Modified biovectors for the tuneable activation of anti-platelet carbon monoxide release†

Lucas Prieto, Jeremie Rossier, Katarzyna Derszniak, Jakub Dybas, Rene´ M. Oetterli, Emmanuel Kottelat, Stefan Chlopicki,* Felix Zelder* and Fabio Zobi*

This communication describes the anti-platelet effects of a new class of cis-rhenium(II)-dicarbonyl-vitamin B12 complexes (B12-ReCORMs) with tuneable CO releasing properties.

Carbon-monoxide releasing molecules (CORMs) represent an innovative class of compounds which attract interest due to their potential therapeutic utility. Unlike most common drugs whose pharmacological action is dependent on their interaction with a macromolecular target and whose potency is dictated by the stability of the drug-target complex, CORMs exert their therapeutic action via the liberated CO molecules. 1–5 However, apart from the common scientific consensus that CORM-based therapy should not lead to significant carboxyhemoglobin (COHb) formation and to the inhibition of respiratory enzymes that are sensitive to CO, it is questionable whether CORMs should release CO slowly or rapidly and what kinetics of CO release is most advantageous for therapeutic applications. There are only few reports clearly showing the advantages of CORMs slowly releasing CO over those releasing CO instantly6,7 and they relate to the anti-platelet effects of CORMs. Furthermore, it has proved chemically challenging to fine-tune the activation and the rate of CO release within a family of structurally similar CORM compounds. For all of these reasons, versatile classes of CORMs with tuneable release properties affording anti-platelet activity are highly desired for tackling these open questions in systematic structure-activity relationship studies. Such studies will facilitate the development of CORMs with optimal anti-platelet activity.6–8

Inspired by our groups’ efforts to develop (a) versatile CORMs for biomedical applications9–12 and (b) vitamin B12 derivatives with tuneable coordination and redox properties,13–15 we envisaged to design and study cis-rhenium(a)-dicarbonyl-vitamin B12 complexes with adjustable CO releasing properties (Scheme 1) within the range for kinetics of CO release of CORM A1 (Scheme 2a).16 This molecule exhibits strong anti-platelet and anti-thrombotic activities without a hypotensive effect.6,7 In particular, for the present prodrug strategy, we started from prototype B12-ReCORM-210 (compound 8 in the present study) in which the CORM cis[Re(CO)2Br4]2(CO) (1) is attached to the axial cyano group of vitamin B12. We speculated whether modifications of the CoIII/CoI redox properties of the B12 ligand would translate into control of the CO-releasing properties at the opposite Re II-(CO)2 fragment.

This approach seemed to be reasonable because small variations in the coordination sphere of rhenium complexes have profound consequences on the electrochemistry, water stability and CO releasing properties of the dicarbonyl core.17 B12 appeared to be attractive as ligand for the rhenium-based CORM entity mainly because of two reasons: (a) its cellular uptake properties can be exploited to deliver therapeutic agents specifically at disease sites18–22 (b) the electronic properties at the cobalt center can be selectively modified by introducing structural modifications at the corrin p-system.21–24

Having the general design of the B12-ReCORMs derivatives in mind (Scheme 1), we synthesized and studied first a series of

Scheme 1 General design concept for the tuneable activation of CORM-biovectors conjugates.
six cobalamins for coordinating them later to 1 (Scheme 2A). In particular, the cobalamin ligands contain structural modifications at C10 and/or at the B ring of the corrin macrocycle (Scheme 2B) and were synthesized according to literature procedures or modifications thereof (see ESI†). We examined the electronic properties of compounds 2–7 (Table 1) by spectroscopic (UV-vis) and electrochemical means (cyclovoltammetry). As a general trend, we observed an increase in \(E_{\text{red}} \) (CoIII/CoI) when electronic withdrawing groups (Br or Cl) and/or a \(-\)lactone moiety at the B-ring were introduced in the cobalamin structure. For example, \(E_{\text{red}} \) (CoIII/CoI) was increased by 212 mV, these biovectors were coordinated towards ligand substitution. Thus, within CORM-biovectors (Scheme 2C), the 17-electron ReII complex receives weaker electronic donation from the axial cyanide bridge. As a consequence, the 17-electron ReII complex undergoes reduction to CO release. Therefore, changes in this band in DMSO (see ESI,† Fig. S21) and aqueous solutions (Table 2) over time were monitored.

CORM-biovectors 8–14 show a half-life \(t_{1/2} \) stability in DMSO varying from 1 to >3 hours (see ESI,† Table S1). When this experiment was performed in an aqueous solution, a first order decay behavior was observed. We were delighted to find that \(t_{1/2} \) of the \(\text{cis-[Re(CO)Br}_2 \) core steadily decreased as \(E_{\text{red}} \) (CoIII/CoI) of the B12-biovector increased (Fig. 1), varying from 60 (8) to ca. 20 min (13). The observed trend may be rationalized considering that an electron deficient CoIII ion obtains an enhanced \(\sigma \)-donation from the axial cyanide bridge. As a consequence, the 17-electron ReII complex receives weaker electronic stabilization from the bridging ligand, rendering it more labile towards ligand substitution. Thus, within CORM-biovectors 8–14, electronic properties of the modified biovectors appear to be the by IR spectroscopy and inductively coupled plasma/optical emission spectrometry (ICP/OES) (see ESI†). With these compounds in hand, we investigated the stability and therefore the CO releasing properties of the ReII-based CORM within the CORM-biovector scaffolds (8–14) by UV-vis kinetic experiments. The main difference in the spectra of the biovectors (Scheme 2B, 2–7) and the CORM-biovectors (Scheme 2C, 8–14) is the presence of a band at ca. 410 nm for the latter compounds. This band is hypsochromically shifted when the bromide ions of the ReII complex undergo aquation. This ligand exchange is the first step towards the aerobic degradation of the ReII complex leading to CO release. Therefore, changes in this band in DMSO (see ESI,† Fig. S21) and aqueous solutions (Table 2) over time were monitored.

Table 1: Electrochemical and spectroscopic data of vitamin B12, its derivatives (2–7).

<table>
<thead>
<tr>
<th>Compound</th>
<th>(E_{\text{red}}) (mV)</th>
<th>(\gamma) band</th>
<th>(\beta/\alpha) bands ((\pi-\pi^*))</th>
<th>(\delta/\pi) bands ((\pi-\pi^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B12</td>
<td>-1010</td>
<td>361 (4.4)</td>
<td>519 (3.9)/550 (3.9)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-922</td>
<td>359 (4.3)</td>
<td>523 (3.7)/551 (3.7)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-798</td>
<td>365 (4.3)</td>
<td>550 (3.7)/576 (3.7)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-810</td>
<td>364 (4.2)</td>
<td>551 (3.6)/574 (3.7)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-784</td>
<td>363 (4.6)</td>
<td>551 (3.6)/577 (3.6)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-710</td>
<td>363 (4.2)</td>
<td>531 (3.7)/559 (3.7)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-715</td>
<td>363 (4.2)</td>
<td>531 (3.7)/554 (3.7)</td>
<td></td>
</tr>
</tbody>
</table>

\(E_{\text{red}} \) data refer to CoIII \(\rightarrow \) CoI reduction (in 0.1 M Tris buffer at pH 8).

Table 2: Half-life \(t_{1/2} \) of stability of 8–14 in water and their CO release

<table>
<thead>
<tr>
<th>Compound</th>
<th>(t_{1/2}) of 410 nm band</th>
<th>(t_{1/2}) of CO release</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>60.1 ± 2.9</td>
<td>33.6 ± 2.3</td>
</tr>
<tr>
<td>9</td>
<td>40.2 ± 1.6</td>
<td>24.5 ± 1.8</td>
</tr>
<tr>
<td>10</td>
<td>29.5 ± 2.6</td>
<td>25.3 ± 1.8</td>
</tr>
<tr>
<td>11</td>
<td>29.6 ± 2.9</td>
<td>22.6 ± 0.7</td>
</tr>
<tr>
<td>12</td>
<td>27.3 ± 1.7</td>
<td>24.3 ± 3.0</td>
</tr>
<tr>
<td>13</td>
<td>19.1 ± 1.4</td>
<td>20.2 ± 2.9</td>
</tr>
<tr>
<td>14</td>
<td>24.9 ± 2.2</td>
<td>16.2 ± 1.2</td>
</tr>
</tbody>
</table>

* Measured from the first order exponential increase of \(\text{MB} \) band.

An increase of MbCO soret band.

CORM-biovectors 8–14 show a half-life \(t_{1/2} \) stability in DMSO varying from 1 to >3 hours (see ESI,† Table S1). When this experiment was performed in an aqueous solution, a first order decay behavior was observed. We were delighted to find that \(t_{1/2} \) of the \(\text{cis-[Re(CO)Br}_2 \) core steadily decreased as \(E_{\text{red}} \) (CoIII/CoI) of the B12-biovector increased (Fig. 1), varying from 60 (8) to ca. 20 min (13). The observed trend may be rationalized considering that an electron deficient CoIII ion obtains an enhanced \(\sigma \)-donation from the axial cyanide bridge. As a consequence, the 17-electron ReII complex receives weaker electronic stabilization from the bridging ligand, rendering it more labile towards ligand substitution. Thus, within CORM-biovectors 8–14, electronic properties of the modified biovectors appear to be the

![Scheme 2](http://doc.rero.ch)
main effect regarding the rate of aquation of the ReII-based CORM. Nonetheless, a slight deviation from linearity ($R^2 = 93\%$) suggests that additional factors might also play a minor role.

Knowing that aquation is the prerequisite for CO release, the relative CO releasing rates of CORM-biovectors 8–14 were determined using the well-known myoglobin (Mb) assay. The apparent rate and amount of CO release were calculated by UV-vis spectroscopy: the formation of carboxy-myoglobin (MbCO) is monitored by an increase in the Soret band of the protein ($\lambda_{\text{max}} = 424$ nm). Consequently, the $t_{1/2}$ of Soret band shift was taken as a direct measure of $t_{1/2}$ of CO release (Table 2). The $t_{1/2}$ of CO release decreases as a function of E_{red} (CoII/CoI), matching the results obtained for the $t_{1/2}$ of aquation of the ReII CORM within CORM-biovectors 8–14. Our results point to three defined areas of CO-release within the range of 15–35 min: a $t_{1/2}$ of CO release in a 30–35 min range for cobalamine derivatives with an $E_{\text{red}} \leq -1$ V; a 20–25 min range between -0.95 and -0.75 V; a 15–20 min range for Co $E_{\text{red}} > -0.75$ V (Fig. 2).

These results are important since the modulation of the $t_{1/2}$ of CO release allowed us to study the biological effects on the inhibition of platelet aggregation of various CO-releasing rates within a family of structurally similar CORM compounds in comparison with CORM A1 that has a $t_{1/2}$ of CO release of approximately 20 min.16 As shown in Fig. 3 and Table 3, all B\textsubscript{12}-ReCORMs (compounds 8–14) inhibited platelet aggregation in the concentration range of 10 to 300 μM. In fact, the anti-aggregatory effects of 8 (IC\textsubscript{50} = 79.64 ± 1.21), 10 (IC\textsubscript{50} = 87.64 ± 1.13), 11 (IC\textsubscript{50} = 80.87 ± 1.17) and 14 (IC\textsubscript{50} = 48.20 ± 1.21) were quite similar to each other and in the same range as observed for CORM A1 (IC\textsubscript{50} = 77.13 ± 1.17).6,7 Only B\textsubscript{12}-CORMs 9 (IC\textsubscript{50} = 206.2 ± 1.22) and 13 (IC\textsubscript{50} = 29.39 ± 1.21) deviated significantly from these values (see Table 3). Compounds 8–11, 14 and CORM A1 inhibited platelet aggregation by more than 80% at 300 μM, while 13 achieved the same effect already at 100 μM. Accordingly, all the presented CORM-biovectors have anti-aggregatory effects relatively close to CORM A1. Only 13 displays a slightly more potent anti-platelet activity than CORM A1 and the other tested B\textsubscript{12}-ReCORMs.6–8

In summary, we have presented a series of B\textsubscript{12}-ReCORMs with tuneable CO releasing properties. These CORM-biovectors were synthesized by connecting a ReII-dicarbonyl CORM and modified B\textsubscript{12} derivatives through a cyanide bridge. In this proof-of-concept study it was demonstrated that alterations of the electronic properties at the CoII center of the B\textsubscript{12}-biectors translate directly into variations of the CO release kinetics at the ReII metal ion. Although differentiation of the CO releasing kinetics between the different complexes is still relatively small, we demonstrated already that B\textsubscript{12}-ReCORMs displayed pronounced anti-platelet activity similar or even slightly higher than CORM A1, a compound that affords anti-platelet and anti-thrombotic activities in vivo without a hypotensive effect.7 These findings are encouraging for our future efforts to develop tuneable B\textsubscript{12}-ReCORMs with further optimized CO-releasing properties to achieve optimal anti-platelet effects for therapeutic applications.

This was supported by National Science Centre grant no. DEC-2013/08/M/MN7/01034 (SCH), the Swiss National Science Foundation Grant no. PP00P2_144700 (FZobi) and a fellowship of the Forschungskredit of the University of Zurich UZH to LP. A generous gift of vitamin B\textsubscript{12} was obtained from DSM Nutritional Products AG (Basel/Switzerland) and Prof. B. Jaun (retired ETH Zurich).

Table 3 IC\textsubscript{50} values for anti-aggregatory effects of B\textsubscript{12}-ReCORMs and CORM A1.

<table>
<thead>
<tr>
<th>COMP.</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>13</th>
<th>14</th>
<th>CORM A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC\textsubscript{50} ± SEM</td>
<td>79.64 ± 1.21</td>
<td>206.20 ± 122</td>
<td>87.64 ± 1.13</td>
<td>80.87 ± 1.17</td>
<td>29.39 ± 1.21</td>
<td>48.20 ± 1.21</td>
<td>77.13 ± 1.17</td>
</tr>
</tbody>
</table>
Notes and references