
Digital Object Identifier (DOI):
10.1007/s00285-005-0320-z

J. Math. Biol. 51, 198–216 (2005) Mathematical Biology

Christian Mazza

Strand separation in negatively supercoiled DNA

Received: 18 June 2003 / Revised version: 2 February 2005 /
Published online: 2 May 2005 – c© Springer-Verlag 2005

Abstract. We consider Benham’s model for strand separation in negatively supercoiled cir-
cular DNA, and study denaturation as function of the linking difference density κ < 0.
We propose a statistical version of this model, based on bayesian segmentation methods of
current use in bioinformatics; this leads to new algorithms with priors adapted to supercoiled
DNA, taking into account the random nature of the free energies needed to denature base
pairs.

1. Introduction

Initiation of transcription in DNA requires the two strands of the double helix to
separate, and strand separation is enhanced in negative supercoiled DNA. Benham
(1979, 1990, 1996) proposes a mathematical model for the process of strand sep-
aration, based on statistical mechanics ideas, and develop algorithms to locate
interesting sites along the DNA where strand separation or replication is strongly
favored (see e.g. Clote and Backofen (2000)). These computational methods are
Metropolis dynamics (Sun et altri (1995)) or exact methods relying on transfer
matrices (Fye and Benham (1999)). In a typical state, some base pairs are broken;
we are interested in the repartition of the droplets of denatured bonds, and on the
nature of the bases situated in these domains. Our aim is to investigate the effect
of the number of droplets, of the degreee of negative superhelicity of the DNA and
of the concentration in A + T bonds on the equilibrium properties of Benham’s
model. This is the topic of Section 2, where homopolymers are treated according to
the number of connected domains of denatured bonds: in Section 2.1.1, we study
denaturation when no restriction on the number of domains is imposed, and show
that no fully denatured state exists; this is the situation adapted to the algorithms
of Fye and Benham (1999). In Section 2.1.2, we study the model when the num-
ber of domains rN is such that rN/N → 0, as N → ∞, where N denotes the
number of bases of the DNA. We show the existence of a fully denatured state
when the duplex is sufficiently negatively supercoiled. This is the regime where
the MCMC of Sun et altri applies. We next turn to copolymers in Section 2.2, and
study localized denaturation as function of the proportion of A + T bonds and of
the level of negative superhelicity of the DNA. Section 3 focus on the statistical
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aspects of the model: Section 3.1 translates Benham’s model in a Bayesian frame-
work, and Section 3.2 shows how Bayesian segmentation methods of current use
in bioinformatics, as presented in Liu and Lawrence (1999), can be of interest in
the strand separation problem. This also give new algorithms with priors adapted
to supercoiled DNA, which take into account the random fluctuations of the free
energies needed to denature A + T and G + C bonds.

In what follows, we consider a spin system based on a circular graph with node
set S, |S| = N , N ∈ N, and, for each site i ∈ S, a spin σi ∈ {−1, +1}. Benham’s
original model deals with a lattice gas, with binary random variables ni . We use
both notations by setting ni = (σi + 1)/2, and use spins to link this model with
known mean field models. The meaning of ni = 0 (resp. σi = −1) is that the bases
of the double helix at site i ∈ S are linked by an hydrogen bond, the link is closed,
and ni = 1 (resp. σi = +1) means that this bond is broken, the link is open. Then
n := ∑N

i=1 ni denotes the number of open bonds. The partitioning of the DNA in
domains allows the linking numbers to be regulated, where the linking number L

of a configuration describes the way the duplex winds about the axis, assuming that
the axis of the helix is planar. The twist T is the number of times the duplex revolves
about its axis(see e.g. Clote and Backofen (2000), chap. 6.2). When the DNA is
relaxed, the so-called B-DNA state, a segment of N bases produces typically the
characteristic linking number L0 = N/A, where the constant A is experimentally
situated around 10.4. A negative supercoilded DNA is a configuration obtained
from the B-DNA by cutting the strands using topoisomerase of type II; one another
piece of the duplex passes through the gap, which is closed afterwards. This pro-
cess reduces then the linking number of the duplex and forces the circular axis of
the helix to wind, producing then a more twisted and compact configuration(see
e.g. Lewis (1994)). This supercoiled state permits for example to put the helix in
nuclei. Benham’s model permits to quantify the way supercoiling enhances strand
separation.

Consider a supercoiled DNA with negative linking difference α = L−L0 < 0,
imposed during the process. Assume that n base paires are denatured; the helix
unwinds locally and thus increases its linking difference to α + n/A. Because
the strands car rotate around each others, the same process induced also a twist T ,
yielding a residual linking difference αr = α+n/A−T . The total twist T between
separated regions is modeled as

T =
N∑

i=1

niτj

2π
,

where τi ∈ R is the local helicity. Benham’s idea is to quantify all of these steps
with free energy costs. The torsional free energy Gt is given by

Gt = C

2

N∑

i=1

niτ
2
i ,

for some stiffness coefficient C > 0. Consider a configuration in which n bonds
are seperated in r runs, that is in r connected components of open bonds. In what
follows, 2r is the perimeter of the configuration.
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The free energy cost for separation is modeled as

Gs = ar +
N∑

i=1

bini, a > 0, r =
∑

i

ni(1 − ni+1),

where the parameters bi indicate the natures of the bases located at sites i ∈ S: AT

links are formed of 2 hydrogen bonds, and GC links consist in 3 hydrogen bonds. If
i ∈ S is associated with an AT link, we set bi = bAT and bi = bGC otherwise, with
bGC > bAT . In the homopolymer case, bi ≡ b > 0. This will act as an exterior
magnetic field in the statistical approach; when the bases are chosen at random on
the DNA with some law,

∑
i nibi can be viewed as a random external field. The free

energy b needed to break the base pair, and thus to separate a base pair, depends on
the inverse temperature β:

b = b(β) = �H

(

1 − βm

β

)

, (1)

where �H is the enthalpy of the reaction and βm is the inverse temperature asso-
ciated to the melting temperature Tm. Below Tm, the field b is positive, this is the
regime we are interested in. From Benham (1992), the pBR322 DNA is such that
�HAT = 7.25 kcal/mol, �HGC = 9.02 kcal/mol, and the melting temperature Tm

follows the law

Tm = 354.55 + 16.6 log(x) + 41FGC,

where x is some parameter and FGC = 0 for AT bonds and FGC = 1 for GC bonds.
When x = 0.01 and T = β−1 = 310 K, the resulting free energies are given by
bAT = 0.255 kcal/mol and bGC = 1.301 kcal/mol.

Long range interactions appear with the fluctuations of the linking difference:
it is known experimentally that the energy cost associated with the residual linking
difference for supercoiled DNA is given by

Gr = Kα2
r

2
= K

2

(
α + n

A
− T

)2
.

Experimentally, the coefficient K is inverse proportional to the number of bases of
the DNA; we thus set

K = K0

N
.

As N is large, basic statistical reasoning suggests to renormalize the variable n as
n/N , to catch the thermodynamical limit. We thus introduce the linking difference
density κ by setting

α = κN,

which is related to the superhelical density s as s = κA. The overall free energy
takes then the form
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G = C

2

N∑

i=1

niτ
2
i + N

K0

2

(

κ + n

2NA
− 1

N

N∑

i=1

niτi

2π

)2

+
N∑

i=1

((a + 2bi)ni − anini+1).

We use the local fields 2bi instead of bi for notational purpose.

2. Results on denaturation

2.1. The homopolymer approximation

In this paragraph, we suppose that bi ≡ b > 0 and that τi ≡ τ ∈ R. Set for
convenience

MN = 1

N

N∑

i=1

ni, mN = 1

N

N∑

i=1

σi = 2MN − 1.

Then the Hamiltonian of the system becomes

Gτ = N

(

2bMN + Cτ 2

2
MN + K0

2

(

κ +
(

1

2A
− τ

2π

)

MN

)2)

+ aHsing/4,

where the index τ of Gτ indicates the dependence on the torsion coefficient τ and
Hsing denotes the Hamiltonian associated with the nearest neighbor ferromagnetic
Ising model in dimension 1

Hsing = −
N−1∑

i=1

σiσi+1 = 4r − N.

Before introducing the Gibbs measure of the system at inverse temperature β > 0,
let us proceed as in Benham by averaging the system with respect to the torsion
coefficient τ . The Boltzman weight should be exp(−βGτ ). Averaging over τ ∈ R

gives the integral
∫
R

exp(−βGτ )dτ , that is the effective Hamiltonian

H1 = N2bMN + a

4
Hsing + N

2π2CK0

4π2C + K0MN

(

κ + MN

A

)2

, (2)

(see Fye and Benham (1999)).

2.1.1. Arbitrary large perimeter
In this approximation, we shall consider the behavior of MN in the thermodynam-
ical limit N → ∞ under Gibbs measure

πβ,B(σ ) = exp(−βH1(σ ))/ZN(β, B), (3)

where ZN(β, B) denotes the related partition function, and where B = (bi)1�i�N ,
bi ≡ b, denotes the exterior field. We use mainly Laplace method bu using the
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large deviation rate function associated with the ferromagnetic nearest neighbor
Ising model in dimension one. Notice the appearance of the magnetization M in
the denominator of (2), which is quite unconventional. Let πβa be the Gibbs mea-
sure at inverse temperature βa = aβ/4 associated with the Hamiltonian Hsing.
Then, for any function h : I := [0, 1] −→ R,

< h(MN) >πβ,B
= < h(MN) exp(−NβFB(MN)) >πβa

< exp(−NβFB(MN)) >πβa

, (4)

where

FB(y) = b(2y − 1) + G(y), y ∈ I, (5)

and

G(y) = 2π2CK0

4π2C + K0y

(

κ + y

A

)2

.

Let µN be the law of mN(σ) = 2MN(σ) − 1 under Gibbs measure πβa . Then

< h(MN) >πβ,B
=
∫ +1
−1 µN(dz)h( 1+z

2 ) exp(−βNFB( 1+z
2 ))

∫ +1
−1 µN(dz) exp(−βNFB( 1+z

2 ))
. (6)

Benham (1979) investigates the thermodynamics of supercoiled DNA, by min-
imizing free energies, and introduces critical thresholds of supercoiling. In this
macroscopic approach, it is shown that sufficient negative supercoiling implies
local denaturation. In Benham (1996), this work is extended to positively super-
coiled DNA (κ > 0); looking at the various plots contained in this work, we see the
appearance of critical linking difference densities above which a positively super-
coiled DNA remains intact at temperatures higher than the melting point. Similarly,
we introduce the

Definition 1. The order parameter of the system is

< MN >πβ,B
, or < mN >πβ,B

,

the magnetization of the spin system. We say that the system exhibits phase tran-
sitions when there exist critical linking difference densities κ̄c(B) > κc(B) such
that, in the large N limit, < MN >πβ,B

→ 0 as κ > κ̄c(B), < MN >πβ,B
→ 1 as

κ < κc(B), and lim < MN >πβ,B
∈ (0, 1) otherwise.

Let �N(λ) be the logarithmic moment generating function

�N(λ) := ln(πβa (exp(NmNλ))),

with (see e.g. Baxter (1982), p.34)

�∞(λ) := lim
N→∞

1

N
�N(λ) = ln

(
eβa cosh(λ) +

√
e2βa sinh(λ)2 + e−2βa

eβa + e−βa

)

.
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Then, according to Gaertner-Ellis Theorem, (see e.g. Dembo and Zeitouni (1992))
the law of mN under πβa satisfies a large deviation principle with good rate function

Ising(z) = sup
λ∈R

(λz − �∞(λ)),

the Legendre transform of �∞. �′∞ = eβa sinh /
√

e2βa sinh2 +e−2βa , and
�′′∞ = eβa cosh /(e2βa sinh2 +e−2βa ). �∞ is thus strictly convex on R, and its
Legendre transform is essentially smooth (see Theorem 26.3 in Rockafellar (1972)).
The derivative I ′

sing(z) tends to +∞ when z converges to a boundary point of the
domain of Ising. From computation,

Ising(z) = z ln

(
ze−2β +

√
1 + z2(e−4βa − 1)√

1 − z2

)

− ln

(
eβa
√

1 + z2(e−4βa − 1) + e−βa

√
1 − z2(eβa + e−βa )

)

,

|z| � 1, and Ising(z) = +∞ when |z| > 1.
In the special case where a = 0, the rate function becomes the entropy

Ising(z) = 1 + z

2
ln(1 + z) + 1 − z

2
ln(1 − z), |z| � 1.

The integrals appearing in (6) can be estimated through Laplace’s method by re-
writting the numerator heuristically as

∫ +1

−1
dzh

(
1 + z

2

)

exp(−NJ(z)),

where we set

J (z) := Ising(z) + βFB

(
1 + z

2

)

, |z| � 1.

Then (6) is asymptotically equivalent to
∫ +1
−1 dzh( 1+z

2 ) exp(−N(J (z) − inf |z|�1 J (z)))
∫ +1
−1 dz exp(−N(J (z) − inf |z|�1 J (z)))

.

Theorem 1. ∃ a unique z∗ ∈ (−1, +1) minimizing J (z), with

< MN >πβ,B
−→ 1 + z∗

2
.

The model does not exhibit phase transitions in the sense of Definition 1.
This is a consequence of the stiffness of the rate function Ising(z) as |z| → 1:
lim|z|→1(d/dz)Ising(z) = +∞, and the rate function J (z) can not be decreasing in
the neighborhood of z = 1. The minima of J (z) are thus located in the interior of
the unit interval. Suppose that the Ising measure is replaced by some probability
measure VN on 	N , such that the law of MN under VN satisfies a large deviation
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principle with strictly convex and smooth free energy function �; then its Legendre
transform is essentially smooth, and again, using Varadhan’s Theorem, one gets the
rate function J (z)− infz J (z); similarly, the minima of J are located in the interior
of the domain of the Legendre transform, and no phase transition occurs.

Proof. Consider the probability measure

νN(C) =
∫
C

µN(dz) exp(−NβFB((1 + z)/2)
∫ 1
−1 µN(dz) exp(−NβFB((1 + z)/2)

,

for any Borel subset C of [−1, 1]. Varadhan’s Theorem (see Deuschel and Stroock,
Theorem 2.1.10 and exercice 2.1.24) gives that νN satisfies a large deviation prin-
ciple with good rate function J (z). If J attains its infimum at a unique point z∗ of
the interval, the sequence νN converges weakly to the point mass δz∗ . Consider first
FB(y), y ∈ [0, 1], or equivalently FB + 2bκA + b, which is equal to

2(bA2 + π2C)

A2

(y − y0)(y − y1)

(y − y2)
,

where

y0 = −κA > 0, y1 = − π2CA

K0(bA2 + π2C)
(4bA + K0κ) and y2 = −4π2C

K0
.

Notice that b > 0 implies that y1 > y2. The function has a pole at y = y2 < 0, and
two roots y1 and y0 > 0. Then FB is strictly convex on the half line (y2, +∞). Thus
J is strictly convex on [−1, 1], with lim|z|→1 J ′(z) = +∞. The unique infimum
is thus located in the interior of the interval.

2.1.2. Limited perimeter
Computations done in some theoretical studies (see e.g. Benham (1989), p. 268 and
Benham (1990), p. 6302) or empirical studies( see e.g. Sun et altri (1995, p. 8658))
deal with the behavior of MN when 2r is fixed, or is small. In what follows, we give
conditions on the growth of r = rN ensuring the possibility of phase transitions,
that is the possibility for global denaturation when the linking difference density is
small enough.

In what follows, we condition on the event {σ ; |σ | = 2rN }, where for any
configuration σ , |σ | denotes the perimeter of σ , with |σ | = |i; σi = −σi+1| = 2r ,
and Hsing(σ ) = 2|σ | − N . Classical combinatorics (see e.g. Feller (1971)) shows
that the number of configurations of length N with

∑N
i=1 ni = n and perimeter

1 � r � N/2 is given by

M(n, r) = N

r

(
n − 1

r − 1

)(
N − n − 1

r − 1

)

.

Let Ur,N be the uniform probability measure on the subset Cr,N of the cube 	N

consisting of spins of perimeter 2r . Let Pr,N be the law of MN under Ur,N , with
supp(Pr,N ) = {r/N, . . . , 1 − r/N}, given by
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Pr,N (n/N) =
(
n−1
r−1

)(
N−n−1

r−1

)

∑
r�n�N−r

(
n−1
r−1

)(
N−n−1

r−1

) . (7)

Then the average < h(M) >πβ,B
becomes

∑
r exp(−βar)|{|σ | = 2r}|∑r�n�N−r Pr,N (n/N)h(n/N) exp(−NβFB(n/N))
∑

r exp(−βar)|{|σ | = 2r}|∑r�n�N−r Pr,N (n/N) exp(−NβFB(n/N))

We will be concerned with integrals of the form
∫ 1

0
PrN ,N (dy)h(y) exp(−βNFB(y)),

when r = rN is such that rN/N −→ 0 as N → ∞.

Lemma 1. Assume that 2rN < N and that rN/N −→ 0 as N → ∞. Then

1

N
log

(
n

rN

)

−→ 0, N → ∞, (8)

when n = [ρN ], for 0 < ρ � 1. The sequence of probability measures (PrN ,N )n∈N

satisfies a large deviation principle with good rate function I r : R −→ [0, +∞)

given by I r (y) = 0, y ∈ I , and I r (y) = +∞, y ∈ I c.

Proof. The first assertion is a consequence of Stirling’s formula. Assume that A =
(a, b) ⊂ I . For N large enough, A ∩ {rN/N, . . . , 1 − rN/N} �= ∅, and A contains
an element ρN of the form ρN = [ρN ]/N for some 0 < ρ < 1, with

log PrN ,N ({ρN }) � log PrN ,N (A) � 0.

Using (7) and (8), it remains to check that

1

N
log




∑

r�n�N−r

(
n

r

)(
N − n

r

)


 −→ 0.

But, as the sum larger than one,

0 � 1

N
log




∑

r�n�N−r

(
n

r

)(
N − n

r

)




� 1

N
log

(

(N − 2r) sup
r�n�N−r

(
n

r

)(
N − n

r

))

� log(N)

N
+ 1

N
log

(

sup
r�n�N−r

(
n

r

)(
N − n

r

))

.

The sequence (
(
n
r

)(
N−n

r

)
)n attains its supremum when n = [N/2], and the statement

is a consequence of (8). A is a I r -continuity set. When A ∩ I = ∅, PrN ,N (A) ≡ 0,
which is consistent with I r (y) = +∞ when y �∈ I . When A takes the form
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A = [−c, ε] with c > 0 and ε > 0, ∃ N0 ∈ N such that 0 < rN/N < ε, ∀N � N0,
and the same argument applies. When A = [−c, 0], PrN ,N (A) ≡ 0, and we have
the inequalities defining the large deviation principle

− inf
y∈A0

I r (y) � lim inf
1

N
log(PrN ,N (A))

and

lim sup
1

N
log(PrN ,N (A)) � − inf

y∈Ā
I r (y). (9)

The above arguments show that the upper and lower bounds (9) hold for open and
compact sets. The sequence of measures (PrN ,N ) is supported by the unit interval,
and the sequence is exponentially tight. The large deviation principle follows.

When the large deviation principle is satisfied with the flat rate function I r ,
Laplace’s method gives that the system exhibits a phase transition with respect
to the order parameter MN : the mass of the integral is located near the infimum
of the function FB(y), and therefore, the DNA is completely denatured when the
parameters of the problem are such that

inf
y∈(0,1)

FB(y) = FB(1).

This occurs for example when the helicity density κ is smaller than a critical density
κc.

Theorem 2. The function FB : I −→ R attains its infimum at a unique point
y∗(B, κ). Let

y0 = −κA > 0, y1 = − π2CA

K0(bA2 + π2C)
(4bA + K0κ) and y2 = −4π2C

K0
.

Let κ̄c(B) and κc(B) be the smallest roots of the polynomials P(κ) = (y0 −
y2)(y1 − y2) − y2

2 and Q(κ) = P(κ) − (1 − 2y2), with κ̄c(B) > κc(B). Set
M∗ = y2 + √

(y2 − y0)(y2 − y1). Then (i) κ > κ̄c(B) implies that FB is increas-
ing on I with y∗(B, κ) = 0, (ii) κc(B) < κ < κ̄c(B) implies that y∗(B, κ) = M∗ ∈
(0, 1), with FB decreasing below y∗(B, κ) and increasing above y∗(B, κ), and (iii)
κ < κc(B) implies that FB is decreasing on I with y∗(B, κ) = 1. Let h : I −→ R

be bounded and continuous. Assume that rN/N −→ 0 as N → ∞. Then

PrN ,N (h exp(−NβFB))

PrN ,N (exp(−NβFB))
−→ h(y∗(B, κ)).

Proof. We look for the infimum of FB on I; equivalently, we can consider the
infimum of FB + 2bκA + b, which is equal to

(2bA2 + 2π2C)

A2

(y − y0)(y − y1)

(y − y2)
.

Notice that b > 0 implies that y1 > y2. The function has a pole at y = y2 < 0,
and two roots y1 and y0 > 0. We see that the first part of the theorem (cases (i),
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(ii) and (iii)) is related to the location of the infimum of the function with respect
to (y2, 0), (0, 1) and (1, ∞). Taking the derivative, we must look for the roots of
y2 − 2y2y + y2(y0 + y1) − y0y1, of discriminant (y0 − y2)(y1 − y2) � 0, since
y1 > y2, y0 > 0 and y2 < 0, and we get the condition for the largest root M∗.
The polynomial P(κ) is obtained by imposing M∗ < 0, and Q(κ) by imposing
M∗ < 1. Concerning the last assertion, consider the probability measure

µN(A) :=
∫
A

exp(−NβFB(y))PrN ,N (dy)
∫
I

exp(−NβFB(y))PrN ,N (dy)
,

for any Borel subset A. From Varadhan’s Theorem (see e.g. Theorem 2.1.10 and
exercice 2.1.24 in Deuschel and Stroock (1989) or Theorem II.7.2 in Ellis (1985))
and Lemma 1, the sequence (µN) satisfies a large deviation principle with rate
function IF (y) − infy IF (y), where IF (y) = I r (y) + βFB(y). infy∈R IF (y) =
β infy∈I FB(y), which is realized at a unique element y∗(B, κ); µN converges then
weakly to the point mass δy∗(B,κ).

2.2. The copolymer case

In the copolymer case, the field BN = (bi)1�i�N is indexed by a word of length
N on the two letters alphabet {A + T , G + C}. Given BN , let

ρ+
N(BN) := 1

N

N∑

i=1

I(bi = bAT ),

where I(·) is the indicator function. Given some proportion ρ+ ∈ I, we shall con-
sider families (BN)N∈N of words with ρ+

N(BN) −→ ρ+. Let

m+
N(σ) = 1

N

N∑

i=1

I(bi = bAT )σi and m−
N(σ) = 1

N

N∑

i=1

I(bi = bGC)σi,

with mN = m+
N + m−

N , and consider the mapping �BN : 	N −→ R
2 given by

�BN (σ) = (m+
N(σ), m−

N(σ)), which permits to control the eventual localization
of the magnetization. Let VN be a probability measure on 	N , and let QN be the
image measure of VN under �BN . We consider the behavior of m+

N and m−
N under

the Gibbs measure

πβ,BN ,VN
(σ ) = VN(σ) exp(−NβFBN (σ ))

ZN(β, BN, VN)
,

where we set

FBN (σ ) = G(MN(σ)) + 1

N

N∑

i=1

biσi .

Let us denote by BGC and BAT the fields associated with the GC and AT homo-
polymers, with critical linking difference densities κ̄c(BGC), κc(BGC), κc(BAT )

and limiting proportion of broken bonds y∗(BGC, κ) (see Theorem 2).
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Theorem 3. Let (BN)N∈N be a sequence of words of {bAT , bGC}N with
ρ+

N(BN) −→ ρ+, for some ρ+ ∈ I. Suppose that the family of probability mea-
sures QN satisfies a large deviation principle with rate function ID : R

2 −→
[0, +∞) given by ID(y) = 0, y ∈ D and ID(y) = +∞, y ∈ Dc, where
D = [−ρ+, ρ+] × [−ρ−, ρ−]. Let κ be such that κc(BGC) < κ < κc(BAT ).
Assume that ρ+ > y∗(BGC, κ): Then denaturation is localized on the AT do-
main, that is < m+

N >π
β,BN ,VN

−→ ρ+, and < m−
N >π

β,BN ,VN
−→ −ρ−, where

we set ρ− = 1 − ρ+, the proportion of GC bonds. Conversely, assume that
ρ+ < y∗(BGC, κ): Then < m+

N >π
β,BN ,VN

−→ ρ+, and < m−
N >π

β,BN ,VN
−→

2y∗(BGC, κ) − 1 − ρ+ > −ρ−.

Remark 1. If the parameters of the problem are such that κ̄c(BGC) < κc(BAT )

(recall that the fields are temperature dependent, see (1)), and κ is so that κ̄c(BGC) <

κ < κc(BAT ), denaturation is localized on the AT domain, for arbitrary proportion
ρ+ of AT bonds. However, when κ < κ̄c(BGC), denaturation is localized on the AT
domain when ρ+ > y∗(BGC, κ) and denaturation expands beyond the AT domain
when ρ+ < y∗(BGC, κ).

Proof. We must evaluate the asymptotic behavior of

∑
σ VN(σ) exp(−NβFBN (σ ))h(m+

N(σ), m−
N(σ))

∑
σ VN(σ) exp(−NβFBN (σ ))

,

for functions h of the two variables (m+
N, m−

N). Notice that

FBN (σ ) = G(MN(σ)) + bAT m+
N(σ) + bGCm−

N(σ)

= G(MN(σ)) + bGCmN(σ) + (bAT − bGC)m+
N(σ),

Let F(m+, m−) = G(M) + bAT m+ + bGCm−, where m = m+ + m− and M =
(m + 1)/2. We must thus check the behavior of the expectation

µN(h) =
∫

h(y) exp(−NβF(y))QN(dy)
∫

exp(−NβF(y))QN(dy)
,

for bounded and continuous functions h. From Varadhan’s Theorem, the family
of probability measures µN satisfies a large deviation principle with rate function
IF (y)− infy IF (y), where IF (y) = ID(y)+βF(y). infy IF (y) = β infy∈D F(y).
If this infimum is realized at a unique point y∗ of D, the sequence of measures µN

converges weakly to the Dirac mass δy∗ . We thus look for the minima of F on D.

inf
(m+,m−)∈D

F(m+, m−) = inf
|m|�1

(G(M) + bGCm + (bAT − bGC) ×

sup
(m+,m−): m−+m+ = m

m+)

Given, ρ+, consider m such that M = (m + 1)/2 � ρ+, that is m � 2ρ+ − 1.
Then supm++m−=m m+ = ρ+(corresponding to (10) below)): when m+ = ρ+,
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one obtains m− = m − ρ+ and the pair (m+, m−) is element of D since m− =
m − ρ+ � ρ− if and only if m � ρ+ + ρ− = 1 and m− � −ρ− if and only if
m � ρ+ − ρ− = 2ρ+ − 1. Similarly, when m is such that M � ρ+, the maximal
possible value of m+ is m+ = 2M−ρ+ (corresponding to (11) below). In summary
the infimum is obtained by taking the minimum between

inf
M�ρ+

G(M) + bGCm + (bAT − bGC)ρ+, (10)

and

inf
M<ρ+

G(M) + bAT m + ρ−(bAT − bGC). (11)

We next use the hypotheses. From Theorem 2, κ < κc(BAT ) implies that G(M) +
bAT m attains its infimum when m∗ = 1, or M∗ = 1, and is decreasing on the unit
interval; (11) becomes

G(ρ+) + bAT (2ρ+ − 1) + (1 − ρ+)(bAT − bGC) = G(ρ+) + ρ+bAT −ρ−bGC.

Concerning (10), κ > κc(BGC) and, from Theorem 2, the function G(M)+ bGCm

attains its minimum at y∗(BGC, κ), and is increasing above this point. Thus

inf
M�ρ+

G(M) + bGCm = G(ρ+) + (2ρ+ − 1)bGC,

when ρ+ � y∗(BGC, κ). Then, both (10) and (11) are minimized for M = ρ+,
which is the maximal value of m+. Thus m+ = ρ+ and m− = m − m+ =
2ρ+ − 1 − ρ+ = −ρ−, as required.

Conversely, assume that ρ+ < y∗(BGC, κ). Then (10) becomes

inf
M�ρ+

G(M) + bGCm + (bAT − bGC)ρ+

= G(y∗(BGC, κ)) + bGC(2y∗(BGC, κ) − 1) + (bAT − bGC)ρ+.

When M < ρ+, the infimum is still given by

G(ρ+) + bAT ρ+ − ρ−bGC = G(ρ+) + bGC(2ρ+ − 1) + ρ+bAT − ρ+bGC,

and one obtains that the minimum is realized when M = y∗(BGC, κ), and therefore
m+ = ρ+ and m− = m − m+ = 2M − 1 − m+ = 2y∗(BGC, κ) − 1 − ρ+, as
required.

In the remaining, we give an example of probability measure VN on 	N such
that QN = VN ◦ �−1

BN satisfies a large deviation principle with rate function ID .

Given a sequence (BN), consider the family of spins σN given by σN
i = I(bN

i =
bAT ) − I(bN

i = bGC). Given a sequence rN , consider the restricted Ising measure

VN(σ) = πβa,rN (σ ) = I(|σ | � 2rN)πβa (σ )
∑

σ∈	N
I(|σ | � 2rN)πβa (σ )

.
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Lemma 2. Let (BN)N∈N be a sequence of words such that ρ+
N −→ ρ+ ∈ I, and

σN ∈ Cr̄N ,N , for some sequence (r̄N )N∈N. Assume that r̄N + 2 � rN , and that
rN/N −→ 0 as N → ∞. Then the probability measure QN = πβa,rN ◦ �−1

BN

satisfies a large deviation principle with rate function ID .

This is an extension of the homopolymer case: r̄N/N → 0 means that the word
associated with the DNA is formed of relatively large droplets of A + T bonds
alternating with similar droplets of G + C bonds.

Proof. When rN/N → 0, (8) implies that log(VN(σ̃N ))/N → 0 for any sequence
of spins (σ̃N )N with |σ̃ N | � 2rN . Now, given an open subset A of D0, containing
some point λ = (λ+, λ−), with |λ+| < ρ+ and |λ−| < ρ−, consider the sequence
λN = ([Nλ+]/N, [Nλ−]/N), which is in A for N � N0(A, λ). Then

∃σ̃ N ∈ Cr̃N ,N with r̃N � r̄N + 1 and �BN (σ̃N) = λN, ∀N � N0(A, λ). (12)

Suppose that (12) is true: Then one obtains

VN(σ̃N) � QN({λN }) � QN(A) � 1,

and it follows that log(QN(A))/N → 0 as N → ∞. In this case, A is a ID-
continuity set. The main property to check is thus (12). Set λ±

N = [λ±N ]/N ,
and define M±

N = (λ±
N + ρ±

N)/2, where ρ−
N = 1 − ρ+

N . Choose an origin in
the circular DNA at some site i0 with σN

i0−1 = −1 and σN
i0

= 1. We can con-
sider the linear string, starting at i0, with an A + T droplet, and ending with a
G + C droplet. Let A1, . . . , Ar̄N be the A + T droplets, ordered according to their
appearance along the string, and define similarly G1, . . . , Gr̄N . Set aj = |Aj | and
gj = |Gj |, 1 � j � r̄N . The string is viewed as the juxtaposition of symbols
A1G1 . . . Ar̄N Gr̄N . Let T + and T − be defined by

T + = min





1 � j � r̄N ;

j∑

k=1

ak � NM+
N





,

and

T − = min





1 � j � r̄N ;

j∑

k=1

gk � NM−
N





.

Notice that both T + and T − are well defined for N large enough since
∑r̄N

k=1 ak =
Nρ+

N ,
∑r̄N

k=1 gk = Nρ−
N , ρ+

N → ρ+, ρ−
N → ρ−, M+

N → (λ+ + ρ+)/2 < ρ+ and
M−

N → (λ− + ρ−)/2 < ρ−. Let i1 be the site situated in AT + such that

|{i ∈ A1 ∪ · · · ∪ AT +; i � i1}| = NM+
N ,

and define similarly i2 for the G+C domain. Set σ̃ N
i = +1 when i ∈ A1∪· · ·∪AT +

and i � i1, σ̃ N
i = −1 when i ∈ AT + ∪ · · · ∪ Ar̄N and i > i1, σ̃ N

i = −1 when
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i ∈ G1 ∪ · · · ∪ GT − , i � i2, and σ̃ N
i = +1 when i ∈ GT − ∪ · · · ∪ Gr̄N , i > i2.

Clearly
∑

i∈∪1�k�r̄N
Ak

σ̃N
i = NM+

N − (
Nρ+

N − NM+
N

)

= N
(
2M+

N − ρ+
N

) = Nλ+
N,

and similarly
∑

i∈∪1�k�r̄N
Gk

σ̃N
i = Nλ−

N,

giving �BN (σ̃N) = λN , as required. Next suppose without loss of generality that
T + � T −, then i1 < i2, and, from construction, σ̃ N

i = σN
i when i � i1, σ̃ N

i =
−σN

i when i > i2 and σ̃ N
i = −1 when i1 < i � i2. It follows that |σ̃ N | �

2(r̄N + 1), as required.
Now, consider a Borel subset A ⊂ Dc in R

2. For any sequence of spins (σ̃N )

in 	N , −ρ±
N � m±

N(σ̃N) � ρ±
N , and thus �BN (σ̃N) ∈ Ac for N large enough, that

is there exists N0(A) ∈ N such that QN(A) = 0, ∀N > N0(A).

3. Statistical approach

3.1. A Bayesian model

In the copolymer case, the field BN = (bi) is indexed by a word of length N on
the two letters alphabet {A + T , G + C}. When the perimeter is fixed by setting
VN = Ur,N , Cr,N = {σ ∈ 	N ; |σ | = 2r} is a nonlinear code, as a subset of
	N , and tools from information theory and bayesian statistics are of great utility
for computational issues. We will see that the Hamiltonian of the system models
the a posteriori law on the parameter space 	N given the observation BN . First,
consider the a priori probability measure on the parameter space given by

νN(σ ) = VN(σ) exp(−NβG(MN(σ)))
∏N

i=1(exp(−σiβbAT ) + exp(−σiβbGC)

ZN(νN)
,

where ZN(νN) denotes the related partition function and VN is an arbitrary proba-
bility measure on 	N . Notice that νN takes into account the level of superhelicity
of the DNA through the linking difference density κ , and that νN corresponds to
the Gibbs measure associated with the homopolymer with field B̄, given by

b̄ = bAT + bGC

2
,

that is

νN(σ ) = VN(σ) exp(−NβFB̄(σ ))

ZN(β, B̄, VN)
.

The statistical model is as follows: a code word or a parameter σ 0 is chosen at
random with law νN on supp(VN), and is sended through a noisy channel with
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output alphabet {A + T , G + C} and memoryless channel statistics P(·|σ 0) given
by

P(BN |σ 0) =
N∏

i=1

p(bi |σ 0
i ) =

N∏

i=1

exp(−σ 0
i βbi)

exp(−σ 0
i βbAT ) + exp(−σ 0

i βbGC)
.

The output distribution of BN is

q(BN) =
∑

σ∈	N

νN(σ )P (BN |σ),

and the a posteriori distribution on the parameter space is the Gibbs distribution

πβ,BN ,VN
(σ ) = VN(σ) exp(−NβFBN (σ ))

ZN(β, BN, VN)
.

Notice that

Eq(ρ+
N(BN)) = 1 − θ + (2θ − 1) < MN >νN

,

where θ = exp(−βbAT )/(exp(−βbAT ) + exp(−βbGC)) � 1/2. The law of
MN(σ) under νN is subject to threshold phenomenon, as shown in Section 2.1.
When VN = UrN ,N with rN/N → 0, Theorem 2 gives information on the limiting
support of νN : κc(B̄) < κ < κ̄c(B̄) implies that the law of MN under νN converges
toward the point mass δy∗(B̄,κ) with y∗(B̄, κ) ∈ (0, 1), and the average proportion

of A + T bonds in BN under q is given by 1 − θ + (2θ − 1)y∗(B̄, κ) ∈ [1 − θ, θ ].
Having observed some word BN , consider the Bayes estimator for σ 0 under

quadratic loss L(σ, σ ′) = ||σ − σ ′||2. Bayesian Theory (see e.g. Robert (1992))
gives that the optimal Bayes estimator under quadratic loss is

σ̂i =
∑

σ∈Cr,N
σiνN(σ )P (BN |σ)

∑
σ∈Cr,N

νN(σ )P (BN |σ)
,

and the estimated magnetization
∑

i σ̂i/N corresponds to our order parameter
< mN >π

β,BN ,VN
, showing that Benham’s model has an interesting statistical

content.
In the next Section, we imbeed Benham’s model in a bayesian segmentation

model of current use in bioinformatics, and provide new algorithms with priors
adapted to supercoiled DNA.

3.2. Bayesian segmentation for strand separation

3.2.1. A two coins example
Liu and Lawrence (1999) present a Bayesian model for segmentation of biopoly-
mers, and provide algorithms for drawing samples from the various posterior laws
of the model, which might be of great interest in the strand separation problem. We
start with their two types of coins example, to fix ideas. Suppose you know that in
a coin tossing game of length N , the first A Bernoulli have a probability of success
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θ1 and the next N − A tosses have a probability θ2 �= θ1 of getting a head. Let yobs

be the observed sequence, with h1 (resp. h2) heads and t1 (resp. t2) tails in the first
(resp. second) part of the sequence. The change point A is treated as a missing data,
and has some prior law g(a). The likelihood of the observed data is given by

L(θ1, θ2; yobs, A = a) = θ
h1
1 (1 − θ1)

t1θ
h2
2 (1 − θ2)

t2g(a).

In their work, the prior π(θ) for θ = (θ1, θ2) is a product measure associated
with two independent Beta random variables B(θ1; α1, β1) and B(θ2; α2, β2). Let
p(θ1, θ2, a, yobs) be the joint law of all variables, with

p(θ1, θ2, a, yobs) = L(θ1, θ2; yobs, A = a)π(θ)g(a),

and

P(A = a, yobs) =
∫ ∫

p(θ1, θ2, a, yobs)dθ1dθ2.

The following algorithm will converge and give samples from the posterior law of
(θ1, θ2, A):

• Fix A = a and θ2, and draw θ1 from its conditional posterior law P(θ1|θ2, A =
a, yobs), to get the new θ1,

• proceed similarly for θ2 to get the new θ2,
• draw A from its conditional posterior law P(A = a| θ, yobs) proportional to
∏

i=1,2 θ
hi(a)
i (1 − θi)

ti (a)g(a), where hi(a) and ti (a) are the number of heads
and tails contained in the i-th part of the sequence, i = 1, 2.

Coming back to the setting of Section 3.1, choose VN to be U1,N , fixing the perim-
eter to 2r = 2. Benham’s model deals with a circular DNA, and they are N con-
figurations of length a, and two change points. Forgetting for a while this slight
difference, we see that the Bayesian model of Liu and Lawrence can be adapted for
Benham’s model: σ is the missing data or segmentation parameter A, and the prior
law g(a) is just the a priori measure νN of Section 3.1. Suppose that σi = +1,
1 � i � A and σi = −1, A < i � N . Set BN = yobs and fix the parameter θ to

θ̄1 = exp(−βbAT )

exp(−βbAT ) + exp(−βbGC)
, θ̄2 = exp(βbAT )

exp(βbAT ) + exp(βbGC)
= 1 − θ̄1.

(13)

The model of Section 3.1 can be seen as a particular case of the segmentation model,
and the a posteriori law of the change point A is the Gibbs measure πβ,BN ,VN

. For
the deterministic model with constant θ̄ , the last step of the algorithm corresponds
to sampling with πβ,BN ,VN

. Fye and Benham (1999) give algorithms for strand
separation using transfer matrices from statistical mechanics; the method can be
applied, thanks to the quadratic form appearing in the prior νN (the transfer matri-
ces have complex entries, a consequence of the gaussian transform). The perimeter
is not limited, and is penalized by the exponential weight appearing in the one
dimensional Ising Boltzman weight exp(−4rβ) for a perimeter of 2r (notice that
this way of penalizing too large perimeters was implemented in a recent work of
Ramensky et altri (2000, 2001)). Their method is applicable to situations where the
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free energies for strand separation bAT and bGC fluctuate: in real situations, chem-
ical reactions can alter these free energies. In the randomized case, the Bayesian
segmentation model can also provide an interesting alternative for studying the
strand separation problem with random free energies bAT and bGC .

3.2.2. The general case
We adapt the setting of Liu and Lawrence (1999) and Ramensky et altri (2000,
2001), and indicate the main features of the model. The number of domains or seg-
ments of the circular DNA can be limited to rmax. The missing data is the spin σ , with
prior law νN , given by VN and the homopolymer of field b̄ = (bAT +bGC)/2, with
free energies bAT and bGC given by formula (1). σ can be seen as a juxtaposition
of droplets of ± spins arranged around the discrete circle of length N .

Suppose they are 2r domains with r positive droplets, that is containing sites i

with σi = +1, and r negative droplets. The parameter θ is here defined given σ .
We associate to every positive droplet �+

i0
with σi0−1 = −1, σi = +1, i0 � i � ik ,

and σik+1 = −1 a family of k + 1 i.i.d. Bernoulli εi ,with

P(εi = A + T ) = θi0,ik and P(εi = G + C) = 1 − θi0,ik ,

of random parameter θi0,ik , which is chosen according to some prior law f +. Do
the same for negative droplets for a random parameter θj0,jl of prior f −, with

P(εj = A + T ) = 1 − θj0,jl and P(εj = G + C) = θj0,jl .

The requirements might be

Ef +(θ i0,ik ) = Ef −(θj0,jl ) = θ̄1,

where the constants bAT and bGC appearing in (1) and (13) can be taken as average
values. Positive droplets force the sample toward A + T outcomes and conversely
for negative droplets. The priors f ± can be chosen as in Liu and Lawrence (1999)
as Beta laws with the required expectations.

A second way of randomizing the parameters consists in taking, independently
for each segment, two positive random variables bAT (ω) and bGC(ω), distributed
according to some law, which might be motivated from thermodynamics or bio-
chemistry, with average values given by formula (1). Draw 2r i.i.d. realizations of
these two random variables, and set, for each segment,

θ(ω) = exp(−βbAT (ω))

exp(−βbAT (ω)) + exp(−βbGC(ω))
.

The probability to get A + T is θ(ω) when the droplet is positive and 1 − θ(ω)

when the droplet is negative.
Let π(θ |σ) be the prior law given by the above construction, with joint law

π(θ, σ ) = π(θ |σ)νN(σ ). Then the law of BN is

P(BN) =
∑

σ∈	N

νN(σ )P (BN |σ)

=
∑

σ∈	N

νN(σ )

∫

P(BN |θ, σ )dπ(θ |σ),



Strand separation in negatively supercoiled DNA 215

where P(BN |θ, σ ) is the product measure associated with the Bernoulli. The
posterior law of interest in the strand separation problem is just P(σ |BN) =
P(BN |σ)/P (BN). This last law is defined on the cube 	N , of size 2N . The ob-
servables of interest are the number of denatured bonds MN(σ) given by mN(σ) =
2MN(σ) − 1, and the restricted magnetization m+

N and m−
N . Information on the

localization of denaturation can be obtained by considering the proportion of bro-
ken A + T and G + C bonds

M±
N = m±

N + ρ±
N

2
,

(see Section 2.2). Bayesian segmentation algorithms like backward sampling, as
given in Liu and Lawrence (1999) or Schmidler et altri (2000), can thus be applied
to the strand separation problem to study local denaturation as function of the var-
ious parameters, taking into account the random fluctuations of the free energies
needed to denature A + T and G + C bonds.
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