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S U M M A R Y
The computational efficiency of 2.5-D seismic wave modelling in the frequency domain
depends largely on the wavenumber sampling strategy used. This involves determining the
wavenumber range and the number of the sampling points, and overcoming the singularities in
the wavenumber spectrum when taking the inverse Fourier transform to yield the frequency-
domain wave solution. In this paper, we employ our newly developed Gaussian quadrature grid
numerical modelling method and extensively investigate the wavenumber sampling strategies
for 2.5-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media. We
show analytically and numerically that the various components of the Green’s function tensor
wavenumber-domain solutions have symmetric or antisymmetric properties and other charac-
teristics, all of which can be fully used to construct effective and efficient sampling strategies
for the inverse Fourier transform. We demonstrate two sampling schemes—called irregular
and regular sampling strategies for the 2.5-D frequency-domain seismic wave modelling tech-
nique. The numerical results, which involve calibrations against analytic solutions, comparison
of the different wavenumber sampling strategies and validation by means of 3-D numerical
solutions, show that the two sampling strategies are both suitable for efficiently computing the
3-D frequency-domain wavefield in 2-D heterogeneous, anisotropic media. These strategies
depend on the given frequency, elastic model parameters and maximum wavelength and the
offset distance from the source.

Key words Numerical solutions; Body waves; Seismic anisotropy; Seismic tomography;
Computational seismology; Wave propagation.

I N T RO D U C T I O N

In exploration seismology, if the geological structure is essentially
2-D then profiling measurements (surface reflection and refraction,
offset VSP, cross-hole seismic) are usually taken perpendicular to
the strike direction and used to image the subsurface. To process
the field data and interpret the dynamic characteristics of the data,
a 2-D wavefield modelling technique (e.g. finite difference, finite
element) is frequently used (Kelley & Marfurt 1990) in which the
point source used in practice is replaced by a line source. This brings
mathematical simplicity to the problem and drastically reduces the
computer memory and run time compared to full 3-D modelling.
However, to make the synthetic data compatible with the observed
data requires the application of special filters or correction pro-
cedures to convert the 3-D field data into line-source (2-D) data
(Pratt 1999). Such filters are strictly only valid for simple homo-
geneous acoustic media in the far-field. They may be inaccurate at
short range and when shear waves and multiple reflected phases are
present. The situation is particularly acute when the arrivals overlap,

such as due to a strong velocity gradient. Williamson & Pratt (1995)
quantify the error as being 35 per cent over a linear gradient region
in which the velocity changes by a factor of two and caution against
blind application of such filters. In fact, the filters were derived by
comparing the asymptotic wavefield solutions for a point source and
a line source in a uniform full-space. To overcome the drawbacks,
or completely avoid making such ‘corrections’ or conversions, one
may apply a 2.5-D seismic wave modelling technique (Pedersen
et al. 1994; Song & Willamson 1995; Furumura & Takenka 1996;
Pedersen et al. 1996; Zhou & Greenhalgh 1998a, b; Novais & Santos
2005; Sinclair et al. 2007) that accommodates the true point source
and the 2-D model. The simulated wavefield then exhibits 3-D char-
acteristics, which is much closer to the field situation than that with
the line-source assumption and can be efficiently computed (Zhou &
Greenhalgh 2006). This obviates the need for filter corrections but
at the expense of increased computational effort. Recently, Roecker
et al. (2010) demonstrated a 2.5-D teleseismic waveform tomogra-
phy technique, for which they employed an optimal nine-point finite
difference method to solve the 2.5-D elastic wave equation. They
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showed the possibility to image the undulating Moho discontinuity
using the teleseismic waveforms. However, they used a regular grid,
an isotropic description of the rocks, and ignored the symmetric
or antisymmetric property of the frequency-domain wavefields in
the 2.5-D case. It is necessary to develop a more versatile technique
that is more efficient in computation and has the capability to handle
complex 2-D geological models involving anisotropic rocks and an
arbitrary free-surface topography as often encountered in practice.

To implement non-linear seismic diffraction tomography (Gelius
1995), frequency-domain full-waveform inversion (Pratt 1999) and
reverse-time migration using frequency-domain extrapolation (Xu
et al. 2010), it is necessary to compute the frequency-domain wave
solutions in the starting geological model and in the subsequent
iterative updates. To obtain the frequency–space domain wave so-
lution, one must compute the discrete inverse Fourier transform
of the frequency–wavenumber domain wave solution for a series
of wavenumber samples. Each wavenumber-domain solution is ob-
tained by solving a large dimensional linear equation system. Our
previous studies (Zhou & Greenhalgh 2006; Sinclair et al. 2007,
2011) have shown that there exist critical wavenumbers in both
the acoustic and elastic cases at which the wavenumber spectral
amplitudes become singular. The number of critical wavenumbers
increases with the degree of anisotropy and the number of sub-
volumes of the 2-D model. Determining the distributions of the
wavenumber samples to avoid the singularities is therefore cru-
cial to the 2.5-D modelling technique. The more the wavenumber
samples that are employed, the greater the chance of encounter-
ing the singularities and the more expensive the computer time
will be. Such problems seriously detract from the advantages of
2.5-D frequency-domain wave modelling. Therefore, we seek to de-
velop an optimal wavenumber sampling strategy that may efficiently
yield satisfactory frequency-domain wave solutions for non-linear
diffraction tomography or frequency-domain full-waveform inver-
sion in anisotropic media. This paper has this as its primary goal. We
develop two wavenumber sampling strategies, called the irregular
and the regular sampling strategies, respectively. Both fully apply
the symmetric and antisymmetric properties and other character-
istics of the wavenumber-domain solutions to significantly reduce
the number of wavenumber samples required for the inverse Fourier
transform. We also show that the two wavenumber sampling strate-
gies are functions of the given frequency, elastic model parameters
and maximum wavelength, as well as the source–receiver offset. The
numerical results verify the applicability of the two strategies for
computation of the frequency-domain wavefields in heterogeneous,
anisotropic media.

The remainder of the paper is organized into five sections. The
first section briefly gives the basic equations of the 2.5-D frequency-
domain wave modelling technique. The second section analytically
shows that the wavenumber-domain Green’s function solutions are
either symmetric or antisymmetric. The third section describes two
wavenumber sampling strategies and demonstrates their advantages
and disadvantages. The fourth section gives three numerical ex-
amples involving homogeneous and heterogeneous, isotropic and
anisotropic media, which show the properties of the wavefield solu-
tions and the effectiveness of the two sampling strategies. The final
section draws some conclusions from this work.

B A S I C E Q UAT I O N S

The governing equation for 2.5-D frequency-domain seismic mod-
elling is obtained by taking a spatial Fourier transform with respect

to the y-coordinate (medium invariant direction for a 2-D model) of
the 3-D frequency-domain wave equation. For a general anisotropic
medium, the result can be stated as (Zhou & Greenhlagh 2010)

[D1(ω, ky, m̃) + D2(ω, ky, m̃)]Gs = −ŝδ(r − rs), (1)

where the vector m̃ = (ρ̃, c̃i jkl ) represents the model parameters
which comprise the density ρ̃ and elastic moduli c̃i jkl of the medium;
both are incorporated with the perfectly matched layers and are gen-
erally complex-valued functions of the x- and z-coordinates (Zhou
& Greenhalgh 2011). The scalars ω and ky in the above equation
denote the frequency and the wavenumber, respectively, with the
latter corresponding to the Fourier transform variable with respect
to the y- (or strike) coordinate direction due to the 2-D nature of the
geological model. The unit vector ŝ stands for the impressed force
direction at the source location rs = (xs, 0, zs), whereas the vector

Gs is the doubly Fourier transformed spectra of the Green’s func-
tion vector, which is equivalent to the displacement vector arising
from a unit-vector source ŝ = (ŝ1, ŝ2, ŝ3) in the model m̃(x, z). The
differential operators D1(ω, ky, m̃) and D2(ω, ky, m̃) are defined by

D1(ω, ky, m̃)Gs =
[

∂

∂xi

(
c̃i jkl

∂Gsk

∂xl

)

+ (
ρ̃ω2δ jk − c̃2 jk2k2

y

)
Gsk

]
e j ,

D2(ω, ky, m̃)Gs = iky

[
∂

∂xi

(
c̃i jk2Gsk

)
+ c̃2 jkl

∂Gsk

∂xl

]
e j .

(2)

Here, the factor ‘i’ is the unit imaginary number. From the above
definitions, it is not difficult to show that the operator D1(ω, ky, m̃)
is positive self-adjoint, namely∫

�

u · D1(ω, ky, m̃)v d� =
∫

�

v · D1(ω, ky, m̃)u d�, (3)

whereas D2(ω, ky, m̃) is negative self-adjoint for any two vectorial
functions u, v ∈C1(�) (see Zhou & Greenhalgh 1999):∫

�

u · D2(ω, ky, m̃)v d� = −
∫

�

v · D2(ω, ky, m̃)u d�. (4)

To solve eq. (1), we apply the principle of weighted residuals (Becker
et al. 1983)∫

�

W · [D(m̃, ω, ky)Gs + ŝδ(r − rs)]d� = 0 (5)

for which we choose three basic weighting functions:W1(r) =
[W (r), 0, 0], W2(r) = [0, W (r), 0], W3(r) = [0, 0, W (r)], where
W (r) ∈ C1(�), and calculate the integration with a Gaussian
quadrature grid (GQG). It leads to the following system of linear
equations (for details, see Zhou et al. 2011)

M(ω, ky, m̃)Gs = bs, (6)

where Gs = (Gsx1, Gsy1, Gsz1, Gsx2, Gsy2, Gsz2, ......, Gsx N , GsyN ,

GszN ) is the Green’s function vector in the frequency-wavenumber
domain, whose components are the vectorial values at each point of
the GQG. The quantity N stands for the total number of points

in the GQG. We simply call Gs the wavenumber-domain solu-
tion because of the dependence of the wavenumber ky . The vector
bs = (0, 0, 0, ......, 0.ŝ1, ŝ2, ŝ3, 0, ......0, 0, 0) is the source vector
whose components are zero except for the one at the source po-
sition. The matrix M(ω, ky, m̃) is a 3N × 3N sparse matrix and
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can be calculated for a given frequency ω, wavenumber ky and set
of model parameters m̃ = (ρ̃, c̃i jkl ). Solving eq. (6), one obtains

the wavenumber-domain Green’s function vector Gs , from which
the frequency-domain solution is obtained by inverse Fourier trans-
forming over a range of wavenumber spectra:

Gs(ω, x, y, z) = 1

2π

∫ ∞

−∞
Gs(ω, x, ky, z)eiky ydky

≈ kc
y

(N ky − 1)π

N ky∑
j=1

Gs(ω, x, k j
y , z)eik j

y y . (7)

Here kc
y and N ky are the cut-off wavenumber and the number of

samples, respectively, and they define the wavenumber sampling

strategy for eq. (7). Gs(ω, x, k j
y , z) are the wavenumber-domain

solutions for the sequence {k j
y ∈ [−kc

y, kc
y], j = 1, 2, . . . , N ky},

which has a constant spacing �ky = 2kc
y/(N ky − 1). Eq. (7)

shows that for one frequency-domain solution Gs(ω, x, y, z), it
is necessary to solve the linear equation system (eq. 6) N ky times.
Therefore, the computational efficiency of 2.5-D wave modelling
depends on the wavenumber sampling strategy used, which in-
volves the determination of the cut-off value kc

y and the number of

wavenumber samples N ky . An ideal sampling strategy would be to
keep N ky as small as possible in the range [−kc

y ,kc
y] from which

the Greens’ function vector Gs(ω, x, y, z) can be satisfactorily
obtained.

S Y M M E T R I E S O F T H E WAV E N U M B E R -
D O M A I N S O LU T I O N S

According to the definition of the inverse Fourier transform, eq. (7)
can be rewritten in the following form:

Gs(ω, x, y, z)

≈ kc
y

π Nky

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nky∑
j=1

Gs(ω, x, k j
y , z) cos(k j

y y), Gs
(k j

y ) is even,

Nky∑
j=1

iGs(ω, x, k j
y , z) sin(k j

y y), Gs(k j
y ) is odd.

(8)

This equation shows that if the wavenumber-domain solution

Gs(ω, x, ky, z) is symmetric (even) or antisymmetric (odd) in

wavenumber ky , then one may employ half (Nky = N ky /2) of

the samples Gs(ω, x, k j
y , z), k j

y ∈ (0, kc
y] to recover the frequency-

domain solution Gs(ω, x, y, z). This means that the computational
cost of 2.5-D wave modelling can be significantly reduced if the
symmetries in the Green’s function components occur. Accordingly,
it is necessary to investigate the properties of the wavenumber-

domain solutions Gs(ω, x, k j
y , z) in a heterogeneous, anisotropic

medium.
If we designate G+

s and G−
s as the two wavenumber-domain

solutions for positive (+ky) and negative (–ky) wavenumbers, re-
spectively, we have the following identities according to eq. (1):

(D1 + D
|ky |
2 )G+

g = −ĝδ(r − rg),

(D1 − D
|ky |
2 )G−

g = −ĝδ(r − rg), (9)

where D1 = D1(ω, ky, m̃) and D
|ky |
2 = D2(ω, |ky |, m̃), and the

modulus symbol | · | around ky denotes absolute value, ĝ is a unit

vector located at receiver position rg. Multiplying G+
s and G−

s with
the above equations, respectively, and integrating over the physi-
cal domain with the help of the positive and negative self-adjoint
properties of the operators D1 and D2 (eqs 3 and 4), as well as the

identity (D1 + D
|ky |
2 )G+

s,g = (D1 − D
|ky |
2 )G−

s,g, we obtain

G+
sg − G−

sg = 2
∫

�

GgD
|ky |
2 Gs d�. (10)

Setting ĝ = ŝ in eq. (10) and recognizing that the right-hand side
of the above equation becomes zero due to the negative self-adjoint
property of D

|ky |
2 (see eq. 4), we have

G+
sg = G−

sg,
if ĝ = ŝ . (11)

This equation holds for any 2-D physical medium and shows the
symmetries of the components of the wavenumber-domain Green’s
function vectors, that is, letting ŝ = ĝ = x̂, ŷ, ẑ be the three unit vec-

tors of the Cartesian coordinate system, it directly gives G+
11 = G−

11,

G+
22 = G−

22, and G+
33 = G−

33. The subscripts 1, 2, 3 correspond to
the three axis directions (x̂, ŷ, ẑ). In fact, the above relationships can
be seen in Fig. 1, that is, as ŝ = ĝ = x̂, one can see the frequency-
domain solution satisfies G11(ω, x, −y, z) = G11(ω, x, y, z) due to
the complete symmetries of the source (ŝ) and geophone vectors (ĝ),
as well as the model parameters m̃(x, z) to the central plane (y =
0). So the wavenumber-domain solution G11(ω, x, ky, z) must be an

even function of ky in terms of eq. (8). Similarly, G22(ω, x, ky, z),

G33(ω, x, ky, z), G13(ω, x, ky, z) and G31(ω, x, ky, z) are all sym-
metric which arises the off-diagonal components symmetric too,

G+
13 = G−

13, G+
31 = G−

31. In addition, Fig. 1 also implies the follow-
ing identities:

G12(ω, x, y, z) = − �G12(ω, x, −y, z),

G21(ω, x, y, z) = − �G21(ω, x, −y, z), (12)

G23(ω, x, y, z) = − �G23(ω, x, −y, z),

G32(ω, x, y, z) = − �G32(ω, x, −y, z). (13)

Accordingly, the wavenumber-domain solutions of the above com-

ponents are antisymmetric: G+
12 = −G−

12, G+
21 = −G−

21, G+
23 =

Figure 1. Symmetric properties of the 2.5-D seismic solutions with the
given model parameters m̃(x, z) and source and geophone unit directional
vectors ŝ and ĝ.
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−G−
23 and G+

32 = −G−
32. In summary, we have established the fol-

lowing symmetric/antisymmetric properties for all components of
the Green’s function vectors in the wavenumber domain

G+
sg = (−1)s+gG−

sg, (s, g = 1, 2, 3). (14)

WAV E N U M B E R S A M P L I N G S C H E M E S

Irregular strategy based on Gauss–Legendre sampling

We have shown that the components of the wavenumber-domain

Green’s function vector Gs(ω, x, ky, z) are either symmetric or an-
tisymmetric. Accordingly, we can compute the frequency-domain
solution Gs(ω, x, y, z) using the positive wavenumber samples

{Gs(ω, x, k j
y , z), k j

y ∈ (0, kc
y], j = 1, 2, . . . , Nky}. However, be-

fore sampling the wavenumber, we have to choose the cut-off value
kc

y, which can be determined from

kc
y = max{kp(r) = ω√

Re{ãpp(r)} , p = 1, 2, . . . , 6} (15)

for a heterogeneous anisotropic model. This equation was ob-
tained from our previous research work on synthetic experiments
using both analytic and numerical wave solutions that show any
larger wavenumber than kc

y has little contributions to the frequency-
domain solutions except on receivers very close to the source (Zhou
& Greenhalgh 2006; Sinclair et al. 2011). Here, ãpp(r) are the diag-
onal elements of the Voigt recipes for up to 21 density-normalized
elastic moduli. We called kp(r) the ‘critical values’ or ‘singularities’

of ky at which the wavenumber-domain solution Gs(ω, x, kp, z) be-
comes infinite. Those ‘critical points’ or ‘singularities’ destroy the
inverse Fourier transform and result in difficulties in being able to
obtain the frequency-domain solution. To overcome the singulari-
ties, Zhou and Greenhalgh (2006) demonstrated a Gauss–Legendre
sampling strategy for acoustic media, which essentially circum-
vented the critical points. From a methodology viewpoint, we may
adapt such a sampling strategy to the case of a general anisotropic
medium by investigating the characteristics of the wavenumber-
domain solutions in anisotropic media, that is, we apply eq. (15)
to calculate the singular points kp(r) that divide the wavenumber-
domain [0, kc

y] into N e
s effective intervals (which means that the two

endpoints of the interval are not too close, that is, they must have
more than 5 per cent change), and then apply the following formula
to estimate the number of samples over the domain (0, kc

y] :

Nky =
N e

s∑
q=1

max
{
5, int

[
	

(
λmax, rmax, �k(q)

y

)]}
. (16)

The term max{5, int[	(λmax, rmax,�k(q)
y )]} gives the number of

samples in the subdomain [k(q−1)
y , k(q)

y ], where k
(q)

y
∈ {kp}; it has

the minimum number of 5 but more likely is 	(λmax, rmax, �k(q)
y ),

which generally depends on the maximum wavelength λmax =
max{√Re(ãpp)}/ f, the maximum source–receiver offset rmax and
the effective interval �kq

y = k(q)
y − k(q−1)

y , where r is the
offset distance from the source. In the acoustic case,	 =
2rmax/λmax and N e

s = 1 (Zhou & Greenhalgh 2006). For gen-
eral anisotropic media, we need to estimate this function in terms
of the properties of the wavenumber-domain solutions (see the
next section). After obtaining the number of samples N (q)

ky =
max{5,int[	(λmax, rmax,�k(q)

y )]} for the subdomain, we can ana-

lytically calculate the Gauss–Legendre weights w
(q)
j and abscissa

values k j
y ∈ (k(q−1)

y , k(q)
y ), j = 1, 2, . . . , N (q)

ky (Press et al. 1986) so
that the inverse Fourier transform is computed by the formula

Gsg(ω, x, y, z)

=
N e

s∑
q=1

N
(q)
ky∑

i=1

�kq
y

2π
w

q
i

⎧⎪⎪⎨
⎪⎪⎩

Gsg(ω, x, ki
y, z) cos(ki

y y), s + g = even,

iGsg(ω, x, ki
y, z) sin(ki

y y), s + g = odd,

(17)

rather than using eq. (8). According to the distribution of the
Gauss–Legendre abscissae k j

y , the samples in each interval ex-
clude the two endpoints of the interval (k(q−1)

y , k(q)
y ) so that eq.

(17) avoids the singularities on the positive ky-axis. Therefore, the
Gauss–Legendre sampling scheme is actually a singularity-skipping
strategy. Due to the irregular distribution of the wavenumber sam-
ples (at the Gauss–Legendre points), we simply call it an irregular
sampling strategy. However, from eq. (15) one finds that in a homo-
geneous, anisotropic medium there are in general six singularities
due to the six diagonal elements (a11, a22, a33, a44, a55, a66). Even
considering a tilted transversely isotropic medium (TTI-medium)
that is a commonly used model in seismic exploration (Thomsen
1986), there may be four singularities in such a homogeneous model
because a11 = a22 and a44 = a55. In a heterogeneous model con-
sisting of Nm TTI media, one has to deal with 4Nm singularities
distributed over 4Nm intervals covering the domain (0, kc

y]. It is
apparent that the singularity-skipping strategy is suitable for the
case having a known certain number of singularities, but not suit-
able for the cases having an uncertain number of singularities. This
would occur, for example, when implementing non-linear diffrac-
tion tomography or 2-D full-waveform inversion where the model
parameters are successively upgraded with small quantities. Such
an upgrading or adjustment procedure may cause many different
numbers of singularities in the iterative inversions.

Regular strategy

As an alternative approach, it can be theoretically shown that the
wavenumber singularities may be removed by introducing slight at-
tenuation in the medium. This has been done for layered isotropic
elastic media using complex velocities (or frequencies) in the Re-
flectivity method (see Mallick & Frazer 1987; Aki & Richards 2002,
p. 393). For anisotropic media, one can employ six complex elastic
moduli ã(m)

pp = a(m)
pp + iε (p = 1, 2, . . . , 6) in the mth subvolume

of the model, where ε is a small quantity. Therefore, there are six

complex wavenumbers k̃mp = ω/

√
ã(m)

pp in solving eq. (1) so that the

wavenumber samples k j
y involved in the inverse Fourier transform

are real valued quantities. The inverse Fourier transform therefore
does not encounter any singularities along the real ky axis because
they are displaced off the positive ky-axis in the complex plane
(kmp �= k̃mp). Our numerical experiments (see the next section)
demonstrate the effectiveness of using complex wavenumbers—

limiting the amplitudes of the samples Gs(ω, x, k j
y , z) and making

the solutions continuous at the singularities. Accordingly, we can
employ a sequence of wavenumbers uniformly or regularly dis-
tributed over the domain (0, kc

y], that is, k j
y = ( j/Nky)kc

y , j = 1,
2, . . . Nky, where Nky should be determined by the minimum spac-
ing of the oscillations of the wavenumber-domain spectrum at the
largest source–receiver offset and the highest frequency (see the
next section). Unfortunately, we cannot know in advance the pre-
cise oscillatory nature of the wavenumber-domain solution and it
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Figure 2. The synthetic model used for verification of the wavenumber
sampling strategies. Medium 1 and Medium 2 are VTI media and their
density-normalized elastic moduli are given in Table 1. The background to
the plot is the Gaussian quadrature grid which samples the model parameters
and the wavefield.

must be evaluated numerically for each model. Therefore, we may
simply obtain Nky by multiplying N e

s to the estimate of max[5,
int(2rmax/λmax)],namely,

Nky = N e
s max

[
5, int

(
2rmax

λmax

)]
. (18)

This implies that the domain (0, kc
y] is divided into N e

s equal parts
and every part has the same distribution of sampling points. Note
that in eq. (18) the quantity is the distance normalized by the wave-
length, suggesting at least two samples per wavelength. After ob-
taining Nky, one has the wavenumber sequence k j

y = jkc
y/Nky

( j = 1, 2, . . . , Nky) that is used in eq. (6), and then eq. (8) is used
to calculate the frequency-domain solution. Due to the uniform
distribution of the wavenumber samples, we call this scheme the
regular sampling strategy. It may be applied for non-linear seis-
mic diffraction tomography or multiple-frequency full waveform
inversion in which one hardly knows how many singularities will
be involved and where the singularities are located in wavenumber
space. This simple strategy enables us to completely ignore the sin-
gularity problem, but it is apparent that when a large number of N e

s

are employed much more computer time is taken up than with the
irregular sampling strategy.

N U M E R I C A L E X P E R I M E N T S

To view the characteristics of the wavenumber-domain solutions,
we set f = 100 Hz and solve eq. (6) to calculate the wavefields
in a full-space homogeneous anisotropic model, whose spatial di-
mensions are 200 m × 200 m and discretized by means of 161 ×
161 Gaussian quadrature abscissae. An analytic solution is available
for such a model (Vavrycuk 2007) and may be employed to both
validate and calibrate the wavenumber sampling strategies. Next
we employed a second model comprising a two-layered anisotropic
structure and incorporating an undulating surface topography (see
Fig. 2) to verify the capability of the new sampling strategies. The
elastic moduli of the two models are given in Table 1, along with the
wavenumber singularities kmp. From Table 1 it can be seen that both
models have the cut-off wavenumber of kc

y = max{kmp} ≈ 0.63 and
as the synthetic model changes from the uniform elastic full-space
to the two-layered anisotropic structure, the number of wavenumber
singularities increases from N = 6 to 16 over the wavenumber do-
main [−kc

y, kc
y]. Using these model parameters one can work out the

minimum and maximum wavelengths in the models, that is, λmin ≈
10 m and λmax ≈ 25 m, respectively, according to which the Gaus-
sian quadrature point density NG = 9 (the spatial sampling number
for the minimum wavelength simulated in the model) is applied in
the calculations. To avoid the singularities, a slight attenuation value
of ε = 10−12 is used.

Figs 3 and 4 show the real and imaginary parts of the spectra of
the wavenumber-domain solutions at two different source–receiver
offsets (r = 28.3 m, 212 m) in the two models. Diagrams (a) and (b)
in each figure correspond to the two different offsets. One can see
that Fig. 3 gives six pairs of diagrams for each offset. They represent

the six independent components (G11, G12, G13, G22, G23, G33) of

the three Green’s function vectors G1 = (G11, G12, G13), G2 =
(G21, G22, G23) and G3 = (G31, G32, G33), because of the equiva-

lence of the components G12 = G21, G13 = G31 and G23 = G32 due
to complete symmetry of the full-space models and the vectors of
the source and geophone. By comparison, Fig. 4 has nine diagrams
representing nine independent components due to the presence of
the free-surface topography, destroying the symmetry and leading to

the inequalities G12 �= G21, G13 �= G31 and G23 �= G32. In each di-
agram we give two results obtained with N ky = 128 and N ky = 512
uniformly distributed wavenumber samples to view the global oscil-
latory behaviour in the wavenumber domain [–0.63, 0.63]. We use
vertical dashed lines to indicate the locations of the singularities in
each case. From these diagrams, we observe the following charac-
teristics: (1) The numerical results demonstrate the symmetric or

Table 1. Synthetic models used for investigating the wavenumber sampling strategies.

Synthetic model Elastic moduli
a∼(m)

i j = a(m)
i j + iε

(×109 m2s−2)

Singularities
kmp = ω/

√
Re(ã(m)

pp )

( f = 100 Hz)

Full-space homogeneous
anisotropic model (model-1)

a11 = 6.25, a13 = 4.25,

a33 = 6.25, a44 = 1.00,

a66 = 2.25
±0.25, ±0.42, ±0.63

Two-layered anisotropic
model having a undulated
surface topography (model-2)

a(1)
11 = 4.00, a(1)

13 = 1.33,

a(1)
33 = 5.00, a(1)

44 = 1.33,

a(1)
66 = 1.94.

a(2)
11 = 6.252, a(2)

13 = 4.25,

a(2)
33 = 5.25, a(2)

44 = 1.00,

a(2)
66 = 2.25.

Medium 1 :

0.28, ±0.31, ±0.45,

±0.54

Medium 2 :

±0.25, ±0.27, ±0.42

±0.63
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(a) 

Figure 3. The real and imaginary parts of the wavenumber-domain solutions in a full-space homogeneous, anisotropic medium (see Table 1) at two offsets:
(a) r = 28.3 m and (b) r = 212 m. The vertical lines at wavenumbers ±0.25, ±0.48 and ±0.63 denote the critical wavenumbers.
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Figure 3. (Continued.)
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Figure 4. The real and imaginary parts of the wavenumber-domain solutions for the two-layered anisotropic model (see Table 1 and Fig. 2) at two depths: (a)
geophone 1 and (b) geophone 2, as shown in Fig.2. Note the eight critical wavenumbers in both the positive and negative ky directions, indicated by the vertical
lines.
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Figure 4. (Continued.)
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antisymmetric properties of the components that have been given by
eq. (14). (2) The 128- and 512-sampling schemes yield consistent
results, but the former consumes one-third the computer time of
the latter and it implies that choosing an appropriate number of the
samples may significantly improve the efficiency of the 2.5-D mod-
elling technique. (3) All the curves exhibit continuous behaviour at
the singularity positions, particularly see Fig. 4 where there are 16
singularities over the wavenumber domain. This means that even
slight attenuation (ε = 10−12) removes the singularities. (4) The
oscillations of the curves increase with increasing wavenumber and
increasing offsets. See, for example Fig. 3(a), which is a simple
case of an anisotropic medium and has six singularities at ±0.25,
±0.42 and ±0.63. It can be observed that the oscillatory behaviour
of the curves at the end-parts of each interval (±0.42, ±0.63) is
of higher frequency than in the mid-part ( − 0.25, 0.25). Further,
by comparing Fig. 3(a) (offset r = 28.3 m) and Fig. 3(b) (offset
r = 212 m), one finds that as the offset increases, the oscillation
frequency at the end-parts of the wavenumber interval increases as
well. Such characteristics are also visible in Fig. 4, corresponding
to the heterogeneous, anisotropic case.

According to these characteristics, we can construct the sam-
pling strategies valid for these cases, that is, based on the
singularity-skipping strategy (Zhou & Greenhalgh 2006), we re-
place eq. (16) with the following formula for the irregular sampling
approach:

Nky =
N e

s∑
q=1

max

{
5, int

[
2cNs−q ·

(
2rmax

λmax

)]}
, c < 1, (19)

where we take the double integer int[2rmax/λmax] as the number of
samples in the end-part of the intervals and decrease it by the factor
cNs−q in the descent direction. It shows Nky is proportional to kc

y ,

frequency f = max(
√

a(m)
pp )/λmax and offset rmax so that the strategy

basically satisfies the sampling requirements for different ranges of
ky, source–receiver offsets and frequencies. Apparently, this strategy
is not unique, but one can experimentally determine the factor c to
yield satisfactory results with Nky as small as possible.

We set c = 1/2, used eq. (19) and obtained Nky = 38 and Nky = 63
for the two models. We recalculated the wavefields and showed that
the solutions with the 38-wavenumber samples match very well
with the analytic solutions in the homogenous anisotropic model
(omitted here). As an example, we present Fig. 5 which shows the
solutions for the two-layered anisotropic model given in Table 1. Be-
cause no analytic solution is available for comparison, we plotted
the results obtained by the irregular sampling strategy (Nky = 63)
against the solutions obtained by the denser regular sampling strat-
egy (Nky = 256). It shows that the irregular sampling strategy
produces consistent results with those obtained by the dense sam-
pling, but the former takes only one-fourth as much computer time
compared to the latter. These experiments confirm that employ-
ing an appropriate sampling strategy can significantly improve the
computational efficiency of 2.5-D seismic wave modelling in the
frequency domain.

To show the differences between the 2.5-D (point source) and
2-D (line source) frequency-domain wave modelling, we repeated
the above experiments with a line source, whose solution is defined
by eq. (1) with ky = 0 and obtained by solving the linear system
eq. (6) with such zero wavenumber. Fig. 6 gives five independent
non-zero components of the Green’s function tensors along the
free surface of the two-layered anisotropic model, together with the
previous 2.5-D modelling results shown in Fig. 5. For ease of com-
parison, we multiplied the 2-D results with the factor 1/

√
r . These

diagrams show the differences in the amplitude and the phase of the
wavefields at the specified frequency (100 Hz). The 2.5-D wavefield
spreads roughly spherically (as 1/r ) but the 2-D wavefield does not
(it spreads cylindrically, or roughly as 1/

√
r ) so multiplying the

2-D results with the factor 1/
√

r should approximately equalize the
amplitudes (the correction is strictly valid only in the far-field for
a homogenous acoustic full-space). But even after such correction,
the components of the 2-D numerical results give a poor match
with the amplitudes of the 2.5-D numerical modelling, particularly
in the heterogeneous anisotropic medium (see Fig. 6). One also can
see the phase delays in the 2.5-D numerical results compared with
the 2-D modelling solutions. The phase difference between 2.5-D
and 2-D frequency-domain wavefields has already been pointed out
by Williamson & Pratt (1995), who showed a π/4 phase difference
between the 2.5-D and 2-D solutions in the far-field situation for
a uniform acoustic medium. These experiments clearly show that
simple conversion from the 2-D to 2.5-D wavefields cannot guaran-
tee the correct dynamic features in complex anisotropic media. To
further verify the 2.5-D modelling schemes, we employed our 3-D
frequency-domain modelling code (Zhou & Greenhalgh 2011) for
the two-layered anisotropic model and obtained Fig. 7, which gives
the 2.5-D and 3-D modelling results along the undulating surface
topography and shows the consistent results for the 3-D wavefield
over the 2-D geological model.

To demonstrate the capabilities of the 2.5-D modelling strate-
gies for a practical geological model, we calculated five non-zero
components {G11, G13, G22, G31, G33} of the displacement vector
at a frequency of 1 Hz (see Fig. 8) for a subduction-type model
(shown by the black lines in the wavefield images in Fig. 8). The
elastic moduli of the subduction zone are given in Table 2. The point
source is located at the middle of the model 25 km below the free
surface. From Table 2 and the specified frequency, one finds that the
minimum wavelength is λmin = 3.2 km, the cut-off wavenumber is
kc

y ≈ 0.0196 and the maximum source–receiver offset distance is
rmax = 100km. Accordingly, for these calculations we choose seven
points over the minimum wavelength as the model-discretization
density and the regular sampling strategy of Nky = 290 wavenum-
bers. Due to the limitation of our computer memory, we could not
implement full 3-D simulation of the subduction model for compar-
ison (Table 3), but we repeated the computations with more dense
wavenumbers (Nky = 512) to check the stability of the solutions.
In Fig. 8, we also give the profiling curves along the free surface
of the wavefields as obtained by the two sampling strategies and
once again show the consistent solutions. The computational effi-
ciency of the 2.5-D scheme was achieved by appropriately choosing
the wavenumber samples. From the five wavefield images given in
Fig. 8, one can observe the characteristics of the wavefields, for ex-
ample, different wave-propagating patterns in the layers due to dif-
ferent source directions and strong interferences of the reflections,
refractions and guided waves in the layers. From the free-surface
profiling curves, one also can see significant changes of the magni-
tudes of the displacement vectors over the two tectonic plates of the
subduction model.

Table 3 lists the computer memory and CPU time costs (SGI Altix
XE 1300) for the above three models. As mentioned above, due to
the memory limitation of the computer, we could not perform full
3-D computations with the same matrix solver (LU-decomposition)
as used in the 2.5-D schemes because of dramatic increase in the
computer memory with the dimensions of the matrix. Therefore, we
had to employ an iterative linear-system solver (Zhou & Greenhalgh
2010) that consumes far less computer memory than the matrix
solver. From Table 3, one can see the computational benefits of the
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Figure 5. Five independent components of the numerical wave solutions yielded by the irregular sampling strategy (Nky = 63) and the regular sampling
strategy (Nky = 256) at f = 100 Hz along the undulating free-surface topography of the two-layered anisotropic model given in Table 1.
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Figure 6. Comparisons of the 2.5-D and 2-D wave solutions at 100 Hz in the two-layered anisotropic model given in Table 1.
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Figure 7. Numerical solutions of the 2.5-D (regular sampling scheme) and 3-D frequency-domain wave modelling at 100 Hz in the two-layered anisotropic
model given in Table 1.
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Figure 8. 2.5-D frequency-domain numerical solutions for a subduction zone model. The model parameters are given in Table 2. The frequency is 1 Hz and
seven points over the minimum wavelength were employed in the computations.

2.5-D schemes for simulating the 3-D wavefields in a 2-D geological
model.

C O N C LU S I O N S

We have demonstrated two effective wavenumber sampling
schemes, called the irregular and regular sampling strategies, for
2.5-D frequency-domain seismic wave modelling. The former is an

extension of our previous singularity-skipping strategy for acoustic
media to general, anisotropic media, whereas the latter is achieved
by the introduction of slight attenuation in the model to remove the
singularities at the critical wavenumbers, to completely overcome
the singularity problem.

We show both mathematically and numerically that the Green’s
function vector wavenumber-domain solutions in the 2.5-D gen-
eral anisotropic case are symmetric or antisymmetric about the
wavenumber axis, and that the oscillatory behaviour of the spectral
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Table 2. Elastic moduli for the subduction model shown in Fig. 8.

Tectonic plate 1 Elastic moduli (ρ : kg m−3; ci j : 109m2 s−2) Tectonic plate 2 Elastic moduli (ρ : kg m−3; ci j : 109m2 s−2)

Layer 1 ρ = 2500, c11 = 75.625 Layer 1 ρ= 3300, c11 = 161.7
c13 = 24.425, c33 = 75.625 c13 = 50.754, c33= 177.87
c44 = 25.60, c66 = 25.60 c44 = 61.025, c66= 55.473

Layer 2 ρ= 2900, c11 = 122.525 Layer 2 ρ= 3500, c11 = 194.063
c13 = 38.773, c33 =122.525 c13 = 60.479, c33 = 213.46
c44 = 41.876, c66 = 41.876 c44 = 73.471, c66 = 66.792

Layer 3 ρ = 3500, c11 = 194.06 Layer 3 ρ = 3900, c11 = 249.6
ci3 = 60.479, c33 = 213.46 c13 = 77.298, c33 = 274.5
c44 = 73.471, c66 = 66.792 c44 = 94.766, c66 = 86.151

Layer 4 ρ= 3900, c11 = 249.6
c13 = 77.298, c33 = 274.5
c44 = 94.766, c66 = 86.151

Table 3. Computer memory and CPU-time costs of 2.5-D and 3-D frequency-domain seismic wave modelling. The matrices
for the 2.5-D cases are stored in banded form and the system solved by the LU decomposition approach. The matrices in
the 3-D cases are stored only as non-zero elements and solved by the BiCG-solver.

Model 2.5-D 3-D

Grid Memory (GB) CPU-time (hr) Grid Memory (GB) CPU-time (hr)

Homogenous 161 × 161 3.7 3 161x161 × 161 24 113
Two-layered 145 × 177 3.9 5.1 145 × 177 × 177 26 126
Subduction 137 × 433 6.7 47 137 × 433 × 433 36 Not applicable

amplitudes increases with increasing wavenumber and increasing
source–receiver offset. The two presented strategies fully take into
account such properties and characteristics of the wavenumber-
domain solutions, so that they significantly reduce the cost of com-
puter memory and run time, thus enhancing the computational ef-
ficiency of 2.5-D frequency-domain seismic wave modellingwhile
retaining satisfactory accuracy.

The irregular sampling strategy uses Gauss–Legendre abscissa
sampling in the wavenumber domain so as to avoid the singular
wavenumber points. It requires that the singular wavenumber po-
sitions be known in advance from the given frequency and the
diagonal elements of the Voigt recipe for the density-normalized
elastic modulus tensor. It is particularly suitable for cases where
the number of singularities may be controlled in the computation.
The regular sampling strategy distributes the wavenumber samples
uniformly over the wavenumber domain and may be applied to non-
linear diffraction tomography and frequency-domain full-waveform
inversion where the number and positions of the singularities are
not known in advance and can hardly be controlled in the iterative
model up-grading.

From these numerical experiments, it is apparent that the 2.5-D
frequency-domain modelling scheme is applicable for computing
the frequency-domain wavefield solutions and the sensitivity ker-
nels (see examples, Zhou & Greenhalgh 2011) at the dominant fre-
quencies employed in non-linear seismic diffraction tomography or
frequency-domain full-waveform inversion in anisotropic media.
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