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Abstract The various roles that polarizabilities play in

the calculation of protein–ligand interaction energies with a

polarizable force field are investigated, and the importance

and distance dependence of some common approximations

is determined for each of these roles separately, using

quantum-mechanical calculations as the reference. It is

found that the pure induction energy, if defined as the

energetic gain from the charge redistribution upon inter-

action between the protein and ligand, is a rather short-

ranged effect that becomes independent of the exact

implementation at distances above *4 Å. On the other

hand, the polarization between the protein residues in the

assembly of a protein from separately computed fragments

(as is routinely done in force field development) has a

significant effect on the computed interaction energies,

even for residues as far as 15 Å from the ligand. Finally,

polarization improves the transferability of partial charges,

but the simple polarization model used in, for example, the

Amber force field explains only 14–19% of the confor-

mational variation of the charges. In all cases, more

advanced polarization models, especially involving aniso-

tropic polarizabilities, seem to give significantly better

descriptions of these effects. The study suggests that an

accurate treatment of polarization can be important even in

systems where the actual induction energy is small in

magnitude.

Keywords Polarizable force field � Induction �
Distributed polarizabilities � Amber � Intermolecular
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1 Introduction

The reliability of a molecular simulation (e.g., a molecular

dynamics or Monte Carlo simulation) is limited in at least

three ways. First, the system that you simulate is typically

much smaller than the real system. Second, the amount of

sampling you can afford may not be enough to cover all

relevant regions of phase space sufficiently well to give

statistically converged results. Third, the potential-energy

surface that you use in the simulation is only an approxi-

mation to the real (normally unknown) potential-energy

surface.

For complex systems, such as macromolecules in water,

the requirements in the two first aspects normally force you

to use an empirical molecular mechanics (MM) force field

as your potential-energy function. It has been noted that as

computer resources are growing, the accuracy of the force

field may become the limiting factor in many applications

[1]. Force fields used in this area usually divide the

potential energy into bonded and nonbonded terms. The

bonded terms typically consist of bond, angle, and dihedral

terms and describe the short-range part of the intramolec-

ular interactions. The nonbonded terms include at least an

electrostatic term and a Van der Waals term (containing

dispersion and repulsion). It describes intermolecular

interactions, as well as intramolecular interactions between
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P. Söderhjelm (&)

Department of Chemistry and Applied Biosciences,

Computational Science, ETH Zürich, USI-Campus,
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parts of a big molecule that are not directly bound, but may

be close in space.

Although it is widely recognized that electrostatics is a

key to many interesting problems (e.g., protein–ligand

interaction), most force fields still use a simple Coulomb

interaction between atom-centered fixed partial charges. A

promising route to increasing the accuracy is to explicitly

include electronic polarization. The most common methods

use either distributed point polarizabilities, fluctuating

charges, or shell models [2–4]. Other ways to improve the

electrostatics are to include higher-order multipoles

(dipoles, quadrupoles, etc.) [5] or to use smeared charges

that describe the charge distribution better than point

charges [6].

Polarizable force fields date back to the 1960s [7] and

were early applied to biological systems [8, 9], but only

during the last decade, they have been incorporated into the

most widely used simulation packages for macromolecules,

either as polarized variants of established force fields, for

example, Amber-02 and PFF [10, 11], or de novo devel-

opments such as Amoeba [12]. All of these are based on

atomic isotropic dipole polarizabilities. The models differ

mainly in the specific values of the polarizabilities and in

the treatment of intramolecular polarization, and these

choices are related.

Two early models have particularly influenced the

development. Applequist showed that by allowing full

coupling between all induced dipoles, it was possible to

find atomic polarizabilities that reproduce the total polar-

izabilities of many molecules [13], but the anisotropy was

often overestimated. Thole modified this model by intro-

ducing damping functions that corrected some of the error

from using point dipoles at short range [14, 15]. In this

way, the atomic polarizabilities could have larger and more

realistic values, and the excessive anisotropy could be

avoided. Roughly speaking, the Amber-02 model is based

on the Applequist polarizabilities, albeit with modified

coupling rules, whereas the Amoeba force field is based on

the Thole model.

Other polarizable force fields, such as SIBFA, EFP, and

NEMO, aim specifically at reproducing quantum-mechan-

ical (QM) interaction energies and have a more complex

functional form [5, 16, 17]. They normally derive their

polarizabilities directly from QM calculations on the

interacting monomers. Typically, they do not include

coupling between the polarizabilities and thus have to use

anisotropic atomic polarizabilities to reproduce the

anisotropy of the molecular polarizabilities. Damping

functions can nevertheless be used to account for the lack

of Pauli effects in the intermolecular interactions [18–20].

Despite that the atomic polarizabilities obtained from

QM calculations are not very similar for atoms of a certain

element or atom type [21], most empirical force fields use

only 8–15 atom types for polarizabilities, with 1–4 differ-

ent polarizabilities for each element for the normal amino

acids; some even use the same value for all non-hydrogen

atoms [8]. It has been shown that improved accuracy is

obtained using specific atomic polarizabilities [22]; thus,

polarizabilities may well be treated in the same way as

partial charges. Very recently, we showed that conforma-

tionally averaged QM-derived polarizabilities are a good

choice for such atomic polarizabilities, as they give results

that are fairly close to those obtained with conformation-

specific polarizabilities [21].

It is difficult to directly assess the accuracy of a certain

polarization model, mainly because of two reasons. First,

the potential energy surface is extremely difficult to mea-

sure experimentally. One is normally limited to using

quantities like solvation free energies or binding free

energies and indirectly test the force field’s ability to

reproduce these quantities [23], which of course is made

more difficult by the other simulation issues mentioned

above. Even if studies have started to appear that compare

the performance of nonpolarizable and polarizable force

fields for biological problems [24], the precision of these

studies is usually too poor to allow any detailed assessment

of the polarization model itself. Alternatively, one can

compare the results with QM interaction energies of high

quality [25]. Very recently, an article pair has been pub-

lished that systematically tries several variants of intra-

molecular polarization and tests the accuracy of the

corresponding polarization models [26, 27]. As a reference,

the authors use QM interaction energies at the MP2/aug-cc-

pVTZ level. They find that all variants are better than

additive force fields in reproducing the total interaction

energy, but that a damping function [28] combined with

exclusion of polarization through 1 or 2 bonds gives the

best results.

Second, only the total potential energy is an observable;

its decomposition is ambiguous. Thus, any improvements

in the accuracy of the polarization term may be obscured

by inaccuracies in the other terms and limits in the

parametrization procedure. For example, in the above-

mentioned assessment [27], the charges were adequately

refitted for each polarization model, but it is still possible

that the Van der Waals parameters, which are normally

fitted for a particular treatment of electrostatics, uninten-

tionally favor any of the models. One way to solve this

issue is to use a specific energy decomposition scheme, for

example, the restricted variational space method [29, 30],

to match each contribution individually [16]. Another way

to deal with the problem is to use the change in electro-

static potential as a reference, either at the monomer [31]

level or the dimer level [32]. A third way is to only con-

sider the total energy, but reassure that all the remaining

terms are treated in a consistent way, for example, by
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taking them from supermolecular calculations of smaller

subsystems [33]. All these studies conclusively show that

the inclusion of polarization can improve the accuracy of

the total potential energy, but that a careful treatment is

necessary for this to happen.

On the other hand, there are many issues that are com-

mon to all polarizable force fields and therefore can be

studied in a more general sense. One example is whether

the transferability of the partial charges between various

systems and conformations is improved by the inclusion of

polarization. Another relevant question (for reasons of

computational efficiency) is how far out from the active

site we have to keep a good description of the polarization,

that is, where we can shift to a simpler model. In studies of

protein–ligand interaction and protein shift of absorption

spectra, we tried to answer the latter question [34, 35]. To

our surprise, there was a long-range (10–20 Å) sensitivity

to changes in the treatment of polarization; for example,

the effect of switching from anisotropic to isotropic

polarizabilities in all residues separated by more than 10 Å

from the ligand was 13 kJ/mol for a charged ligand [34].

There are two contributions to this energy difference.

First, there is the actual induction energy, caused by charge

redistribution in the protein due to the electric field from

the ligand and vice versa. Second, there is a portion of the

electrostatic interaction energy between the protein and the

ligand, caused by polarization of each protein residue in

the electric field from other residues. The aim of the current

study is to study these effects separately and characterize

the error convergence of each of them. For completeness,

we also consider a third effect that polarizabilities may

have in force fields: we investigate whether the intramo-

lecular polarization improves the transferability of the

electrostatic model among various conformations, as ear-

lier studies have indicated [36–39]. For all tests, we use the

same test system as in ref. [34], the avidin–biotin interac-

tion. From these tests, a more complete picture of the

role of polarization in protein–ligand systems will be

obtained.

2 Methods

2.1 The distributed point polarizability model

When a molecule is subjected to an electric field F, the

induced dipole moment within the linear-response

approximation is given by

lind ¼ a � F ðe:g: lx ¼ axxFx þ axyFy þ axzFzÞ ð1Þ

where a is called the polarizability tensor of the molecule

and is sometimes replaced by a scalar quantity (the iso-

tropic polarizability), defined by (axx ? ayy ? azz)/3.

To accurately describe the polarization occurring when

two molecules interact, knowledge of the molecular

polarizability tensors is normally not sufficient. First, the

electric field is not homogeneous, that is, it varies in dif-

ferent parts of the molecule. Second, the induced dipole

moment is seldom a useful quantity, because it does not

specify the local charge redistribution. A solution to these

problems is the distributed point polarizability model,

which is the most common model in polarizable force

fields, used in QM-mimicking methods such as SIBFA,

EFP, and NEMO [5, 16, 17], as well as in simpler methods

[8, 10, 12]. In this model, the response of each molecule is

described as a set of induced dipoles, located at certain

positions (most commonly the atomic nuclei). At the

position of the polarizability ai; the induced dipole lind
i is

given by:

lind
i ¼ ai � Fi ¼ ai � Fstat

i �
X

j6¼i

gijl
ind
j rr

1

rij

� �" #
ð2Þ

where the electric field Fi in that position has been divided

into contributions from the static charge distribution and

from other induced dipoles, and a (possibly distance-

dependent) scale factor gij has been introduced to allow for

damping or exclusion of close-lying interactions. Equa-

tion 2 defines a linear system of equations, which can be

solved through matrix inversion or by iteration.

The induction energy is given by

Eind ¼ � 1

2

XN

i¼1

lind
i � Fstat

i ð3Þ

where the factor 1/2 comes from the fact that the (positive)

work of polarization cancels half of the interaction energy

of the dipoles with the field. The energy contribution from

a pair of induced dipoles is completely canceled by the

work of polarization, so Eq. 3 contains only the static field;

the coupling is included only through the values of lind
i :

The static field Fstat
i is normally computed from the

multipole expansion:

Fstat
i ¼ �

X

j6¼i

hij qjr
1

rij

� �
þ lj � rr

1

rij

� ��

þHj � rrr
1

rij

� �
� � �
�

ð4Þ

where hij is another scale factor possibly modifying the

field from close-lying multipoles. In the simplest versions

of polarizable force fields, only the first term (i.e. partial

charges) is used.

The reasons for letting gij or hij deviate from unity vary

in the two cases. For the coupling between polarizabilities

in Eq. 2, the induced dipoles may become infinite at small

distances (the ‘‘polarization catastrophe’’), and the
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polarization can become unphysical even before that hap-

pens. Although it is possible to reproduce the molecular

polarizability by a set of fully coupled atomic polariz-

abilities, significantly smaller values must be used than

with an uncoupled set [13]. A better solution is to damp the

dipole interaction tensor for overlapping charge distribu-

tions [14, 28]. In the Amber polarizable force field (ff02)

[10], no damping is used, but contributions from atoms that

are directly bound (1–2 interactions) or separated by two

bonds (1–3 interactions) are omitted, and the 1–4 interac-

tions are scaled by 5/6. In contrast, for most methods using

polarizabilities from QM calculations, the intramolecular

coupling of polarizabilities is completely omitted, because

it is already implicitly included through the QM calcula-

tion. The explicit and implicit coupling schemes have been

compared [40]. For medium-sized molecules such as amino

acids, the implicit scheme has been found adequate (except

possibly for the aromatic amino acids) [32]. A mixed

approach have been proposed for fragmentation approaches

[33]; this scheme is illustrated in Fig. 1 and will be denoted

the LoProp exclusion rules.

On the other hand, for the response to the static field,

which we will refer to as static polarization, the exclusion

rules are dictated by the parametrization procedure.

Clearly, when the multipoles of a molecule are obtained

from a single QM calculation, hij should be zero within the

molecule, as all intramolecular effects are already included

in the multipoles. A corresponding rule has been derived

for fragmentation approaches [33], as illustrated in Fig. 1.

However, the choice of hij is arbitrary, as long as the

permanent multipoles are adjusted accordingly, as in, for

example, the Amber ff02 model, in which hij = gij [10].

For a rigid molecule, this choice does not affect the total

interaction energies, whereas for a flexible molecule, the

static polarization can be used to approximate how the

charge distribution varies with changes in the molecular

geometry [28, 36, 38, 39, 41].

The individual electrostatic and induction contributions

are not comparable for models with different exclusion

rules [33]. Therefore, we define the pure induction energy

between two molecules as the energy caused by the charge

redistribution of each molecule in response to the field

from the other molecule, that is, when making the partic-

ular choice hij = 0 for all intramolecular interactions. The

pure induction energy is always negative, in contrast to the

direct difference of the energies in Eq. 3 which can have

any sign [33].

Several methods to obtain distributed polarizabilities

from QM calculations have been suggested [3]. A common

approach is to partition the molecular polarizabilities,

either in real space (e.g., the atoms-in-molecules approach)

[42] or in terms of the basis set [43–46]. Alternatively, the

polarizabilities can be fitted to molecular polarizabilities or

to large sets of induction energies [22, 47–50]. For the most

accurate descriptions in this study, we use LoProp multi-

poles (up to quadrupoles, L = 2) and anisotropic polariz-

abilities, located at the atomic nuclei and the midpoints of

covalent bonds [46]. The multipoles are obtained by dis-

tributing the molecular charge density using an orthogonal

basis of ‘‘nearly local’’ functions; the polarizabilities are

obtained by distributing the molecular response to homo-

geneous electric fields using the same basis. The accuracy

of the LoProp method has been tested before [31].

2.2 System

As an example of a protein–ligand interaction, we use

avidin interacting with biotin. This system has previously

been subject to several studies [51–54]. In particular, it has

been used for testing the conformational dependence of

charges [55] and polarizabilities [21] and for benchmarking

the Polarizable Multipole Interaction with Supermolecular

Pairs (PMISP) method [33, 34, 56].

For all calculations, we use a single snapshot of the

avidin–biotin system, obtained from a molecular dynamics

simulation using the polarizable Amber-02 force field [10].

The setup of the molecular dynamics simulation has been

described before (the 02ohp simulation in ref. [54]). The

geometry corresponds to one of the snapshots used to

compute binding affinities with the PMISP method [56],

but we removed the three extra biotin molecules that were

considered part of the protein. The coordinate file used in

all tests is provided as supplementary information.
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Fig. 1 Illustration of the MFCC procedure and the LoProp exclusion

rules in the computation of properties (multipoles and polarizabilities)

for a capped peptide. The atoms are divided into six groups.

Individual QM calculations are performed on the subsystems ABC,

BCDE, CEF and the concaps BC and CE, respectively. In all cases,

the dangling bonds are capped with hydrogen atoms. The properties

of the whole system are then computed as TOT = ABC ? BCDE ?

CEF - BC - CE. As shown in ref. [33], intramolecular static

polarization should only occur between atoms that have not been in

the same QM calculation, that is, in this example only between the

pairs of groups connected by arrows. The same rule is used for

polarizability coupling
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The protein is cut into 494 fragments: the residues of the

protein (all being standard amino acids). The cuts are done

through the peptide bonds and each fragment is capped

with –COCH3 and –NHCH3 groups at the N and C termini,

respectively. The four cystine linkages are cut through the

disulfide bonds and each fragment is capped with a –SCH3

group.

The protein fragments are mainly taken to interact

separately with the ligand, but in some calculations frag-

ment pairs are used, some of which are covalently linked.

To assemble the properties (distributed multipoles and

polarizabilities) of such fragment pair, the molecular

fractionation with conjugate caps (MFCC) approach [57] is

used (see Fig. 1), in which a third fragment (concap) is

constructed, consisting of the capping groups of the two

fragments merged together, for example, forming a

CH3CONHCH3 molecule for a peptide link. The properties

of the concap fragment are subtracted from the sum of

properties of the two capped fragments, and the same

procedure is used for energies [33].

The distance between the ligand and a fragment is

defined as the minimal distance between any ligand atom

and any fragment atom. Quantities like the distance-

dependent mean absolute error are computed by dividing

the systems into bins of width 1 Å according to their dis-

tance; the error at a distance r then includes systems with

distance between r and r ? 1 Å.

2.3 Computational details

In the test of induction energy, the supermolecular

energies are first computed at the MP2/cc-pVTZ level,

whereas the properties are computed at the B3LYP/6-

31G* level, as this has been found to be a good

approximation [34]. For the further analysis of the error,

Hartree–Fock (HF) theory with the 6-31G* basis set is

used for both supermolecular energies and properties. In

the test of protein assembly, the HF/6-31G* level is used

throughout. The derivation of charges in the test of

conformational dependence is done at the B3LYP/cc-

pVTZ level to be consistent with both the procedure

used in Amber ff02 [10] and with the supermolecular

MP2/cc-pVTZ energies. All supermolecular energies are

corrected for basis set superposition errors by the coun-

terpoise procedure [58].

All QM calculations are done with the MOLCAS soft-

ware [59] except the derivation of charges in the test of

conformational dependence, which is done using the

Gaussian software [60] followed by the RESP procedure

[61], possibly employed in an iterative procedure where the

AMBER 10 program [62] is used to calculate the induced

dipoles and the corresponding contribution to the electro-

static potential is subtracted from the QM potential [10].

Except for this procedure, all classical interaction energies

are computed by local programs that can handle all sorts of

exclusion rules. The conversion from the AMBER topol-

ogy file is exact; for a given system, the local software

gives the same polarization energy as AMBER.

3 Results

We investigate the effect of polarizabilities on the induc-

tion energy, protein assembly, and conformational depen-

dence, respectively. The main tests performed are

schematically summarized in Fig. 2.
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L
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ele

E
ele

E
ele

LL

L

Tested

Ref

Conformational dependenceProtein assemblyInduction energy

E

E
ind

Fig. 2 Schematic overview of the three main tests performed in this

article. Each column shows one test, labeled by the corresponding

section heading and with the top square representing the reference

quantity and the bottom square representing the tested quantity. The

L-labeled ellipse is the ligand and the rounded rectangle any one of

the (capped) protein residues. For the induction energy, the reference

is the QM deformation energy, whereas the tested quantities are

classical induction energies. For the protein assembly, the reference is

the electrostatic interaction energy using multipoles computed from

the residue pair (covalent or noncovalent neighbors) treated as a

single molecule, whereas the tested quantity is the corresponding

energy using multipoles assembled from separate residue calcula-

tions. For the conformational dependence, the reference is the

electrostatic energy with the residue in its right conformation,

whereas the tested quantities use charges not for the right conforma-

tion (e.g., averaged)
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3.1 Induction energy

Long-range effects of approximations in the polarization

model have been observed before [34, 35]. We now

investigate how much of these effects are related to the

pure induction energy, as opposed to the effects of

the assembly of the protein from multiple fragments. The

induction energy itself is inherently nonadditive. However,

as the nonadditive effects have been analyzed before [33,

34], we focus instead on the interactions between the

ligand and one fragment at a time.

The most natural question is how well the supermolec-

ular energy is modeled by a given force field. In our case,

we start with a very good description (a LoProp model with

multipoles up to quadrupoles and anisotropic polarizabili-

ties) and introduce approximations, one at a time. A similar

test with a wider range of interactions has recently been

performed for other polarization models [27].

To avoid careful parametrization of the short-range

terms, we define the error as

Rtot ¼ Esup � Eele � Eind � Evdw ð5Þ

where Esup is the BSSE-corrected supermolecular interac-

tion energy, Eele is the electrostatic energy, Eind is the

induction energy, and Evdw is the Van der Waals term from

the Amber force field [63]. It has been shown that, for

distances larger than *6 Å, the repulsion and dispersion

contributions to the QM energy are well approximated by

the Van der Waals term [34].

We calculated this error for all 494 fragment–ligand

dimers. Unfortunately, even using a high multipole level,

the errors in the electrostatic energy dominate in the whole

distance range. Therefore, it was impossible to accurately

assess the induction energy. For example, the isotropic

approximation has a negligible effect compared with the

total error, as shown in Fig. 3. Note that the fragments

interacting directly with the ligand show substantial errors

because of the crude short-range potential; for example, 10

fragments give an error larger than 2 kJ/mol. To proceed,

we need to compare the induction energy with the partic-

ular part of the supermolecular interaction energy that

depends on the deformation of the charge density, often

called the deformation energy. However, this quantity is

only rigorously defined at the HF level. Therefore, we first

verified that the distribution of the errors (for distances

larger than 6 Å) was roughly independent of the quantum-

chemical method, with mean values for MP2 and HF of

-0.03 and 0.06 kJ/mol, respectively, and standard devia-

tions of 0.11 and 0.15 kJ/mol, respectively (the Van der

Waals energy was only subtracted in the MP2 case as it

contains mainly dispersion at these distances). At the HF

level, we then define the error in the induction energy as

Rind ¼ Esup � EHL � Eind ð6Þ

where EHL is the Heitler–London energy, also known as the

first-order energy E1, that is, the energy obtained in a su-

permolecular HF calculation if the unperturbed monomer

orbitals are used without any subsequent SCF iteration.

Because EHL describes the electrostatic and exchange-

repulsion energies exactly, the remaining error Rind is a

good indicator of the accuracy of the induction energy. The

first two terms on the right-hand side of Eq. 6 constitute the

deformation energy, but it should be noted that in this

study, unlike many intermolecular decomposition schemes,

this quantity is corrected for BSSE.

The average error as a function of the distance from the

ligand is shown in Fig. 4 for three multipole levels

(L = 0, L = 1, and L = 2, i.e. up to charges, dipoles, and

quadrupoles, respectively) and two polarizability levels

(anisotropic and isotropic). Higher multipoles (L = 3)

were also tested but showed no significant difference from

L = 2. Detailed results for representative complexes at

different distances, as well as structures of these com-

plexes, are given in Table S1 and Figure S1 in the sup-

plementary information.

The large errors at short distances (below 4 Å) are

mainly due to the short-range effects of charge penetration,

charge transfer, and other neglected effects in the point-

polarizability model. Note that the errors in the final force

field would possibly be smaller, because you would try to

model these effects (and the corresponding electrostatic

Fig. 3 Statistical distribution of the error in the total potential energy

for each ligand–residue dimer computed with anisotropic and

isotropic polarizabilities, respectively. The following outliers result-

ing from close interactions were removed from the figure: residue

N12 (-10 kJ/mol error for anisotropic model), D13 (-1), Y33 (-4),

T35 (-6), V37 (-1), T38 (-14), A39 (-19), T40 (-2), Q70 (3), F72

(3), S73 (-15), S75 (1), F79 (1), W97 (1), S101 (-1), N118 (-15),

concap T38-A39 (-18), concap A39-T40 (-7), and concap F72-S73

(1 kJ/mol). The residue numbering refers to PDB structure 1AVD

[64]
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effects) in an effective way through the repulsion term. At

larger distances, on the other hand, the possibility to reduce

the error by fitting disappears, and the error can be seen as

a lower bound on the error of any force field, although it

should be noted that the errors in the other terms are usu-

ally larger. In this far range, clear trends are obtained. As

expected, anisotropic polarizabilities give lower errors than

isotropic ones. With anisotropic polarizabilities, the accu-

racy also increases with increasing multipole level, but this

effect is almost absent with isotropic polarizabilities,

showing that once the isotropic approximation has been

introduced, there is no need of having higher multipoles

than point charges to compute the electrostatic field

(although it may of course be important for the electrostatic

term).

However, the main result from Fig. 4 is that, even for

the worst model using point charges and isotropic polar-

izabilities, the errors quickly become negligible as the

distance from the ligand increases. Thus, we can conclude

that the pure induction is not responsible for the observed

long-range effects of polarizabilities.

3.2 Protein assembly

A force field for a protein is usually assembled using

parameters for smaller fragments, taken either directly

from QM calculations or from a library. If the force field is

polarizable, each fragment is polarized by the field from

the surrounding fragments so that its charge distribution

within the protein differs from that of the isolated frag-

ment. This change, in turn, affects the electrostatic inter-

action with the ligand. Because this is an indirect effect

(many-body effect), one would expect it to be smaller than

the pure induction. However, electric fields in the protein

are often strong due to the proximity of charged residues.

Thus, the statically induced dipoles may become significant

and interact strongly with the charged ligand, as these

interactions has a formal r-2 dependence (compared to r-4

for the ion–induced dipole interaction).

Of course, this effect depends on the polarization model

used. A comparison of the individual induced dipoles in the

assembled avidin protein (without the ligand) modeled by

anisotropic and isotropic polarizabilities, respectively,

shows that the deviation is randomly distributed with aver-

age magnitude of 0.026 a.u. (corresponding to *80% of the

average magnitude of the induced dipoles themselves) and

independent of the distance from the ligand, as displayed in

Fig. 5. Although the energetic effect of each of these indi-

vidual differences is randomly distributed and rather small,

in average 0.3 kJ/mol at 5 Å and 0.1 kJ/mol at 15 Å, the

large number of contributions add up to a total energy con-

tribution that is typically 3–6 kJ/mol for the residues outside

of 15 Å and 4–11 kJ/mol outside 5 Å, depending on the

particular geometry and QM method (results not shown).

This is in agreement with Fig. 2 of ref. [34].

To investigate this effect more systematically, we use

smaller subsystems consisting of only two fragments (each

fragment being one capped amino acid) and the ligand (see

Fig. 2). Two sets of fragment pairs were created. The first

set consists of the 1,008 fragment pairs that have at least

one atom–atom distance that is \2.5 Å, but are not cova-

lently linked. The second set consists of the 494 fragment

pairs that are directly covalently linked (eight of which

share a cystine link, the rest a peptide bond). We test how

well various polarization models describe the charge

redistribution within each fragment pair upon association.

As a measure of the charge redistribution for a given

polarization model M, we calculate the change in

Fig. 4 Mean absolute error in the induction energy per residue as a

function of the distance from the ligand

Fig. 5 Distribution of the magnitude of the difference between the

induced dipole using anisotropic and isotropic polarizabilities. Each

curve includes only the residues in a particular distance range from

the ligand
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electrostatic interaction energy between the fragment pair

(Fi, Fj) and the ligand:

DEM
ij ¼ EeleðL$ FM

ij Þ � EeleðL$ FM
i Þ � EeleðL$ FM

j Þ
ð7Þ

where EeleðL$ FM
i Þ denotes the classical electrostatic

interaction energy between the ligand and Fi. Whereas the

ligand is always treated in the same way, with distributed

multipoles up to quadrupoles, obtained from a LoProp

calculation, we vary the representation M of the fragments.

This variation includes the source of the polarizabilities

(from a quantum-chemical LoProp calculation or from the

Amber library), the form of the polarizabilities (anisotropic

or isotropic; in the bonds or only in the atomic nuclei), the

origin of the multipoles (LoProp multipoles up to quadru-

poles or Amber charges), and the choice of exclusion rules

for the polarizability coupling (LoProp or Amber). A null

model without polarization is also included for comparison.

All the tested models are listed in Table 1.

The fragment dimer Fij is constructed by taking the two

separate fragments described by M and letting them

polarize each other. For the covalently bound pairs, the

MFCC procedure is used, so that a concap term is added to

Eq. 7 (see Sect. 2).

As a reference for these calculations, Eq. 7 is evaluated

using multipoles for the fragment pair computed in a single

QM calculation (again by the LoProp approach and up to

quadrupoles). The mean unsigned error

RM ¼ 1

N

XN

i\j

jDEM
ij � DEref

ij j ð8Þ

for each method over each set of dimers is shown in

Table 2. To verify that the trends are not influenced by

short-ranged effects, the average over only the distant pairs

(minimal distance from the ligand larger than 5 Å) is also

shown. The full distance dependence for some of the

methods is shown in Fig. 6 for the nonbonded set.

The setup of these calculations ensures that we spe-

cifically test the error in the polarization part of the

assembly. As expected, the most accurate treatment (a),

using LoProp multipoles and anisotropic polarizabilities

in both atoms and bonds, gives the lowest error, from

*0.04 kJ/mol for distant pairs up to 0.5 kJ/mol at short

range. Replacing the anisotropic polarizabilities with

their isotropic counterparts has a significant effect,

increasing the error by 50–65%. In agreement with the

results for the pure induction, the further approximation

to use point charges instead of multipoles has a smaller

effect, and these two effects are almost additive. The

removal of the polarizabilities in the bonds (by dispers-

ing them onto the atoms) has a negligible effect.

The change from LoProp (ix0) to Amber (ambf) polar-

ization increases the error by 66–74 %. This change can be

divided into two steps: the change of the values of the

polarizabilities and the change of exclusion rules (the gij in

Eq. 2). As shown in Table 2, both steps give significant

(and almost additive) contributions to the error, but the

change of values has the largest effect. The Amber polar-

izabilities were not devised to reproduce QM calculations,

as has been pointed out before [21]. Therefore, the results

for the Amber model are not alarming. Although there is

much room for improvement—the error is three times

larger than for the best model—the Amber model still gives

significantly better results than the null model, which

assembles the pairs without considering polarization at all.

It should be noted that, although the mean absolute error

per pair is \1 kJ/mol for all models, the many pairs may

add up to a substantial total error, for example, 70 kJ/mol

for the null model.

Table 1 Summary of the polarization variants used to test the protein assembly

Name Polarizabilities Multipoles Exclusion rule

Source Anisotropic

a LoProp Yes LoProp LoProp

i LoProp No LoProp LoProp

a0 LoProp Yes Amber LoProp

i0 LoProp No Amber LoProp

ix0 LoProp (no bonds) No Amber LoProp

ix0f LoProp (no bonds) No Amber Amber

amb Amber No Amber LoProp

ambf Amber No Amber Amber

null No polarization

The polarizabilities can come from LoProp or Amber ff02 and can be anisotropic or isotropic. The multipoles used in the polarization can be

either LoProp multipoles (up to quadrupoles) or Amber ff02 charges. The exclusion rule can be either LoProp (no intramolecular polarization) or

Amber (only 1–2 and 1–3 interactions omitted). For comparison, a null model without polarization is also included
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The fact that the LoProp exclusion rules give better

results than the Amber exclusion rules, independently of

the values of the polarizabilities, offers some physical

insight. As described in Fig. 1, the coupling between

polarizabilities within each fragment is ignored with the

LoProp exclusion rules, because the coupling is implicitly

included under the assumption that the electric field is

uniform over the fragment. The Amber rules, on the other

hand, try to model the coupling explicitly by only

excluding coupling between atoms separated by one or two

bonds. The results indicate that, for fragments that are as

small as amino acids, it is better to ignore the coupling

between polarizabilities.

The corresponding distance dependence for the cova-

lently bound set is shown in Fig. 7. For this set, the results

are less clear, but most of the trends remain. As expected,

the treatment of intramolecular polarization is more diffi-

cult: all models give larger errors relative to the null model

(e.g., 36% over the distant covalent pairs for the best

model, compared to 14% for the distant nonbonded pairs;

see Table 2). On the other hand, the polarization effects for

the assembly of covalently linked residues are smaller in

absolute value and thus less important than those in, for

example, hydrogen bonds.

For some of the methods, the errors including the actual

induction energy between the ligand and the fragment pairs

are also shown in Table 2. As can be seen, the additional

error for the far set introduced by the induction energy is

negligible for all models (except the null model, which

does not include the induction energy). This confirms the

result from the previous section that the approximations

affect the induction energy only at short range.

3.3 Conformational dependence

In the final test, we examine the possible advantage of

using a polarizable model to enhance the transferability of

partial charges between various conformations of the same

amino acid. To this end, we derived RESP charges for all

capped residues (in their particular conformation) of

Table 2 Mean absolute error in

DE (Eq. 8; thousandths

of kJ/mol) for the two sets of

fragment pairs (the nonbonded

pairs and the covalent pairs)

using various polarization

methods for treating the charge

redistribution within the pair

Averages are taken over all

pairs (all) or those outside of

5 Å (far). Numbers within

brackets are the corresponding

errors including also the

induction energy

Method Nonbonded pairs Covalent pairs

All (N = 1,008) Far (N = 922) All (N = 494) Far (N = 452)

a 73 (86) 48 (48) 72 (79) 47 (47)

i 112 (213) 79 (82) 89 (164) 56 (58)

a0 117 75 76 50

i0 137 97 97 62

ix0 129 93 99 62

ix0f 162 117 110 65

amb 198 (343) 134 (137) 97 (243) 62 (67)

ambf 225 (374) 154 (158) 114 (288) 73 (78)

null 503 (1,325) 347 (384) 189 (1,049) 129 (183)

Fig. 6 Mean absolute error (Eq. 8) in the assembly of the nonbonded

pairs as a function of the minimal distance between any of the pair

fragments and the ligand

Fig. 7 Mean absolute error (Eq. 8) in the assembly of the covalent

pairs as a function of the minimal distance between any of the pair

fragments and the ligand
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avidin, using an iterative procedure [10] that makes them

consistent with the Amber ff02 polarizabilities. For com-

parison, we also computed RESP charges at the same QM

level but without polarization. Thus, for each capped res-

idue, we have two descriptions that nearly reproduce the

same QM electrostatic potential: one with only partial

charges (qm0) and one with partial charges and isotropic

polarizabilities (qm1). Two other charge sets (cons0 and

cons1) were constructed by averaging the qm0 and qm1

charges, respectively, over all occurrences of a given

amino acid in the protein. Finally, we include the standard

Amber-02 charges (ff02). There is no standard charge set

for a nonpolarizable model at this exact QM level. In all

cases involving polarization, we employ the Amber-02

polarizabilities [10]. For the ligand, we always use the

same charges (qm0) and no polarization.

We use the electrostatic interaction energy between the

ligand and each residue described by qm0 as the reference

and report the mean absolute errors over all residues, or

over residues with a distance [6 Å, in Table 3. First, we

verify that the qm0 and qm1 descriptions give the same

interaction energies. As shown in Table 3, the mean

absolute difference between the interaction energies with

these models is only 0.05 kJ/mol. Thus, before averaging,

the nonpolarizable (qm0) and polarizable (qm1) descrip-

tions are roughly equivalent.

Using the averaged charges instead of those derived for

exactly the right conformation gives an average error of

0.25–0.31 kJ/mol over all residues and 0.15–0.18 kJ/mol

over the distant residues. Interestingly, the error is con-

sistently lower for the polarizable model (by 14–19%),

showing that the polarization accounts for some of the

conformational dependence of the charges. However, ear-

lier investigations have reported much larger improve-

ments for more advanced polarization models [36, 38, 39],

so the Amber model is not optimal. Clearly, the confor-

mational dependence of charges (and higher multipoles) is

an unsolved problem.

To see how the accuracy relates to the overall force field

accuracy, we also compare these electrostatic interaction

energies with the supermolecular MP2/cc-pVTZ interac-

tion energies, with the Amber Van der Waals energy sub-

tracted as in Sect. 3.1. The results are shown in Table 3 for

the far set (the comparison is not relevant for shorter dis-

tances because several terms are replaced by the standard

Van der Waals energy). As expected, the errors are larger,

but not by much.

The errors with the standard charges from the ff02

protein library are much larger: the average error is 1.3 kJ/

mol over all residues and 1.0kJ/mol over the distant resi-

dues. This is somewhat unexpected, as one would expect

the ff02 charges to be similar to the cons1 charges, as they

are derived in similar ways. However, a detailed analysis

shows that most of the error comes from the capping –CH3

groups, which are significantly more negative (in both the

reference calculations and the QM calculations) than the

corresponding protein atoms that ff02 tries to model.

The full distance dependence of the errors is shown in

Fig. 8. For short distances, all the charge sets give large

errors, although the use of polarization (cons1) seems to

avoid the largest problems. At a distance of *4 Å, the

errors with cons0 and cons1 charges quickly drop below

1 kJ/mol per residue, whereas the ff02 error remains large.

The comparison with supermolecular results shows that for

distances larger than *7 Å, the conformational averaging

is a larger source of inaccuracy than the point charge

representation itself.

Table 3 Mean absolute error per residue (kJ/mol) for various charge

sets over all 494 residues (all) or the 453 residues with distance[6 Å

(far), using either the qm0 results or supermolecular (super) energies

as the reference

Reference qm0 (all) qm0 (far) Super (far)

qm0 – – 0.10

qm1 ? pol 0.05 0.03 0.10

cons0 0.31 0.18 0.22

cons1 ? pol 0.25 0.15 0.18

ff02 ? pol 1.28 1.00 1.03

Fig. 8 Mean absolute error per residue (kJ/mol) introduced by the

averaging of charges over conformations, with (cons1) and without

(cons0) an additional polarization model, as well as with the standard

ff02 charges. For comparison, the qm0 versus super curve shows the

deviation between the supermolecular MP2/cc-pVTZ interaction

energy and the electrostatic interaction energy with the qm0 charges
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4 Conclusions

Based on the results of these tests, one may look at the

computation of a protein–ligand interaction energy with a

polarizable force field as a three-step process, with the

polarization playing different roles in each step.

First, each protein fragment is internally polarized. Force

fields often assume that different conformations of the same

amino acid have the same partial charges. Polarization

enables a physically motivated variation of the electrostatic

properties of different conformations. We tested this effect

by constructing artificial Amber-like polarizable and non-

polarizable force fields with conformationally averaged

partial charges and comparing the resulting electrostatic

interaction energies with those using charges for the right

conformation. Indeed, with the Amber polarization model,

the error caused by conformational averaging is 14–19%

smaller with polarization than without.

Second, each protein fragment is polarized by the sur-

rounding fragments, so that the electrostatic properties are

altered compared with what they would be in isolated

amino acids. We found that approximations in the polari-

zation model have a large effect on the induced dipoles in

the whole protein and thus on the electrostatic interaction

energy with the ligand, even for fragments as far as 15 Å

from the ligand (e.g., *0.1 kJ/mol per residue for the

isotropic approximation). By investigating the assembly of

residue pairs using a series of polarization models, it was

found that polarization between residues interacting by, for

example, hydrogen bonds is more important than between

covalently linked residues, but on the other hand it is also

easier to model. Upon switching from a very accurate

model to the Amber model, the steps particularly found to

increase the error are the removal of anisotropy and the

change of the values of the polarizabilities. However, the

introduction of intramolecular coupling of the polarizabil-

ities also has a consistently negative impact on the accu-

racy. Encouragingly, all tested polarization models were

found to give significantly better results than a nonpolar-

izable model.

Finally, the protein is polarized by the ligand and vice

versa, giving the pure induction energy. By comparing the

induction energy from various polarization models with its

quantum-mechanically computed counterpart, we found

that the approximation to make the polarizabilities isotro-

pic has a larger effect than, for example, the reduction of

the multipole level, but that approximations done in resi-

dues separated by more than *4 Å from the ligand have a

negligible effect on the energy compared with the total

error of the force field.

These results indicate that a careful treatment of polar-

ization may be important even in cases where the actual

induction energy is small. They also provide some

guidance how to improve current polarization models.

Apparently, anisotropic polarizabilities and rigorous

exclusion rules are essential to achieve quantitative

agreement with QM calculations.
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55. Söderhjelm P, Ryde U (2009) J Comput Chem 30:750
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