SUPPLEMENTARY INFORMATION

Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo

Marzia Buscema⁠, Sofiya Matviykiv⁠, Tamás Mészáros⁠, Gabriela Gerganova⁠, Andreas Weinberger⁠, Ute Mettal⁠, Dennis Mueller⁠, Frederik Neuhaus⁠, Etienne Stalder⁠, Takashi Ishikawa⁠, Rudolf Urbanics⁠, Till Saxer⁠, Thomas Pfohl⁠, János Szebeni⁠, Andreas Zumbuehl⁠ and Bert Müller⁠

¹Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
²Nanomedicine Research and Education Center, Semmelweis University Budapest, Hungary
³SeroScience Ltd, Budapest, Hungary
⁴Department of Chemistry, University of Fribourg, Fribourg, Switzerland
⁵Paul Scherrer Institute (PSI), Villigen, Switzerland
⁶Cardiology Division, University Hospital of Geneva, Geneva, Switzerland

* Corresponding author at: Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, 4123 Switzerland, Tel: +41 61 207 54 30
E-mail address: bert.mueller@unibas.ch (B. Müller).

Fig. S1. Time point in vitro experiment. SC5b-9 concentration of six human sera incubated at a temperature of 37 °C with the positive, negative controls and liposomes at high lipid content (A) and at low lipid content (B). The data are shown as the mean value among the six donors. The reaction was terminated after 5, 10, 20, and 40 minutes. The data were sorted as A and B, in order to visualize clearly the SC5b-9 level of the Pad-PC-Pad-based liposomes at high and low lipid content.
Table S2
Temporal sequences of liposomal injections in the six pigs, from left to right. L1’ was administrated in three liposomal concentrations, while L2’ and L3’ in a single concentration. For each injection, the pulmonary arterial pressure, PAP, and systemic arterial pressure, SAP, and heart rate, HR, were recorded and displayed in Figures S3 to S8.

<table>
<thead>
<tr>
<th>Pig ID</th>
<th>Injection</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3 × L1’</td>
<td>L1’</td>
<td>3 × L1’</td>
<td>L2’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>zymosan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>saline</td>
<td>3 × L1’</td>
<td>L2’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>1/3 × L1’</td>
<td>zymosan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>saline</td>
<td>3 × L1’</td>
<td>L1’</td>
<td>L2’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>zymosan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>saline</td>
<td>L1’</td>
<td>3 × L1’</td>
<td>L2’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>zymosan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>saline</td>
<td>L1’</td>
<td>3 × L1’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>zymosan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>saline</td>
<td>3 × L1’</td>
<td>L1’</td>
<td>1/3 × L1’</td>
<td>L2’</td>
<td>L3’</td>
<td>Perlinganit</td>
<td>zymosan</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S3. Pig 1 (21 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.
Fig. S4. Pig 2 (20 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.
**Fig. S5.** Pig 3 (22 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.
Fig. S6. Pig 4 (19 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.
Fig. S7. Pig 5 (19 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.
Fig. S8. Pig 6 (24 kg male)—Summary: Monitoring of PAP, SAP, and HR changes after injection; dashed line denotes injection time.