular bin-tree triangulations is
studied with respect to efficient data storage and process-
ing, search and access methods, and data compression.
It is proposed to always manage the data in compressed
form, even interactive processing is performed on the
compressed data. The multiresolution triangulation frame-
work in [19] follows the binary triangle hierarchy ap-
proach as used in [15] and [16]. To prevent cracks in the
triangulation resulting from recursive triangle bisection,
error saturation is used as presented in [42].

The main contribution of [19] is a compressed repre-
sentation of the triangle bin-tree hierarchy based on an
efficient mesh traversal and triangle numbering scheme.
The traversal order of triangles in the bin-tree hierarchy
is equivalent to the triangle strip ordering as shown in
Fig. 25. Furthermore, each triangle is numbered such that
the left child of a triangle with number n receives the num-
ber 2n and the right child is numbered 2n +1 if the level l
of the parent triangle is odd and vice versa if it is even as
shown in Fig. 25. For a given triangle, bit-wise logical op-
erations can be used to compute the adjacent triangle that
shares the common refinement vertex. Each vertex is asso-
ciated with the two numbers of the triangles that it refines.

This ordering and triangle numbering imposes a binary
classification of triangles in a conforming bin-tree triangu-
lation into up- or down-triangles. In a depth-first traversal
of the bin-tree hierarchy, an up-triangle can only be fol-
lowed by a triangle on the same or higher level (coarser

Fig. 25. Triangle numbering
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triangle) in the hierarchy. Similarly, a down-triangle can
only have a neighbor on the same or lower level of the
hierarchy. Therefore, the starting triangle and one bit per
triangle is sufficient to encode an adaptive bin-tree trian-
gulation. Furthermore, vertices only need to be specified
on their first occurrence in the bin-tree traversal. Based on
this traversal and numbering technique an efficient com-
pressed representation of a triangle bin-tree hierarchy is
proposed. Moreover, it is shown how an arbitrary adaptive
triangulation can efficiently be extracted from the code
stream that represents the entire bin-tree hierarchy, and
that can be read and processed efficiently from disk.

The triangulation algorithm and data structure pre-
sented in [19] are particularly tailored towards efficient
representation and traversal of the binary triangle hier-
archy. The proposed encoding of the triangle bin-tree is
very interesting from the point of view that it can be
used to access an adaptive triangulation efficiently even if
the bin-tree is stored sequentially on disk. The proposed
multiresolution framework provides most of the import-
ant features such as continuous LOD, fast rendering, and
compact representation.

4.3 Discussion

The different multiresolution terrain triangulation ap-
proaches reviewed in this section all contribute unique
features and improvements to the class of restricted
quadtree and bin-tree triangulations. The basic adaptive
multiresolution triangulation framework has been intro-
duced in [58]. The approaches of [34] and [42] follow
this concept of an adaptive quadtree hierarchy, while the
methods presented in [15, 16] and [19] describe the same
class of triangulations from the point of a binary triangle
subdivision hierarchy.

Very efficient triangulation algorithms are the focus
of [34, 35, 42] and [5], which are based on a simple vertex
selection strategy, and [15], which is based on a priori-
tized triangle merge and split concept. Error saturation
conforming to the restricted quadtree triangulation con-
straints introduced in [42] and [19], has been extended to
efficient view-dependent error metrics and LOD selection
algorithms in [20, 35] and [5]. While effective, most other
triangle bin-tree-based approaches are slightly more com-
plex due to recursively splitting triangles and resolving
propagated forced splits, and thus have some disadvan-
tages compared to the simple quadtree-based vertex se-
lection algorithms. All surveyed methods are capable of
generating smooth adaptive LODs for efficient terrain sur-
face approximation, and, though not explicitly described,
RTIN [16] can generate triangle strips for fast rendering.

The main objective of this kind of algorithms was to
compute on the CPU the minimum number of triangles
to render each frame, so that the graphic board was able
to sustain the rendering. More recently, the impressive
improvements of the graphics hardware both in terms of

computation and communication speed shifted the bottle-
neck of the process from the GPU to the CPU. In the next
section we will show how these methods can be made
more efficient in terms of raw triangle throughput by em-
ploying cluster-based approaches.

5 Cluster triangulations

The impressive improvement of graphics hardware in
terms of computation and communication speed is reshap-
ing the real-time rendering domain. A number of perform-
ance and architectural aspects have a major impact on the
design of real-time rendering methods.

Today’s GPUs are able to sustain speeds of hundreds
of millions of triangles per second; this fact has two im-
portant implications for real-time rendering methods. First
of all, to sustain such speeds, the CPU workload of the
adaptive rendered has to be reduced to a few instruction
cycles per rendered triangle. Second, since the target ren-
dering speed is two orders of magnitude larger than the
number of screen pixels, there is an expectation for high
quality scenes with millions of triangles per frame. On
classic vertex- or triangle-based structures, managing and
storing very large dependency graphs at run-time becomes
a major bottleneck, mostly due to random-access traver-
sals with poor cache-coherence. Moreover, current GPUs
are optimized for retained mode graphics, and their max-
imum performance is obtained only when using specific
preferential data paths. This typically means using strip-
ified, indexed, and well packed and aligned primitives to
exploit on-board vertex caches and fast render routes. In
addition, the number of primitive batches (i.e., the number
of DrawIndexedPrimitive calls) per frame has to be kept
low, as driver overhead would otherwise dominate ren-
dering time [64]. Finally, maximum performance is only
obtained when rendering from on-board memory. Edit-
ing on-board memory introduces however synchronization
issues between CPU and GPU, which is a problem for dy-
namic LOD techniques. In this setting, approaches which
select, at each frame, the minimum set of triangles to be
rendered in the CPU typically do not have a sufficient
throughput to feed the GPU at the top of its capacity, both
because of the per-triangle cost and the complexity associ-
ated with sending geometry in the correct format through
preferential paths. Since the processing rate of GPUs is in-
creasing faster than that of CPUs, the gap between what
could be rendered by the graphics hardware and what the
CPU is able to compute on-the-fly to generate adaptive tri-
angulations is doomed to widen.

For such reasons many techniques have been recently
proposed to reduce the per-primitive workload by compos-
ing at run-time preassembled optimized surface patches,
making it possible to employ the retained mode rendering
model instead of the less efficient direct rendering ap-
proach for all CPU/GPU communication tasks. The main
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common point of these methods, that we call here clus-
ter triangulations, is that they move the LOD unit up from
points or triangles to small contiguous portions of a mesh.

5.1 Tiled blocks

A classic example of a cluster triangulations approach are
tiled blocks techniques [26, 63], which partition the ter-
rain into square patches tessellated at different resolutions.
A full survey of this subject is beyond this paper, devoted
to quadtree approaches. We restrict our presentation to [55],
which proposes a combination of tiled blocks and restricted
quadtree triangulations. The method strives to improve
CPU/GPU communication efficiency by an incremental
batched communication of updates. In this approach, the
terrain mesh is partitioned into equal tiles of size 257×257,
with an overlap of one sample in either direction. For each
tile, a fixed set of restricted quadtree meshes of increasing
error is generated, resulting in a nested mesh hierarchy per
tile. At run-time a specific LOD is selected independently
for each tile, and the relevant updates are sent to the GPU.
Each finer level is represented by all coarser level vertices
plus the additional ones. By caching the current mesh on the
GPU, only the additional vertices need to be sent, reducing
the required bandwidth by 50%. Since vertices are trans-
ferred by groups, efficient vertex array techniques can be
employed to boost transfer efficiency. In [55] all vertex data
for a given tile is stored in a single vertex array, which grows
by a block for each LOD, while the connectivity is stored
in a separate per level element array. In order to smoothly
transition surface changes, the method exploits the concept
of geomorphing [27], which interpolates vertex attributes
between LODs.
The main challenge for this technique, as for all tiled
block techniques, is to seamlessly stitch block bound-
aries, which requires extra run-time work. In [55] bound-
aries of neighboring tiles are detected and connected using
run-time generated triangles. This need to remesh bound-
aries is avoided in the quadtree-based techniques that will
be presented next. Moreover, the technique is not fully
adaptive, and limits simplification to pure subsampling, in
order to support progressive vertex transmission.

5.2 Cached triangle bin-trees

RUSTIC [47] and CABTT [31] are both extensions of
the ROAM [15] algorithm that improve rendering per-
formance through the addition of coarse-grained on-board
caching. RUSTIC is an extension of the basic ROAM algo-
rithm in which preprocessed static subtrees of the ROAM
triangle bin-tree are used. The CABTT approach is very
similar to RUSTIC, but triangle clusters are dynamically
created, cached and reused during rendering. Triangle clus-
ters form the unit for LOD refinement/coarsening oper-
ations, and can be cached on the GPU as vertex arrays.

Improved performance over ROAM is gained by rendering
the meshes as triangle strips. Since all adaptively refined
graphs are still ROAM graphs, adaptive triangulations are
guaranteed to be conforming.

These methods demonstrate the performance benefits
of coarse-grain LOD adaptation, but limited its application
to geometry caching. A particular contribution of these
methods was to show that, even though the number of
triangles per frame increased by a factor of 50%, with re-
spect to ROAM, the overall rendering performance was
boosted by a factor of four due to the order of magnitude
raw performance increase of the rendering interface.

5.3 Combining regular and irregular triangulations

BDAM [7], P-BDAM [8], and HyperBlock-QuadTIN [30]
generalized the caching approach by combining regu-
lar and irregular triangulations in the same GPU-friendly
framework. The main insight of these methods is to sep-
arate the coarse topology of the multiresolution method,
managed using semi-regular fine geometry of the ob-
jects, managed using triangulations. In other words, the
task of the multiresolution structure is to generate adap-
tive regular partitions of the terrain domain using data-
independent techniques, while the task of the geom-
etry is to approximate the data inside the partition with
a fixed triangle count mesh with appropriate boundary
constraints.

HyperBlock-QuadTIN. QuadTIN [44] is an efficient quad-
tree-based triangulation approach to irregular input point
sets with improved storage cost and feature adaptive sam-
pling resolution. It preserves a regular quadtree multireso-
lution hierarchy over the irregular input data set (see
Sect. 4.1). HyperBlock-QuadTIN [30] extends the basic
QuadTIN [44] method by creating a coarse-grained tree
structure of blocks that store different triangulation levels.
Similar to the clustering performed by RUSTIC [47] and
CABTT [31] on ROAM hierarchies but with the additional
advantage of direct support of irregular point sets. The
construction process starts by a full QuadTIN hierarchy,
which is then clustered into fixed size blocks by traversing
it coarse to fine. At run-time, the coarse block hierarchy is
traversed, and resolution levels are selected on a block-by-
block basis. A global crack-free triangulation is ensured
by adjusting the selected block levels so that they meet re-
stricted quadtree constraints. A simplified illustration of
an example of restricted quadtree blocks of HyperBlock-
QuadTIN [30] is given in Fig. 26.

Batched dynamic adaptive meshes (BDAM). The BDAM
approach [7] seamlessly combines the benefits of TINs
and restricted quadtree triangulation in a single data struc-
ture for multiresolution terrain modeling. BDAM is a spe-
cialization of the more general batched multitriangulation
framework [9]. It is based on the idea of exploiting the
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Fig. 26. Adaptive elevation grid
and the corresponding LOD
hyper-blocks of levels 1 and 2

partitioning induced by a recursive subdivision of the in-
put domain in a hierarchy of right triangle clusters to
generate a coarse-grained multiresolution structure. The
partitioning consists of a forest of triangle bin-trees (see
also Sect. 4.2) covering the input domain.

The partitioning consists of replacing a triangular re-
gion σ with two triangular regions obtained by splitting σ
at the midpoint of its longest edge [51, 52]. To guarantee
that a conforming mesh is always generated after a bisec-
tion, the two triangular regions sharing σ ’s longest edge
are split at the same time. These pairs of triangular re-
gions are called diamonds and cover a square. The depen-
dency graph encoding the multiresolution structure is thus
a DAG with at most two parents and at most four children
per node (conceptually the same as in [34]).

This structure has the important property that, by selec-
tively refining or coarsening it on a diamond-by-diamond
basis, it is possible to extract conforming variable reso-
lution mesh representations. BDAM exploits this property
to construct a coarse-grained LOD structure. This is done
by associating to each triangle region σ a small triangle
patch, up to a given triangle count, of the portion of the
surface contained in it. Each patch is constructed so that
vertices along the longest edge of the region are kept fixed
during a diamond coarsening operation (or, equivalently,
so that vertices along the shortest edge are kept fixed when
refining). In this way, it is ensured that each mesh com-
posed by a collection of small triangle patches arranged
as a triangle bin-tree generates a globally correct and con-
forming triangulation (see Fig. 27).

At run-time, the LOD is chosen by a triangle bin-
tree refinement over the triangle patches (based on satur-
ated error [7, 8] or incremental refinement based on a dual
queue technique [9]). The selection cost is thus amortized
over patches of thousands of triangles.

Fig. 27. a BDAM triangle clusters of a diamond structure. Coars-
ening of two diamonds in b to one in c with coarsening vertices
along the shared boundary (in yellow). Highlighted vertices (in red)
shared with neighboring diamonds remain unchanged

The highest resolution triangle patches sample the in-
put data at a matching resolution, while coarser level
patches contain TINs constructed by constrained edge-
collapse simplification of child patches. In a preprocess,
simplification is carried out fine-to-coarse level-by-level,
and independently for each diamond. The whole simpli-
fication process is inherently massively parallel, because
the grain of the individual task is very fine and synchro-
nization is required only at the completion of each bin-tree
level (see also Fig. 28).

5.4 The 4-8 mesh cluster hierarchies

An approach similar to BDAM, but described in terms
of a 4-8 mesh hierarchy and optimized for regular grids
is introduced in [28]. The authors remark that, with cur-
rent rendering rates, it is now possible to render adaptive
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Fig. 28. Construction of a BDAM through a sequence of (parallel) simplification and marking steps. Each triangle represents a terrain
patch composed by many triangles, as in Fig. 27

scenes with triangles that have a projected size of one or
a few pixels. At this point, it is no longer desirable to make
triangles non-uniform in screen space due to variations in
surface roughness, since this will only lead to subpixel tri-
angles and thus to artifacts. The authors therefore rewrite
the BDAM approach in terms of regular grids, replac-
ing geometric patch simplification with low-pass filtering.
In addition, while the original BDAM work encoded the
hierarchy with triangle bin-trees, this work explicitly en-
codes the graph of diamonds, and incrementally refines
and coarsens it using ROAM’s dual queue incremental
method. Another contribution of the work is that geom-
etry and texture are handled in the same framework. That
is, both geometry and textures are treated as small regular
grids, called tiles, defined for each diamond in the hier-
archy. Each grid corresponds to two patches sharing the
main diagonal. The relative density of the grids are ad-
justed to maintain a fixed ratio of texels per triangle.

6 LOD error metric

In this section we review the major error metrics that have
been proposed for the discussed terrain triangulation algo-
rithms.

6.1 Object-space approximation error

To render deformed parametric surfaces, several recursive
subdivision criteria are given in [62] that take into ac-
count local curvature, intersection of surfaces, and silhou-
ette boundaries. While these subdivision criteria are not
directly applicable to terrain height-fields, the local cur-
vature criterion, or flatness, is similar to other geometric
approximation error metrics used for terrain triangulation.

The approximation error proposed in [58] is the verti-
cal distance of a removed vertex with respect to its lin-

ear interpolation provided by the parent node as shown
in Fig. 29. The error of vertex B is its vertical distance to
the average elevation of A and C. An example of mergible
nodes, with respect to Sect. 4.1, is given in Fig. 29. Given
that the approximation error of all removed vertices (out-
lined points in Fig. 29b) is within the given tolerance, and
given that no other neighboring nodes violate the restricted
quadtree constraint, the nodes and triangles of Fig. 29a can
be merged into the larger node Fig. 29b.

A major problem of the proposed bottom-up quadtree
initialization in [58] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Fig. 29) with respect to its linear interpolation
(line between A and C in Fig. 29) in the immediate parent
node may be below a given error threshold τ , it is not clear
that this removed vertex is within the distance τ to the fi-
nal result of an iterative bottom-up merging process. As
shown for a 2D example in Fig. 30, this error metric is not
monotonic. In fact, the resulting simplified surface based
on this method does not interpolate the removed vertices
within a bounded distance.

Fig. 29a,b. Initial four leaf nodes shown in a that are merged in
b with the outlined points denoting the removed vertices in the
merged node
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Fig. 30. Merging of nodes satisfying the approximation error
threshold locally may result in intolerably large accumulated errors
with respect to the final result

However, the top-down triangulation approach in [58]
computes the distance to the original surface for each ver-
tex with respect to the current adaptive restricted quadtree
surface approximation. Therefore, no accumulation of
errors beyond the given threshold τ can occur, and the
reconstructed surface map is a correct τ-approximation.

A similar vertical distance measure has been used
in [16] and [42], modified to satisfy the monotonicity re-
quirement outlined in [15]. However, in contrast to [16],
and also [15], which define the error metric on triangles,
the RQT approach [42] defines the error metric on ver-
tices. If precomputed per triangle it is straight forward to
make the error metric monotonic, setting it to the max-
imum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can be formed by the
adaptive multiresolution triangulation method. This can be
quite a costly approach in terms of memory usage as this
number is several times larger than the number of input
elements (elevation values). The per-vertex error metric
proposed in [42] eliminates this memory cost.

It has been observed in [42, 43] and [41] that for
object-space geometric error metrics the dependency
graph shown in Fig. 12 can be encoded into the error met-
ric itself by a technique known as error saturation. As
demonstrated in Fig. 31a, the selection of a particular ver-
tex P (black square) due to its error value ε = 9, exceeding
the allowed tolerance τ = 5, causes several forced triangle
splits (dashed grey lines). To avoid such forced splits, error
values are propagated and maximized along the depen-
dency graph, as shown in Fig. 31b. This error saturation is
performed in the preprocess: Each vertex stores the max-
imum value of all propagated errors and its own computed
error, and propagates this maximum further along the de-
pendency graph. This preprocess can be implemented by
a simple traversal over the grid-digital elevation values.
Therefore, a fast top-down selection of vertices according
to their saturated error metric directly yields an adap-
tive and conforming triangulation of a restricted quadtree,
without the need of enforcing any quadtree constraints,
forced splits or resolving dependency relations. This error

Fig. 31. Initial error metric shown in a for selected vertices, white
vertices are below and black vertices above the error threshold
τ = 5. Forced splits are indicated with dashed gray lines. Propaga-
tion of error saturation shown in b for the vertex causing the forced
splits

Fig. 32. The thickness of a bounding wedgie defines an object-
space geometric approximation error

saturation technique has also been observed in [22] and
can be applied in various ways to enforce constraints on
multiresolution hierarchies such as topology preservation
in isosurface extraction [21].

Other geometric distance metrics, instead of the ver-
tical offset measure, must be treated in a similar way
to preserve monotonicity for an efficient output-sensitive
top-down adaptive mesh refinement approach.

An object-space geometric approximation error metric
is defined in [15] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie
that encloses all children of its subtree as shown in Fig. 32.
This measure bounds the maximal deviation of a simpli-
fied mesh with respect to the full resolution input data;
however, it has to be computed and stored for every tri-
angle that can possibly be defined by the multiresolution
hierarchy. This basic object-space approximation bound is
input to a view-dependent image-space error metric as dis-
cussed in the following section.

6.2 Image-space approximation error

A static object-space geometric error metric is not suf-
ficient to adaptively simplify terrain for perspective ren-
dering. This is because far away regions must be sim-
plified more aggressively than nearby areas. As this de-
pends on the observer’s location and changes continually,
the error metric must be defined dynamically and view-
dependently.

In [34] the definition of an efficient view-dependent
image-space error metric has been proposed that deter-
mines removal or inclusion of vertices for a given view-
point. As illustrated in Fig. 33, the basic idea of this error
metric is that triangle pairs can be merged if the change in
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Fig. 33. Vertical distance εv between removed base vertex v and its
linear interpolation v̄

slope εv at the removed base vertex v projected into screen
space is smaller than a given threshold τ . The line seg-
ment ε = v− v̄ between the removed base vertex v and its
linear interpolation v̄ = (vl +vr)/2 is perspectively pro-
jected onto the screen space viewing plane as ρv. If ρv is
smaller than the tolerance τ then the vertex v can be re-
moved and the corresponding triangle pairs merged. Note
that the projected delta segment ρv is not defined with re-
spect to the highest resolution mesh or the current LOD
mesh but rather based on the adjacent vertices vl and vr
of the next lower resolution in the quadtree. Therefore, al-
though hardly noticeable in practice, the metric as defined
in [34] suffers from the same limitations as the error com-
putation of the bottom-up triangulation method presented
in [58] and does not provide a guaranteed error bound on
the final triangulation. For this, the error metric must ei-
ther be saturated correctly, or defined and maximized on
each triangle with respect to the full resolution mesh.

For efficient block-based mesh simplification, the
view-dependent image-space error metric is extended
to entire quadtree blocks in [34]. In particular, if for
a quadtree region R the maximum delta projection of all
higher resolution vertices within R is smaller than the
threshold τ then they can be ignored. For an axis-aligned
bounding box of a quadtree block R and given view-
ing parameters, one can compute the smallest elevation
delta εl and largest εh of that box that when projected
onto screen may exceed τ . Therefore, if the maximum
vertical error εmax of all vertices v ∈ R is smaller than εl
then R can be replaced by a lower LOD block, and if εmax
is larger than εh then R has to be refined into smaller
blocks. Otherwise the screen space projected errors ρv of
all vertices v ∈ R have to be computed and compared to τ
individually.

The thickness εt of a bounding wedgie as introduced
in [15] (see Fig. 32) can be used to estimate the max-
imal image-space distortion ρt of a triangle t for view-
dependent simplification similar to the approach presented
in [34]. Consequently, for any given triangulation T , its
image-space distortion can be bounded by the maximum
projected length ρt of all triangles t ∈ T . Additionally
to this image-space distortion error metric, [15] proposes
several other mesh refinement and simplification measures
such as: backface detail reduction, surface normal distor-
tion, texture-coordinate distortion, silhouette preservation,

view frustum culling, atmospheric or depth attenuation,
and region of interest.

In [35, 36] and [20] it has been observed that view-
dependent error metrics can also, in a sense, conserva-
tively be saturated similar to [42] for object-space meas-
ures. This works if the image-space error metric ρv of
a vertex v is based on a static geometric approximation
error εv, which is perspectively projected into image-space
(divided by dv given the distance dv of the vertex v to the
viewer). For this to work, additionally to εv, a conservative
bounding sphere radius rv is needed for each vertex. This
attribute rv defines a nested bounding sphere hierarchy on
the restricted quadtree vertex dependency graph [35, 36].
A vertex v will be selected for the current LOD triangu-
lation if its conservative image-space error ρv = ε

dv−rv
is

larger than the given threshold τ .
In SMART [5] the same basic error metric and view-

dependent vertex selection criterion dv < εv

τ
+rv gives rise

to a τ-sphere defined for each vertex by the radius rτ
v =

εv

τ
+ rv. Hence vertex selection is simplified to all ver-

tices whose τ-spheres contain the viewpoint. Furthermore,
it is elaborated in [5] that a so-called τ-save-distance can
dynamically be maintained, which bounds for each ver-
tex the deviation of the viewpoint that does not change
the LOD level of the vertex. This concept allows for
optimized LOD computations as well as efficient vertex
caching, and results in significantly improved LOD mesh-
ing and rendering performance.

6.3 Discussion

The error metric of triangle bin-tree approaches is de-
fined on the triangles in the binary hierarchy. Due to
the property of a binary tree having roughly 2n nodes
for n leaf nodes and a triangle mesh having 2n triangles
for n vertices, storage of a triangle-based error metric re-
quires maintaining about 4n error values. In contrast, the
quadtree-based approaches define the error metric on ver-
tices and only require n error values to be stored. Simple
geometric approximation error metrics based on vertical
displacement can be found in [16, 42, 58] and [19]. More
sophisticated view-dependent error metrics such as screen
space distortion are discussed in [34] and [15], and satur-
ated view-dependent error metrics are presented in [35]
and [5]. Projection of a global geometric approximation
error metric into image-space will be most efficient for
large scale terrain visualization in practice. In [15] it was
observed that an error metric must be hierarchically mono-
tonic to guarantee ε-bounded approximations. RTIN [16]
and RQT [42] in object-space as well as SOAR [35, 36]
and SMART [5] in image-space provide such monotonic
geometric error metrics.

The type or error metric and error representation has
thus important consequences also on structure size and
efficiency. Arguably the most space efficient representa-
tion of a multiresolution triangulation of a height-field is
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an implicit hierarchical structure, embedded in an array,
with a saturated error metric defined on the grid of ele-
vation values as proposed in [42] and [35]. This represen-
tation does not require any information to be stored that
describes the structure of the multiresolution hierarchy,
and only needs the elevation and error values for each
grid point. Furthermore, such an elevation grid can also
efficiently be partitioned and stored on a remote server
as shown in [42] and [43], or mapped linearly to disk as
demonstrated in [35]. However, this fully implicit repre-
sentation is only possible if the tree is complete, i.e., if the
input data is a uniformly sampled square.

Other related techniques for the efficient representa-
tion and compression of a triangle bin-tree hierarchy are
discussed in [16] and [19]. However, both approaches use
triangle-based error metrics, which are space inefficient
due to the large number of error values that have to be
stored. Efficient LOD-based spatial access and triangu-
lation is discussed in [42], and extraction of an adaptive
triangulation in a sequentially stored and compressed tri-
angle bin-tree representation is considered in [19]. Very
efficient representations are further achieved in cluster-
based triangulation approaches such as [7, 28, 63], since
errors and other structural information is only stored per
cluster.

7 System issues

In this section we want to briefly review a few system and
database level aspects of terrain visualization in conjunc-
tion with the LOD triangulation and rendering algorithms
discussed so far. This includes topics such as dynamic
scene management, progressive or incremental meshing,
data storage and retrieval, or client-server architectures
that are important for large scale real-time terrain visual-
ization systems.

7.1 Dynamic scene management

Most of the discussed real-time terrain triangulation and
visualization algorithms assume the entire terrain data set
to be accessed directly in virtual memory and do not ex-
plicitly consider dynamically loading terrain from disk or
from a database server. Also, most algorithms can dynam-
ically extract a particular LOD triangle mesh from a hier-
archical multiresolution data structure holding the terrain
data.

Fully main-memory resident approaches generally
generate a space-LOD query for each rendered frame
given the current view frustum and LOD tolerance thresh-
old t settings. This query is generally answered using
the multiresolution terrain triangulation hierarchy. Effi-
cient recursive top-down LOD selection and triangulation
algorithms for real-time terrain rendering are presented
in [15, 16, 34, 42, 58], of which [34] and [42] address the

issue of out-of-core data management and are discussed in
the following section.

Specifically designed for fast real-time LOD triangu-
lation and rendering in main memory is the system pre-
sented in [15] (ROAM). As discussed in Sect. 4.2, the
run-time triangulation algorithm of ROAM is based on
a greedy algorithm that maintains two priority queues, the
split queue Qs and the merge queue Qm . For each frame
the priority queues Qm and Qs are used to incrementally
simplify and refine the current triangle mesh to reach a tri-
angulation that satisfies the given error threshold t. The
priorities of Qs and Qm are based on the error metric de-
fined on the triangles.

The ROAM terrain rendering system [15] is designed
to support guaranteed frame rates in an interactive visu-
alization application. Despite the maintenance of priority
queues at run-time, which requires order O(n log n) cost
for each update, the method is efficient as it is output-
sensitive (for monotonic error metrics) and because the
triangulation can be updated incrementally between ren-
dered frames. In addition to the basic algorithms, a couple
of system-level issues are discussed as well such as reduc-
ing the amount of CPU time spent on updating priorities
between frames, or limiting the number of split and merge
operations to bound the triangle count and guarantee con-
sistent frame rates.

Clustered triangulation approaches typically adapt
their representation by traversing an in-core structure
that represents the coarse-grained multiresolution models.
BDAM [7], and P-BDAM [8] use a top-down refine-
ment approach based on saturated errors and bounding
volumes similar to SOAR [35, 36]. The 4-8 texture hier-
archy system [28] use instead the dual queue approach
of ROAM [15]. All these systems maintain in-core the
dependency graph (for a conforming triangulation) and
incrementally fetch from external memory the required
LOD data. The choice of the particular refinement strategy
is less important for clustered triangulation approaches
than for the other methods surveyed here, since the run-
time dependency graph size is output-sensitive and small,
and all operations are amortized over thousands of ren-
dered triangles.

7.2 Out-of-core data organization

While early systems such as VGIS [29, 33, 34], ViR-
GIS [27, 42, 45, 46] and TerraVision II [50], as well as
extremely successful viewers such as Google Earth or
NASA Worldwind, generally manage the terrain data
as a set of rectangular elevation grid tiles, more recent
approaches [5, 35, 36] use clever indexing and, when pos-
sible, memory mapping techniques.

In tile-based systems the terrain data can easily ex-
ceed the main (or even virtual) memory capacity of the
workstation used for rendering as the data is dynamically
loaded on-demand from disk. VGIS [29, 33, 34] main-
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tains the terrain data on disk partitioned into a hier-
archy of blocks of 129×129 vertices each. Hence at run-
time, retrieval of the terrain data from disk is based on
block access at fixed grid resolutions. In main memory
a partial global terrain quadtree is maintained, and up-
dated dynamically by loading elevation data blocks on
demand from disk. Adaptive simplification is performed
from this in-core data for each frame based on the view-
dependent block- and vertex-level error metrics discussed
in Sect. 4.1.

In ViRGIS [42, 45, 46], a tiled sliding window con-
cept is applied that dynamically maintains a fraction of
the entire data set in main memory, similar to Fig. 1.
A dynamic scene manager dynamically updates the set
of visible tiles, by loading from disk on-demand, and
maintains each tile itself as a RQT. To avoid excessive
loading from disk, a strategy of deferred cumulative up-
dates is proposed, which incrementally updates grid tiles
in-core based on the required additional LOD. A multi-
client capable terrain server manages the elevation data
in a quadtree database structure, supporting LOD-based
rectangular range queries as well as LOD-interval range
queries for incremental tile updates. Given a rectangular
query range R an adaptive triangulation for any specified
LOD-interval can be retrieved as indicated in Fig. 34. In
that process, the boundary ∂R of the query region R is re-
solved such that a conforming triangulation of the query
region R is generated.

Instead of using grid tiles to partition the elevation
data, [4] combines spatial grouping with a LOD priority
to cluster elevation data on disk. Starting with a simple
group of vertices of the restricted quadtree triangulation
hierarchy, a cluster is formed by recursively adding same,
or similar LOD child nodes until the size limit for a sin-
gle cluster is reached, or the LOD priority of the vertices
in the cluster exceeds a tolerated evenness bound. Hence
each cluster forms a part of the quadtree hierarchy struc-
ture and preserves spatial selectivity as well as uniform
LOD distribution within the cluster.

In [27] the entire terrain data set is block-partitioned
into quadratic patches on disk. Each patch may be pre-
simplified to a minimum tolerance and stored on disk,

Fig. 34a–c. Rectangular range query shown in a and initial vertex
selection given in b. RQT constraints are enforced on the range
query as shown in c

however, block boundaries are preserved at the finest reso-
lution to guarantee conforming triangulations. In main
memory, the interior of each quadratic block is adap-
tively simplified for each frame. Simplification across the
highly tessellated block boundaries is performed in a sec-
ond stage, after block-internal simplification, to reduce
artifacts between block regions.

A different approach for out-of-core memory manage-
ment of multiresolution data has been presented in [35, 36],
which relies purely on the virtual memory management
functionality of modern operating systems. The basic prin-
ciple is to sequentially order the grid-digital elevation sam-
ples based on a hierarchical, recursively defined space-
filling curve indexing scheme [1]. The space-filling prop-
erty of such an index preserves spatial proximity between
index neighbors, and the hierarchical definition, e.g., of the
z-curve index as used in [35] provides a basic LOD order-
ing. The multiresolution restricted quadtree, or bin-tree tri-
angulation hierarchy is thus mapped to a linear data layout
that can be stored on external memory. The out-of-core data
management is then solved by memory mapping this file at
run-time to an array data structure. View-dependent adap-
tive LOD triangulation and real-time rendering can then be
carried out fully in (virtual) main memory without specific
out-of-core data access mechanisms.

Clustered triangulation approaches obtain their effi-
ciency by moving the granularity of all LOD operations
from individual vertices or triangles to small mesh por-
tions. This reduces memory needs, since less dependency
information has to be stored, and offers the possibility
to optimize the throughput by exploiting block-transfer
features and compression at the level of individual mesh
portions. As a representative example, the BDAM and
P-BDAM [7, 8] systems encode the hierarchy of right tri-
angles that guide their multiresolution partitioning as a tri-
angle bin-tree, and store the geometry associated to each
bin-tree region in an out-of-core patch repository, which is
accessed on a patch-by-patch basis. This repository is con-
structed in a preprocessing step by a distributed algorithm
that builds the patches bottom-up using edge collapse sim-
plification with appropriate boundary constraints. Patches
are stored in the repository in a packed stripified form
ready for rendering. Similarly to [36], the data layout
is optimized to improve memory coherency by sorting
patches by level and spatial position. Spatial sorting is
realized using an indexing function based on a space-
filling curve. A separate index, kept in-core, establishes
the relation between triangle bin-tree regions and stored
mesh patches. At run-time, the most recently used patches
are cached on the GPU using a LRU strategy, while the
new patches are retrieved by accessing the repository
through memory-mapping primitives. When dealing with
textured terrains, a tiled texture quadtree, stored in com-
pressed DXT format is overlaid on the geometry.

The 4-8 texture hierarchy system [28] improves over
the previous approach by integrating geometry and texture
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in the same framework. In this case, the diamond region is
used in the data structure rather than the bin-tree triangles.
Both geometry and textures are treated as small regular
grids, called tiles, defined for each diamond in the hier-
archy and paged-in from disk on-demand. Loading a new
diamond corresponds to loading two patches sharing the
main diagonal. For efficient input and output, files and
disk blocks are laid out using a diamond indexing scheme
based on the Sierpinski space-filling curve. In [23], the
client and data access components are separated to support
thin clients and network servers.

7.3 Compression

Various authors have concentrated on combining data
compression methods with multiresolution schemes to re-
duce data transfer bandwidths and memory footprints.
Tiled block techniques typically use standard 2D com-
pressors to independently compress each tile. In [28], the
authors point out that, when using a 4-8 hierarchy, the
rectangular tiles associated to each diamond could be
also compressed using standard 2D image compression
methods.

Geometry clipmaps [37] organize the terrain height
data in a pyramidal multiresolution scheme and the
residual between levels are compressed using an ad-
vanced image coder that supports fast access to image
regions [40]. Storing in a compressed form just the heights
and reconstructing at run-time both normal and color data
(using a simple height color mapping) provides a very
compact representation that can be maintained in main
memory even for large data sets. The method is possibly
the current state-of-the-art in terms of compression rates.

The compressed batched dynamic adaptive meshes (C-
BDAM) technique [23], an extension of the BDAM and P-
BDAM chunked level-of-detail hierarchy, strives to com-
bine the generality and adaptivity of chunked bin-tree mul-
tiresolution structures with the compression rates of nested
regular grid techniques. Similarly to BDAM, coarse-grain
refinement operations are associated to regions in a bin-tree
hierarchy. Each region, called a diamond, is formed by two
triangular patches that share their longest edge. In BDAM,
each patch is a general precomputed triangulated surface
region. In the C-BDAM approach, however, all patches
share the same regular triangulation connectivity and incre-
mentally encode their vertex attributes when descending in
the multiresolution hierarchy. The encoding follows a two-
stage wavelet-based near-lossless scheme in which lossy
wavelet predictions are corrected to keep approximated
values within user imposed bounds. The approach supports
both mean-square error and maximum error metrics allow-
ing to introduce a strict bound on the maximum error in-
troduced in the visualization process. The scheme requires
storage of two small square matrices of residuals per dia-
mond, which are maintained in a repository. At run-time,
a compact in-core multiresolution structure is traversed,

and incrementally refined or coarsened on a diamond-by-
diamond basis until screen space error criteria are met. The
data required for refining is either retrieved from the reposi-
tory or procedurally generated to support run-time detail
synthesis. At each frame, updates are communicated to the
GPU with a batched communication model.

The main take home message of the C-BDAM work
is that it is not necessary to use non-adaptive techniques,
such as geometry clipmaps, to incorporate aggressive
compression in a high performance view-dependent ter-
rain renderer. This comes, however, at the cost of in-
creased implementation complexity.

7.4 Numerical accuracy

Numerical accuracy issues are one of the most neglected
aspects in the management of huge data sets. Sending pos-
itions to the graphics hardware pipeline needs particular
care, given that the highest precision data-type is the IEEE
floating point, whose 23 bit mantissa leads to noticeable
vertex coalescing problems for metric data sets on the Earth
and to camera jitter problems in the general case [50]. In
P-BDAM [8], BDAM’s structural properties that guaran-
tee overall geometric continuity are exploited for planetary
sized rendering applications. Programmable graphics hard-
ware is in particular exploited to cope with the accuracy
issues introduced by single precision floating point num-
bers, resulting in the first fully hardware accelerated system
able to provide submetric positioning accuracy on the Earth.

The method uses as basic primitive a general triangu-
lation of points on a displaced triangle (see Fig. 35).
Each corner vertex contains a pair of parametric coor-
dinates Ti , that correspond to the position of the vertex
in (u, v) coordinates, as well as a planetocentric pos-
ition Pi and a normal vector Ni , computed from Ti dur-
ing the patch construction preprocess as a function of
the particular projection used. The vertices of the inter-
nal triangulation are stored by specifying a barycentric
coordinate and an offset along the interpolated normal
direction, and all the information required at rendering
time is linearly interpolated from the base corner vertex
data. As for BDAM, the interior of the patch is an arbi-
trary triangulation of the vertices, that is represented by

Fig. 35. P-BDAM patches are represented as arbitrary triangula-
tions of points over a displaced triangle
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a cache-coherent generalized triangle strip stored as a sin-
gle ordered list of vertex indices. The only aspect that
requires particular care is the computation of planetocen-
tric positions, since all other information is local to the
patch. P-BDAM therefore stores Pi in double precision.
At each frame, all patches are rendered in camera coor-
dinates, simply subtracting the camera position from Pi
on the host before converting them to single precision for
transfer to the GPU. This way a single reference frame
is used for each frame, and positional accuracy decreases
with the distance from the camera, which is exactly what
is needed. In contrast to common linear transformation
approaches [33, 50], neighboring patches remain uncondi-
tionally connected because displaced vertex values only
depend on the common base corner vertices (along the
edges, the weight for the opposite vertex is null). The
conversion cost (nine subtractions and nine floating point
conversions) is negligible, since it is amortized over all
the internal triangles. Moreover, the transformation from
barycentric to Cartesian/texture coordinates can be ef-
ficiently computed from corner data on the GPU. This
has the important advantage that since the vertices of the
internal triangulation are invariant in barycentric coordi-
nates, they can be cached in a static vertex array directly
in graphics memory. Moreover, the rendering routine can
fully benefit from the post-transform-and-lighting cache
of current graphics architectures, which is fully exploited
when drawing from the indexed representation.

8 Conclusions

The investigation of multiresolution methods to dynam-
ically adapt rendered model complexity has been, and

still is, a very active computer graphics research area,
which is obviously impossible to fully cover in a short
survey. In this article, we analyzed the most common
semi-regular multiresolution approaches for grid-digital
terrain models. Despite the slightly increased size of the
produced LOD triangle meshes compared to fully irregu-
lar approaches, the semi-regular multiresolution methods
described in this paper are among the best choices for
real-time visualization of very large scale height-field data
sets. The various reviewed approaches provide different
alternatives in data structures, triangulation algorithms,
error metrics, dynamic scene management and rendering
methods that can be exploited for an optimized implemen-
tation.

Models based on tiled blocks and nested regular grids
are generally simple to implement and maintain, and offer
optimized interfaces to the graphics hardware at the cost
of limited adaptivity and/or approximation quality and/or
domain generality. Quadtree and triangle bin-tree triangu-
lations offer a sound mathematical basis upon which
efficient dynamic structures providing fully adaptive con-
forming triangulations can be programmed. Cluster-based
approaches, that build upon this basis, have recently
shown how these methods can efficiently harness the per-
formance of current commodity graphics platforms, at the
cost of a slight reduction in adaptivity.

Even though the domain is mature and has a long
history, open problems remain. In particular, while net-
worked and out-of-core rendering systems have been
demonstrated for most of the structures discussed in this
survey, limited solutions have been proposed for fully out-
of-core data construction. Moreover efficient techniques
for incrementally updating an already constructed multi-
resolution hierarchy are still to be devised.
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