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Ab stract
Norepinephrine and corresponding intra- and interorgan 
pathways are of clinical pathophysiologic and pharma-
cologic importance as exaggerated activation needs to 
be reduced and insufficient activation must be support-
ed to prevent further deterioration and therapy-
induced organ damage. This is of high relevance in 
critically ill patients in whom various norepinephrine-
influenced organ systems are simultaneousy affected 
with varying degrees of tolerability and resistance to 
norepinephrine-induced cell damage and finds its 
maximal challenge in patients suffering from severe 
traumatic brain injury (TBI). This comprehensive review 
describes complex pathophysiologic interactions, 
including hemodynamic, microcirculatory, hormonal, 
metabolic, inflammatory, and thrombocytic alterations 
overshadowed by differential consequences of com-
monly applied pharmacological interventions following 
TBI. Overall, investigations published to date suggest 
that receptor-dependent effects of norepinephrine 
might predispose to complex evolving deterioration 
especially during intensive care which is characterized 
by differentiated complication-driven changes and 
specific complication-dependent needs. In this context, 
thrombocytes and leukocytes with their adrenergic 
receptors and differential norepinephric functional 
regulation are ideal candidates to influence all organs 
at once. Despite its secure integration of norepineph-
rine in clinical routine, future emphasis must be direct-
ed at unmasking, monitoring, and controlling possible 
receptor-mediated detrimental influences which could 
offset anticipated organ protection.
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Introduction
An integral part of modern therapy aimed at preventing 
secondary injury following traumatic brain injury (TBI) 
is to maintain adequate cerebral perfusion. Elevating 
mean arterial blood pressure(MABP) and cerebral per-
fusion pressure (CPP) is achieved pharmacologically by 
continuously infusing vasopressors, e.g., norepinephrine. 
Experimental conditions following TBI mainly focus on 
early cerebral changes during short continuous norepi-
nephrine infusion which does not necessarily reflect criti-
cally ill pati-ents. As outlined in the schematic drawing 
(Figure 1) challenge to improve our understanding and 
thus ameliorate modern treatment modalities following 
TBI is to simultaneously consider the temporal profile of 
local and evolving systemic alterations with potential re-
ciprocal influences which are simultaneously influenced 
by current therapeutic interventions. Although catechol-
amines are readily used in critically ill patients, differen-
tial organ-specific changes induced by catecholamines 
need to be considered and should be monitored to 
prevent affecting the anticipated neuroprotection. This 
comprehensive review focuses on pathophysio-logically 
relevant inter- and intraorgan norepinephric pathways 
and characterizes various potentially harmful pharmaco-
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dynamic effects of continuous norepinephrine infusion 
within the routine intensive care treatment of patients 
suffering from severe TBI.

Endogenous Release and Exogenous Norepinephrine 
Administration

Within minutes following a stressful event, activation of 
the hypothalamic–pituitary–adrenal axis amplifies re-
lease of norepinephrine, epinephrine, and cortisol from 
the adrenal gland [1]. These exhaustive alterations 
maintain hemodynamic stability, mobilize energetic 
reserves, influence the immune system, and adapt neu-
roendocrinological and hormonal alterations [1, 2]. Ac-
tivation of the noradrenergic locus coeruleus stimulates 
various neuronal functional networks responsible for 
the increased level of alertness and sustained analgesia, 
and inhibits secretion of various hypothalamic and pitu-
itary hormones, thereby suppressing reproductive, 
growth and thyroid functions [2]. The magnitude of this 
response reflects the extent of underlying injury and 
contributes to subsequent worsening if not controlled 
[3]. Under clinical conditions, norepinephrine is infused 
continuously together with volume resuscitation and 
hemorrhage/coagulation control to maintain defined 
blood pressure or CPP levels (Figure 2). In parallel, the 
sustained endogenous sympatho-autonomic activity is 
reduced by sedatives and analgetics.

Organ-Specific Effects of Norepinephrine
Extensive investigations of acute and chronic norepi-
nephrine infusion have revealed important influences 

on various organs which, among others, depend on 
administered dose, organ-specific receptor distribution, 
and binding availability of these receptors. Overall, 
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Figure 1. Schematic drawing depicting the prin-
cipal pillars of simultaneous time-dependent 
pathophysiologic and pharmacologic changes 
which balance beneficial and disadvantageous 
norepinephrine-mediated actions. In critically 
ill patients, specific needs are dictated by char-
acteristic changes over time, possibly requiring 
individual adjustment of interventions, making 
detailed monitoring indispensable.
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Figure 2. Relative frequency distribution of norepinephrine dose in 
50 patients suffering from severe TBI up to 3 weeks following injury. 
Norepinephrine dose was adjusted to maintain CPP between 70 and 
110 mmHg. During the first week predominant norepinephrine dose 
ranged from 1–10 µg/min. While the majority of patients stabilized, 
reflected by the sustained frequency without norepinephrine and the 
decreasing frequency within the norepinephrine dose ranging from 
0.013–0.133 µg/kg/min, patients with a more difficult clinical course 
showed an increased frequency in high norepinephrine dose exceed-
ing 21 µg/min (�0.28 µg/kg/min) (*p<0.001).
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beneficial effects on individual organs may be offset by 
simultaneous alterations of other organ systems which 
demand following a ‘brain-oriented’ and avoiding a 
‘brain-centered’ therapy. In this context, norepinephrine-
driven improvement of cerebral perfusion and metabo-
lism due to increased CPP occurs in face of reduced 
kidney, liver, and testis perfusion and metabolism [4]. 
The general concept of modern intensive care treatment 
is to guarantee adequate volume replacement and 
catecholamine administration within acceptable, i.e., 
organ-protecting limits. While increased volume admin-
istration allows to significantly reduce norepinephrine 
dosage [5], prevention of organ-endangering volume 
overload must be considered. Careful judgement of the 
individual situation is required to guide sequential or 
parallel administration of norepinephrine and fluids. In 
principal, single administration of high-dose norepi-
nephrine in a patient in whom intravascular volume is 
depleted or reduced should be avoided as norepineph-
rine-mediated vasoconstriction will induce organ dam-
age. A careful review of the literature produced only 
few clinical studies investigating the pharmacodynamic 
and pharmacokinetic profile of continuous norepineph-
rine infusion in healthy volunteers, nonseptic, and TBI 
patients. The majority of findings are derived from 
hemodynamically instable patients suffering from sep-
sis and corresponding experimental sepsis models in 
various species. Given the facts that sepsis fulfills the 
same criteria of the systemic inflammatory response 
syndrome (SIRS) expanded by a bacterial infection and 
that SIRS can even develop in patients with isolated 
severe TBI [6], certain changes observed during these 
conditions might also be of relevance for the treatment 
of TBI patients, especially if sepsis develops. The com-
plexity and diversity of posttraumatic intensive care 
involving various norepinephrine-influenced organs is 
depicted in the schematic drawing (Figure 3).

Heart, Circulation, and Macrohemodynamics
According to its characteristic receptor distribution, 
norepinephrine increases cardiac contractility (b1) and 
peripheral resistance (a1 receptors), thereby elevating 
systolic and diastolic blood pressure, increasing MABP, 
cardiac index, and total peripheral resistance (TPR) 
[7–11]. Pressure-dependently, coronary perfusion is 
improved in healthy animals [7]. However, norepineph-
rine might endanger cardiac viability as chronic admin-
istration of high-dose norepinephrine induces left 
ventricular hypertrophy [12–14] and may activate car-
diotoxic cascades via stimulation of b1-adrenergic-driv-
en apoptotic changes due to intracellular activation of 
Ca2+-activated calmodulin kinase and release of free 

oxygen radicals which is inhibited by b2 stimulation [15]. 
It is important to keep in mind that improving MABP 
does not necessarily reflect ameliorated organ perfu-
sion especially under pathological conditions [8, 10]. 
Despite normalized MABP, failure of improving im-
paired renal and mesenteric perfusion [8, 10] could re-
flect maintained autoregulation or insufficient increase 
in MABP due to massively disturbed autoregulation. 
This is also suggested by recent findings in septic pa-
tients in whom a further increase in MABP from 65 to 
85 mmHg did not improve renal function [16].

Lungs
Apart from pressure- and volume-passive influences, 
norepinephrine interferes with pulmonary function by 
activating adrenergic receptors and stimulating the in-
flammatory response. Under experimental conditions, 
norepinephrine dose-dependently induces a1A- and a1B-
adrenergic-mediated pulmonary vasoconstriction [17] 
which can be inhibited by fentanyl in vitro [18]. High-
dose norepinephrine (0.1 mg/kg/h � 1.7 µg/kg/min, 128 
µg/75 kg/ min) continuously infused up to 72 h in healthy 
rats results in reversible pleural effusion and pulmonary 
venous congestion related to increased hydrostatic 
pressure [13]. The reversible left ventricular hypertro-
phy appears necessary to compensate and clear pleural 
effusion upon termination of norepinephrine infusion 
[13]. In addition, adrenergic-mediated inflammatory 
response with alveolar and interstitial edema formation 
contributes to functional and structural lung injury [14]. 
Under pathological conditions, the lungs are primed for 
sustained accumulation, activation, and sequestration 
of leukocytes [19] which could be aggravated by infused 
norepinephrine. Vasoconstriction in combination with 
increased leakage could impair preexisting regional 
perfusion/ventilation mismatch in intubated and venti-
lated ICU patients.

Intestines
a-adrenergic and b-adrenergic activation influences gut 
motility and intestinal functions. Splanchnic vasocon-
striction shunts blood to heart, lungs, brain, and 
muscles. While epinephrine reduces intestinal and 
splanchnic perfusion leading to mucosa damage [20, 21], 
norepinephrine at 0.05 µg/kg/min (�3.75 µg/75 kg/min) 
is not associated with negative effects in animals and pa-
tients [8, 9, 22] as it does not impair intestinal perfusion 
and mucosal integrity despite a dose-dependent increase 
in splanchnic oxygen extraction [9]. Even under adverse 
conditions, as e.g. sepsis with or without ensuing shock 
high-dose norepinephrine at 0.18 or 0.45 µg/kg/min is 
not harmful [20, 21]. Norepinephrine is superior to 
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phenylephrine, dopamine, vasopressin, and epineph-
rine by improving splanchnic perfusion, oxygen deliv-
ery, and lactate uptake [23–26].

Kidneys
The strong oxygen dependency and low critical thresh-
old for oxygen consumption in combination with the 
required high renal perfusion pressure (kidney: 
80–180 mmHg vs. liver: 50–150 mmHg) make the kid-
neys highly vulnerable to impaired perfusion and 
oxygen supply [27, 28]. Apart from volume administra-
tion, norepinephrine is beneficial, especially in face of 
nitric oxide (NO)-mediated vasodilation and disease-
related vasoparalysis which disturbs various modulators 
(catecholamines, NO, angiotensin II, vasopressin, and 
endothelin-1) and intracellular pathways [29]. Despite 

norepinephrine-induced reduction in renal perfusion 
observed in healthy volunteers at 0.118 ± 0.03 µg/kg/min 
[30], norepinephrine pressure-dependently elevates 
renal perfusion, increases urine output and creatinine 
clearance in healthy [7, 31] and septic animals [31]. 
Adverse effects were ruled out in a retrospective study 
including 200 cardiac surgery patients in whom norepi-
nephrine infusion did not increase serum creatinine 
levels [32]. Under experimental and clinical septic con-
ditions norepinephrine required to elevate MABP to 70 
mmHg needs to be increased severalfold [31, 11], reach-
ing values as high as 1.3 ± 0.3 µg/kg/min (�97.5 ± 22.5 
µg/75 kg/min) in humans [11] or 3.1 ± 0.3 versus 0.2–1 
µg/kg/min (�232.5 ± 22.5 µg/75 kg/min vs. 15–75 µg/75 
kg/min) in septic versus control rats [8]. While increas-
ing MABP in nonseptic patients does not alter renal 
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Figure 3. Schematic drawing of different organ systems with their complex intra- and interorgan influences involved in norepinephrine-medi-
ated functional circuits. An unspecific stressful event stimulates adrenal release of norepinephrine which then receptor-dependently stimulates, 
inhibits, or disinhibits subsequent pathways with their own secondary cascades (specific details are given in the main text). Intravenously infused 
norepinephrine targets the same adrenergic receptors. The intact lines depict direct or primary norepinephrine-mediated effects; the broken lines 
show secondary effects involving leukocytes, thrombocytes, and elevated glucose levels, possibly inducing or aggravating cell damage (details are 
described in the main text).
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function [11, 32], suggesting intact autoregulation, 
elevating MABP from 51 ± 3 to 79 ± 7 mmHg in septic 
patients significantly increases urine flow and creatinine 
clearance [11]. This, however, is contrasted by the 
recently published findings that an increase in MABP 
from 65 to 85 mmHg does not improve renal function in 
septic patients [16]. Filtration and resorption processes 
are under adrenergic influence: renal vasoconstriction in 
conjunction with stimulated b1 secretion of renin with 
subsequent activation of the vasoconstrictor angiotensin 
II and release of aldosterone results in decreased glo-
merular filtration and increased retention of sodium, re-
ducing loss of fluid via urine. In addition, norepinephrine 
decreases tubular sodium secretion.

Metabolism
Complex Regulation of Lipolysis, Proteolysis, 
Glycolysis, and Glycogenolysis

Catecholamines differentially influence actions of 
insulin and glucagon, hormones which control fat, pro-
tein, and glucose metabolism. In critically ill patients, 
sustained release of proinflammatory and catabolism-
aggravating cytokines [33] occurs in face of disturbed 
hormonal regulation, impaired nutrient uptake, and 
sustained metabolism. Lipolysis mediated by activation 
of a2 and b1-adrenergic receptors and regulated at the 
level of cAMP production by different intracellular cas-
cades releases free fatty acids and glycerol and produces 
free oxygen radicals [34, 35]. Proteolysis is not only 
restricted to injured muscle due to activation of the 
ubiquitin/proteasome system, calcium- and calpain-
dependent release of myofilaments from the sarcomere 
and upregulation of macrophage-associated lysosomal 
proteolysis [36, 37], but involves all muscles as observed 
clinically by the generalized muscle loss in critically ill 
patients without any obvious muscle trauma. Thus, nor-
epinephrine by itself or in conjunction with glucocorti-
coids, cytokines, and altered insulin responsiveness with 
inadequate amino acid supply can induce myofibrillary 
breakdown and insufficient synthesis [38, 39]. Sustained 
ATP and oxygen consumption of b-adrenergic-stimu-
lated muscular Na+–K+–ATPase could contribute to 
muscle degradation. Norepinephrine-induced proteoly-
sis [40] has been challenged by recent reports suggesting 
anabolic effects via stimulation of b2- and b3-adrenergic 
receptors in rats [41]. For the complex regulation of glu-
cose metabolism, activation of a2-adrenergic receptors 
inhibits insulin secretion, thus elevating blood glucose 
levels due to attenuated uptake in myocytes and lipo-
cytes while stimulation of a1- and b-adrenergic recep-
tors increases pancreatic release of insulin which 
decreases blood glucose due to increased cellular 

uptake and intracellular degradation [42]. During 
critical care with disturbed peripheral glucose uptake 
and metabolism [43], the predominant a1-adrenergic 
stimulation with sustained hepatic gluconeogenesis and 
glycogenolysis will increase blood glucose levels during 
high-dose norepinephrine infusion [21, 44]. In addition, 
pancreatic glucagon release stimulated by a1, a2, and b 
receptors increases blood glucose [45, 46]. In healthy 
volunteers, norepinephrine at 0.1 µg/kg/min significant-
ly increases glucose production and uptake [47]. In 
patients, norepinephrine at 0.18 or 0.45 µg/kg/min [21] 
elevates blood glucose ³10 mM (180 mg/dl) which 
aggravates underlying brain damage and impairs sur-
vival [48] due to local acidosis and sustained cerebral 
inflammatory response. Thus, increased insulin admin-
istration might become inevitable whenever high-dose 
norepinephrine is required to maintain certain MABP 
and CPP levels.

Oxidative Metabolism and Organ Energetics
As observed in healthy volunteers, norepinephrine 
dose-dependently increases whole body oxygen con-
sumption between 0.06 and 0.2 µg/kg/min which could 
contribute to adverse effects in critically ill patients [49] 
despite increasing oxygen delivery, especially with un-
derlying disturbed cell function. Under clinical condi-
tions, the use of more invasive procedures, including 
pulmonary artery catheter, transjugular cannulation of 
the hepatic vein, assessment of hepatic indocyanine-
green clearance, endoluminal positioning of a tonomet-
ric gastric tube and laser Doppler catheters allows to 
determine cardiac index, hepatosplanchnic oxygen 
extraction, lactate production, alanine uptake, and 
blood flow, gastric mucosal pCO2 production, and jeju-
nal mucosal perfusion, respectively [9, 21]. In septic pa-
tients, norepinephrine significantly increases splanchnic 
oxygen and lactate extraction. Elevated lactate predom-
inantly results from b-adrenergic-stimulated muscular 
Na+-K+-ATPase which is then oxidized by hepatic glu-
coneogenesis (Cori cycle). These effects are mainly me-
diated by epinephrine [50] or high-dose norepinephrine. 
The dose-dependent increase in splanchnic oxygen ex-
traction especially in patients with low baseline cardiac 
index values < 2.4 l/min/m2 suggests that intravascular 
volume depletion had not been restored [9]. Under ex-
perimental conditions, parameters of organ energetics 
as e.g., ATP, phosphocreatinine, and lactate/pyruvate 
ratio determined in the muscle, liver, gut, kidney, and 
heart, as well as humoral arterial parameters (glucose, 
lactate, lactate/pyruvate ratio, ketone body ratio) are 
not altered by norepinephrine at 0.2 µg/kg/min in other-
wise healthy rats [8].
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Inflammatory response
Complex Alterations Contributing to Cellular 
Dysfunction

The inflammatory response comprises a plethora of 
complex cellular and humoral alterations which support 
local inflammation aimed at confining existing tissue 
damage by concomitantly inhibiting systemic inflamma-
tion to prevent uncontrollable damage of other primar-
ily uninjured organs. However, this fine-tuning is 
disturbed in critically ill patients, resulting in SIRS [6]. 
TBI induces local and systemic inflammation as evi-
denced by an upregulation of intestinal NF-kB, ICAM-
1, TNF-a, and IL-6 [51, 52].

Differential Influence of Norepinephrine
Initially, b2-adrenergic activation increases circulating 
lymphocytes derived from the marginal pool and the 
spleen, while a-adrenergic activation subsequently ele-
vates circulating neutrophil granulocytes released from 
the marginal pool and the lungs [53] due to reduced 
adhesion to vascular endothelium [54]. Subsequently, 

lymphopenia with a mismatch between T helper and T 
cytotoxic lymphocytes with sustained neutrophil activi-
ty [55] develops. Released proinflammatory cytokines, 
in turn, can influence central noradrenergic pathways 
[56]. Overall, norepinephrine interferes with immuno-
competence [57] which could contribute to evolving 
multiorgan failure [58] (Figures 4a, 4b, and 4d). Norepi-
nephrine induces apoptosis, impairs mitochondrial 
membrane potential in lymphocytes and natural killer 
(NK) cells [59], inhibits cytokine secretion, target bind-
ing, and programming for cytotoxicity in NK cells [60] 
and suppresses phagocytosis, generation of oxygen rad-
icals, and neutrophilic and lymphocytic chemotaxis dur-
ing prolonged adrenergic stimulation [61, 63]. In 
addition, norepinephrine dose-dependently inhibits 
oxygen consumption in nonstimulated human periph-
eral blood mononuclear cells, while in activated cells 
b-adrenergic receptors are desensitized and a-adrener-
gic receptors are sensitized, resulting in sustained 
norepinephrine-mediated stimulation of oxygen con-
sumption [62]. Dendritic cells important in fine-tuning 
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Figures 4a to 4d. Temporal profile of changes in neutrophils (a), lymphocytes (b) thrombocytes (c) and IL-6 (d) determined in 20 patients with 
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the appropriate immune response to invading patho-
gens and tolerance to self-antigens are under differen-
tial b-adrenergic control [64]. In addition, b-adrenergic 
activation controls release of pro- and antiinflammatory 
cytokines [44, 65, 66] and contributes to depressed cell-
mediated inflammation by stimulating the peroxisome 
proliferator-activated receptor gamma (PPARgamma), 
a nuclear hormone receptor that mediates antiinflam-
matory actions [67], as well as inhibiting NF-kB and 
activating I-kBa [68, 69]. At low norepinephrine con-
centrations (»20 nM), a2 receptor activation stimulates 
TNF-a and IL-1b production in hepatic Kupffer cells 
which is inhibited by high concentrations via b2-adren-
ergic receptors [56]. b2-adrenergic stimulation also 
induces cellular immunosuppression by downregulating 
various receptors on stimulated human peripheral blood 
mononuclear cells [70]. A loss in endogenous norepi-
nephrine appears crucial in inducing, maintaining, and 
impairing resolution of brain inflammation [71].

Thrombocytes
Physiological Control of Organ Function

Thrombocytes are crucial in functionally interlocking 
coagulation with the innate immune system [72]. Apart 
from stopping hemorrhage by receptor-mediated 
(P-Selectin) adherence to endothelial cells, leukocytes, 
and other thrombocytes [73], thrombocytes activate the 
coagulation cascade and release a multitude of different 
mediators which also control vascular tone, e.g., sero-
tonin, norepinephrine, thrombin, prostacyclin, hista-
mine, and bradykinin. Thrombocytes restrict local 
tissue injury, recruit and activate neutrophils through 
the release of IL-8 [61], enable leukocyte tissue penetra-
tion and further thrombocyte aggregation via release of 
matrix-degrading metalloproteinases [74]. The func-
tional complexity is reflected by the plethora of intracel-
lular pathways [75], and the involvement of cytokines 
(TNF-a) and endothelial cells (NO) within the regula-
tion of thrombus formation [76].

Pathological Response
Exaggerated local thrombocyte–leukocyte activation 
can impair microvascular blood flow [77, 78] and com-
promise thrombocyte-mediated stabilization of endo-
thelial cells and protection against oxidative tissue 
injury [79] as increased neutrophil activation and in-
duced endothelial damage result in a burst of free radi-
cals and release of digestive enzymes also observed in 
thrombocytopenic patients suffering from multiorgan 
disease [80]. P-Selectin-activated pathways promoting 
leukocyte and thrombocyte adhesion contribute to post-
traumatic brain edema formation in knock-out mice 

[81]. Released thrombin exerts neurotoxic effects, 
impairs memory functions, and decreases cerebral per-
fusion under experimental conditions [82] which is in-
hibited pharmacologically [83]. Following severe injury, 
elective orthopedic surgery or vascular graft insertion, 
thrombocytes are in a state of increased activation as 
judged by expression of surface proteins, release of sol-
uble adhesion molecules [84–89], hyperaggregation, 
and sustained adhesiveness [90–92].

Noradrenergic Influence
Formation of thrombocyte–neutrophil aggregates as 
well as receptor expression on thrombocytes and neu-
trophils are increased through a-adrenergic stimulation 
[93], possibly aggravating disease-related changes. 
a2-adrenergic stimulation activates intracellular cas-
cades and dose-dependently promotes thrombocyte 
activation [94, 95] which is inhibited pharmacologically 
[94, 96, 97]. Sustained norepinephrine-stimulated acti-
vation with subsequent consumption and peripheral 
sequestration of thrombocyte-bound leukocytes can 
decrease circulating thrombocytes and contribute to 
multiorgan failure [85, 98, 99] (Figure 4c).

Brain
Transmitter and Local Functional Circuits

The excitatory neurotransmitter norepinephrine origi-
nates in the locus coeruleus and lateral tegmental nuclei 
of the brain stem from where it activates different dien-
cephalic and telencephalic regions, modulates cortical 
neuronal acitivity, induces arousal and alertness, en-
ables memory formation, consolidation, reinforcement, 
and information retrieval [100–109] by influencing hip-
pocampal input [110]. Norepinephrine also modulates 
hormone release from pineal gland [111], pituitary 
[112–114], and hypothalamus [115], influences process-
ing of arterial chemoreceptor afferent inputs [116], co-
ordinates respiratory pacemaker and nonpacemaker 
neurons [117], and controls the esophageal–gastric 
relaxation reflex [118] by a-adrenergic receptors. Age-
related reduction in cortical noradrenergic neurotrans-
mission affects spatial learning and memory performance 
[119]. Norepinephrine exerts anti- and prooxidative 
functions on various isolated neurons [120–122]. As all 
transmitters, norepinephrine not only influences neuro-
nal and glial function but is also subject to site-depen-
dent regulatory influences by other transmitters: 
norepinephrine stimulates glial release of ATP which 
regulates postsynaptic efficacy of glutamatergic neurons 
[123]; activation of presynaptic cholinergic receptors 
facilitates noradrenergic transmission [124]; stimulation 
of presynaptic GABAA receptors on glutamatergic 
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neurons within the locus coeruleus contributes to the 
excitability and activity of noradrenergic neurons due to 
functional disinhibition [125]; noradrenergic stimula-
tion of basal ganglia and cortical glutamatergic neurons 
can be inhibitory (a2) [126, 127] or excitatory (b1) [126]; 
activation of a1 receptors inhibits dopamine release in 
midbrain neurons [128] but induces dopamine release in 
the medial prefrontal cortex [129]; hippo-campal and 
cortical norepinephrine release are under glutamatergic 
and dopaminergic influence [129, 130]; a2-adrenergic 
presynaptic activation diminishes norepinephrine 
release and reduces the inhibitory action of GABA-
ergic inputs in brainstem neurons, thereby disinhibiting 
histaminergic neurons [131]; glial glutamate uptake is 
mediated by a1-adrenergic stimulation and inhibited by 
b-adrenergic activation [132].

Vasoregulation
Apart from static, myogenic, and metabolic influences, 
including various circulating and local endothelial 
mediators, norepinephrine modulates proximal, large 
diameter segments of cerebral arteries and arterioles 
(10–20 µm). The resulting local vasodilation and vaso-
constriction assures constancy of cerebral perfusion 
with MABP values ranging from 50–170 mmHg. En-
dogenous norepinephrine released from adrenergic 
neurons in close apposition to vessels and glia [133] 
stimulates Ca2+-mediated astrocytic-driven vasocon-
striction [134], and activates b2 receptors on nitrigeric 
nerve terminals, thereby releasing vasodilating NO 
while co-localized a2 receptors inhibit NO release and 
mediate vasoconstriction [135]. Exogenous norepineph-
rine primarily targets endothelial a- and b-adrenergic 
receptors as the BBB with its enzymes [136] and specific 
transporter localization inhibits free norepinephrine 
penetration [137]. However, a-adrenergic-induced en-
dothelial permeability enables uncontrolled passage with 
subsequent neuronal and glial activation [138].

Metabolism
In addition to its effect on glial glycogenolysis and gly-
colysis [139], glycogen synthesis [140, 141], and gluta-
mine uptake [142], norepinephrine increases lactate 
uptake in cultured mouse cortical neurons [143] to 
assure sufficient energy transfer from astrocytes to neu-
rons under conditions of increased energetic demand.

Glucose-Dependent Changes
Hypoglycemia activates central counter-regulatory pro-
cesses to correct low blood-glucose levels and avoid 
brain damage. In this context, glutamatergic stimulation 
of the sympathoadrenal and hypothalamic-pituitary 

adrenal axis [144], and release of norepinephrine within 
the ventromedial hypothalamus result in central a2- and 
b-adrenergic activation [145] and adrenal secretion of 
counter-regulatory hormones [146].

Plasticity and regeneration
Within the functional and structural complexity of the 
brain, various transmitters including norepinephrine 
receptor-dependently modulate excitability and modify 
neuronal threshold for activity-dependent synaptic 
changes which influence cortical plasticity [147], pro-
long survival of cultured human neuroblastoma cells, 
induce neuronal differentiation, and influence synaptic 
connectivity [148]. Further evidence supporting norepi-
nephrine-mediated regeneration is found in the facts 
that noradrenergic depletion increases cerebral inflam-
mation [149] and that administration of clonidine, which 
selectively reduces a2-mediated synaptic norepineph-
rine release and reduces plasma catecholamine levels 
[150], impairs posttraumatic functional recovery and  
even reinstates neurological deficits [151, 103]. 

Norepinephrine and Traumatic Brain Injury
Following TBI, norepinephrine is of clinical interest for 
several reasons: (1) disturbed cerebral noradrenergic 
circuits contribute to evolving brain damage; (2) these 
changes give rise to potential pharmacological targets 
ameliorating neuropsychological and cognitive distur-
bances; and (3) infused norepinephrine is used to im-
prove reduced cerebral perfusion following TBI.

Posttraumatic Changes in Brain Norepinephrine 
and Potential for Pharmacologic Regeneration
Cerebral Functional and Structural Disturbances

Following an initial transient increase, norepinephrine 
turnover is depressed in TBI rats [152, 153] which 
together with reduced axonal transport and decreased 
brain norepinephrine amount induces behavioral and 
psychological abnormalities [154]. Furthermore, dis-
turbed noradrenergic circuits upregulate potentially 
harmful excitatory pathways [152] and constrict isolated 
rat middle cerebral artery [155] and posttraumatic pial 
arterioles [156], inducing injury-aggravating cerebral 
ischemia.

Differential Pharmacological Targets
The initial sustained clearance of norepinephrine from 
the extracellular space is thought to be autoprotective 
and should not be influenced pharmacologically as this 
promotes edema formation [153]. The subsequently de-
pressed norepinephrine turnover, however, should be 
targeted to support noradrenergic influence on regen-
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eration, plasticity, behavioral, and cognitive improve-
ment [157–159]. In this context, a1 and b1-adrenergic 
antagonists (prazosin; propranolol) and a2-adrenergic ag-
onists (clonidine) should not be given, as these drugs im-
pair cognitive functions [160] and reinstate neurological 
deficits [151, 161] without worsening or inducing 
histological damage. This is in sharp contrast to the 
differential pharmacologic interventions used within 
the LUND concept, an ICP-oriented, low CPP-con-
trolled and volume-guided treatment paradigm, where 
clonidine and metoprolol together with low-dose thio-
pental and continuous fentanyl and midazolam infusion 
are used [162]. Posttraumatic disturbance of the norad-
renergic system shares certain similarities with patho-
physiological alterations involved in depression and 
Parkinson’s disease. Thus, norepinephrine, mixed sero-
tonin/norepinephrine, and dopamine/norepinephrine 
reuptake inhibitors, tricyclic antidepressants, mono-
amine oxidase inhibitors, amphetamines (norepineph-
rine release and inhibited uptake), amantadine and 
memantine (NMDA receptor antagonists with dopa-
mine release), L-DOPA (norepinephrine precursor), 
and bromocriptine (dopamine agonist) used to treat 
these chonic neurodegenerative diseases have been in 
focus to ameliorate posttraumatic psychomnestic defi-
cits [163]. First clinical trials with small patient numbers 
showed promising results in treating posttraumatic de-
pression and improving cognitive functions following 
administration of milnacipran, desipramine, or amanta-
dine [164–166]. Based on experimental data in non-TBI 
rats, additional a2-adrenergic inhibition to increase ex-
tracellular norepinephrine [167] as well as repetitive ad-
ministration are required to induce beneficial effects, 
since antidepressants usually need 2–3 weeks of chronic 
administration before cellular and clinical alterations 
are detected [168, 169]. Unfortunately, psychostimula-
tive antidepressants carry side effects [163] and may also 
impair memory consolidation [170]. Modulating a-ad-
renergic changes may be age-or model-dependent [171] 
which makes a simple transfer from bench-to-bed 
difficult. Prospective controlled studies are required to 
evaluate the beneficial effects of adjuvant neuropsycho-
pharmacotherapy started early after TBI, i.e., before 
patients are transferred to neurorehabilitation centers.

Posttraumatic Changes in Cerebral Perfusion 
and Metabolism
Secondary Damage

In principal, severe TBI is characterized by a primary 
lesion which can be worsened during its clinical course 
owing to secondary injuries [172] – e.g., insufficient 
cerebral perfusion which is considered a treatable and 
avoidable event.

Regional and Temporal Heterogeneity
Observational studies reveal regional and temporal het-
erogenous changes in perfusion (hypoperfusion, vaso-
spasm, and hyperemia) [173], metabolism (hypo- and 
hypermetabolism [174] with enzymatic disturbances 
[175]), and vascular reactivity [176]. Norepinephrine 
can influence these alterations. This regional and tem-
poral heterogeneity conveys to pharmacologically 
targeted perfusion deficits, which, in turn, requires 
intensified monitoring to avoid exaggerated and insuf-
ficient treatment. In this context, experimentally elevat-
ing MABP and CPP at 24 h after TBI, when pericon-
tusional perfusion normalizes, induces hyperemia [177]. 
Hyperemia, a sign of impaired cerebral autoregulation 
[178], elevates ICP and could aggravate brain damage 
via norepinephrine-induced increase in hydrostatic 
pressure or receptor-mediated activation of detrimental 
cellular changes.

Norepinephrine-Induced Increase in MABP, 
Cerebral Perfusion and Metabolism

Apart from the endogenous increase in metabolism-
driven cerebral perfusion [179], norepinephrine dose-
dependently increases MABP which – depending on the 
investigated species and the induced level of arterial 
hypertension [155] – increases cerebral blood flow 
(CBF) and metabolism [180, 181], has no effect [182], 
increases CBF without influencing glucose metabolism 
[155] or even decreases CBF [183, 184]. With a structur-
ally injured or functionally impaired BBB encountered 
following TBI [185] and induced by norepinephrine 
[184], respectively, infused norepinephrine can pene-
trate the brain [186] and increase CBF via b-adrenergic 
activation of glial and neuronal activity [181, 183]. Nor-
epinephrine-induced increase in cerebral perfusion also 
improves cerebral oxygenation in rats [177, 187] and 
patients [188–190]. The pressure-dependent increase in 
cerebral perfusion is also related to widening of spastic 
cortical arterioles and flushing of vessels with micro-
thrombosis as revealed by in vivo intravital microscopy 
in TBI rats [177]. Contrary to experimental conditions, 
the norepinephrine-ameliorated cerebral perfusion 
and reduction in ischemic brain volume in patients was 
not associated with increased cerebral metabolism, pos-
sibly related to the concomitant administration of seda-
tives and analgetics. In fact, cerebral oxygen consump-
tion was significantly reduced, possibly related to 
increased inflow of sedatives and analgetics or reversal 
of ischemic changes due to improved perfusion [191]. 
As observed under experimental conditions, norepi-
nephrine-induced regional alterations might contribute 
toprolonged increase in CBF [187], related to locally re-
leased vasoactive mediators – e.g., NO and augmented 
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cellular activity. Sustained NO production due to 
increased glutamate-mediated neuronal activity induces 
cGMP-dependent smooth muscle relaxation resulting 
in vasodilation and increased perfusion to meet meta-
bolic demands. In addition, catecholamines could con-
tribute to vasodilation by scavenging free radicals [119] 
which have been shown to inactivate NO [192]. The sig-
nificant increase in extracellular pericontusional gluta-
mate concentrations related to b-mediated reduced glial 
glutamate uptake [131], sustained neuronal release, and 
facilitated penetration via a damaged BBB could 
explain the increased cortical EEG activity [187]. Alter-
natively, elevated EEG power could reflect preserved 
neuronal integrity due to improved tissue perfusion and 
oxygenation.

Increased Posttraumatic Brain Damage
To avoid additional posttraumatic ischemic damage, 
MABP and the calculated CPP are increased and 
maintained ³70 mmHg which prevents an increase in 
cortical contusion volume in TBI rats [193]. However, 
experimental and clinical studies clearly show that CPP 
values ³ 90 mmHg are indispensable to increase and 
normalize local cerebral perfusion [177, 187, 191]. Con-
sequently, higher norepinephrine amounts are required. 
This, in turn, could increase the risk for additional nor-
epinephrine-dependent alterations – e.g., sustained 
pericontusional hermorrhage [194]. While low-dose 
norepinephrine (0.15 µg/kg/min) significantly reduced 
cortical contusion volume, higher dose (0.3 and 1.0 µg/
kg/min) did not influence contusion compared to 
control rats. Pericontusional hemorrhage was signifi-
cantly increased at all doses, being mostly pronounced 
at 0.3 and 1.0 µg/kg/min. To limit potential detrimental 
side effects, CPP should not exceed 120 mmHg which 
significantly increased cortical contusion volume in rats 
[193]. In TBI patients, CPP values between 100 and 120 
mmHg appeared safe as they did not induce intracranial 
hypertension in patients with or without vasopressors 
[195]. It remains to be determined if these adverse ef-
fects are caused by elevated hydrostatic pressure due to 
increased TPR or related to direct, possibly additive 
norepinephrine-induced pharmacodynamic influences. 
In cases of intracranial hypertension as investigated 
experimentally by increasing intracranial volume inflat-
ing a balloon [196] or infusing fluid into the cisterna 
magna [197] cerebral perfusion is impaired and the up-
per limit of CBF autoregulation is reduced, respectively. 
Thus, the ICP-dependent narrowing of the cerebral 
autoregulation interval might increase the risk for 
norepinephrine-mediated brain injury, as higher nor-
epinephrine dose is required to elevate CPP. Then 

again, impaired cerebral perfusion might prevent its 
penetration, thereby reducing the risk of norepineph-
rine-mediated cell damage.

Traumatic Brain Injury, Norepinephrine, 
and Inter-Organ Changes
Pharmacokinetics

Plasma norepinephrine is influenced by organ dysfunc-
tion. While continuous norepinephrine infusion dose-
dependently increases plasma levels [198] in nonseptic 
TBI patients, septic patients show a significant decrease 
in norepinephrine clearance resulting in prolonged half-
life [199]. This, in turn, could aggravate adrenergic 
organ damage. To properly control administration of 
drugs in the critically ill, changes in volume of distribu-
tion, elimination half-life, protein binding, clearance, 
and active metabolites need to be considered on an indi-
vidual and daily basis to determine the appropriate dose 
and possibly attenuate developing tolerance [200] and 
also improve treatment of withdrawal symptoms [201].

Inflammation- and sepsis-mediated encephalopathy
This area comprises a plethora of complex pathophysi-
ological alterations related to microorganisms and their 
toxins, inflammatory mediators, metabolic disturbanc-
es, changes in cerebral perfusion, alterations in amino 
acid and neurotransmitter homeostasis, and aggravated 
energy expenditure [202]. In otherwise healthy rats, 
systemic endotoxemia induces cerebral inflammation 
[203, 204] but fails to influence cerebral perfusion [205]. 
In brain-injured rats, sustained systemic inflammation 
significantly impairs cerebral vascular and metabolic 
response [206] and aggravates TBI-induced local 
inflammation [207]. Under these conditions, norepi-
nephrine is of importance as the increased cerebral 
oxygen consumption and cerebral perfusion are medi-
ated by b-adrenergic activation [208], cerebral norepi-
nephrine uptake and synthesis is impaired [209, 210], 
and central (brain) as well as peripheral (thrombocytes) 
a2-adrenergic transmission is disturbed [211]. While 
norepinephrine infusion does not adversely affect cere-
bral perfusion in endotoxemic sheep [212], similar 
investigations have not yet been performed following 
TBI with severe inflammation.

Receptor Regulation
Chronic receptor stimulation or inhibition alters 
receptor affinity and activity due to phosphorylation, 
posttranscriptional, and posttranslational changes. In 
this context, prolonged endogenous as well as exoge-
nous catecholamine administration reduces a2 receptor 
affinity in human thrombocytes [95] and rat brain [213], 
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and decreases b2 receptors in human mononuclear leu-
kocytes [214] which might be influenced by certain 
genetic predisposition to differential b2 adrenergic re-
ceptor regulation as seen in human lymphocytes [215] 
and human neutrophils [216]. In critically ill patients, 
b-adrenergic receptors of circulating lymphocytes are 
reduced [217] and inflammatory cytokines might impair 
b-adrenergic receptor-dependent production of the reg-
ulatory cAMP [217]. Adrenergic receptors are also 
influenced by steroids, retinoids, and thyroid hormones 
at the level of transcription, resulting in a decreased ex-
pression of adrenergic receptors in critically ill patients 
with disturbed hormonal influence. Ensuing arterial 
hypotension requires steroid substitution to increase 
sensitivity to a1 receptor stimulation [218].

Influence of Opioids and Benzodiazepines
Basic treatment of patients suffering from severe TBI 
includes continuous intravenous infusion of opioids 
(e.g., fentanyl) and benzodiazepines (e.g., midazolam). 
Apart from sedation and analgesia, opioids and benzo-
diazepines can induce tolerance, predispose to with-
drawal symptoms, influence thrombocyte and leukocyte 
functions, and modulate adrenergic responsiveness of 
smooth muscle cells. Midazolam inhibits norepineph-
rine release from sympathetic synapses [219] and allo-
sterically modulates a-adrenergic receptors of smooth 
muscle cells [219, 220]. Midazolam dose-dependently 
inhibits activation of human thrombocytes [221, 222], 
reduces thrombocyte–leukocyte interactions [221], 
inhibits neutrophil apoptosis and monocyte chemotaxis 
[223, 224], thereby influencing the inflammatory 
response. Chronic administration of fentanyl inhibits 
dobutamine-related hemodynamic changes by modu-
lating b-adrenergic receptors [225] and reduces a1 
pulmonary vasoconstriction [18]. In addition, chronic 
opioids promote astrogliosis which is reduced by a2 
inhibition [226]. Immunosuppressive properties of 
opioids [227] and a2-mediated thrombocyte activation 
are discussed controversially [228–230].

Withdrawal Symptoms
Chronic opioid and benzodiazepine infusion changes 
function of opioid and adrenergic receptors, thereby 
promoting drug dependence and disturbed arousal. 
Ensuing withdrawal symptoms can be modulated phar-
macologically by a2-adrenergic agonists and a1 and a2 
antagonists to suppress excessive norepinephrine 
release [231] and activation of the hypothalamus–pitu-
itary–adrenocortical axis [232]. Pharmacological 
control of withdrawal symptoms, however, is complex 
as a2 inhibition (yohimbine) preceeding a2 stimulation 

(clonidine) is superior to pretreatment using yohimbine 
or clonidine alone [233, 234]. Under clinical conditions, 
opioids and benzodiazepines should be reduced slowly 
[201]. Arising “sympathetic storm”, characterized by 
hypertension, tachycardia, tachypnea, arousal without 
adequate responsiveness, sweating, and increased 
energy expenditure [235] usually requires further seda-
tion. While clonidine is commonly used, newer data 
suggest its avoidance. An internationally valid concept 
of which agents to use and how to proceed is still lacking 
and is strongly needed to avoid interfering with antici-
pated neuroprotection.

Open Questions for Future Clinical 
and Experimental Research

Despite its daily use, relatively few data is available 
related to time-dependent differential influences of 
norepinephrine-induced and receptor-mediated organ-
specific alterations in critically ill patients suffering from 
severe TBI with and without additional organ dysfunc-
tion. To improve current treatment modalities, future 
research is warranted to address specific questions.

1. Pharmacokinetics and pharmacodynamics
z  Is there a characteristic temporal profile for criti-

cally ill patients?
z  Are there differences in complicated (SIRS/ sepsis) 

vs. noncomplicated cases?
z  Do these changes correlate with systemic and local 

monitoring parameters?
z  Can changes within the injured brain be assessed by 

calculating arterio-jugularvenous differences?

2. Systemic and local monitoring
z  Which parameters should be integrated in daily 

clinical routine?
z How many measurements are required?
z  Will changes reflect evolving impairment or com-

pleted perturbation?

3. Detrimental effects of infused norepinephrine
z  Are potential adverse effects dependent on dose or 

length of administration?
z  Is activation of thrombocytes and modulation of 

leukocytes really induced by infused norepineph-
rine or a mere in vitro effect?

z  Does infused norepinephrine promote brain contu-
sion growth and hemorrhage?

4. Disturbed vascular reactivity and autoregulation 
z  Does norepinephrine infusion increase the risk of 

cell damage in case of disturbed vascular reactivity 
and autoregulation?
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z  Should other vasoconstricting agents be used when 
testing autoregulation?

z  Is pretreatment with b-blockers essential to prevent 
impairment of cerebral metabolism upon increas-
ing norepinephrine dose?

5. Induced dependence, tolerance, and withdrawal 
z  How should drug dosage be reduced to avoid a 

surge in norepinephrine release?
z  Is this sustained noradrenergic response detrimental?
z  Does clonidine administration impair anticipated 

neuroprotection and affect neurorehabilitation 
processes?

z  Which pharmacological paradigm should be fol-
lowed to replace clonidine? 

6.  Pharmacological promotion of norepinephrine-de-
pendent regeneration
z  Can plasticity, regeneration, and neuropsychom-

nestic deficits be influenced in patients with severe 
TBI?

z  Which pharmacological compounds should be 
used?

z  When should administration of these drugs start? 

7. Change in therapeutic strategy
z  Will an increase in cerebral metabolism depressing 

drugs reduce the required norepinephrine dose and 
thus decrease potential adverse side effects?

z  Will this relate to an improved clinical course and 
subsequent neurorehabilitation?
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