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Abstract Despite obvious benefits, reproduction also imposes severe costs on females.

Such costs and benefits are highly sensitive to environmental factors. Rapidly changing

conditions may thus disturb a finely poised balance between the two and pose a challenge

to natural populations. A more complete understanding of reproduction and population

fitness across different environments is, hence, crucial. In particular, sexual selection could

either be beneficial or detrimental when conditions change abruptly. Here Tribolium
castaneum females were subjected to mating treatments with or without sexual selection

(virginity, monogamy, polyandry) replicated at standard versus elevated temperatures. We

found a substantial survival cost of reproduction at the standard, but not at the elevated

temperature. Reproductive success was similar across mating treatments at the standard

temperature, but at elevated temperature we detected a significant benefit of polyandry

compared to monogamy. These findings indicate that environmental heterogeneity can

strongly influence the balance between costs and benefits when sexual selection is allowed

to act. Furthermore, reproduction may be critically affected by changes in temperature with

potentially profound consequences for population fitness.
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Introduction

Precise knowledge of the major costs and benefits of reproduction is necessary to under-

stand how sexual selection affects population productivity and fitness under given eco-

logical conditions. Reproduction is certainly a costly endeavour for females (Partridge and

Farquhar 1981; Blanckenhorn et al. 2002; Martin and Hosken 2004). Possible costs may
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8092 Zürich, Switzerland
e-mail: oliver.martin@env.ethz.ch

V. M. Grazer
e-mail: vera.grazer@env.ethz.ch

123

Evol Ecol (2012) 26:625–637
DOI 10.1007/s10682-011-9508-4



arise via transmission of disease (Hurst et al. 1995), loss of energy (Watson et al. 1998),

harmful seminal fluid proteins (Johnstone and Keller 2000) or mechanical damage caused

during copulation (Crudgington and Siva-Jothy 2000). Overall, mating more often than

necessary can, hence, be very costly for females and potentially decrease survival. Nev-

ertheless, most female insects mate polyandrously, thus costs incurred via increased sexual

activity need to be traded-off against potential benefits of polyandry (reviewed in Jennions

and Petrie 2000; Zeh and Zeh 2001; Hosken and Stockley 2003). Under constant condi-

tions, it might be expected that on average the costs of reproduction are offset by benefits

of increased reproductive success due to competition or choice.

Few studies have attempted to simultaneously measure both the costs and benefits of

reproduction (Fricke et al. 2009), likely because of the associated experimental difficulties.

Experimental evolution experiments have succeeded in detecting hidden mating costs and

exposing sexual conflicts in various insect systems (Rice 1996; Holland and Rice 1999;

Hosken et al. 2001; Martin and Hosken 2003a, b; Arnqvist and Rowe 2005; Wigby and

Chapman 2005). These findings indicate that it may be necessary to alter conditions

experimentally in order to reveal and thus be able to measure all costs and benefits. There

is, actually, accumulating evidence showing that warming affects reproductive and sexu-

ally selected traits (Chihrane and Lauge 1994; Hughes 2000; West and Packer 2002).

Therefore, mating costs and benefits are likely sensitive to the environmental context, yet

so far this has been neglected, at least empirically (Candolin and Heuschele 2008; Fricke

et al. 2009).

A considerable part of reproductive costs for polyandrous females probably occur via

increased energetic demands compared to monogamous females (Watson et al. 1998;

Crudgington and Siva-Jothy 2000; Blanckenhorn et al. 2002; Martin and Hosken 2004).

Rapid change of environmental conditions at reproduction may challenge the female if

additional energy expenditure is required to deal with physiological stress or acclimati-

sation to new conditions (Angilletta 2009). In the short-term, energetic costs may accu-

mulate. In addition, it has been shown theoretically that under rapid environmental change

sexually selected traits are unable to track ecological optima (Tanaka 1996). This suggests

that when sexual selection is involved, such as in polyandrous mating, reproducing females

may be further burdened with costs. Following rapid environmental change female fitness,

thus, may likely deteriorate. Overall, it is conceivable that the degree and speed of envi-

ronmental change will determine the magnitude and direction of change in fitness.

Therefore, shifts in the cost-benefit balance of reproduction, potentially towards more

costs, may be expected.

In 2007, the IPCC predicted that increasing global mean temperatures will continually

change the conditions of formerly stable niches (Meehl et al. 2007). Due to these changes,

many species will not be able to reside in habitats to which they are accustomed (Chevin

et al. 2010). Maintaining high fitness in such a situation is, hence, absolutely crucial for the

survival of populations and species. In insects, effects of environmental change are already

becoming apparent (Bale et al. 2002; Menendez 2007). On the one hand, insects may profit

from warmer temperatures leading to faster reproduction and dispersal (Hughes 2000). On

the other hand, insects are at risk from global warming, since they mainly occupy heavily

affected terrestrial habitats (Maes et al. 2010).

Here we use Tribolium castaneum, a highly promiscuous beetle (Pai and Bernasconi

2008), to test whether the potential cost-benefit balance of reproduction prevailing under

constant conditions is shifted towards more fitness costs if temperature is elevated abruptly

(Tanaka 1996). To achieve this, we performed mating experiments at the standard tem-

perature of our lab strain (maintained at 30�C for [30y.) and at an elevated temperature
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(34�C). We experimentally monitored female reproductive success and survival under both

monogamous and polyandrous scenarios in order to investigate possible advantages and

disadvantages of sexual selection. The experiment was run over a period of 10 weeks,

which allowed us to detect both short and long-term effects and to assess fitness costs and

benefits more accurately. We had the following specific predictions. (i) Increasing tem-

perature is stressful and will reduce female survival and reproductive success. (ii) Poly-

androus mating compared to monogamy imposes costs, which reduce female survival. (iii)

Polyandry (i.e. the typical mating situation for Tribolium) leads to higher reproductive

success than monogamy. (iv) Elevating temperature may increase the benefits of polyan-

dry, via the presence of sexual selection.

Materials and methods

Mating experiment

Tribolium castaneum beetles used in this experiment were derived from the Georgia 1

stock (see Michalczyk et al. 2010, 2011) obtained from Richard Beeman at USDA. This

stock has been constantly maintained at 30�C and in large numbers at USDA and subse-

quently in our lab (i.e. over 30 years, equivalent to ca. 350 beetle generations). Beetles

were collected as pupae to separate the sexes. Pupae were maintained on our standard

flour-yeast mix (organic white flour with 10% yeast sterilised at 80�C for ca. 24 h) for

hatching and maturation. All adults were at least 1 week post-emergence when the

experiment was started. Two days before the experiment females were marked on the

thorax with ‘‘Queen marker’’ pen (Bienen-Meier, Künten, Switzerland).

Single females were housed in 5 cm diameter Petri-dishes containing flour (15 ml

& 7 g) topped with a layer of Soy-flakes. Females were randomly assigned to one of four

mating treatments: no male (virgins), one male (monogamy), six males (polyandry) and

twelve males (polyandry). Polyandry, allowing for the effect of sexual selection, was thus

investigated in two treatments (6 and 12 males), since potential costs might be cumulative

and increase in strength with more mates (see Fig. 1 in Michalczyk et al. 2011). Each

mating treatment was replicated at both standard rearing temperature (30�C) and elevated

temperature (34�C). Hence, the experiment combined mating treatment and temperature,

and each of these combinations consisted of 30 females. During the whole experiment,

females were kept constantly at either 30 or 34�C. The mating phase of the experiment was

1 week during which the females were allowed to copulate freely with the available

number of mates according to treatment. This set-up was chosen for the following reasons:

(i) mating groups enable precopulatory sexual selection, which would not be possible with

controlled sequential matings. (ii) During the single week of exposure to mates very few

males die, keeping the intended female/male ratio constant. (iii) Keeping males in the

experiment in different numbers across treatments is not feasible, as males cannibalize

eggs and disturb oviposition. (iv) Tribolium can store sperm (Sokoloff 1972) and already

after few copulations the spermatheca should be filled to capacity (Lewis and Jutkiewicz

1998). We can, therefore, assume that females stored a full load of sperm during this

standardized period of access to males. Because of these reasons, our design enabled us to

initially allow or disallow sexual selection for a standard period, but thereafter to assess

declining reproductive success over time (as sperm stores are used up) without male

interference and harassment. Crucially, this also allows us to pick up any short or long-

term fertility benefits of access to multiple versus single mates.
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After 1 week of mating, all males were removed from the experiment. If the marked

female was alive, she was transferred to a new Petri-dish with fresh flour, otherwise the

time of death was noted. Females were then kept in this way for an additional 9 weeks to

track offspring production rates over time. During this time, females were checked weekly

Fig. 1 Proportion of females surviving a at standard temperature (30�C) and b at elevated temperature
(34�C) as a function of time and mating regime (Initial sample sizes virgins = 30, monogamy = 30,
polyandry [6 or 12 mates) = 60]
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to determine their time of death and transfer them to new flour. There was no need to

transfer virgins, as flour is provided in great excess. All Petri-dishes containing developing

offspring were incubated for 3 weeks according to the temperature treatment of the mother.

We thus counted larvae and not eggs as our fitness response, as it is not feasible to

distinguish fertilized from unfertilized eggs. Furthermore, we aimed to observe tempera-

ture effects including effects on egg and larval survival. To do so, offspring had to be

counted before larval competition influences offspring survival. All offspring were counted

per week, resulting in our measure of total reproductive success over the period of

10 weeks.

Statistical analysis

Female survival was analyzed with Cox survival analysis using parametric regression.

Total reproductive success was analyzed with general linear models (GLM) incorporating

survival as a covariate. In case of unbalanced data the model testing was performed using

type III sums of squares. Residuals of the models were checked with the Shapiro–Wilk test

and were normally distributed. Number of offspring per week was analyzed with a general

linear mixed model for repeated measures. The residuals were checked within the ran-

domized unit ‘week’, which fulfilled the model assumptions. All statistical analyses were

conducted with the R statistical package (R Development Core Team 2009).

Results

Survival

Comparing mean survival between the two polyandrous mating treatments with 6 versus 12

males showed no effect of male number (6 m at 30�C: 9.2 ± 0.6 weeks, 12 m at 30�C:

8.7 ± 0.6 weeks/6 m at 34�C: 8.2 ± 0.6 weeks, 12 m at 34�C: 8.2 ± 0.6 weeks). Cox

regression showed that beyond a significant temperature effect (v2
1 = 6.05, P = 0.014,

n = 120) neither the main effect of male number (v2
1 = 0.65, P = 0.421, n = 120) nor the

interaction between male number and temperature (v2
1 = 2.39, P = 0.122, n = 120) were

significant. Because of this finding, the females of the two polyandrous treatments were

combined and the data was analysed between the mating regimes virgin, monogamy and

polyandry.

Female survival was significantly affected by the interaction of temperature and mating

regime (v2
1 = 8.77, P = 0.012, n = 240). Mated females died earlier than virgins at the

standard, but not at the elevated temperature (Fig. 1). The temperature effect on survival was

highly significant (v2
1 = 21.71, P \ 0.001, n = 240), but the main effect of mating regime

was not significant (v2
1 = 5.12, P = 0.077, n = 240). When the virgin groups were excluded

to allow direct comparison of monogamous versus polyandrous mating, only the main

effect of the temperature regime remained significant (temperature: v2
1 = 8.73, P = 0.003,

n = 180; mating: v2
1 = 2.72, P = 0.099; temperature 9 mating: v2

1 = 0.03, P = 0.872).

Total reproductive success

Mean total reproductive success in the two polyandrous treatments with 6 or 12 males was

very similar (6 m at 30�C: 184 ± 21, 12 m at 30�C: 178 ± 15/6 m at 34�C: 225 ± 20,
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12 m at 34�C: 225 ± 23). ANCOVA using male number (6, 12), temperature (standard,

elevated) and their interaction as explanatory variables and survival as covariate showed no

significant difference between these treatments regarding the interaction of male number

with temperature (F1,115 = 0.000, P = 0.997) or the main effect of male number (F1,115

= 0.03, P = 0.863). The largest proportion of variability in total reproductive success was

explained by female survival (F1,115 = 100.16, P \ 0.001), and temperature also had a

significant influence (F1,115 = 8.95, P = 0.003).

Since the two polyandrous groups were not different, they were combined to compare

the effect of no sexual selection (monogamy) versus sexual selection (polyandry) on total

reproductive success. Thus, sexual selection (monogamy, polyandry), temperature (stan-

dard, elevated) and their interaction were included in the model and survival as a covariate.

There was no interaction of the presence of sexual selection and temperature; however,

total reproductive success was significantly affected by the presence or absence of sexual

selection, temperature and female survival (Table 1). In addition, the same analysis was

performed excluding offspring produced during the first week of the experiment, where

males had been present. The results were qualitatively the same, as sexual selection,

temperature and female survival remained significant at the 0.01-significance level. At the

standard temperature, polyandrous females had a similar amount of offspring than

monogamous females. However, at the elevated temperature, polyandrous females

produced more offspring (Fig. 2).

Offspring per week

The number of offspring that females produced during the experiment was variable

(Fig. 3). In particular, the largest numbers of offspring were produced during the first

6 weeks, and this difference was more marked at the elevated temperature (Fig. 3). During

the last 4 weeks of the experiment, females at both temperatures produced fewer offspring

than before, although the females at standard temperature produced offspring for longer

(Fig. 3). Note also, at the standard temperature where monogamous and polyandrous

females produced similar amounts of offspring, it is clearly visible that both groups pro-

duced offspring for a comparable period of time. This finding indicates that our assumption

that all females were able to store a full load of sperm in the spermatheca was fulfilled

(Fig. 3a).

First, we analyzed offspring production per week only between the polyandrous

groups using male number (6 males, 12 males) and temperature (standard, elevated) as

fixed factors and week as a random factor and including all possible interactions. Male

number and all interactions including this factor were again not significant (male

number: F1,116 = 0.10, P = 0.757; male number 9 temp.: F1,116 = 0.00, P = 0.962;

Table 1 Analysis of covariance of the effects of sexual selection (monogamy; polyandry), temperature (30,
34�C) and their interaction on total reproductive success (correcting for female survival)

Source DF F P

Sexual selection 1 6.83 0.010

Temperature 1 10.25 0.002

Survival 1 104.20 \.0001

Sexual selection 9 temperature 1 2.84 0.094

Residuals 175
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male number 9 week: F1,848 = 0.55, P = 0.458; male number 9 temp. 9 week: F1,848

= 0.05, P = 0.824). Only those factors unrelated to male number significantly affected

offspring production in these groups (temperature: F1,116 = 13.09, P \ 0.001; week:

F1,848 = 460.82, P \ 0.001; temp. 9 week: F1,848 = 45.45, P \ 0.001).

Females from the polyandrous groups were, hence, again combined to compare the

effect of monogamous versus polyandrous mating (=factor sexual selection). The results

are summarized in Table 2 showing that the interaction of sexual selection and temperature

was marginally not significant but that sexual selection and temperature had significant

effects on offspring production (Table 2; Fig. 3). When non-significant interactions were

removed from this model, the results remained qualitatively the same. Additionally, this

was also the case when the same analysis was performed excluding the offspring produced

during the first week.

Discussion

Here we present responses in female survival and reproductive success to elevated tem-

perature in presence versus absence of sexual selection. Interestingly, we not only docu-

ment a quantitative change but a qualitatively totally different outcome under different

environmental conditions. There was a substantial survival cost of reproduction at the

standard, but not at elevated temperature. In addition, total reproductive success was

similar across mating treatments at standard temperature, whereas at elevated temperature

access to multiple mates was beneficial.

Fig. 2 Total female reproductive success (mean ± 1 SE) at standard (30�C) or elevated (34�C)
temperature over 10 weeks after mating either monogamously (mono = 1 male, no sexual selection,
n = 30), or polyandrously (poly = 6 or 12 males, with sexual selection, n = 60)
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It is now clear that environmental change rapidly alters ecological niches of many

species, for example, many more species will have to cope with increasing temperatures in

the near future (Thomas et al. 2004; Meehl et al. 2007). Clearly, reproductive success and

survival are eminently important factors determining population demographics and via-

bility (Reed 2008; Williams et al. 2008). In this respect, our findings underline how

strongly fitness traits can change with the environment. This may of course have severe

Fig. 3 Number of offspring produced per week a at standard (30�C) or b at elevated (34�C) temperature
(monogamous females n = 30, polyandrous females (6 or 12 mates) n = 60; error bars represent 1 SE)
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impacts on population fitness especially if the cost-benefit balance of reproduction is

shifted from one direction to the other. In theoretical terms Tanaka (1996) studied a

sexually selected trait under environmental change and predicted a shift towards more

reproductive costs. Our results on survival suggest that costs may indeed change and that,

in principle, predictions such as those made by Tanaka could well apply. Here, however, it

was not the case that environmental change via elevated temperature had a negative impact

on population fitness as we had generally expected. On the contrary, neither monogamous

nor polyandrous females suffered from costs of reproduction under changed conditions.

The Tribolium strain used is well adapted to the standard temperature ([30 years at

30�C), but can reproduce at up to 38�C (personal observation). Female reproductive

success and survival changed substantially after increasing the environmental temperature

by only 4�C. Consistent with our prediction (i), virgins survived better in the environment

of origin, whereas the elevated temperature led to a survival cost. In T. castaneum a range

of proteins are expressed in a heat-shock response (Mahroof et al. 2005). Increased protein

production is likely costly, which may have reduced female survival. Additionally, at

elevated temperature females will likely have suffered from increased water loss (Hadley

1994). This may also have increased the costs of survival if females were unable to

replenish enough water.

At the standard temperature mated females incurred a cost of mating through a survival

reduction compared to virgins. This cost, however, was not observed at elevated tem-

perature. During copulation males transfer seminal fluid, which females may store and use

as a nutrient or water source. Theoretically, ejaculates may help to deal with temperature

and desiccation stress (Poiani 2006; Edvardsson 2007). This effect has indeed been

described in various arthropod taxa (beetle: Fox 1993; moth: Svard and Mcneil 1994;

cricket: Ivy et al. 1999; butterfly: Wiklund et al. 2001). It may be possible, therefore, that

mated females were able to partly compensate for the negative effects of elevated tem-

perature and potentially reproduction on survival. In fact, this finding seems robust, as

virgins had consistently lower survival than mated females from the first until the 8th week

of the experiment. This corroborates the notion that females may have benefitted from

mating at elevated temperature.

Alternatively, Cohet and David (1976) investigated deleterious effects of copulation in

Drosophila females as a function of temperature, and showed that male harmfulness and

female survival were highly dependent on male growth temperature. In accordance with

our study, female survival costs were higher at intermediate temperatures compared to less

survival costs at higher temperature. Mating costs thus depend on the environment, and

Table 2 General linear mixed effects model for number of offspring per week produced by females where
sexual selection was enabled (polyandry) or disabled (monogamy) at two temperatures (30, 34�C)

Source Numerator (DF) Denominator (DF) F P

Sexual selection 1 176 4.49 0.035

Temperature 1 176 10.50 0.001

Week 1 1,295 713.05 \.0001

Sexual selection 9 temp. 1 176 3.19 0.076

Sexual selection 9 week 1 1,295 2.42 0.120

Temp. 9 week 1 1,295 57.69 \.0001

Sexual selection 9 temp. 9 week 1 1,295 2.40 0.122
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rather than being obscured (via compensation, see above), may simply cease to occur in a

different context.

Polyandry was not associated with any survival costs for females at either temperature,

so we cannot confirm prediction (ii). This finding indicates that costs of multiple mating

may be minor in T. castaneum. This notion is in agreement with previous work on this

species: females are very willing to mate, and the number of mates has no effect on female

survival (Pai and Yan 2003). Additionally, using an experimental evolution approach and

the same strain, it was found that females evolving under male-biased sex ratios coped well

with exposure to large numbers of mates (Michalczyk et al. 2011). Together, these findings

suggest that, under standard conditions, T. castaneum females may be well adapted to

handling negative effects of copulation.

Focussing on reproductive success rather than survival, the present and a previous study

on T. castaneum did not detect fitness benefits (or costs) of polyandry at standard tem-

perature (Pai and Yan 2003). This contradicts prediction (iii). Interestingly, though, we do

find higher reproductive success at the elevated temperature, which supports prediction

(iv). Many studies suggest that females of this species are able to influence paternity by

(cryptic) female choice, for instance by expelling spermatophores or differently processing

sperm for storage (Qazi et al. 1998; Nilsson et al. 2003; Fedina and Lewis 2004; Lewis

et al. 2005; Fedina and Lewis 2007). Spermathecal gland secretions may also chemically

influence the environment that sperm encounter (Fedina and Lewis 2008). Furthermore, in

a study by Ward et al. (2002) eggs of yellow dung flies had different paternal genotypes

across shaded and sunlit areas, which suggests that postcopulatory female choice according

to environmental cues may be possible. Similarly, here, sexual selection or bet-hedging

(Fox and Rauter 2003) could have biased paternity in offspring of polyandrous mothers at

elevated temperature, as polyandry increases the chance that mates (or sperm) which

perform better at elevated temperature are present (Pizzari and Parker 2009).

In contrast with prediction (i), elevated temperature led to higher total reproductive

success on average. Females maintained at elevated temperature produced larger numbers

of offspring early on (weeks 1–4) but productivity seemed to decline more steeply than

under the standard temperature (see Fig. 3). This pattern may be explained with the ter-

minal investment hypothesis (Clutton-Brock 1984). Females experiencing temperature

stress might increase their investment into reproduction in response to a potential threat to

their survival. In the present experiment temperature stress was clearly present as reflected

in shorter female survival at the elevated temperature. Indeed, similar mechanisms have

already been documented in other species including the closely related Tenebrio molitor
(Sadd et al. 2006). However, this possibility does not seem sufficient to explain our results,

especially as a previous study finds no evidence suggestive of terminal investment in the

same strain of T. castaneum (Morrow et al. 2003). On closer inspection, this effect seems

to be driven by polyandrous females having superior total reproductive success at elevated

temperature. Since we tracked female reproductive success over a period of 10 weeks, we

were able to observe that monogamous females could successfully produce offspring for as

long as polyandrous females. This rules out the possibility that monogamous females

simply had fewer sperm available.

To conclude, elevated environmental temperature led to the disappearance of a repro-

ductive cost on survival and the appearance of a fitness benefit for polyandrous females.

This is a strong signal that the cost-benefit balance of reproduction is highly temperature

sensitive. We demonstrate that by increasing temperature by 4�C the balance can be shifted

drastically in a new direction, in this case towards higher fitness. This study also indicates

how we may explain different outcomes of environmental change across species. Species-
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specific factors, such as the contrasting intensities of sexual selection implemented in the

present study, may determine in which direction the cost-benefit balance is shifted. In a

general and applied sense, there is an urgent need to perform more experiments under

contrasting environmental conditions such as implemented here or in Hunt et al. (2004) for

nutritional environment. Indeed, interest in incorporating the role of the environment in the

study of sexual selection is growing steadily (e.g. Fricke et al. 2009; Ingleby et al. 2010;

Narraway et al. 2010). More precise knowledge regarding how central fitness traits, such as

survival and reproductive success, change under different conditions would further provide

important insights to understanding population sensitivity.
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