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Abstract Several lines of growth hormone (GH)-

overexpressing fish have been produced and analysed

for growth and fertility parameters. However, only few

data are available on the growth-promoting hormone

insulin-like growth factor I (IGF-I) that mediates most

effects of GH, and these are contradictory. Using

quantitative real-time RT-PCR, radioimmunoassay,

in situ hybridization, immunohistochemistry, and

radiochromatography we investigated IGF-I and IGF

binding proteins (IGFBPs) in an adult (17 months old)

transgenic (GH-overexpressing) tilapia (Oreochromis

niloticus). The transgenics showed an around 1.5-fold

increase in length and an approximately 2.3-fold

higher weight than the non-transgenics. Using radio-

immunoassay, the serum IGF-I levels were lower

(6.22 ± 0.75 ng/ml) in transgenic than in wild-type

(15.01 ± 1.49 ng/ml) individuals (P = 0.0012). Radio-

immunoassayable IGF-I in transgenic liver was 4.2-

times higher than in wild-type (16.0 ± 2.21 vs.

3.83 ± 0.71 ng/g, P = 0.0017). No hepatocytes in

wild-type but numerous hepatocytes in transgenic liver

contained IGF-I-immunoreactivity. RT-PCR revealed

a 1.4-times higher IGF-I mRNA expression in the liver

of the transgenics (10.51 ± 0.82 vs. 7.3 ± 0.49 pg/mg

total RNA, P = 0.0032). In correspondence, in situ

hybridization showed more IGF-I mRNA containing

hepatocytes in the transgenics. A twofold elevated

IGF-I mRNA expression was determined in the

skeletal muscle of transgenics (0.33 ± 0.02 vs.

0.16 ± 0.01 pg/mg total RNA, P < 0.0001). Both liver

and serum of transgenics showed increased IGF-I

binding. The increased IGFBP content in the liver may

lead to retention of IGF-I, and/or the release of IGF-I

into the circulation may be slower resulting in accu-

mulation of IGF-I in the hepatocytes. Our results

indicate that the enhanced growth of the transgenics

likely is due to enhanced autocrine/paracrine action of

IGF-I in extrahepatic sites, as shown here for skeletal

muscle.
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Introduction

Insulin-like growth factor I (IGF-I) is a potent

mitogenic hormone that induces growth and differ-

entiation in a variety of target organs (Jones and

Clemmons 1995; Reinecke and Collet 1998; Butler

and LeRoith 2001). In mammals, IGF-I is mainly
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produced in the liver which is the principal source of

endocrine IGF-I. The primary stimulus for the

synthesis and secretion of liver IGF-I is growth

hormone (GH) released from the anterior pituitary

(Reinecke et al. 2005).

Like in mammals, the major site of IGF-I gene

expression in bony fish is liver (Duan 1998; Reinecke

et al. 2005; Wood et al. 2005). High-affinity GH

binding sites have been characterized in salmon and

tilapia liver (Gray et al. 1992; Ng et al. 1992;

Shepherd et al. 1997). In accordance, GH injections

promoted liver IGF-I mRNA expression in salmonids

and tilapia (e.g. Duan et al. 1993a; Moriyama 1995;

Shamblott et al. 1995; Duguay et al. 1996; Shepherd

et al. 1997; Guillén et al. 1998; Kajimura et al. 2001;

Vong et al. 2003) and raised IGF-I plasma levels in

salmonids, seabream and tilapia (e.g. Moriyama

1995; Shamblott et al. 1995; Guillén et al. 1998;

Moriyama et al. 2000; Kajimura et al. 2001), which

was accompanied by an increase in growth (Guillén

et al. 1998). Similarly, GH also stimulates the

expression of IGF-I mRNA in primary hepatocyte

cultures of bony fish, such as salmonids (Duan et al.

1993a, b; Shamblott et al. 1995; Pierce et al. 2005)

and tilapia Oreochromis mossambicus (Schmid et al.

2000). In adult Coho salmon, continuous infusion of

bovine IGF-I increased growth rate and weight gain

(McCormick et al. 1992), and plasma IGF-I levels

and growth rate were significantly correlated in O.

mossambicus (Kajimura et al. 2001; Uchida et al.

2003).

Several groups have produced different lines of

transgenic fish (e.g. Devlin et al. 2000; Maclean et al.

2002; Rocha et al. 2004). Among the transgenic fish

those carrying exogenous GH gene constructs con-

stitute the majority. The obvious reason for this focus

of interest is to improve fish growth in aquacultural

food production (Zbikowska 2003). Mainly salmo-

nids (Du et al. 1992; Devlin et al. 1994, 2000;

Sundstrom et al. 2004), carp (Zhang et al. 1990),

tilapia (Martinez et al. 1996; Rahman et al. 1998),

and sea bream (Lu et al. 2002) have been used for

genetically induced growth enhancement. On the

other hand, GH-overexpressing fish are also consid-

ered as excellent models to study gene regulation and

development (Amsterdam and Becker 2005). How-

ever, investigations on transgenic fish have almost

exclusively dealt with growth parameters, fertility,

and body and organ integrity (Maclean et al. 2002;

Sundstrom et al. 2004).

The above referred studies demonstrate the stim-

ulating action of GH on IGF-I-mediated growth in

bony fish either by bolus injections of GH or by

adding GH to the medium of primary hepatocyte

cultures and, thus, deal with short-term effects of GH.

In contrast, only one study has dealt with IGF-I in

transgenic GH-overexpressing fish. In Coho salmon

Oncorhynchus kisutch IGF-I serum levels were

determined and gave contradictory results (Devlin

et al. 2000): in one experiment they were slightly

enhanced and in another slightly reduced. In order to

investigate whether the severe enhancement in body

growth in GH-overexpressing fish may be due to

endocrine (liver-derived) IGF-I and/or enhanced IGF-

I expression in skeletal muscle we used a transgenic

GH-overexpressing and age-matched wild-type tila-

pia (Oreochromis niloticus). The following parame-

ters were analysed: (1) the expression level of IGF-I

mRNA in liver and skeletal muscle using quantitative

real-time PCR, (2) the concentration of IGF-I peptide

in liver and serum by RIA, (3) the localization of

IGF-I in liver at the mRNA level by in situ hybrid-

ization and at the peptide level by immunohisto-

chemistry, and (4) the IGF-I binding proteins

(IGFBPs) in liver and serum by radiochromatogra-

phy.

Material and methods

Animals

The transgenic fish used in these experiments have

been previously produced from crosses between a

wild-type female O. niloticus and a G1 transgenic

male. This line of growth-enhanced tilapia (C86)

carries a single copy of a Chinook salmon Oncorhyn-

chus tshawytscha GH gene spliced to an ocean pout

Macrozoarces americanus antifreeze promoter (OP-

AFPcsGH) co-ligated with a carp beta actin/lacZ

reporter gene construct, integrated into the tilapia

genome (Rahman et al. 1998). Tilapia of the C86

strain and the non-transgenic siblings were bred at the

University of Southampton. The fish were kept in

fresh water tanks at 27 ± 18C under a 12 h/12 h light/

dark cycle and fed to satiation. Adult (17 months)
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transgenic (TG) and wild-type (WT) fish were used

for the experiments. Fish were anaesthetized with 2-

phenoxy-ethanol (Sigma, St Louis, MO, USA) added

to water, measured in weight and length, and the

tissue samples excised. Principles of animal care and

specific national laws were followed.

Detection of transgene

The transgenic or non-transgenic state of the indi-

viduals was detected by RT-PCR followed up by

Southern Blotting. For PCR amplification an approx-

imately 3 mm · 2 mm fin clip was taken from the

caudal fin and immediately frozen in liquid nitrogen.

Genomic DNA was isolated. The standard procedures

for isolation and purification of DNA (Rahman and

Maclean 1992) and subsequent PCR and Southern

Blotting were performed as described before (Rah-

man et al. 1998).

Tissue sampling and extraction

Liver (n = 10 TG, n = 10 WT) and skeletal muscle

(n = 6 TG, n = 6 WT) specimens for RT-PCR were

excised and immediately transferred into 1.5 ml of

the RNA-preserving reagent RNAlaterTM (Ambion,

Austin, USA). The samples were kept at 48C to

promote inactivation of RNAses and later stored at

�208C until RNA isolation. Total RNA was extracted

using TRIzol reagent (GibcoBRL), treated with 1 U

of RQ1 RNAse-free DNase (Catalys AG, Wallisellen,

Switzerland), resuspended in DEPC-treated H2O and

stored at �808C.

Absolute quantification of liver and skeletal

muscle IGF-I gene expression by real-time PCR

Absolute quantification of liver and skeletal muscle

IGF-I mRNA was performed as already described

(Caelers et al. 2004). In brief, based on the gene

sequences of O. mossambicus IGF-I (Reinecke et al.

1997), and O. niloticus b-actin as a housekeeping

gene (Hwang et al. 2003), tilapia specific primers and

probes for real-time RT-PCR were designed with the

Primer Express software version 1.5 (PE Biosystems,

Foster City, CA, USA). To create templates for

in vitro transcription, a T7 phage polymerase pro-

moter gene sequence was added by primer extension

to the 50end of the antisense primers using conven-

tional RT-PCR of O. niloticus liver total RNA. For

cDNA synthesis, 5 mg RNA were annealed with 1 mM

poly(dT) primer (50-CCTGAATTCTAGAGCT-

CAT(dT17)-30) for 5 min at 708C. The RNA/primer

mix was incubated for 1 h at 378C with 10 mM

dNTPs and 100 U M-MLV-RTase (Promega) in 1·
buffer. One microlitre aliquots of cDNA were added

to 50 ml PCR reaction using the Thermo-StartTM PCR

Master Mix (Abgene, NY, USA). Amplification

conditions were optimized for a Stratagene RoboCy-

cler Gradient 40: 1 cycle 10 min at 948C, 1 min at

608C, 2 min at 728C; 40 cycles 1 min at 948C, 1 min

at 608C, 2 min at 728C; final extension 10 min at

728C. PCR products including the T7 promoter gene

sequence were sequenced and visualized on a 2.5%

agarose gel. Standard cRNAs were generated by

in vitro transcription using the T7-MEGAshort-

scriptTM Kit (Ambion), analysed by photospectrom-

etry and UV-shadowing, and quantified by

photospectrometry and dot blot. Defined amounts at

tenfold dilutions were subjected to real-time PCR

using a one-Step-RT-PCR Mastermix (Applied Bio-

systems, Rotkreuz, Switzerland). RT-step (488C,

30 min) and denaturation step (958C, 10 min) were

performed followed by 40 cycles (958C, 15 s; 608C,

1 min) in a single tube using ABI PRISMTM 7700

Sequence Detection System Perkin Elmer (Applied

Biosystems). Standard curves were generated based

on the linear relationship between CT value and

logarithm of the starting amount. For measurements,

tenfold diluted defined amounts of standard cRNA

and 10 ng of total RNA were subjected in parallel to

real-time PCR under the same experimental settings.

To calculate absolute amounts the different lengths of

cRNA and mRNA were considered by a correction

factor determined by division of lengths of IGF-I

mRNA and cRNA (546 nt/70 nt = 7.8).

Peptide extraction of serum and liver

Blood (n = 5 TG, n = 5 WT) was taken with a 1 ml

heparinized syringe from the caudal vein and col-

lected in sterile 0.5 ml tubes. The blood was

centrifuged at 13,000 rpm for 15 min at 48C and

the serum removed and stored at –208C until use. 1 g

of liver (n = 5 TG, n = 5 WT) was homogenized with

5 ml 0.1 M sodium phosphate buffer (pH 7.0) and

centrifuged at 10,000g for 15 min at 48C. The

supernatant was removed with a Pasteur pipette,
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deep-frozen immediately, and stored at -208C until

use. To dissociate IGF-I from the binding proteins,

acid–ethanol extraction was performed as already

described. In brief, 40 ml of serum and liver

homogenate, respectively, was thoroughly mixed

with 160 ml of an acid–ethanol extraction mix

(87.5% ethanol, 12.5% 2 M HCl, v/v) and incubated

for 30 min at room temperature. After neutralization

with 0.885 M Tris base, the extracts were centrifuged

at 13,000 rpm at 48C for 10 min. 50 ml of the

supernatant was used for the IGF-I radioimmunoas-

say.

Radioimmunoassay in serum and liver

Serum and liver IGF-I was measured using the Fish

IGF-I RIA kit for the tilapia O. mossambicus (GroPep

Pty Ltd., Adelaide, Australia) with recombinant

tilapia IGF-I as tracer and standard according to the

protocol of the manufacturer.

Radiochromatography for IGFBPs in serum and

liver

Radiochromatography was performed as described

earlier (Zapf et al. 1975, 1989). Briefly, 0.2 ml of

pooled serum or liver homogenate was diluted with

0.3 ml of Dulbecco’s phosphate-buffered saline, pH

7.4, containing NaN3 and 500 U of Trasylol (Bayer,

Germany), and incubated for 24 h at 48C with 125I-

labelled tilapia IGF-I (2.5 · 105 CPM, GroPep Ltd.).

The mixture was run through a Sephadex G-200

column (2.1 cm · 70 cm) preequilibrated with

Dulbecco’s buffered saline, pH 7.4, and the radioac-

tivity of the collected fractions (2.5 ml) was counted

in a gamma-counter.

Preparation of probes for in situ hybridization

Probes were prepared as described (Schmid et al. 1999;

Berishvili et al. 2006a, b). In brief, total RNA from

tilapia liver was extracted with the Ultraspec Extrac-

tion Kit (ams, Lugano, Switzerland). For cDNA

synthesis 5 mg RNA was annealed with 1 mM of a

poly(dT) primer (50 CCTGAATTCTAGAGCT-

CAT(dT17) 30) for 3 min at 708C. The RNA/primer

mix was incubated for 1 h at 378C with 15 mM dNTPs

and 10 U AMV-RTase (Pharmacia, Switzerland) in 1·

reaction buffer (50 mM Tris–HCl/pH 8.3, 40 mM KCl,

6 mM MgCl2). One microlitre cDNA was incubated

with 1 mM of sense (50-GTCTGTGGAGAGC-

G A G G C T T T - 3 0) a n d a n t i s e n s e ( 5 0-
AACCTTGGGTGCTCTTGGCATG-30) primers

corresponding to the B- and E-domain, 200mM dNTPs,

and 1 U Taq-polymerase (Pharmacia) in 1· incubation

buffer (10 mM Tris–HCl/pH 8, 50 mM KCl, 1.5 mM

MgCl2, 0.001 % gelatine). The amplification program

was optimized for a Stratagene RoboCycler Gradient

40:1 cycle 10 min at 948C, 1 min at 598C, 2 min at

728C; 30 cycles 1 min at 948C, 1 min at 598C and 2 min

at 728C followed by final extension for 5 min at 728C.

PCR fragments were separated on a 2% agarose gel and

eluted by the Gel Extraction Kit QIAquick (Qiagen,

Switzerland). Thereafter, the PCR products were

cloned in a pCR-Script SK(+) cloning vector using a

kit (Stratagene, Heidelberg, Germany). Plasmids con-

taining the gene sequence fragments were sequenced

(Microsynth, Switzerland) and the sequences com-

pared to database. The plasmids containing the specific

inserts of IGF-I (207 bp) were used as templates for the

synthesis of digoxigenin (DIG)-labelled RNA probes.

Linearization was performed with EcoRI for T3- and

NotI for T7-polymerase-driven transcription. One

microgram of linearized plasmids was transcribed

in vitro in the presence of DIG-UTP from T3 and T7

promotors to obtain antisense and sense (negative

control) probes. Integrity of probes and efficiency of

labelling were confirmed by dot blot and gel electro-

phoresis including blotting and incubation with anti-

body. Specificity of the probes has been demonstrated

previously (Schmid et al. 1999; Berishvili et al. 2006a).

In situ hybridization

Liver preparations (n = 3 WT, n = 3 TG) were fixed

by immersion with 4% buffered formalin for 4 h at

room temperature. Specimens were dehydrated in

ascending series of ethanol and routinely embedded

in paraplast (588C). Four micrometre sections were

mounted on Super Frost Plus slides (Menzel-Gläser,

Germany) and dried overnight at 428C. After dewax-

ing and rehydration, the sections were postfixed with

4% paraformaldehyde and 0.1% glutaraldehyde in 1·
PBS. In situ hybridization was performed as previ-

ously described (Schmid et al. 1999; Berishvili et al.

2006a, b). The following steps were carried out with

DEPC-treated solutions in a humified chamber. The
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sections were digested with 0.02% proteinase K in

20 mM Tris–HCl/pH 7.4, 2 mM CaCl2 for 10 min at

378C. Thereafter, sections were treated with 1.5%

triethanolamine and 0.25% acetic anhydride for

10 min at room temperature and incubated with

50 ml prehybridization solution per section for 3–4 h

at 548C. Hybridization was performed overnight at

548C with 30 ml of hybridization buffer containing

10 ng of sense or antisense probe previously dena-

turated for 5 min at 858C. Slides were washed for

15 min at room temperature in 2· SSC, and for

30 min at the specific hybridization temperature at

descending concentrations of SSC (2·, 1·, 0.5·,

0.2·). The alkaline-phosphatase-coupled anti-DIG

antibody was diluted 1:4,000 in 1% blocking reagent

(Roche-Diagnostics) in buffer P1 and sections were

incubated for 1 h at room temperature in the dark.

After washing twice in P1 for 15 min, sections were

treated with buffer P3, 5 mM levamisole, and NBT/

BCIP stock solution (Roche Diagnostics). Colour

development was carried out overnight at room

temperature and stopped by rinse in tap water for

15 min. Sections were mounted with glycergel and

photographed with a Zeiss Axioscope using the

Axiovision software 3.1. (Zeiss, Zürich, Switzerland).

Immunohistochemical technique

Specimens for immunohistochemistry (n = 3 WT,

n = 3 TG) were immersed in Bouin’s solution without

acetic acid for 4 h at room temperature. Specimens

were dehydrated in ascending series of ethanol and

routinely embedded in paraplast (588C). Sections

were cut at 4 mm, mounted onto glass slides and dried

overnight at 428C. After dewaxing and rehydration

unspecific binding was reduced by treatment with

PBS (pH 7.4) containing 2% bovine serum albumine

for 30 min at room temperature. Thereafter, the

sections were incubated overnight with the rabbit

antiserum 116 raised against human IGF-I (1:400)

and washed repetitively in PBS. This antiserum

specifically also stains IGF-I in fish as shown by

absorption experiments (Reinecke et al. 1997; Sch-

mid et al. 1999; Berishvili et al. 2006a, b). The IGF-I

antiserum was detected by incubation with biotiny-

lated goat anti-rabbit IgG (Bioscience Products,

Emmenbrücke, Switzerland, 1:100) for 30 min at

room temperature. After repetitive rinsing in PBS, the

reactions were visualized with fluorescein-isothiocy-

anate-conjugated streptavidin (Bioscience Products,

1:100) for 30 min at room temperature in the dark.

Sections were mounted with glycergel and photo-

graphed with a Zeiss Axioscope using the Axiovision

software 3.1.

Statistical analysis

Statistical analysis of the data was performed with a

GraphPad Prism 4 program. This included a Mann–

Whitney-U-test with a significance level of 5%. All

data are expressed as means ± SEM.

Results

Fish size and weight

The 17-month old transgenic fish showed an approx-

imately 1.5-fold increase in head–tail length when

compared to their non-transgenic siblings (28.7 ± 8.3

vs. 18.5 ± 6.2 cm). The mean weights of the

transgenics were around 2.3-fold higher than those

of their non-transgenic siblings (415.6 ± 98 g and

184 ± 64 g, respectively).

Measurement of IGF-I peptide and mRNA

Using radioimmunoassay, the serum IGF-I levels

were lower (6.22 ± 0.75 ng/ml) in transgenic than in

wild-type (15.01 ± 1.49 ng/ml) individuals

(P = 0.0012) (Fig. 1a). As measured by the same

radioimmunoassay, the IGF-I concentration in liver

amounted to 16.0 ± 2.21 ng/g in transgenics and to

3.83 ± 0.71 ng/g in wild-type animals (P = 0.0017)

(Fig. 1b). Real-time PCR revealed a 1.4-times higher

IGF-I mRNA expression in the liver of the transgen-

ics (10.51 ± 0.82 vs. 7.3 ± 0.49 pg/mg total RNA,

P = 0.0032, Fig. 1c) and a twofold elevated IGF-I

mRNA expression in the skeletal muscle (0.33 ± 0.02

vs. 0.16 ± 0.01 pg/mg total RNA, P < 0.0001,

Fig. 1d).

Localization of IGF-I mRNA and peptide

In situ hybridization with antisense DIG-labelled

RNA probe specific for tilapia IGF-I revealed

positive responses in liver whereas the sense RNA
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probe (negative control) showed no signals. In liver

from non-transgenic tilapia, IGF-I mRNA occurred in

numerous hepatocytes which were distributed in

clusters throughout the parenchyma (Fig. 2a). Liver

from transgenic individuals exhibited a higher degree

of labelled cells. This was especially pronounced

around the veins where numerous IGF-I mRNA

containing hepatocytes were present (Fig. 2b).

In the liver of wild-type tilapia no IGF-I immu-

noreactivity was observed in hepatocytes (Fig. 2c). In

contrast, numerous hepatocytes in transgenic liver

contained IGF-I-immunoreactivity (Fig. 2d).

Determination of IGFBPs in serum and liver

Radiochromatography of serum from wild-type and

transgenic tilapia gave two main radioactive peaks

around fraction 61 and fraction 85. In serum, the first

peak, an IGF-binding peak corresponding to a

molecular mass of 40–50 kDa, was about 1.6-fold

higher in the transgenic than in the wild-type fish

(Fig. 3a) as determined by planimetry. The second

peak representing unbound 125I-IGF-I tracer was

slightly higher for the wild-type serum, which is in

line with the observed decreased binding of the tracer

Fig. 1 (a, b) IGF-I peptide concentrations in serum (a) and

liver (b) were determined by a species-specific RIA. IGF-I

mRNA in liver (c) and muscle (d) were absolutely quantified

by real-time PCR. Columns give mean values of 5 (a, b), 10 (c)

and 6 (d) individuals and bars give SEM. WT wild-type, TG
transgenics. Significance levels in Mann–Whitney-U-test:

*P = 0.0032; **P = 0.0012, P = 0.0017, ***P < 0.0001

Fig. 2 IGF-I mRNA expression (a, b) and IGF-I immunore-

activity (c, d) in wild-type (a, c) and transgenic (b, d) tilapia

liver. In situ hybridization was performed with antisense DIG-

labelled RNA probe specific for tilapia IGF-I. Immunofluores-

cence used an IGF-I specific antiserum. In liver from wild-type

tilapia, IGF-I mRNA is detected in numerous hepatocytes

throughout the parenchyma (a) but no IGF-I peptide (c) is

found. In liver from transgenic individuals, numerous IGF-I

mRNA containing hepatocytes occur (b) and numerous

hepatocytes contain IGF-I-immunoreactivity (d). Bar (a, b)

100 mm, bar (c, d) 20 mm
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in the wild-type fish. The 40–50 kDa binding peak

disappeared when preincubation of the sera with the

tracer was performed in the presence of excess cold

IGF-I (not shown) indicating that binding was

specific. At the same time, the peak of unbound

tracer increased due to the inhibition of binding. Two

minor peaks around fractions 34 and 48 preceded the

40–50 kDa binding peak (Fig. 3a). Similar to the

latter, the peak around fraction 48 was displaced by

cold IGF-I, but its height was not essentially different

in wild-type and transgenic serum. In contrast, the

radioactive peak around fraction 34 was not displaced

by cold IGF-I indicating non-specific binding.

In the liver homogenate (Fig. 3b) a broader

binding peak (a ‘‘shoulder’’ between fractions 57

and 70) was observed that was again higher (about

1.7-fold) in the transgenic than in the wild-type

tilapia, whereas the reverse was true for the peak

representing unbound tracer. Also here, binding

disappeared in the presence of cold IGF-I (not

shown). The small peak around fraction 48 observed

in serum was not present in liver homogenate.

Discussion

When compared to their non-transgenic siblings

neither the whole phenotype nor the inner organs of

the transgenic tilapia of the C86 strain used here

exhibited any obvious abnormalities (Maclean et al.

2002; Caelers et al. 2005). Food conversion effi-

ciency was about 20% better in the transgenics and

these turned out to be more efficient utilizers of

protein and energy (Rahman et al. 1998). This is

reflected by the 2.3-fold higher mean body weight

and the 1.5-fold higher mean body length of the 17-

month old transgenics investigated.

According to real-time PCR and in situ hybridiza-

tion IGF-I was highly expressed in wild-type tilapia

liver. These results correspond to those of previous

PCR and Northern blot studies (e.g. Duan et al.

1993a, b; Duguay et al. 1996; Vong et al. 2003;

Caelers et al. 2004) and studies using in situ hybrid-

ization (Schmid et al. 1999; Berishvili et al. 2006b)

which have also reported a high content of IGF-I

mRNA in bony fish liver. Despite the expression of

IGF-I mRNA, no IGF-I-immunoreactive hepatocytes

could be observed. Earlier studies have also failed to

detect IGF-I-immunoreactivity in bony fish hepato-

cytes (Richardson et al. 1995; Reinecke et al. 1997).

Because the same antiserum from the latter study

detects IGF-I in numerous other organs of the tilapia

(Reinecke et al. 1997; Schmid et al. 1999; Berishvili

et al. 2006a, b) as well as in hepatocytes of the

transgenics (this study), the negative result cannot be

explained by the failure of the anti-mammalian IGF-I

antiserum to crossreact with fish, as discussed by

Plisetskaya (1998). Moreover, like in fish liver, IGF-

I-immunoreactivity could not be localized in rat liver

but was detectable only after pretreatment with

colchicine (Hansson et al. 1988). Thus, it is reason-

able to assume that IGF-I after synthesis is rapidly

released from the hepatocytes into the circulation

(Reinecke et al. 1997; Plisetskaya 1998).

In the present study, radioimmunoassayable IGF-I

in wild-type tilapia liver amounted to about 3.8 ng/g

(0.5 pmol/g). Until now, no results have been

Fig. 3 Radiochromatography of a serum and b liver homog-

enate from wild-type (blue curve) and transgenic (red curve)

tilapia. (a) The peak around fraction 61 corresponds to a

molecular mass of 40—50 kDa. It is preceded by two minor

peaks around fractions 34 and 48. The peak around fraction 85

represents unbound 125I-IGF-I tracer. (b) The binding peak

(‘‘shoulder’’) elutes between fractions 57 and 70. The small

peak around fraction 48 observed in serum (a) is not present in

liver (b). CPM counts per minute
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reported for fish liver IGF-I measured with a species-

specific RIA. A significantly (about fourfold) higher

level of IGF-I was found in the liver of transgenics

(16.0 ng/g; 2.1 pmol/g). This is paralled by the

detection of IGF-I-immunoreactive hepatocytes in

transgenic liver which were not observed in wild-

type, as well as by the increase in IGF-I mRNA

expression as revealed by RT-PCR and in situ

hybridization. Because the latter results may also

indicate a higher release of IGF-I into the circulation

the level of IGF-I in serum was determined. In wild-

type individuals it amounted to 15 ng/ml (*2 pmol/

ml) whereas in the transgenics it was 6.2 ng/ml

(0.82 pmol/ml). Comparison of the serum IGF-I

levels published for diverse bony fish shows a broad

range. The serum IGF-I concentration in wild-type O.

niloticus as measured here (15 ng/ml) is lower than

that reported in two previous studies on another

tilapia species, O. mossambicus (150 ng/ml, Riley

et al. 2002; 120 ng/ml, Uchida et al. 2003), but

consistent with recent data on O. mossambicus

(*20 ng/ml, Fiess et al. 2007) obtained under similar

rearing conditions (288C, freshwater, feeding) as used

here, and on rainbow trout (11.5 ng/ml, Gabillard

et al. 2003), brown trout (42.2 ng/ml, Baños et al.

1999), Atlantic (53.1 ng/ml, Dyer et al. 2004) and

Coho salmon (7.5–14 ng/ml, Shimizu et al. 1999;

25.9 ng/ml, Shimizu et al. 2000; 45.2–85 ng/ml,

Moriyama 1995). In Coho salmon (Shimizu et al.

2003) and gilthead seabream (Mingarro et al. 2002),

plasma IGF-I levels changed with the seasons and

were higher in fed fish reared in a warm environment

(10–15 ng/ml) than in starved fish reared in the cold

(5–9 ng/ml, Larsen et al. 2001). In several salmonids,

liver IGF-I mRNA and/or plasma IGF-I levels were

related to environmental temperature (Gabillard et al.

2003; Larsen et al. 2001; Beckman et al. 1998). The

largely varying serum IGF-I levels in bony fish may,

thus, be due to species differences but may as well

reflect physiological parameters such as nutritional

status, seasons and environmental temperature (Rei-

necke and Collet 1998; Duan 1998; Reinecke et al.

2005).

As a first step towards identifying specific IGF-I

binding (IGF binding proteins) in tilapia serum and

liver we used incubation with 125I-IGF-I and

subsequent gel filtration at neutral pH (radiochroma-

tography). The main 125I-IGF-I binding peak of

tilapia serum eluted at the same position

(40–50 kDa) as in human serum (Zapf et al. 1975).

In human serum, this peak contains all six IGFBPs,

BP-1 to BP-6 (Zapf 1995). It is likely that the five

IGFBPs detected in fish serum so far (Duan and Xu

2005; Shimizu et al. 2005; Kelley et al. 2002, 2006)

are also located in this binding complex. Serum of the

transgenics bound more tracer than wild-type serum.

The height of the binding peak is determined by two

factors, the amount of binding protein and its IGF

content. Increased binding of 125I-IGF-I in the

transgenic serum could therefore be due to its lower

IGF-I concentration resulting in a greater residual

binding capacity or to a higher IGFBP concentration.

In agreement with the increased binding of 125I-IGF-I

in the serum of the transgenic (GH-overexpressing)

tilapia, short-term application of GH has been shown

to up-regulate the BP serum levels in Coho salmon

(Shimizu et al. 1999; Kelley et al. 1992), striped bass

(Siharath et al. 1995) and tilapia (O. mossambicus;

Park et al. 2000).

Whereas the radiochromatographic pattern of

human serum displays an IGF binding peak at

150 kDa (Zapf et al. 1975) consisting of a ternary

complex of IGFBP-3, IGF-I and -II, and an acid-

labile subunit (ALS, Baxter et al. 1989), the tested

tilapia serum showed only a minor binding peak in

the 150 kDa region. Whether this peak corresponds to

the ternary complex of mammalian serum is not clear.

However, no evidence for a ternary complex has so

far been obtained in fish serum (Kelley et al. 2006).

In contrast to serum, the protein-bound radioac-

tivity in tilapia liver homogenate eluted as a relatively

broad shoulder. It was shifted towards the peak of

non-bound tracer and, thus, apparently contained also

IGFBPs of smaller molecular weight or IGFBP

degradation products. The observed increased bind-

ing of tracer in transgenic liver is compatible with a

greater binding protein content than in wild-type liver

because the IGF-I concentration in the transgenic

liver was higher and binding capacity would therefore

be expected to be lower.

In GH-overexpressing Coho salmon, IGF-I serum

levels varied (Devlin et al. 2000): they were either

slightly enhanced or slightly reduced. Our finding

that the IGF-I serum levels in the growth-enhanced

transgenic tilapia were significantly by 60% lower

than in wild-type fish, despite increased IGF-I mRNA

expression and peptide levels in liver, was unex-

pected. This observation appears to be in contrast to
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results obtained in O. mossambicus demonstrating

that body length and mass are positively correlated

with the plasma IGF-I concentration (Kajimura et al.

2001; Uchida et al. 2003). Moreover, a clear corre-

lation between individual serum IGF-I levels and

growth rates has been established in Coho salmon

(Pierce et al. 2001). How could the lower IGF-I

serum levels in the transgenic animals be explained?

The increased content of IGFBPs in the liver of the

transgenics may lead to retention of IGF-I by these

BPs. This is further supported by the finding that

IGF-I-immunoreactivity was present in hepatocytes

of transgenic but not of wild-type liver.

In addition then, the question arises why trans-

genic tilapia have an approximately 1.5-fold greater

body length and a 2.3-fold higher body weight than

the wild-type despite lower serum IGF-I. Recent

studies using the Cre/loxP recombination system to

delete the IGF-I gene exclusively in the liver of mice

(Sjögren et al. 1999; Yakar et al. 1999) underline the

potential importance of local IGF-I production for

growth. Despite deletion of liver IGF-I mRNA

expression and largely reduced levels of circulating

IGF-I, the animals did not show any obvious

impairment of postnatal body growth. Similarly, in

the transgenic tilapia, IGF-I in extrahepatic sites may

determine the growth rate. This has been shown here

to be true for skeletal muscle that is essentially

involved in growth. Enhanced growth therefore

seems to be caused by higher tissue levels of IGF-I

under the influence of the GH transgene and thus by

autocrine/paracrine actions of IGF-I.
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excellent support in the performance of radioimmunoassay

and radiochromatography. The study was supported by the

Swiss National Science Foundation (grant no. 111028) and the

Hartmann Müller-Foundation for Medical Research (grant no.

1115).

References

Amsterdam A, Becker TS (2005) Transgenes as screening tools

to probe and manipulate the zebrafish genome. Dev Dyn

234:255–268

Baños N, Planas JV, Gutiérrez J, Navarro I (1999) Regulation

of plasma insulin-like growth factor-I levels in brown

trout (Salmo trutta). Comp Biochem Physiol C Pharmacol

Toxicol Endocrinol 124:33–40

Baxter RC, Martin JL, Beniac V (1989) High molecular weight

insulin-like growth factor binding protein complex. Puri-

fication and properties of the acid-labile subunit from

human serum. J Biol Chem 264:11843–11848

Beckman BR, Larsen DA, Moriyama S, Lee-Pawlak B, Dick-

hoff WW (1998) Insulin-like growth factor-I and envi-

ronmental modulation of growth during smoltification of

spring chinook salmon (Oncorhynchus tshawystscha).

Gen Comp Endocrinol 109:325–335

Berishvili G, D’Cotta H, Baroiller J-F, Segner H, Reinecke M

(2006a) Differential expression of IGF-I mRNA and

peptide in the male and female gonad during early

development of a bony fish, the tilapia Oreochromis nil-
oticus. Gen Comp Endocrinol 146:204–210

Berishvili G, Shved N, Eppler E, Clotà F, Baroiller JF, Rei-
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