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Abstract In this paper, we consider the numerical
discretization of elliptic eigenvalue problems by Finite Ele-
ment Methods and its solution by a multigrid method. From
the general theory of finite element and multigrid methods, it
is well known that the asymptotic convergence rates become
visible only if the mesh width h is sufficiently small, h ≤ h0.
We investigate the dependence of the maximal mesh width h0

on various problem parameters such as the size of the eigen-
value and its isolation distance. In a recent paper (Sauter in
Finite elements for elliptic eigenvalue problems in the preas-
ymptotic regime. Technical Report. Math. Inst., Univ. Zürich,
2007), the dependence of h0 on these and other parameters
has been investigated theoretically. The main focus of this
paper is to perform systematic experimental studies to vali-
date the sharpness of the theoretical estimates and to get more
insights in the convergence of the eigenfunctions and -values
in the preasymptotic regime.
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1 Introduction

The discretization of elliptic eigenvalue problems by finite
elements has the same long tradition as the finite element
method itself. The theory has been established, e.g., in [25],
[1, Sect. 10], [2,7,8,13]. The eigenvalue multigrid method for
the fast numerical solution of the arising algebraic eigenvalue
problem goes back to [11]; see also [3,6,10,14–18,20,21,23,
24].

All these methods have in common that there exists a
coarsest mesh width h0 so that the asymptotic convergence
estimates become visible provided h ≤ h0. In [22], the
dependence of h0 on the size and the isolation distance of
the eigenvalue, the polynomial degree of approximation has
been investigated theoretically. In this paper, we will report
on some systematic numerical experiments which investi-
gate the sharpness of the theoretical estimates for h0 and
give us more insights in the preasymptotic convergence of the
eigenfunctions and -values. In [22], the focus was on the con-
vergence of the finite element method and not on the multi-
grid convergence, while our numerical experiments here also
address the maximal mesh width for the convergence of the
eigenvalue multigrid method. In detail, we consider

1. the finite element approximation of eigenvalues,
2. the finite element approximation of the eigenvectors,
3. and the eigenvalue multigrid method.

2 Setting

Let H0 and H1 be real Hilbert spaces with H1 ⊆ H0 such
that the embedding of H1 in H0 is continuous and compact.
Let H ′0 and H−1 := H ′1 denote the dual spaces of H0 and
H1. Then the embedding of H ′0 in H−1 is also continuous
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364 L. Banjai et al.

and compact and (H1, H0, H−1) is a Gelfand triple

H1 ↪→ H0 ∼= H ′0 ↪→ H−1. (2.1)

We denote the inner product of H0 by (·, ·)0 and the corre-
sponding norm by ‖·‖0, and the inner product of H1 by (·, ·)1

and the corresponding norm by ‖ · ‖1.
The duality pairing between H1 and H−1 will be denoted

by 〈·, ·〉.
Let a : H1 × H1 → R denote a bilinear form which

satisfies the following conditions.

Assumption 2.1 The bilinear form a : H1 × H1 → R has
the following properties.

a. Symmetry

a (u, v) = a (v, u) ∀u, v ∈ H1.

b. Continuity: There exists Cc > 0 such that

|a (u, v)| ≤ Cc ‖u‖1 ‖v‖1 ∀u, v ∈ H1.

c. Coercivity: There exists α > 0 such that

a (u, u) ≥ α ‖u‖21 ∀u ∈ H1. (2.2)

In this paper, we will investigate the numerical compu-
tation of the following eigenvalue problem: find eigenpairs
(λ, e) ∈ C× (H1\ {0}) such that

a (e, v) = λ (e, v)0 ∀v ∈ H1. (2.3)

The spectrum, i.e., the set of all eigenvalues of (2.3), is
denoted by σ and the resolvent set is defined by ρ := C\σ .

The Galerkin discretization of (2.3) is based on a finite
dimensional subspace S ⊂ H1 and is given by seeking pairs
(λS, eS) ∈ C× (S\{0}) such that

a (eS, v) = λS (eS, v)0 ∀v ∈ S. (2.4)

The set of all discrete eigenvalues is denoted by σS . Although
the eigenvalue problems (2.3) and (2.4) are symmetric and so
all eigenvalues are real, we have complexified the problem in
the usual manner in order to employ some tools from complex
operator theory.

3 Multigrid method

In [11], a multigrid method has been proposed to solve elliptic
eigenvalue problems efficiently. We briefly recall the method
in the form of a matrix eigenvalue problem.

Let λ ∈ σ denote the exact eigenvalue (with multiplicity
m ≥ 1) which we are going to approximate and let E (λ)

denote the corresponding eigenspace. The isolation distance
of λ is given by

δ (λ) := dist (λ, σ\ {λ}) . (3.1)

For ease of presentation we assume that there exists a positive
constant Cgap <∞ such that

sup
λ∈σ

δ (λ)

λ
≤ Cgap. (3.2)

In [22] it was proved that—if the finite element space S sat-
isfies a certain condition on the maximum mesh width [cf.
(4.2)]—the dimension of the discrete analogue

ES (λ) :=
⊕

λS∈σS(λ)
{uS ∈ S | ∀vS ∈ S : a (uS, vS)

= λS (uS, vS)0} , (3.3)

has dimension m, where

σS (λ) := σS ∩ Bλ (3.4)

and Bλ denotes a ball in the complex plane about λ with
radius

R := δ (λ)
1

2+ 3 δ(λ)
λ

.

In order to keep the presentation simple, we restrict to the
case that the geometric multiplicity of all eigenvalues λ ∈ σ

equals 1. Then (3.4) implies that #σS(λ) = m = 1 holds,
and that for λS ∈ σS(λ) a vector eS ∈ S exists that satisfies

‖eS‖0 = 1, a(eS, vS) = λS(eS, vS)0 for all vS ∈ S,

i.e., eS is a unit-norm eigenvector for the eigenvalue λS of
the discrete problem.

In order to use a multigrid method, we choose a nested
hierarchy

S0 ⊆ S1 ⊆ · · · ⊆ SL = S ⊆ H1

of subspaces of H1. For each level � ∈ N0, we introduce the
operators

A� : S� → S′�, 〈A�u�, v�〉=a(u�, v�) for all u�, v�∈ S�,

M� : S� → S′�, 〈M�u�, v�〉=(u�, v�)0 for all u�, v�∈ S�.

The transfer between different levels is handled by the
operator

P� : S�−1 → S�,

called the prolongation in this context, and its dual

R� := P∗� : S′�→ S′�−1,

which is called the restriction.
Using the notations

λ� := λS�
, e� := eS�
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FEM for elliptic eigenvalue problems 365

for the approximations of eigenvalues and eigenvectors on
the different levels of the grid hierarchy, our task now is to
find λ� ∈ R and an e� ∈ S� such that

A�e� = λ�M�e�, 〈M�e�, e�〉 = 1

holds. The eigenvalue multigrid method [11] constructs a
sequence of approximate eigenvalues λ

(i)
� and approximate

eigenvectors e(i)
� by a procedure consisting of three steps: the

new approximate eigenvector is constructed by performing
a number of multigrid steps for computing ẽ(i+1)

l in

A�ẽ(i+1)
� − λ

(i)
� M�ẽ(i+1)

� = 0. (3.5)

The resulting vector is normalized with respect to the H0

inner product, i.e.,

e(i+1)
� := ẽ(i+1)

�

〈M�ẽ(i+1)
� , ẽ(i+1)

� 〉
is computed, and a new approximate eigenvalue is deter-
mined by the Rayleigh quotient (the denominator can be
neglected due to the normalization of e(i+1)

� )

λ
(i+1)
� :=

〈
A�e(i+1)

� , e(i+1)
�

〉
.

The main challenge is obviously the computation of the
approximate solution ẽ(i+1)

� of (3.5). In order to handle this
task, we fix operators

N� : S′�→ S� for all � ∈ {0, . . . , L}
such that N�b� can be computed efficiently for b� ∈ S′� and
that N� is a reasonable approximation of A−1

� for oscillatory
functions. A typical choice for N� is

N�b� := θ
∑

i∈I�

〈b�, ϕ�,i 〉
〈A�ϕ�,i , ϕ�,i 〉ϕ�,i for all b� ∈ S′�,

where (ϕ�,i )i∈I�
is a finite-element basis of S� and θ ∈ R>0

is a damping parameter. This matrix N� corresponds to the
well-known damped Jacobi scheme, and it has been proven
to handle oscillatory functions very well if θ is chosen cor-
rectly (cf. [12]). From the perturbation lemma [12, Criterion
6.2.7], it is easy to see that the smoothing property holds
for the damped Jacobi method applied to the indefinite sys-
tem A�e� − λ�M�e� under the conditions that λ�h2

� → 0 as
h� → 0 and for some grid-independent damping parameter
θ � 1.

Remark 3.1 (Implementation) In an implementation, the
spaces S� are represented by finite element bases (ϕ�,i )i∈I�

.
A function u� ∈ S� is described by the coefficient vector
u� ∈ R

I� corresponding to the basis, while a functional
f� ∈ S′� is described by the coefficient vector f� ∈ R

I�

corresponding to the dual basis, i.e.,

u� =
∑

i∈I�

u�,iϕ�,i , f�, j = 〈 f�, ϕ�, j 〉 for all j ∈ I�.

The operators A� and M� map functions to functionals,
therefore the straightforward representation is to use the stan-
dard stiffness and mass matrices A�, M� ∈ R

I�×I� given by

(A�)i j = 〈A�ϕ�, j , ϕ�,i 〉, (M�)i j = 〈M�ϕ�, j , ϕ�,i 〉,
for all i, j ∈ I�.

The prolongation operator P� maps functions to functions,
therefore we represent it by a matrix P� ∈ R

I�×I�−1 satisfy-
ing

P�ϕ�−1, j =
∑

i∈I�

(P�)i jϕ�,i for all j ∈ I�−1.

By the same reasoning, the smoothing operator N� corre-
sponds to a diagonal matrix N� ∈ R

I�×I� with

(N�)i j =
{

θ/Ai i if i = j,
0 otherwise

for all i, j ∈ I�.

Using these basis representations, applying an operator to a
function or functional is equivalent to a matrix-vector multi-
plication, and evaluating the dual product 〈·, ·〉 corresponds
to a simple Euclidean product:

〈 f�, u�〉 =
∑

i∈I�

u�,i 〈 f�, ϕ�,i 〉 =
∑

i∈I�

u�,i f�,i = f�� u�.

3.1 Eigenvalue multigrid iteration

The multigrid scheme consists of three phases: first oscilla-
tory components of the error are reduced using the smoothing
iteration

ẽ(i,0) := e(i), ẽ(i, j+1) := ẽ(i, j)−N�

(
A�ẽ(i, j)−λ

(i)
� M�ẽ(i, j)

)

for all j ∈ {0, . . . , ν − 1}.
We can assume that the remaining error is smooth enough
to be approximated in a coarser space, so we compute the
defect

d(i)
� := A�ẽ(i,ν) − λ

(i)
� M�ẽ(i,ν)

and transfer it to the coarser space S�−1 using the restriction

b(i)
�−1 := R�d(i)

� .

In the coarser grid, we (approximately) solve the coarse-grid
equation

A�−1c(i)
�−1 − λ�−1 M�−1c(i)

�−1 = b(i)
�−1 (3.6)

by using an appropriate singular multigrid algorithm and
then add the correction c(i)

�−1 to ẽ(i,ν) in order to get the next
approximation

ẽ(i+1)
� := ẽ(i,ν)

� − P�c(i)
�−1.

If necessary, we can use additional smoothing steps to elim-
inate oscillatory errors introduced by the prolongation and
get the following algorithm:
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procedure EMG(�, var λ�, e�);
for i := 1 to ν1 do

e�← e� − N�(A�e� − λ�M�e�);
d�← A�e� − λ�M�e�;
b�−1 ← R�d�; c�−1 ← 0;
for i := 1 to γ do

SMG(�− 1, b�−1, c�−1);
e�← e� − P�c�−1;
for i := 1 to ν2 do

e�← e� − N�(A�e� − λ�M�e�);
e�← e�/〈M�e�, e�〉;
λ�← 〈A�e�, e�〉

In this algorithm, ν1 and ν2 are the numbers of the pre-
and postsmoothing steps and γ is the number of recursive
multigrid calls: γ = 1 corresponds to the V-cycle, γ = 2 to
the W-cycle.

3.2 Singular multigrid iteration

Let us now consider the coarse-grid equation (3.6). Since
λ�−1 is an eigenvalue of A�−1, we have to solve a singular
system.

We investigate the general system

B�x� = f� (3.7)

for an operator B� : S� → S′�, a right-hand side f� ∈ S′�,
and the solution x� ∈ S�. We assume that the kernel of B� is
spanned by a known vector k� ∈ S� and that the range of B�

is perpendicular to this vector, i.e.,

Range(B�) = {g� ∈ S′� : 〈g�, k�〉 = 0}.
In the case of the eigenvalue problem, these conditions hold
for B� = A� − λ�M� and k� = e�, since A−1

� (A� − λ�M�)

is a Fredholm operator and A� and M� are self-adjoint.
The system (3.7) can only be solved if f� ∈ Range

(B�) holds, and due to our assumption, this is equivalent
to 〈 f�, k�〉 = 0. If this equation is not valid, we replace f�
by the corrected right-hand side

f̃� := f� − 〈 f�, k�〉
〈M�k�, k�〉M�k� (3.8)

and observe that the latter satisfies

〈 f̃�, k�〉 = 〈 f�, k�〉 − 〈 f�, k�〉
〈M�k�, k�〉 〈M�k�, k�〉 = 0,

therefore we have f̃� ∈ range(B�) and can find a solution of
the corrected system

B�x� = f̃�.

This solution, however, is not unique: we can add arbitrary
multiples of k� to x� without changing the right-hand side. In
order to guarantee uniqueness, we introduce the additional

condition 〈M�k�, x�〉 = 0, i.e., we require the solution to be
perpendicular to the kernel of B�.

Given an arbitrary solution x� of (3.7), this condition can
be fulfilled by using

x̃� := x� − 〈M�k�, x�〉
〈M�k�, k�〉 k�, (3.9)

since this function satisfies

〈M�k�, x̃�〉 = 〈M�k�, x�〉 − 〈M�k�, x�〉
〈M�k�, k�〉 〈M�k�, k�〉 = 0.

The singular multigrid iteration consists of four main steps:
the right-hand side f� is corrected to fit into range(B�), some
smoothing iterations are applied, the coarse-grid problem is
solved by recursive calls, and the result is corrected to ensure
that it is perpendicular on k�.

In the case of the eigenvalue problem, the projections (3.8)
and (3.9) can be simplified by taking advantage of the nor-
malization 〈M�e�, e�〉 = 1, and we arrive at the following
algorithm:

procedure SMG(�, f�, var x�);
f�← f� − 〈 f�, e�〉M�e�;
if � = 0 then

x�← (A� − λ�M�)
−1 f�

else begin
for i := 1 to ν1 do

x�← x� − N�(A�x� − λ�M�x� − f�);
d�← A�x� − λ�M�x� − f�;
f�−1 ← R�d�; x�−1 ← 0;
for i := 1 to γ do

SMG(�− 1, f�−1, x�−1);
x�← x� − P�x�−1;
for i ← 1 to ν2 do

x�← x� − N�(A�x� − λ�M�x� − f�)
end;
x�← x� − 〈M�e�, x�〉e�

Note that the matrix A0 − λ0 M0 which appears on the
coarsest level of SMG is singular and cannot be inverted. In
our program, we have realized the solution of the singular
system (A0 − λ0 M0) x0 = f0 by employing an LU factor-
ization with partial pivoting (LAPACK routines dgbtrf and
dgbtrs) and they do not report any errors. This is probably
due to rounding errors occurring during the factorization. The
resulting instability is compensated by the projections into
the complement of the eigenspace.

3.3 Nested iteration

The singular multigrid iteration works only for a level �

if sufficiently accurate approximations of the eigenvectors
e0, . . . , e� are available. This means that the eigenvalue
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multigrid algorithm can only work for a level � if the eigen-
vectors e0, . . . , e�−1 are available.

In order to meet this requirement, we use a nested iteration
(sometimes also called full multigrid) scheme:

procedure EMGFull;
Solve A0e0 = λ0 M0e0;
e0 ← e0/〈M0e0, e0〉;
for �← 1 to L do begin

e�← P�e�−1;
λ�← λ�−1;
for i ← 1 to µ do

EMG(�, λ�, e�)
end

We have iterated the routine EMG in EMGFull on level
� always up to convergence by choosing the parameter µ

appropriately.
It is important to note that the Galerkin property implies

〈M� P�e�−1, P�e�−1〉 = 〈M�−1e�−1, e�−1〉,
〈A� P�e�−1, P�e�−1〉 = 〈A�−1e�−1, e�−1〉,
therefore the function P�e�−1 will be normalized, and its
Rayleigh quotient will be equal to the coarse-grid eigenvalue
λ�−1.

In addition to ensuring that the singular multigrid algo-
rithm SMG is applicable, the nested iteration also provides
us with very good initial guesses for the eigenvectors and
eigenvalues, therefore we can expect that a small number of
EMG steps will be sufficient to compute good approxima-
tions.

If the dimensions of the spaces S� decay exponentially,
i.e., if dim S� > q dim S�−1 holds for all � ∈ {1, . . . , L}with
a factor q > 1, the complexity of the entire nested iteration
scheme EMGFull is dominated by the highest level L , so
using a simple smoother like Jacobi yields an algorithm of
linear complexity. This is the optimal order.

4 Numerical experiments

The goal of this paper is to perform systematic numerical
experiments in order to understand the dependence of the
coarsest mesh width on various parameters and to get insights
in the sharpness of theoretical predictions. We consider the
following model problem. Let � ⊂ R

d denote a bounded
domain and let a : H1

0 (�) × H1
0 (�) → R be the bilinear

form

a (u, v) :=
∫

�

〈A (x)∇u,∇v〉 + cuv,

where A ∈ L∞
(
�, R

d×d
)

is symmetric and uniformly
positive definite. The coefficient c is a bounded L∞ (�, R)

function.
For infx∈� c (x) ≥ 0, the distribution of eigenvalues,

asymptotically, is described by [cf. (3.1)]

δ (λ)

λ
≈ Cλ−d/2 (4.1)

(see [26], [9, Sects. VI, 4, Satz 17 and 19], [4,5], [19, Theorem
13.1]). If an eigenvalue λ satisfies (4.1) we conclude from
[22, Corollary 2.17 and 2.19] that, for piecewise linear finite
elements, the condition

λ
d+1

2 h0 � 1 (4.2)

on the coarsest mesh h0 width guarantees that

a. the eigenvalue approximations satisfies

|λ− λS|
λ

� λh2 ∀0 < h ≤ h0 (4.3)

b. the eigenvector approximations satisfy

‖e − eS‖H1(�) �
(

1+ λ
2+d

2 h
)√

λh

= √λh + λ
3+d

2 h2
(4.2)
�
√

λh (4.4)

for all 0 < h ≤ h0.

Paper [22] does not contain estimates for the eigenvalue
multigrid method and one goal of the following numerical
experiments is to give insights on the coarsest possible mesh
width also for the multigrid method.

4.1 Tests in one dimension

As in [11], we have considered the Mattieu equation, where
� = (0, π) , A = 1, and c (x) = 20 cos (2x). Table 1 lists the
maximal step size h0 so that the asymptotic convergence rates
become visible. In Fig. 1 we have depicted exemplarily the
convergence history for the 21st eigenvalue and -function as
a function of h → 0. We observe that the maximal mesh sizes
as shown in Table 1 are the limiting values for the asymptotic
convergence rates of all three quantities:

• the eigenvalues,
• the H1-errors of the eigenfunctions,
• and the L2-errors.

Table 1 clearly shows, that condition (4.2) is too strict for
this model example and the weakened condition

h
√|λ| � 1 (4.5)
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Table 1 Maximal step size h0 so that the quadratic convergence holds
for all h ≤ h0

λ −13.9 −2.4 8.0 17.4 26.8 37.4 50.0 64.8

h0 1/7 1/7 1/7 1/10 1/10 1/10 1/11 1/13√|λ|h0 0.5 0.2 0.4 0.4 0.5 0.6 0.6 0.6

λ 81.6 100.5 121.4 144.4 169.3 196.2 225.2 256.2

h0 1/15 1/15 1/17 1/18 1/19 1/21 1/23 1/23√
λh0 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.7

λ 289.2 324.2 361.1 400.1 441.1 484.1 529.1 576.1

h0 1/25 1/27 1/28 1/30 1/32 1/34 1/35 1/37√
λh0 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.6

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

h

re
la

tiv
e 

er
ro

r

rel. H1−error

rel. L2−error
rel. e−value error

Fig. 1 Convergence of the relative H1 (�)- and L2 (�)-errors and the
relative eigenvalue error as a function of h for the 21st eigenfunction
and -value. The figure is drawn in a log–log scale

is sufficient.
By using the condition as in Table 1 the quadratic conver-

gence of the eigenvalues starts for h ≤ h0.

Remark 4.1 The relaxed stability condition (4.5) compared
to the theoretical bound (4.2) might be explained by [22,
Example 4.5]: In one dimension (for the Laplace eigenvalue
problem), the discrete eigenfunctions are the interpolants of
the exact eigenfunctions and one can derive the relaxed con-
dition (4.5) for this special case. Although, for the Mattieu
problem, the Galerkin finite element solution differs from the
interpolant, the difference is quite small and a similar effect
as in [22, Example 4.5] might be the reason for the observed
behavior.

In order to verify the eigenvalue error estimate (4.3) we
have computed the quantity

E1 (λ) := |λ− λS|
(λh)2 with h = h0/2 and h0 as in Table 1.

In Table 2, we have listed E1 (λ) which clearly shows that
for the chosen example the estimate is sharp.

In the next experiment, we have investigated the relative
H1-error of the eigenfunctions. We have chosen the mesh size
so that

√|λ|h = 1/10. Then, the theoretical error estimate
(4.4) takes the form

‖e − eS‖H1(�) ≤ C
(
1+ |λ|s) with s = 1. (4.6)

The numerical experiment is performed to see whether the
power s = 1 in (4.6) is sharp. We have plotted the function

E2 (log λ) := log ‖e − eS‖H1(�) , where h = 1

10
√|λ|

in Fig. 2, where—as comparison—the line g (x) = x−5/2 is
also depicted. We deduce that s = 1 holds and the theoretical
bound is sharp.

Finally, we have investigated the coarsest possible mesh
width for the eigenvalue multigrid method. We have chosen
a two-grid method (which is the most critical case for the
eigenvalue multigrid) and the maximal step size h0 for the
coarse mesh such that the averaged convergence rates κ are
at most 0.7. From Table 3 we conclude that, for this model
problem, the condition

√|λ|h0 � 1 for the coarsest mesh

Table 2 Ratio E1 (λ) for different values of λ and h0 chosen as in
Table 1

λ −13.9 −2.4 8.0 17.4 26.8 37.4 50.0 64.8

E1 (λ) 0.1 15.8 3.0 1.1 0.8 0.8 0.8 0.8

λ 81.6 100.5 121.4 144.4 169.3 196.2 225.2 256.2

E1 (λ) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

λ 289.2 324.2 361.1 400.1 441.1 484.1 529.1 576.1

E1 (λ) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

λ

||e
−

e S
|| 1

Fig. 2 The relative H1-error as a function of λ is shown. The compar-
ison with a line of slope 1 shows that the theoretical value s = 1 in (4.6)
turns out to be sharp for this example
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Table 3 Maximal coarse mesh width h0 so that the eigenvalue two-grid
method converges

λ −13.9 −2.4 8.0 17.4 26.8 37.4 50.0 64.8

h0 1/6 1/6 1/6 1/6 1/6 1/7 1/7 1/9√|λ|h0 0.6 0.3 0.5 0.7 0.9 0.9 1.0 0.9

κ 0.27 0.25 0.28 0.5 0.43 0.48 0.53 0.57

λ 81.6 100.5 121.4 144.4 169.3 196.2 225.2 256.2

h0 1/11 1/12 1/12 1/13 1/14 1/18 1/19 1/20√
λh0 0.8 0.8 0.9 0.9 0.9 0.8 0.8 0.8

κ 0.6 0.7 0.66 0.68 0.7 0.65 0.66 0.68

λ 289.2 324.2 361.1 400.1 441.1 484.1 529.1 576.1

h0 1/21 1/23 1/24 1/26 1/27 1/28 1/30 1/31√
λh0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

κ 0.69 0.66 0.67 0.66 0.67 0.69 0.67 0.69

width is sufficient for the convergence of the eigenvalue
multigrid method.

4.2 Experiments in two dimensions

In two dimensions we consider the case � = (0, 1)× (0, 2),
A = I the identity, and c ≡ 0, i.e., we consider the Dirichlet
Laplacian on the rectangle �.

4.2.1 Convergence of the eigenfunctions

The first set of experiments concerns the convergence of
the eigenfunctions, i.e., the investigation of the error ‖e −
eS‖H1(�). In Fig. 3, the relative H1-error of some eigenfunc-
tions as a function of the mesh width is depicted and the
following observations can be made.
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 = 249.21

λ
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 = 338.03
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Fig. 3 The convergence of the error ‖e−eS‖H1(�) against the decreas-
ing mesh width h. The results are shown for λ1, λ13, λ20, λ33, and λ59 on
a log–log scale. We also highlight the errors for the choice h

√
λ ≈ 0.7

1. The relative error stays at 100% until a threshold h0

is reached. Then, a transition region is passed through,

where the pollution term λ
2+d

2 h in (4.4) becomes neg-
ligible before, finally, the asymptotic convergence rate√

λh is reached.
2. In contrast to the one-dimensional example, the relaxed

condition (4.5) is not sufficient to guarantee that the error
starts to decrease for all h ≤ h0. For all examples, the the-
oretical condition (4.2) was sufficient so that the asymp-
totic convergence rate holds for h ≤ h0.

3. The maximal step size h0 decreases with larger val-
ues of λ. Interestingly, this decrease is not monotonic.
This behavior could be explained by considering the
eigenvalues λn,m := π2

(
n2 + m2/4

)
of the continuous

Laplacian on (0, 1)×(0, 2). A minimal condition for the
relative finite element error for an eigenfunction corre-
sponding to some λn,m to be smaller than 100% is given
by

h0 max
{

n,
m

2

}
= c for some c � 1, (4.7)

i.e., the oscillations of the wave are resolved by – at least –
a few mesh points. Consider two eigenvalues λn,1 ≤ λñ,ν̃

with ñ =
⌈

n/
√

2
⌉

and ν̃ =
⌈√

2n
⌉

, where �x� denotes

the smallest integer which is larger than or equal to x .
For the eigenvalueλn,1, condition (4.7) is more restrictive
than for the larger eigenvalue λñ,ν̃ . This observation, pos-
sibly, explains why the restriction on the coarsest mesh
width may not be always monotonously decreasing with
increasing eigenvalue.

The eigenvalues for the Laplacian on the rectangle (0, 1)×
(0, 2) are not uniformly distributed. We have avoided to
compute multiple eigenvalues because our multigrid imple-
mentation is designed only for single eigenvalues and, in
addition, the pre-asymptotic convergence theory in [22] does
not cover this case. However, the remaining eigenvalues
which we have considered are far from obeying the asymp-
totic distribution law. Hence, we also investigate the behavior
in the error ‖e − eS‖H1(�) in dependence of λ and δ (λ) (cf.

(3.1)) when
√

λh ≈ 2/3. The results are given in Fig. 4 where
we compared ‖e − eS‖H1(�) with λ/δ (λ).

4. Estimate (4.4) is obtained by inserting the asymptotic
distribution law (4.1) into (cf. [22, (4.15)])

‖e − eS‖H1(�) �
(

1+ λ2

δ (λ)
h

)√
λh.

Since
√

λh = 2/3 is fixed we get

‖e − eS‖H1(�) � 1+ λs

δ (λ)
with s = 3/2. (4.8)
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Fig. 4 We plot ‖e− eS‖H1(�) against λ for
√

λh ≈ 2/3. We compare
this with λ/δ(λ)

Figure 4 shows that the functions ‖e − eS‖H1(�) and
λ/δ (λ) have the same qualitative behavior. There are
too few experimental values in order to verify whether
the power s = 3/2 in (4.8) is sharp or whether a smaller
value s (e.g., s = 1) is fitting the error function better.
However, it is clearly visible that the factor of δ (λ)−1 in
(4.8) is sharp for the considered example.

4.2.2 Convergence of the eigenvalues

We next investigate the convergence of eigenvalues and, as
in the one-dimensional case, find the condition (4.2) to be
too strict. In Fig. 5 we plot the behavior of |λS − λ|/λ2. We
see that most eigenvalues (including the higher ones) of the
finite element system matrix are already—at least—stable
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 = 91.29

λ
33
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λ
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O(h2)

Fig. 5 The convergence of the error |λS−λ|/(λ2) against the decreas-
ing mesh width h. The results are shown for λ1, λ10, λ33, and λ59

approximations to some exact eigenvalue. More precisely, if
we denote the spectrum of the discrete problem (2.4) cor-
responding to the mesh G� and the finite element space S�

by σ� and order the eigenvalues increasingly (by taking into
account their multiplicity), i.e.,

0 < λ�,1 ≤ λ�,2 ≤ . . . λ�,N�

then, the following observation can be read off Fig. 5: there
exist some constants c ∈ (0, 1) and C > 0 independent of �

such that
∣∣λ�, j − λ j

∣∣

λ2
j

≤ Ch2
� ∀1 ≤ j ≤ cN�, (4.9)

where N� = dim S� and λ j denotes the j th exact eigenvalue.
Thus, (4.9) clearly shows the quadratic convergence of the
eigenvalues.

The fact that most discrete eigenvalues of a finite ele-
ment discretization are already—at least—stable approxima-
tions to some exact eigenvalues, is, at first glance, surprising
because the convergence of the corresponding eigenfunctions
has not started for the higher eigenvalues if j in (4.9) is
large, i.e., j ∼ cN�, and λ is large. An explanation, pos-
sibly, is that the eigenvalues are integrated quantities of the
eigenfunctions (via the Rayleigh quotient) and, although, the
accuracy of an eigenfunction with respect to the H1-norm is
poor it contains already enough accurate information for the
determination of a good approximation of the eigenvalue.
Figures 6 and 7 clearly support this explanation: In the range
of h, where the relative H1-error of the eigenfunction cor-
responding to λ33 still is 100%, the relative error for the
eigenvalue is already properly decreasing with the asymp-
totic rate. The plot of the eigenfunctions in Fig. 7 gives more
insights in the behavior of the approximate eigenfunctions as

10−1

10−1

100

|λ
−λ
S
|/λ

h
10−1

10−1

100

h

||e
−e
S
|| H

1

Fig. 6 The convergence of the relative errors |λS − λ|/λ and ‖e −
eS‖H1(�) against the decreasing mesh width h. The results are shown
for λ33
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Fig. 7 The exact eigenfunction with eigenvalue λ33 and two approxi-
mations for h = 1/30 and h = 1/31. For h = 1/30 the approximation is
in fact approximate eigenfunction for the repeated eigenvalue λ31 = λ32

the mesh width tends to zero. Let
(
λh, j , eh, j

)
denote the j th

eigenpair (counted increasingly and taking into account the
multiplicity) for the finite element discretization with step
width h. Then, for h̃ = 1/30, Fig. 7 shows the exact eigen-
function and, in the middle, the eigenfunction eh̃,33. It turns
out that eh̃,33 is much closer to the exact eigenfunction e32

than to e33 and, consequently, the H1-error is 100% as can be
seen in the right picture of Fig. 6. Although λh̃,33 might also
be considered as an approximation of λ32 the comparison
with λ33 gives also a relative error below 100%. The reason
is that the relative difference of two subsequent eigenvalues
is, asymptotically, tending to zero as can be seen from (4.1)

∣∣λ j+1 − λ j
∣∣

λ j
� Cλ

−d/2
j

j→∞→ 0.

4.2.3 Multigrid convergence

One essential ingredient for the multigrid convergence is
related to the accuracy of the approximations of the eigen-
functions on coarse grids G� which should already exhibit
the asymptotic convergence with respect to the coarse mesh
width h�. Hence, we expect that the condition on the coarsest
mesh width in the multigrid algorithm is in analogy to the
condition for the approximation of the eigenfunctions.

In Table 4, among other results, we show the maximal
mesh width such that the multigrid iteration converges effi-
ciently.

For the 33rd eigenfunction even for h0 = 1/35 we have
not obtained a rate of convergence for the multigrid method
which is smaller than 0.3. The non-monotonic decrease of
the coarsest mesh width, possibly, can be explained as the
third observation in Sect. 4.2.1.

Table 4 The results are only for the simple eigenvalues of the rectangle
(0, 1)× (0, 2)

j λ j 1/h0
√

λ j h0 E1(λ j ) 1/hMG Rate

1 12.337 5 0.7 0.08 2 0.2

2 19.739 6 0.7 0.09 3 0.3

3 32.076 8 0.7 0.09 4 0.3

4 41.946 9 0.7 0.08 6 0.3

7 61.685 11 0.7 0.1 6 0.3

8 71.555 12 0.7 0.09 10 0.3

9 78.957 12 0.7 0.1 8 0.3

10 91.294 13 0.7 0.08 12 0.3

13 101.163 14 0.7 0.1 17 0.3

14 111.033 15 0.7 0.1 13 0.2

17 130.772 16 0.7 0.1 16 0.3

18 150.511 17 0.7 0.1 16 0.3

23 177.653 19 0.7 0.1 20 0.3

24 180.120 19 0.7 0.1 20 0.2

29 219.599 21 0.7 0.1 20 0.2

30 239.338 21 0.7 0.09 26 0.3

33 249.208 22 0.7 0.09 –/– –/–

36 268.947 23 0.7 0.09 26 0.3

37 278.816 23 0.7 0.1 35 0.4

40 288.686 24 0.7 0.1 –/– –/–

43 315.827 25 0.7 0.1 35 0.2

46 338.034 26 0.7 0.1 –/– –/–

51 367.643 27 0.7 0.1 –/– –/–

52 377.512 27 0.7 0.09 –/– –/–

53 387.382 27 0.7 0.09 35 0.3

58 416.991 28 0.7 0.1 35 0.2

59 426.860 29 0.7 0.08 35 0.3

Given are h0 so that
√

λkh0 ≈ 0.7 and the error E1(λ j ) for this choice
of meshwidth. Next hMG is the largest meshwidth so that the multigrid
method converges with a rate smaller than or equal to 0.3
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