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Evolutionary origin of synapses and
neurons – Bridging the gap
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The evolutionary origin of synapses and neurons is an

enigmatic subject that inspiresmuchdebate. Non-bilaterian

metazoans, bothwith andwithout neurons and their closest

relativesalreadycontainmanycomponentsof themolecular

toolkits for synapse functions. The origin of these compo-

nents and their assembly into ancient synaptic signaling

machineries are particularly important in light of recent

findings on the phylogeny of non-bilaterianmetazoans. The

evolution of synapses and neurons are often discussed only

from a metazoan perspective leaving a considerable gap in

our understanding. By taking an integrative approach we

highlight the need to consider different, but extremely

relevant phyla and to include theclosest unicellular relatives

of metazoans, the ichthyosporeans, filastereans and

choanoflagellates, to fullyunderstandtheevolutionaryorigin

of synapses and neurons. This approach allows for a

detailed understanding of when and how the first pre- and

postsynaptic signaling machineries evolved.
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Exciting times for the debate about the
evolutionary origin of neurons

“Ideas about invertebrate phylogeny are often
presented as though they were widely agreed-
upon theories or, worse yet, as though
alternative ideas did not even exist”

Brusca & Brusca [1]

Nervous systems within the metazoan kingdom are
surprisingly diverse both in cell number and functional
complexity. The nervous system of the nematode Caeno-
rhabditis elegans consists of only 302 neurons while the
brains of mammals, including humans, are comprised of
multiple billions of neural cells. But also the diversity of
neuron types within the nervous system is striking making
“neuron” likely the most diverse cell type existing [2–3].
Distinct neuron types are defined for instance by the
neurotransmitter or neuropeptide they use, their morpho-
logical and anatomical properties, whether they receive
sensory input or control motor output but also by their
physiological and membrane properties. However, defining
what makes all neurons distinct from other cell types at a
molecular basis remains challenging, since many features
that are essential for a neuron to function can also be found
in other somatic cells. One key characteristic that almost all
neurons have in common is that they are able to communi-
cate to each other (or to non-neuronal cells) via specialized
synaptic connections [3–4]. Thus, the emergence of intercel-
lular communication via pre- and postsynaptic molecular
machineries may be considered a turning point in evolution
allowing cells to transmit and integrate information.

Yet, neurons are not absolutely essential for all metazoan
life since entire lineages of non-bilaterian metazoans appear
to completely lack neurons. Conversely, many molecular
components of neurons, such as synaptic proteins, evolved
before neurons were present [5]. This raises fundamental
questions regarding the evolutionary origin of the nervous
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systems as well as neurons, as the basic cellular unit.
Intuitively, one might assume that neurons evolved only
once. However, recent studies challenge this view and
suggest that neurons might have evolved multiple times
independently [6–8]. The monophyletic origin of neurons is
therefore strongly debated based on arguments supporting
either homology by a secondary loss in certain clades or
alternatively convergent evolution with multiple origins.
Currently, most of our understanding and recent discussions
on the origin of neurons is biased toward a metazoan
perspective. This review summarizes and clarifies recent
uncertainties about the evolutionary origin of synapses and
neurons by uniting the latest findings from very different,
but extremely relevant phyla. We here first depict current
views regarding the phylogeny of non-bilaterian metazoans
and their implications on nervous system evolution. We
propose to include close relatives of metazoans (e.g.
ichthyosporeans, filastereans, and choanoflagellates) to
bridge this apparent gap and to answer some of the key
remaining questions. We discuss the emergence and co-
regulation of complex synaptic signaling machineries put
into context of the seemingly “neuron-less” sponge and
placozoan phyla and discuss the appearance of the first
synapses and neurons in metazoans.

Current and opposing views on the
phylogeny of non-bilaterian metazoans
and their implications for the origin of
neurons

While the presence of complex nervous systems is a unifying
feature of all bilaterians, the origin of neurons and nervous
systems during early evolution of metazoans remains highly
debated. Reasons are the unresolved phylogeny of non-
bilaterian metazoans, meaning that there is no broad
agreement on relationships at the base of the metazoan tree
and the fact that not all non-bilaterian metazoan phyla have
neurons. Among the four non-bilaterian phyla poriferans
(sponges) and placozoans (Trichoplax) do not have recog-
nizable neurons or a nervous system, while ctenophores
(comb jellies) and cnidarians (sea anemones, corals,
jellyfish, and hydroids) both have clearly recognizable
neurons and in some cases even comparably complex
nervous systems (Fig. 1). The identity of the metazoan
lineages that diverged first is an intense matter of debate. All
four non-bilaterian metazoan lineages have at least one
species with a sequenced genome. Two of these � sponges
and ctenophores � are currently the most frequently
discussed candidate lineages to have first diverged from
other metazoans.

Until very recently, it was widely agreed that sponges
were the sister-group to the rest of metazoans with great
support from phylogenetic analyses, comparative embryol-
ogy and paleontology (Fig. 1A) [9–13]. The phylogenetic
position of placozoans within the metazoan tree is
somewhat unclear as well. When the complete mitochon-
drial genome of the placozoan Trichoplax adhaerens [14]
was analyzed, it was concluded that placozoans are the

sister-group to the rest of metazoans, although recent
phylogenomic analyses of whole genome sequences
revealed placozoans as the sister group to cnidarians and
bilaterians [15]. However, increasing evidence now instead
supports ctenophores as the sister-group to the rest of
metazoans [6, 7, 16] (Fig. 1B). While some data support the
hypothesis that ctenophores branched first, other data
argue against it [17]. For example, several phylogenetic
studies clearly support ctenophores as the sister-group to
the remaining metazoans [6, 7, 18–22], while other
phylogenetic studies support sponges as the sister-group
([10, 23, 24], see also [25, 26]). Remarkably, these
phylogenetic studies show that the placement of sponges
or ctenophores as the sister-group to the remaining
metazoans might depend on which model is used to
reconstruct phylogenetic trees, as well as on the quality and
quantity of data analyzed [6, 7, 21, 23, 24]. Strong support
for ctenophores being the sister group to the remaining
metazoans comes from a recent careful analysis using a
maximum likelihood framework which examined the
incorporation of gene-wise and site-wise phylogenetic
signal into their analysis [22]. In contrast, other recent
phylogenetic analyses suggest that long-branch attraction
might be the cause for the basal position of ctenophores
[23, 24]. The authors show that taxon sampling and the
choice of model type (site-homogeneous versus site-
heterogeneous model type) has a drastic effect on the
placement of long branches and correcting for these places
sponges as the sister group to the rest of metazoans [24].

If ctenophores represent the sister-group to the rest of
metazoans, this radically challenges the view on the early
evolution of these cell types. It would mean that neurons
might have either evolved twice independently or, alterna-
tively, were lost from both sponges and placozoans [26, 27].
The absence of some key synaptic proteins (Synaptotagmin1,
CASK, and Neuroligin) and some neuronal patterning genes in
ctenophores was used as argument for an independent origin
of synapses and neurons [7, 28]. Interestingly, also many
canonical neurotransmitters known from cnidarians and
bilaterians are absent in ctenophores (e.g. serotonin, dopa-
mine, noradrenaline) [7] suggesting that the ctenophore
nervous system may largely use different neurotransmitters.
However, for instance the use of glutamate and glycine for
neuronal communication is shared between ctenophores,
cnidarians, and bilaterians [7, 28–30]. Moreover, many
components critical for synaptic transmission are actually
present in ctenophores and are very similar to the ones found
in cnidarians and bilaterians [6, 7, 28], thus questioning an
independent origin. In addition, many developmental genes
used for determining a neural cell fate or genes patterning the
nervous system are present in ctenophores [6, 7, 28].

Phylogenetic analyses might not resolve early metazoan
phylogeny any time soon. Thus, genetic studies in cteno-
phores dedicated to the understanding of nervous system
development and function in ctenophores will be key to clarify
the current dispute on commonalities or differences of
neurons in ctenophores and other metazoans. For instance,
it will be relevant to address if neuronal gene homologs in
ctenophores are involved in ctenophore neural cell types or
not. While it seems intuitive that these genes provide the same
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cellular function in ctenophores and cnidarians or bilaterians,
it cannot be excluded that neurons in ctenophores use
different strategies to achieve a similar function. Similarly, the
genetic pathways of neurogenesis in ctenophores and neural
patterning genes remain currently largely unknown. Under-
standing similarities and differences in nervous system
formation between ctenophores and cnidarians or bilaterians
will provide a second relevant line of research. If the function
of neuronal genes is conserved between ctenophores and
cnidarians/bilaterians it would support a single origin of
neurons and would establish the homology of neural cell
types in ctenophores and cnidarians or bilaterians.

Rich repertoire of proto-synaptic
proteins in protists closely related to
metazoans

Many molecular and cellular features, which are essential for
nervous system function and considered typical neuronal
properties are in fact neither specific to synapses and neurons
nor to metazoans. A prominent example is the presence of
voltage-gated channels in viruses and bacteria [31, 32],
although their roles in these organisms remain largely
unknown. Even rapid sodium based action potentials can

Figure 1. Current views on the phylogeny of non-bilaterian metazoans and rich repertoire of proto-synaptic proteins in protists closely related
to metazoans. A: Phylogenetic tree showing sponges as the sister lineage to all other metazoans. Black circle: Urmetazoan. B: Phylogenetic
tree showing ctenophores as the sister lineage to all other metazoans. Black circle: Urmetazoan. All illustrations were reused with
modifications from phylopic.org. C: Proto-synaptic and synaptic proteins in different lineages. Note the prominent expansion of proto-synaptic
and synaptic proteins in ichthyosporeans/filastereans/ choanoflagellates and sponges/ctenophores/placozoans. D: The protein domain
organization of Dlg/PSD-95, Homer and Shank from the filasterean Capsaspora owczarzaki, the choanoflagellate Salpingoeca rosetta, the
sponge Oscarela carmela, the ctenophore Pleurobrachia bachei and the vertebrate Homo sapiens are shown.
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occur in unicellular protists [33]. For example, the marine
diatom Odontella sinensis, a unicellular, non-motile organ-
ism, is able to generate fast action potentials that show similar
biophysical properties to metazoan action potentials [34].
Moreover, ionotropic glutamate receptors (iGluRs) have been
identified in plants, where they function in development of
roots,transport of ions, chemotaxis, and reproduction [35, 36],
thus highlighting the challenges to identify molecular,
physiological, and genetic properties that define neurons
and make them distinct from other somatic cells.

Studies of protists that are close relatives of metazoans,
like the ichthyosporean Creolimax fragrantissima, the filas-
terean Capsaspora owczarzaki and the two choanoflagellate
species Monosiga brevicollis and Salpingoeca rosetta
(Fig. 1A and B) are gaining increased attention when it comes
to elucidate the origin of synaptic proteins. These organisms
possess synaptic protein homologs although they never
developed synapses and neurons. We refer to these proteins
as proto-synaptic proteins, as they are clearly homologues to
proteins which function at metazoan synapses and may
interact with other proto-synaptic proteins in organisms with
no synapses and neurons, in a very similar manner as
observed in neurons. For example, the genomes of close
relatives of metazoans, ichthyosporeans, filastereans and
choanoflagellates, encode for Dlg/PSD-95, Homer and Shank
(Figs. 1C,D and 2) [37–39]. In addition, many vesicle
membrane proteins (e.g. Synaptophysin and Synaptogyrin),
proteins involved in exocytosis (e.g. Complexin), and signal-
ing (e.g. CaMKII) are present in the genomes C. owczarzaki and
choanoflagellates [5, 37, 40–42] (Fig. 1C). Moreover, voltage-
gated sodium and calcium channels [43–45] were identified in
the genomes of choanoflagellates (Fig. 1C).

Proto-synaptic protein number was further expanded
during the rise of metazoans. For example, important synaptic
adhesion protein homologs like Neurexin and Ephrin receptors
arepresent in sponges, ctenophoresandplacozoans (Fig. 1C). In
addition, many active zone proteins (e.g. RIM, Erc/Cast, CASK)
(Fig. 1C) are present in sponges [41, 46, 47], ctenophores [6, 7,
48], and placozoans [15]. Thus, many proto-synaptic proteins
already existed in close relatives ofmetazoans and themajority
of synaptic protein homologs were present when the first
metazoans evolved (Fig. 1C) [37, 38, 40, 49].

Co-regulation of proto-synaptic genes in
close relatives of metazoans

The presence of proto-synaptic proteins in close relatives of
metazoans (Fig. 1C) suggests that somemolecular machineries
critical for synaptic transmission evolved prior to the origin of
synapses. Thus, studies of proto-synaptic proteins in these
clades provide insight into putative ancestral functions of
these cellular specializations and evolutionary precursors of
synaptic signaling complexes [50, 51]. In the metazoan
nervous system, the interplay between specialized presynap-
tic and postsynaptic molecular machineries allows the
translation of electrical membrane currents into chemical
signals in the presynaptic cell, which in turn elicit electrical
currents (or intracellular signaling pathways) in the

postsynaptic cell. It is worth mentioning, that even in
metazoans with synapses and neurons synaptic proteins
are functionally diverse and fulfil different roles in other cell
types (Fig. 2) [52]. This seems to be the case for nearly every
synaptic protein found for example in vertebrates (Fig. 2). For
instance, Dlg/PSD-95 functions as a scaffolding protein and
clusters iGluRs to the plasma membrane of postsynapses,
whereas the same protein is an important component of
septate junctions in epithelial cells [53] (Fig. 2). Currently, very
little is known about the ancestral function of synaptic
proteins (Fig. 2). One example is the protein Homer, which is
expressed in the nucleus and binds to Flotillins in choano-
flagellates and vertebrate astrocytes [41] and highlights that
many proto-synaptic genes may be pleiotropic.

The ichthyosporean C. fragrantissima comprises amoeboid
and colonial (multinucleate) life stages (Fig. 3A) [54, 55].
Interestingly, the transition to the colonial stage is associated
with significant upregulation of secretory SNAREs, Homer,
and Shank (Fig. 3A) [51]. The filasterean C. owczarzaki can
switch between filopodial, cystic and aggregative life stages
(Fig. 3B). Remarkably, the proto-synaptic genes Dlg/PSD-95,
CaMKII and GKAP are upregulated in the aggregative life stage
(perhaps functioning in a complex like the Dlg/CaMKII/GKAP
complex in vertebrate neurons [56, 57] to cluster cation
channels on particular plasma membrane areas important for
the aggregation of C. owczarzaki cells), but other proto-
synaptic genes like Homer and Shank and many presynaptic
genes (secretory SNAREs) are upregulated in the cystic life
stage (Fig. 3B) [58]. A recent analysis of the regulatory genome
of the filasterean C. owczarzaki indicates that while the
regulation of transcriptional activity by distal enhancers is
likely a metazoan innovation, many transcription factor
networks that are important for metazoan development and
multicellularity are conserved in C. owczarzaki [59]. Notably,
transitions between different life stages in C. owczarzaki are
additionally linked to proteome and phosphoproteome
changes and they alter key proteins, for instance transcription
factors involved in metazoan multicellularity [59, 60]. The
choanoflagellate S. rosetta comprises of single (attached,
swimmers) and colonial life stages [61, 62] (Fig. 3C) and many
proto-synaptic genes (secretory SNAREs, voltage gated
sodium channel [Nav-channel]) are upregulated in colo-
nies [63]. Strikingly, neighboring cells in S. rosetta colonies are
connected by fine cytoplasmic bridges [61], which might
mediate cell–cell signaling using presynaptic protein homo-
logs. Surprisingly, while the protein Homer is upregulated in
colonies as well, Shank, Dlg/PSD-95, and CamKII are
upregulated in attached cells. In vertebrate neurons Dlg/
PSD-95 and Shank can also induce filopodia [64], thus the
choanoflagellate proteins could function in a similar complex
inducing long cellular protrusions that resemble filopodia (a
hallmark of choanoflagellate attached cells [65]). In addition,
CamKII has previously been reported to interact with PSD-95
in mouse CNS postsynapses [66] and these two proteins might
interact in choanoflagellates as well. These data indicate that
already in close relatives of metazoans some of the proto-
synaptic proteins might be co-regulated and provide first
insights into the evolution of synaptic signaling machineries.
Given the relative limited number of different conditions (e.g.
life cycle stages) that were tested for the ichthyosporean

P. Burkhardt and S. G. Sprecher Prospects & Overviews....

1700024 (4 of 10) Bioessays 39, 10, 1700024,� 2017 The Authors. BioEssays Published by Wiley Periodicals, Inc.

R
e
v
ie
w

e
s
s
a
y
s



C. fragrantissima (2 conditions), the filasterean C. owczarzaki
(3 conditions), and the choanoflagellate S. rosetta (4
conditions), there is a small likelihood that some of the
proto-synaptic genes analyzed might be co-regulated just by
chance. Thus, it will be key to validate these findings with
other techniques to fully understand the proto-synaptic
signaling machinery in close relatives of metazoans.

Moreover, a recent understanding of how the enzyme
CaMKII functions at amolecular level emerged from studies on
a CaMKII homolog from choanoflagellates [67]. At synapses
CaMKII, which is composed of several subunits forming a ring
(Fig. 3C box) and can exchange subunits with each other, has
an important role in long-term memory formation [68].
Biochemical and structural studies on choanoflagellate
CaMKII provided direct evidence into how subunits of CaMKII
can interchange and thus spread information [67] (Fig. 3C box)
and is another exciting example for how close relatives of
metazoans can reveal important, previously unknown
insights into the molecular mechanism of metazoan synaptic
protein function.

It is worth mentioning, that (obviously) not all proto-
synaptic proteins are co-regulated in close relatives of
metazoans, suggesting an extensive rewiring of regulatory
networks over time that allowed proto-synaptic proteins to be
expressed in the same cell and to function together.

Neuronal components in non-bilaterian
metazoans and the first appearance of
neurons

While close relatives of metazoans clearly have no synapses, a
study in sponges provides some insights into the assembly of a
synapse [69]. This study shows that in the spongeAmphimedon
queenslandica a global co-regulation of postsynaptic genes is
lacking although some postsynaptic signaling complexes are
transcriptionally co-regulated [69]. Thus, synapses may have
evolved by expanding preexisting protein complexes and
ancient postsynaptic protein complexes may continue to
function in synapses of present metazoans [69]. Another
explanation would be that sponges lost synapses and neurons
and that thesemodules are remnantsofneurons.Obviously, the
existenceofsynapticproteinsaloneisnotsufficient tomakeupa
neuron.Thus, furthermolecular features suchas theexpression
of dedicated ion channels to propagate voltage changes, the
intracellular machinery allowing the formation of directed
“neurite”-like membrane protrusions or the biosynthesis of
neurotransmittershave tobe taken intoaccountwhenaiming to
resolve the origin of first neurons.

First insights into potential evolutionary precursors of
neurons have recently been gained from studies in sponges

Figure 2. Many synaptic proteins have functions outside the nervous system. Top: Graphic representation of an excitatory vertebrate
synapse indicating the subcellular distribution of key pre- and postsynaptic proteins, modified from [41]. Bottom: Highlighted are key synaptic
proteins with their well described function in synapses (canonical function) and their function outside of synapses (non-synaptic function). First
insights into ancestral functions of synaptic proteins have been gained from studies of close relatives of metazoans and non-bilaterians
metazoans. Illustrations of organisms were reused with modifications from phylopic.org.
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and placozoans. Larvae from the sponge A. queenslandica
possess a cell type in their epithelia called globular cell
(Fig. 4A and B) [38, 70]. These globular cells express
postsynaptic scaffolding protein homologs like Dlg/PSD-95,
Homer and GKAP suggesting an assembly into a protein-
protein complex [38]. On the other hand, extensive expression
analyses and immunolocalization studies of synaptic protein
homologs in adult sponges are still missing. Numerous studies
on different sponges using electron microscopy failed to
recognize obvious synaptic structures with a postsynaptic
density. Many cells in the gelatinous matrix within a sponge
(the so-calledmesohyl) are in steadymotionwith little time for
“direct contact” [71]. In contrast, pinacocytes (cells at the
surface of sponges) are motionless and keep contact with
neighboring cells (Fig. 4C and D) and numerous vesicles can
be observed at contact sites of neighboring cells (Fig. 4E). In
addition, Smith and colleagues have characterized the

different cell types in the placozoan T.
adhaerens in more detail and found that so
called gland cells display neuron-like prop-
erties [72, 73] (Fig. 4F and G), as they express
secretory SNARE proteins, complexin and
synapsin (abundant protein of synaptic
vesicles in bilaterians) and contain potential
secretory vesicles, features of metazoan pre-
synaptic specializations (Fig. 4G). Moreover,
an antibody against FMRFamide stains
these cells, indicating that placozoan gland
cells may secrete an FMRFamide-like pep-
tide. The findings that sponges and placo-
zoans possess specialized cells that display
neuron-like properties offer some exciting
hypotheses. It is possible, that the first
neurons evolved before sponges and placo-
zoans diverged, and in sponges neurons
transformed into globular cells and in
placozoans into gland cells [74]. On the
other hand, neurons may have evolved after
sponges and placozoans branched off from
the metazoan tree [74]. Under this scenario,
sponge globular cells, placozoan gland
cells, and neurons in all other metazoans
have evolved from a primordial secretory or
sensory cell [74, 75].

When looking at the first appearance of
neurons in metazoans investigations on
ctenophore neurons are particularly infor-
mative due to the debate on their phyloge-
netic position. The majority of neurons in
ctenophores form a subepidermal nerve net
on the surface of the body (Fig. 4H) [7, 27,
76, 77]. So far, most observed synaptic
connections display an organization, which
is referred to as the “pre-synaptic triad,” an
odd presynaptic organization by a string of
vesicles docked at the plasma membrane,
followed by one or several mitochondria as
well as an ER sac (Fig. 4I) [78]. However, the
organization of synapses as pre-synaptic
triads is not restricted to ctenophores as it

can be found in neurons of the nerve net of many cnidarians
(Fig. 4J and K) [3, 75, 79, 80]. In the nerve net of the cnidarian
Cyanea capillata it was shown that that these synapses are
bidirectional, excitatory chemical synapses [81]. It will be
interesting to study if ctenophore synapses also are
bidirectional, excitatory chemical synapses and to compare
presynaptic (e.g. active zone molecules) and postsynaptic
proteins have similar distributions/localization patterns in
triad synapses between ctenophores and cnidarians. The
observation that ctenophore synapses display similarities
with cnidarian synapses at the ultrastructural level may
provide an argument for a common structural organization
and common origin [4, 75].

The currently proposed different scenarios of nervous
system evolution critically depend on the phylogenetic tree
of the metazoan kingdom. Resolving the phylogeny of early
branching metazoans will thus be a key step toward a better

Figure 3. Co-regulation of proto-synaptic genes in close relatives of metazoans.
A: Illustrations of amoeboid and colonial (multinucleate) life stages of the
ichthyosporean Creolimax fragrantissima. Secretory SNAREs and Homer/Shank are
upregulated in the colonial life stage [51]. B: The filasterean Capsaspora owczarzaki
can switch between filopodial, cystic and aggregative life stages. Dlg/PSD-95,
CaMKII, and GKAP are upregulated in the aggregative life stage, but Homer/Shank)
and secretory SNAREs are upregulated in the cystic life stage [58]. C: Illustrations
of single and colonial life stages of the choanoflagellate Salpingoeca rosetta.
Secretory SNAREs, Nav-channel, Homer are upregulated in colonies [63]. The
known binding partners of Homer, the proteins Shank, GKAP and Dlg/PSD-95 are
upregulated in attached cells. Box: Structures of rat and choanoflagellate hub
assemblies of CaMKII. Adapted with permission. [67] Copyright 2016, eLife
Sciences Publications, Ltd. Choanoflagellate CaMKII forms a ring-opened spiral
assembly and provides direct evidence into how subunits of CamKII can inter-
change and thus spread information. Adapted with permission. [67] Copyright
2016, eLife Sciences Publications, Ltd. Illustrations of close relatives of metazoans
were reused with modifications from phylopic.org.
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understanding about the origin of neurons. The presence of
neuron-like cells in all non-bilaterian metazoans may be
used as an argument for a common origin of all neurons or
may be regarded as distinct types of proto-neurons. It will be
key to learn more about the developmental origin, physiol-
ogy and molecular features of these enigmatic cells in order
to further unveil how similar or distinct they are from various
types of neurons found in cnidarians or bilaterians.
Independent of whether ctenophores are the sister-group
to the rest of metazoans or not the striking differences in
nervous system organization [82] raises numerous intriguing
questions. While the presence of certain neuronal develop-
ment genes in the ctenophore genome suggests that they may

provide similar functions in ctenophores and cnidarians or
bilaterians functional developmental studies remain sparse.
Moreover, the lack of some critical synaptic proteins in
ctenophores should not be used as a criterion for indepen-
dent origin of neurons, as similar examples can be found in
other organisms with neurons. For example, the genome of
the cnidarian Hydra magnipapillata does not encode for the
key synaptic adhesion protein neuroligin [37] and the
genome of C. elegans does not encode for voltage-gated
Na-channels or the postsynaptic scaffolding protein Homer,
despite the presence of clearly homologous nerve cells and
nervous systems in these organisms. Thus, further insights
on how similar or distinct ctenophore neurons function from

Figure 4. Insights into evolutionary precursors of neurons and the first appearance of neurons. A: Section of whole mount in situ hybridized
larvae showing expression of the post-synaptic protein GKAP in Amphimedon queenslandica (modified from [38]). B: Electron micrograph of
a globular cell from A. queenslandica larvae. Globular cells (arrowhead) are filled with large electron dense vesicles (modified from [70]). C:
Choanocyte chamber (cc) and surrounding pinacocytes (pc) in the sponge Ephydatia fluviatilis (modified from [83]). D: Pinacocyte cell-cell
contact (black arrow) in the sponge Hippospongia communis (modified from [84]). E: Numerous vesicles (s) can be observed at some contact
sites of neighbouring cells in the sponge Tethya lyncurium (modified from [85]). F: Secretory SNAREs (in this case Synaptobrevin) are
detected in gland cells of Trichoplax adhereans (modified from [72]). G: Electron micrograph of a ciliated gland cell reveals membrane-
enclosed vesicles comparable in size with the stained vesicles shown in (F), (modified from [72]). H: The nerve net of the ctenophore
Pleurobrachia bachei visualized by staining with tyrosinated alpha-tubulin antibodies (modified from [7]). I: The ctenophores pre-synaptic triad:
a string of vesicles docked at the plasma membrane, followed by a sac of endoplasmic reticulum and one or several mitochondria (mi)
(modified from [86]). J: The nerve net of the cnidarian Cyanea sp. labeled with antibody to FMRFamide (modified from [87]). K: Electron
micrograph of a bidirectional, excitatory chemical synapse in the cnidarian Cyanea capillata. m, mitochondria; v, synaptic vesicles; e,
elongated cisternae; c, synaptic cleft; b, bulbous cisternae (modified from [79]). Illustrations of metazoans were reused with modifications
from phylopic.org. Scale bars: 20mm in F, 0.5mm in G; 60mm in H, 100nm in I; 25mM in J, 200nm in K.
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their cnidarian or vertebrate counter parts, on a cellular or a
network level and how a seemingly different set of neuro-
transmitters and neuromodulator are employed will shed
light into current controversies about nervous system
evolution.

Concluding remarks

Recent sequencing of genomes from non-bilaterian meta-
zoans and their closest relatives has greatly enhanced
our understanding on the origin of synapses, a central
characteristic of neurons. It now becomes clear that many
proto-synaptic genes were already present when the first
metazoans appeared. More recent work shows, that even in
close relatives of metazoans some proto-synaptic genes seem
to be co-regulated at the transcriptional level and suggests
that parts of the synaptic signaling machinery might
have been co-opted from ancestral roles that may still be
observable today in their close relatives. Choanoflagellate
cells for example have evolved ways to connect to each other.
The specific upregulation of voltage gated Na–channels and
secretory SNAREs in S. rosetta colonies makes it tempting
to speculate that choanoflagellate cells can communicate
with each other by electrical and/or chemical signaling using
proto-synaptic proteins, a hypothesis that can be tested in
the future with cell labeling, electrophysiological experi-
ments, calcium imaging, and even proteomic interaction
studies. A picture is emerging where an ancestral secretion
apparatus consisting of secretory SNAREs, Munc18, Com-
plexin, and a Munc13-like protein is already present in close
relatives of metazoans and thus probably originated before
the first metazoans emerged (Fig. 2). On the other hand, a
postsynaptic-like scaffold (a scaffold comprising of Dlg/PSD-
95, Homer, Shank, and GKAP which in metazoans with
synapses clusters receptors at plasma membranes) likely
evolved in metazoans only, despite the fact that these
proteins are expressed in close relatives of metazoans and
key residues for protein-protein interactions are present.
Together, these findings show that close relatives of
metazoans possess different precursors of synaptic activity.
Therefore, by just viewing at the origin of synapses and
neurons from a metazoan perspective the view of synapse
and neuron evolution is incomplete. Including the closest
unicellular relatives of metazoans into the question relating
the origin and evolution of synapses and neurons is therefore
of great importance.
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