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Abstract We introduce two drift-diagonally-implicit and derivative-free integrators
for stiff systems of Itô stochastic differential equations with general non-commutative
noise which have weak order 2 and deterministic order 2, 3, respectively. The meth-
ods are shown to be mean-square A-stable for the usual complex scalar linear test
problem with multiplicative noise and improve significantly the stability properties of
the drift-diagonally-implicit methods previously introduced (Debrabant and Rößler,
Appl. Numer. Math. 59(3–4):595–607, 2009).
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1 Introduction

Consider the system of Itô stochastic differential equations
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dX(t) = f
(
X(t)

)
dt +

m∑

r=1

gr
(
X(t)

)
dWr(t), (1)

where X(t) is a random variable with values in R
d , f : R

d → R
d is the drift term,

gr : R
d → R

d , r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m are
independent one-dimensional Wiener processes. The drift and diffusion functions are
assumed smooth enough, Lipschitz continuous and to satisfy a growth bound in order
to ensure a unique (mean-square bounded) solution of (1) [6]. Except for some very
special cases, (1) cannot be solved analytically and numerical methods are needed.
The accuracy of a numerical solution is usually measured in terms of strong error
(the rate at which the mean of the error norm decays) and weak error (the rate at
which the difference between the mean of a smooth functional of the exact and the
numerical solutions decays) [14]. Besides the strong and weak error, the stability of
a numerical integrator is an essential issue for many problems. In the case of nu-
merical methods for ordinary differential equations (ODEs) this is a very well stud-
ied problem and one desirable property is the so-called A-stability, especially when
dealing with stiff problems [11]. More precisely, considering the linear test problem
dX(t) = λX(t)dt, λ ∈ C, whose solution is stable if and only if limt→+∞ X(t) =
0 ⇐⇒ λ ∈ SODE := {λ ∈ C;�(λ) < 0} and applying a Runge-Kutta method to it
leads to the one step difference equation Xn+1 = R(p)Xn, where the stability func-
tion R(p) is a rational function of p = λh. The numerical method is then stable for
this problem if and only if limn→∞ Xn = 0 ⇐⇒ p ∈ Snum := {p ∈ C; |R(p)| < 1},
and the method is called A-stable if and only if SODE ⊆ Snum.

For SDEs, different measures of stability are of interest and in this paper we focus
on mean-square stability [20] and mean-square A-stability [13] (the generalization of
the A-stability for ODEs to SDEs). One considers the following test problem [7, 13,
20, 22]

dX(t) = λX(t)dt + μXdW(t), X(0) = 1, (2)

in dimensions d = m = 1, with fixed complex scalar parameters λ,μ. The exact so-
lution of (2), given by X(t) = exp((λ − 1

2μ2)t + μW(t)), is mean-square stable if
and only if limt→∞ E(|X(t)|2) = 0 and mean-square stability can be characterized
as the set of (λ,μ) ∈ C

2 such that �(λ) + 1
2 |μ|2 < 0, that will be called SMS

SDE [13,
20]. Another measure of stability that will be briefly mentioned in this paper is that
of asymptotic stability. In particular, the solution of (2) is said to be stochastically
asymptotically stable if and only if limt→∞ |X(t)| = 0, with probability 1. Asymp-
totic stability can be characterized as the set of (λ,μ) ∈ C

2 such that �(λ− 1
2μ2) < 0.

Applying a numerical method to the test SDE (2) usually yields the following one
step difference equation [13]

Xn+1 = R(p,q, ξn)Xn, (3)

where p = λh,q = μ
√

h, and ξn is a random variable. We can then characterize the
mean-square stability domain of the method as

lim
n→∞ E

(|Xn|2
) = 0 ⇐⇒ S MS

num := {
(p, q) ∈ C

2 ;E
(∣∣R(p,q, ξ)

∣∣2)
< 1

}
. (4)
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A characterization of the numerical asymptotic stability domain can also be de-
rived, assuming R(p,q, ξ) 
= 0 with probability1 1 and E((log |R(p,q, ξ)|)2) < ∞,
as [13, Lemma 5.1] the set of (p, q) ∈ C

2 such that E(log |R(p,q, ξ)|) < 0. Finally,
a numerical integrator is called

– mean-square A-stable if SMS
SDE ⊆ S MS

num;
– mean-square L-stable, if it is mean-square A-stable and if the limit

E(|R(pk, qk, ξ)|2) → 0 holds for all sequences (pk, qk) ∈ SMS
SDE with �(pk) →

−∞.

If we restrict (p, q) ∈ R
2 then the domains of mean-square or asymptotic stability are

called regions of stability.
Mean-square A-stable numerical methods are necessarily drift-implicit and it is

shown in [13] that the stochastic θ -methods, which have strong order 1/2 and weak
order 1 for general SDEs of the type (1) are mean square A-stable for θ ≥ 1/2. In [12]
it is shown that A-stable methods which have strong and weak order 1 can be built
using the θ -method, with mean-square A-stability achieved for θ ≥ 3/2 (notice that
such methods might have large error constants and are usually not used in the deter-
ministic case). We mention that a class of strong order one implicit schemes for stiff
SDEs, based on the so-called Balanced method, were recently proposed in [5] with
the aim of achieving large asymptotic stability regions. High order strong methods
for SDEs are usually difficult to implement due to the need of computing numeri-
cally involved stochastic integrals. In contrast higher order weak methods are easier
to simulate as the stochastic integrals can in this case be replaced by discrete random
variables. However, constructing mean-square A-stable higher order integrators is a
non trivial task. In [16] a method of ROW type [10] of weak second order is pro-
posed for Itô SDEs that is mean-square stable under the assumption of real diffusion
coefficients. Recently, a class of singly diagonally drift-implicit Runge-Kutta meth-
ods of weak second order was proposed in [8]. These methods, called SDIRK in the
numerical ODE literature [11, Chap. IV.6] are of interest because they are cheaper
to implement than fully drift-implicit methods (see also the discussion in Sect. 2).
However, none of the weak second order diagonally implicit Runge-Kutta methods
proposed in [8] are mean square A-stable. Moreover except for the variation of the
θ -Milstein method for Itô SDEs that was proposed in [2], we are not aware of any
other weak second order mean-square A-stable integrator.

In this paper we derive a class of singly diagonally drift-implicit integrators of
weak second order (indexed by parameter γ ), that we call S-SDIRK methods, for
multidimensional SDEs with non-commutative noise. These methods have the same
computational cost as the methods derived in [8], but much better stability properties.
More precisely, for a particular choice of γ , the mean-square A-stability for general
parameters (p, q) ∈ C

2 can be proved. For another choice of γ that leads to a third
order method for deterministic problems, for which the mean-square A-stability can
be checked numerically. Comparison with the methods derived in [8] is discussed
and numerical experiments on a nonlinear test problem with non-commutative noise

1Notice that if R(p,q, ξ) = 0 with a non-zero probability, then (3) is clearly numerically asymptotically
stable.
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corroborate the weak second order of convergence predicted by our analysis. Finally,
a new stabilization procedure introduced in this paper also allows to improve the
stability of the strong and weak order 1 methods introduced in [12] based on the
θ -method. In particular, mean-square A-stable methods for any value θ ≥ 1/2 are
constructed.

2 Mean-square A-stable diagonally drift-implicit integrators

Instead of considering the general framework of stochastic Runge-Kutta methods
[15, 19] we derive our S-SDIRK methods by stabilizing the simplest Taylor based
method of weak second order, namely the Milstein-Talay method [21] following the
methodology developed in [4] for explicit stabilized stochastic methods. Consider

K̄1 = X0 + hf (X0), K̄2 = K̄1 + √
h

m∑

r=1

gr(X0)ξr , K̄3 = X0 + K̄1

2
,

X̄1 = X0 + h

2

(
f (X0) + f (K̄2)

)

+ 1

2

m∑

r=1

(

gr

(

X0 +
m∑

q=1

gq(X0)Jq,r

)

− gr

(

X0 −
m∑

q=1

gq(X0)Jq,r

))

+
√

h

2

m∑

r=1

(

gr

(

K̄3 +
√

h

2

m∑

q=1

gq(X0)χq

)

+ g

(

K̄3 −
√

h

2

m∑

q=1

gq(X0)χq

))

ξr ,

(5)

where

Jq,r =

⎧
⎪⎨

⎪⎩

h(ξrξr − 1)/2, if q = r,

h(ξqξr − χq)/2, if r < q,

h(ξqξr + χr)/2, if r > q,

(6)

and χl, ξl, l = 1 . . .m are independent discrete random variables satisfying respec-
tively

P(χl = ±1) = 1/2, P(ξl = ±√
3) = 1/6, P(ξl = 0) = 2/3. (7)

The method (5) is obtained from a second weak order Taylor method [21] replacing
stochastic integrals with discrete random increments and derivatives by finite differ-
ences. Notice that each step of the above derivative-free scheme only involves five
evaluations of the functions gr , r = 1, . . . ,m, independently of the dimension m of
the Wiener processes, thanks to suitable finite differences involving also noise terms,
as first proposed in [19]. A direct proof of the weak second order of the method
(5) can easily be established and we refer to [4, Lemma 3.1] for details. However,
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Fig. 1 Mean-square stability
region (dark gray) and
asymptotic stability region (dark
and light grays)

as it can be seen in Fig. 1, this method (5) has a very restricted mean-square stability
domain, which results in a stepsize restriction in the case of stiff problems.

In order to relax this restriction, one needs to stabilize the method (5). There are
two alternatives ways for doing this: use stabilized explicit integrators [1, 3, 4], or
use implicit integrators, and in particular diagonally drift-implicit ones, which, as
mentioned above, is the focus of this paper.

Diagonally implicit Runge-Kutta methods In the case of numerical methods for
ODEs, diagonally implicit Runge-Kutta methods are integrators of the form

Ki = Y0 +
i∑

j=1

aijhf (Kj ), Y1 = Y0 +
s∑

i=1

bihf (Ki), (8)

where s is the number of internal stages, and aij , bi are the coefficients of the
method. The advantage of diagonally implicit Runge-Kutta methods over fully im-
plicit Runge-Kutta methods is that one can treat one internal stage after the other
(nonlinear systems of size d × d) instead of solving the full nonlinear system of
size (d · s) × (d · s). An additional advantage is that the values for the internal
stages already computed can be used to find a good starting value for the next im-
plicit stage that needs to be computed [11]. Moreover, choosing identical diago-
nal coefficients aii = γ permits to use at each step a single LU-factorization for
all quasi-Newton iterations in all internal stages of the method. In this case the
corresponding methods are called singly diagonally implicit Runge-Kutta methods
(SDIRK).

New weak order two diagonally implicit A-stable integrators We introduce the fol-
lowing stabilized integrator of weak order two for the integration of (1).

K1 = X0 + γ hf (K1),

K2 = X0 + (1 − 2γ )hf (K1) + γ hf (K2),

K∗
1 = X0 + β1γ hf (K1) + β2γ hf (K2),

K∗
2 = X0 + γ hf (K1) + D−1(K∗

1 − X0
)
,

K∗
3 = K∗

1 + β3hf
(
K∗

2

)
,
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X1 = X0 + h

2
f (K1) + h

2
f

(

K2 + √
h

m∑

r=1

gr
(
K∗

2

)
ξr

)

+ 1

2

m∑

r=1

[

gr

(

K∗
2 +

m∑

q=1

gq
(
K∗

2

)
Jq,r

)

− gr

(

K∗
2 −

m∑

q=1

gq
(
K∗

2

)
Jq,r

)]

+
√

h

2

m∑

r=1

[

gr

(

K∗
3 +

√
h

2

m∑

q=1

g
(
K∗

2

)
χq

)

+ gr

(

K∗
3 −

√
h

2

m∑

q=1

g
(
K∗

2

)
χq

)]

ξr ,

(9)

where β1 = 2−5γ
1−2γ

, β2 = γ
1−2γ

, β3 = 1
2 − 2γ , and ξr ,χr , Jq,r satisfy (7) and (6) re-

spectively. For γ = 0, we have K∗
1 = K∗

2 = X0 and K∗
3 = X0 + (h/2)f (X0) and

we recover the explicit Milstein-Talay method (5). For the stage K∗
2 , we use D−1

to stabilize K∗
1 − X0, where D = I − γ hf ′(X0). This stabilization procedure (used

in numerical ODEs to stabilize the error estimator of an integrator) is well-known
in ODEs and has been introduced by Shampine [11, Sect. IV.8], its use for SDEs is
motivated in Remark 3 below. We emphasize that it does not represent a computa-
tional overhead as the LU -factorization of D needed to compute D−1(K∗

1 − X0) is
already available from the solution of the nonlinear system for the stages (K1,K2)

(see Remark 1).
We shall consider two choices for γ that yield mean-square A-stable integrators:

– the S-SDIRK(2,2) method for the value γ = 1 −
√

2
2 which gives a weak order 2

A-stable method with deterministic order 2;
– the S-SDIRK(2,3) method for the value γ = 1

2 +
√

3
6 which gives a weak order 2

A-stable method with deterministic order 3.

We notice that the value of γ for the S-DIRK(2,3) yields in the deterministic case a
method of order 3 which is strongly A-stable, i.e. |R(∞)| < 1, while the value of γ

for the S-DIRK(2,2) yields a method of order 2 which is L-stable, i.e. it is A-stable
and R(∞) = 0. L-stability is desirable in the case of very stiff deterministic problems
as it permits to damp the very high frequencies.

Complexity In addition to the solution of the deterministic two stage SDIRK method
(which yields the stages (K1,K2)) one step of the scheme (9) costs one evaluation of
the drift function f , and 5 evaluations of each diffusion functions gr , and the gener-
ation of 2m random variables. The cost is similar to the diagonally implicit methods
proposed in [8] (in particular the number of evaluation of the diffusion functions gr ,
r = 1, . . . ,m is independent of the number of Wiener processes m).

Remark 1 We emphasize that the computation of D−1(K∗
1 − X0) in the scheme

(9) does not represent any computational overhead. Indeed, as for any deterministic
or stochastic diagonally implicit method [8, 11], the usual procedure for evaluating



A-stable integrators for stiff Itô SDEs 833

K1,K2 is to compute the LU -factorization of D = I − γ hf ′(X0) (f ′(X0) is usually
further approximated by finite differences) and make the quasi-Newton iterations2

LU
(
Kk+1

i −Kk
i

) = −Kk
i +X0 + δ2i (1 − 2γ )hf (K1)+γ hf

(
Kk

i

)
, i = 1,2, (10)

where δ2i is the Kronecker delta function. The same LU -factorization is then used to
compute D−1(K∗

1 − X0) by solving

LUY = K∗
1 − X0,

whose cost in negligible: the cost of evaluating K∗
2 together with K∗

3 is the same as
one iteration of (10).

Remark 2 The stabilization procedure used in the method (9) can also be used to
improve the stability of the strong order one methods studied in [13] by considering
the following variant of the stochastic θ -method

K1 = X0 + (1 − θ)hf (X0) + θhf (K1),

K2 = X0 + θ(2 − θ)(1 − θ)hf (X0) + θ2(2 − θ)hf (K1) + θ2D−1hf (K1),

X1 = K1 + √
h

m∑

r=1

gr(K2)ξr

+ 1

2

m∑

r=1

(

gr

(

K2 +
m∑

q=1

gq(K2)Iq,r

)

− gr

(

K2 −
m∑

q=1

gq(K2)Iq,r

))

,

(11)

where ξr ∼ N (0,1) are independent random variables, and Iq,r are the multiple

stochastic integrals Iq,r = ∫ h

0 (
∫ s

0 dWq(t))dWr(s). Here, D = I − θhf ′(X0). In the
case of commutative noise, these multiple stochastic integrals do not need to be sim-
ulated and can be simply replaced by h(ξqξr − δqr )/2, where δqr is the Kronecker
delta function. The advantage of the integrator (11) is that it can be shown to be
mean-square A-stable for all θ ≥ 1/2 (see Remark 6). In contrast, the strong order
one θ -Milstein method, whose stability has been analyzed in [13], is mean-square
A-stable only for θ ≥ 3/2 and these values of θ yield large error constants.

We next show that the integrator (9) has weak second order.

Theorem 1 Consider the SDE (1) with f,gr ∈ C6
P (Rd,R

d), Lipschitz continuous.
Then, for all fixed γ 
= 1/2, the integrator (9) satisfies

∣∣E
(
φ
(
X(nh)

)) − E
(
φ(X̄n)

)∣∣ ≤ Ch2, 0 ≤ nh ≤ T ,

for all φ ∈ C6
P (Rd,R), where C is independent of n,h.

2In the implementation, we use the initializations K0
1 = X0 and K0

2 = X0 + (1 − γ )hf (K1) and we

consider the stopping criteria (‖Kk+1
i

− Kk
i
‖ = 0 or ‖Kk+1

i
− Kk

i
‖ ≥ ‖Kk

i
− Kk−1

i
‖) which guaranties

a convergence up to machine precision for the iterations (10). Other stopping criteria, such as ‖Kk+1
i

−
Kk

i
‖ < Tol where Tol is a prescribed tolerance could also be considered.
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Proof We base our proof on a well-known theorem by Milstein [17], which states
that under our smoothness assumptions a local weak error estimate of order r + 1
guarantees a weak order of convergence r . Since the derivative free Milstein-Talay
method (5) is already of weak second order (see [4, Lemma 3.1] for a short direct
proof), it is sufficient to show that

∣∣E
(
φ(X1)

) − E
(
φ(X̄1)

)∣∣ ≤ Ch3, (12)

where X1, X̄1 are the one step numerical approximations given by (9) and (5), re-
spectively. A Taylor expansion argument shows

K∗
2 = X0 +3γ hf (X0)+ O

(
h2), K∗

1 +1− 4γ

2
hf

(
K∗

2

) = X0 + h

2
f (X0)+ O

(
h2),

and

K1 = X0 + γ hf (X0) + O
(
h2), K2 = X0 + (1 − γ )hf (X0) + O

(
h2),

from which we deduce

h

2
f (K1)+ h

2
f

(

K2 +√
h

m∑

r=1

gr
(
K∗

2

)
ξr

)

= h

2

(
f (X0)+f (K̄2)

)+h5/2R1 + O
(
h3),

(13)
where E(R1) = 0. Furthermore, we notice that the last two lines of (5) and (9) are
identical, with the exception that X0 is replaced by K∗

2 and K̄3 is replaced by K∗
3 . This

induces a perturbation of the form h2R2 +h5/2R3 + O(h3) where E(R2) = E(R3) = 0
and E(R2ξr) = 0 for all r (a consequence of E(Jq,r ξj ) = 0 for all indices q, r, j ). We
deduce

X1 − X̄1 = h2R2 + h5/2(R1 + R3) + O
(
h3).

Using X̄1 = X0 + √
h

∑m
r=1 gr(X0)ξr + O(h), we obtain

φ(X1) − φ(X̄1) = φ′(X̄1)(X1 − X̄1) + O
(
h3),

= φ′(X0)
(
h2R2 + h5/2(R1 + R3)

)

+ h5/2
m∑

r=1

φ′′(X0)
(
gr(X0)ξr ,R2

) + O
(
h3).

We deduce that the local error bound (12) holds. To conclude the proof of the global
error, it remains to check that for all r ∈ N all moments E(|Xn|2r ) are bounded uni-
formly for all 0 ≤ nh ≤ T , with h small enough. These estimates follow from stan-
dard arguments [18, Lemma 2.2, p. 102] using the linear growth of f,gr , assumed
globally Lipschitz. �

We now illustrate Theorem 1 numerically. In particular, we consider the following
non stiff nonlinear test SDE from [8] with a non-commutative noise with 10 indepen-
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Fig. 2 Weak convergence plots
for the nonlinear problem (14)
for the Milstein-Talay method
(5) (dashed-dotted line),
S-SDIRK(2,2) (solid line),
S-SDIRK(2,3) (dashed line),
DDIRDI5 [8]
(dashed-dotted-dotted line).
Second moment error at final
time T = 1 versus the
stepsize h, where 1/h = 1,2,3,

4,6,8,11,16,23,32. Averages
over 109 samples

dent driving Wiener processes,

dX(t) = X(t)dt +
10∑

j=1

a−1
j

√
X(t) + b−1

j dWj (t), X(0) = 1, (14)

where the values of the constants aj , j = 1, . . . ,10 are respectively 10, 15, 20, 25,
40, 25, 20, 15, 20, 25, and the values of bj , j = 1, . . . ,10 are respectively 2, 4, 5, 10,
20, 2, 4, 5, 10, 20. For this problem, by applying Itô’s formula to φ(x) = x2, tak-
ing expectations and using the fact that E(X(t)) = et , one calculates E(X2(t)) =
(−68013 − 458120et + 14926133e2t )/14400000. We apply the S-SDIRK methods
to the problem (14) and approximate E(X2(T )) up to the final time T = 1 for dif-
ferent step sizes h. In Fig. 2, we plot the relative errors using 109 realisations for
the new integrators S-SDIRK(2,2) (solid line) and S-SDIRK(2,3) (dashed line). For
comparison, we also include the results of the derivative-free Milstein-Talay method
(5) (dashed-dotted line) and the DDIRDI5 method (dashed-dotted-dotted line) from
[8] (with c1 = c2 = 1/2 + √

3/6, c3 = c4 = 1 in [8]). We note here that the same set
of random numbers is used for all four integrators. We observe the expected line of
slope 2 for S-SDIRK(2,2) (compare with the reference slope in dotted lines) which
confirms the weak order two of the methods predicted by Theorem 1. In addition, we
also observe that the methods S-SDIRK(2,3) and DDIRDI5, which have determinis-
tic order 3, are about one magnitude more accurate than the Milstein-Talay method
for steps of size h � 10−1. As the noise is small in this example, the third order deter-
ministic accuracy can improve the convergence of S-SDIRK(2,3) or DDIRDI5. We
emphasize that this behavior does not hold in general when the diffusion function
is not small compared to the drift function as can be seen in Fig. 5 and its related
problem.
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3 Mean-square A-stability

In this section, we study the mean-square stability of the integrators S-SDIRK(2,2)
and S-SDIRK(2,3). The stability functions (3) have the form

R(p,q, ξ) = A(p) + B(p)qξ + C(p)q2 ξ2 − 1

2
,

where P(ξ = ±√
3) = 1/6,P(ξ = 0) = 2/3, and

A(p) = 1 + (1 − 2γ )p + (γ 2 − 2γ + 1/2)p2

(1 − γp)2
,

B(p) = 1 + (1 − 3γ )p

(1 − γp)3
, C(p) = 1

(1 − γp)3
.

(15)

We deduce for all p,q ∈ C,

E
(∣∣R(p,q, ξ)

∣∣2) = ∣∣A(p)
∣∣2 + ∣∣B(p)

∣∣2|q|2 + ∣∣C(p)
∣∣2 |q|4

2
=: S(p,q). (16)

Remark 3 We observe that by removing the term involving D−1 in the S-SDIRK
methods (9), the denominators of B(p) and C(p) would scale at best as (1 − γp)2.
The resulting methods would no longer be mean-square A-stable.

In Fig. 3 we visualize the mean-square and asymptotic stability regions for S-
SDIRK(2,2) and compare them with the ones of the diagonally-implicit method

DDIRDI5 introduced in [8] (c1 = c2 = 1
2 +

√
3

6 ). The dashed lines {|p| = q2/2}
indicate for p < 0 and p > 0 respectively the boundaries of the mean-square and
asymptotic stability regions for the exact solution. As we can observe, the mean-
square stability regions (dark gray) of S-SDIRK(2,2) are much bigger than the ones
of DDIRDI5, and include the ones of the exact solution. This relates with the fact
that DDIRDI5 and the class of weak second order methods introduced in [8] are not
mean-square A-stable as shown in [4], whereas S-SDIRK(2,2) is a mean-square A-
stable integrator, as proved in the next theorem. Moreover it is mean-square L-stable
as shown in Remark 4.

Theorem 2 The integrator S-SDIRK(2,2) is mean-square A-stable.

Proof Since S(p,q) given by (16) is an increasing function of |q|2, we set for z ∈ C,
s(z) := S(z,

√−2�z) and the method is mean-square A-stable if and only if

sup
�z<0

s(z) = sup
�z<0

(∣∣A(z)
∣∣2 + 2

∣∣B(z)
∣∣2

(−�z) + 2
∣∣C(z)

∣∣2
(�z)2) ≤ 1. (17)

Using γ = 1 − √
2/2 and putting z = x + iy, a calculation yields

∂s(z)

∂y
= y

a1(x)y4 + a2(x)y2 + a3(x)

|1 − γ z|8 , (18)
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Fig. 3 Mean-square stability region (dark gray) and asymptotic stability region (dark and light grays) for
DDIRDI5 [8] (left pictures) and S-SDIRK(2,2) (right pictures)

where

a1(x) = 35
√

2 − 99/2,

a2(x) = (−99 + 70
√

2)x2 + (−198
√

2 + 280)x − 17 + 12
√

2,

a3(x) = (35
√

2 − 99/2)x4 + (−198
√

2 + 280)x3 + (64
√

2 − 91)x2 + (6
√

2 − 8)x.

It can be checked that ai(x) < 0 for all x < 0 and all i = 1,2,3. For a given x < 0, we
consider (18) as a function of y, say g(y) and we observe that g(0) = 0 and g(y) > 0,
for all y < 0, g(y) < 0, for all y > 0. Thus, since s(x + iy) is a smooth function of y

that tends to zero for y → ∞, we deduce

sup
�z=x

s(z) = s(x), for all x < 0. (19)

Finally, an elementary study of the quantity s(x) as a function of the real parameter
x < 0 yields s(x) ≤ 1. This implies the bound (17) and concludes the proof. �

Remark 4 We observe that in the proof of Theorem 2 we also have limx→−∞ s(x) =
0. Hence the S-SDIRK(2,2) method is also mean-square L-stable.

Remark 5 Using (17), it can be checked numerically that the integrator S-SDIRK(2,3)
is mean-square A-stable (see an illustration for real (p, q) in Fig. 4). A rigorous proof
is however more tedious to derive because (19) does not hold for this integrator (no-
tice that the scheme is not L-stable for deterministic problems).
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Fig. 4 Mean-square stability region (dark gray) and asymptotic stability region (dark and light grays) of
S-SDIRK(2,3)

Table 1 Comparison of mean-square stability constraints for the test problem dX(t) = λX(t)dt +
μX(t)dW(t)

Method Mean-square
A-stability

Stepsize restriction for mean-square stability

−λ = μ2 = 5 −λ = μ2 = 50 −λ = μ2 = 500

Milstein-Talay (5) no h ≤ 0.236 h ≤ 0.0236 h ≤ 0.00236

DDIRDI5 [8] no h ≤ 0.246 h ≤ 0.0246 h ≤ 0.00246

S-SDIRK (2,2) or (2,3) yes no restriction no restriction no restriction

Remark 6 For the strong order one θ -methods (11) a simple calculation gives for the
stability function (16),

S(p,q) =
∣∣
∣∣
1 + (1 − θ)p

1 − θp

∣∣
∣∣

2

+ |q|2
|1 − θp|4 + |q|4

2|1 − θp|4 .

Similarly as in Theorem 2 the mean-square A-stability of (11) can be proved for
θ ≥ 1/2.

We now exhibit the advantage of our method over the Milstein-Talay method (5)
and the weak second order drift-implicit methods considered in [8]. In particular, we
consider the linear test problem (2) and compare the behaviour of the three different
methods for a range of parameters λ,μ for which the solution of (2) is mean-square
stable. As we can see in Table 1, even for a moderate stiff problem (−λ = μ2 = 5)
in contrast to the S-SDIRK methods introduced here, there is quite a big stepsize re-
striction in order for the numerical solution to be mean-square stable for the Milstein-
Talay and the DDIRDI5 methods. Furthermore, as expected we observe that the step-
size restriction for the other two methods becomes more severe as we increase the
stiffness of the problem.

We finally compare the performance of the introduced stochastic integrators on a
nonlinear stiff system of SDEs with a one-dimensional noise (d = 2,m = 1),

dX(t) = (
α
(
Y(t) − 1

) − λ1X(t)
(
1 − X(t)

))
dt − μ1X(t)

(
1 − X(t)

)
dW(t),

dY (t) = −λ2Y(t)
(
1 − Y(t)

)
dt − μ2Y(t)

(
1 − Y(t)

)
dW(t),

(20)
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Fig. 5 Weak convergence plots for the nonlinear stiff problem (20) for S-SDIRK(2,2) (solid line),
S-SDIRK(2,3) (dashed line), DDIRDI5 (dashed-dotted-dotted line) [8]. Error for E(X(1)2) versus the
stepsize h, where 1/h = 1,2,3,4,6,8,11,16,23,32. Averages over 108 samples

which is inspired from a one-dimensional population dynamics model [9, Chap. 6.2].
Notice that if we linearise (20) around the stationary solution (X,Y ) = (1,1), we
recover for α = 0 the linear test problem (2). We take the initial conditions X(0) =
Y(0) = 0.95 close to this steady state and use the parameters λ2 = −4, μ2 = 1, α = 1.

We take for the deterministic part of the problem the stiff parameter λ1 = −500
and we shall consider for the noise parameter μ1 either the stiff value μ1 = √

500 or
the nonstiff value μ1 = 1. We plot in Fig. 5 the errors for E(X(T )2) at the final time
T = 1 versus stepsizes h for the integrators DDIRDI5, S-SDIRK(2,2), S-SDIRK(2,3)
taking the averages over 108 samples. Reference solutions where computed using the
Milstein-Talay method (5) with stepsize h = 10−4. We consider the two cases of a
non-stiff noise (μ1 = 1) and a stiff noise (μ1 = √

500). In the non-stiff noise case (left
picture), the results of S-SDIRK(2,3) are nearly identical to those of DDIRDI5 with
hardly distinguishable curves, while in the stiff noise case (right picture), the results
for DDIRDI5 are not included because this method is unstable for the considered
stepsizes, as predicted by the linear stability analysis (see the stepsize restrictions in
Table 1). It is remarkable in both cases that S-SDIRK(2,2) is more than four mag-
nitudes more accurate than S-SDIRK(2,3) for steps with size ∼ 10−1, a regime for
which curves with slope two can be observed. We believe that the mean-square L-
stability of the S-SDIRK(2,2) method is responsible for this behavior.
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