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SUMMARY

For the evaluation of the epidemiology ofTheileria equi andBabesia caballi in a herd of 510 horses in SWMongolia, several

mathematical models of the transmission dynamics were constructed. Because the field data contain information on the

presence of the parasite (determined by PCR) and the presence of antibodies (determined by IFAT), the models cater for

maternal protection with antibodies, susceptible animals, infected animals and animals which have eliminated the parasite

and also allow for age-dependent infection in susceptible animals.Maximum likelihood estimation procedures were used to

estimate the model parameters and aMonte Carlo approach was applied to select the best fitting model. Overall, the results

are in line with previous experimental work, and add evidence that the epidemiology of T. equi differs from that of Babesia

spp. The presented modelling approach provides a useful tool for the investigation of some vector-borne diseases and

the applied model selection procedure avoids asymptotical assumptions that may not be adequate for the analysis of

epidemiological field data.

Key words: Theileria equi, Babesia caballi, horses, tick-borne disease, epidemiology, Mongolia, mathematical modelling,

Monte Carlo methods.

INTRODUCTION

Equine piroplasmoses are caused by two intra-

erythrocytic protozoa, Theileria equi and Babesia

caballi. Both are transmitted by ixodid ticks

(Friedhoff, 1988). Clinical signs of infection may

vary from asymptomatic to acute fever, anaemia and

dyspnoea, and even death (reviewed in Schein,

1988). Chronically infected horses represent a res-

ervoir infecting ticks, which subsequently transmit

the parasites to other equids. Piroplasms can be de-

tected directly by microscopical examination of

Giemsa-stained thin blood smears or by polymerase

chain reaction (PCR) (Bruning, 1996), and for in-

direct diagnosis, the immunofluorescence antibody

test (IFAT) is the most widely used technique

(Gummow et al. 1996; Avarzed et al. 1997; Heuchert

et al. 1999).

The epidemiology of equine piroplasmoses has

been investigated in various studies (Mahoney, 1969;

Mahoney and Ross, 1972; Ross andMahoney, 1974;

Smith, 1983; Dallwitz et al. 1987; Medley et al.

1993). In 2004, a study was conducted in a domestic

horse population in south-western Mongolia (Rüegg

et al. 2007). PCR results indicated a T. equi preva-

lence of 66.5% (95% CI: 62.2–70.7) and the IFA test

demonstrated that 78.8% (95% CI: 74.9–82.3) of

animals had seroconverted to T. equi. The corre-

sponding values for B. caballi were 19.1% (95% CI:

15.7–22.8) and 65.7% (95% CI: 61.4–69. 9) respect-

ively. To investigate the impact of age, herd affili-

ation, sex, date of sample collection and tick

abundance on the PCR and IFAT prevalences, a

generalized linear model (GLM) and a generalized

additive model (GAM) were used. In both models,

sex and age were the only two significant explanatory

variables (Rüegg et al. 2007). Despite being useful

for detection of risk factors and testing hypotheses

about relationships of explanatory variables, GLMs

andGAMs are in general not adequate to gain insight

into the transmission process. Hence, in this work, a

mathematical model describing the transmission

dynamics is applied which yields a biological inter-

pretation of the prevalence in horses in terms of

transmission parameters. For Theileria such a math-

ematical transmission model has been presented

based on the epidemiology of east coast fever (ECF,

T. parva) in cattle (Medley et al. 1993). A model

for Babesia in cattle has existed since the 1960s

(Mahoney, 1969) and has been extended in various

versions (Mahoney and Ross, 1972; Ross and

Mahoney, 1974; Smith, 1983). These models have

been used to simulate the prevalence of piroplasms in

cattle and to evaluate strategic interventions in the
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epidemiological cycle. Dallwitz et al. (1987) sug-

gested that because Theileria and Babesia have pri-

marily quantitative rather thanqualitative differences

in their transmission dynamics, a singlemodel should

be able to summarize the biological particularities of

both.Therefore, in the present work a series of nested

models for different transmission scenarios is pre-

sented. Their application to the field data from

Mongolia provides insight into the transmission

process as opposed to the purely descriptive tools of

GLMs andGAMs (Rüegg et al. 2007). An exhaustive

Monte Carlo simulation study is conducted to select

the best fitting model for both parasites.

MATERIALS AND METHODS

All procedures were performed using the statistical

software R 2.4.0 (RDevelopment Core Team, 2006).

TheMonte Carlo simulation study was conducted on

the high performance computing cluster system

‘Matterhorn’ of the University of Zürich, providing

a floating point performance of approximately 2.9

TFlops with 10 TBytememory. The data file and the

code for the models are available online as sup-

plementary data.

Two compartment model

In a first approach, the dynamics of parasite acqui-

sition and elimination are described with a simple

two-compartment model. The population consists of

a group of non-infected animals (S) and a group of

infected animals (I). The model describes the age-

dependent dynamics between the two groups. A

proportion of the horses (I(0)) is infected at birth.

Susceptible (non-infected) animals transfer to the

infected group with an age-independent acquisition

rate b. Hence b can be considered as the prevailing

infection pressure per time unit and population.

With an age-independent rate m, infected animals

lose all parasites and return into the susceptible

group. Themodel is graphically represented in Fig. 1

and the corresponding ordinary differential equation

(ODE) is given in equation (1). A constant population

size is assumed, i.e. there is no immigration or emi-

gration. Integrating ODE (1) over the time-interval

[0, t] yields the age-dependent prevalence equation

(2). Note that I(0) is the initial proportion of infected

animals.

dI

dt
=b(1xI)xmI (1)

I(t)=
b

b+m
+ I(0)x

b

b+m

� �
ex(b+m)t, (2)

where I(t)=proportion of horses in the infected

group at age t ;

b=rate of acquisition of infection;

m=rate of loss of infection.

Equation (2) will be denoted asmodel 10. A complete

list of all models used in this paper is given in Table

3. Model 10 is a logical extension of the model pre-

sented by Mahoney (1969), which was adapted from

malaria to the case of bovine babesiosis under the

assumption of endemic stability. It explained the

proportion of infected animals (I(t)) in terms of the

recovery rate (r), the inoculation (h) and the age (t) of

the individual animal:

I(t)=
h

r
(1xexrt): (3)

Mahoney’s model (3) needs to be restricted such

that roh to obtain an asymptotic antigen-prevalence

not exceeding 1. In contrast, the present model is

self-restricting due to the term b
b+m. Since Mahoney

and coworkers assumed that there are no infections

present at birth, i.e. I(t=0)=0, b corresponds to their
inoculation rate h and b+m to their recovery rate r.

Four compartment model

Model 10 oversimplifies the disease transmission

because one would expect that immunity of an in-

dividual animal influences successful establishment

of an infection. Therefore, the two-compartment

model is expanded by including the immune status

information of each animal (model 20, see equation

(5)). This additional information is obtained using an

immunofluorescence antibody test (IFAT) and leads

to a new subdivision of the population into 4 com-

partments as shown in Table 1. The dynamics be-

tween these compartments correspond to the events

during an infection under endemic conditions and are

graphically represented in Fig. 2. They can be ex-

plained as follows. A proportion of animals is born

with maternal antibodies and is thus IFAT positive

and PCR negative (IFAT+/PCRx). They lose their

maternal antibodies, i.e. become IFATx/PCRx, or

they are infected and thus become IFAT+/PCR+.

IFATx/PCRx individuals acquire the parasite

(IFATx/PCR+) before generating antibodies

against the pathogen (IFAT+/PCR+). Because this

seroconversion requires a relatively short time lag of

a few weeks, the differentiation of these two states

PCR- [S] PCR+ [I ]

µ

β

Fig. 1. Graphical representation of model 10. The model

considers an age-independent acquisition rate b and an

elimination rate m. Two compartments represent the

susceptible (PCRx) and infected (PCR+) animals in the

population. Individuals move between the two

compartments at the end of each age interval.
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is considered to be negligible in the model. Once

infected, the immune reaction is either successful

and eliminates the parasite (IFAT+/PCRx), or the

animal remains positive (IFAT+/PCR+) due to an

unsuccessful elimination. If the parasites are elimi-

nated, the antibodies are eventually lost (IFATx/

PCRx) or the animal is re-infected (IFAT+/

PCR+). For each time-interval, each animal in the

population is in exactly one of the defined states. At

the end of an interval, each animal either moves to a

new state or remains in the same state for another

interval. The animals move from one state to the next

according to transition rates which depend only on

the current state (they do not take any previous his-

tory into account). These rates are represented in

Fig. 2 and their biological interpretation is explained

in Table 2. Note that the transition rates in the model

do not change over time and that all parameters have

a corresponding epidemiological meaning: b is the

infection rate for seronegative individuals, whereas e

and f represent the infection rates for animals with

acquired immunity and passive (maternal) immun-

ity, respectively. The elimination rate of the parasite

corresponds to m, and d is the rate at which acquired

antibodies are lost after infection, whereas a rep-

resents the constitutive loss of maternal antibodies.

The whole dynamical process can be written as a

system of ODEs in matrix form as

where A is shorthand for the matrix of transition

rates. Here, M(t) is the juvenile part of the pro-

portion of animals with IFAT+/PCRx at age t,S(t)

the proportion of animals with IFATx/PCRx at

age t, I(t) the proportion of animals with IFAT¡/

PCR+ at age t and R(t) the remaining adult

proportion of animals with IFAT+/PCRx at age t.

The system of ODEs can be solved by integrating

the left and the right term in equation (4) over the

time range [0, t] and the following explicit solution is

obtained:

M(t)

S(t)

I(t)

R(t)

0
BB@

1
CCA= exp(tA)

M(0)

S(0)

I(0)

R(0)

0
BB@

1
CCA: (5)

For the initial states, we assume that

M(0)+I(0)+S(0)+R(0)=1 and that there are no

animals with acquired immunity, i.e. R(0)=0. The

exponential of a matrix as given in equation (5) is

computed using the function expm of the statistical

software R. The model may be simplified in order to

test different hypotheses and to reduce the number of

parameters. Model 21 postulates that the infection

rates for animals with maternal antibodies and for

animals with acquired immunity are equal. Thus the

parameter f is set equal to e in the ODE’s. Model 22

postulates that passive maternal immunity has no

effect on the infection rate and f is set equal to b. In
model 23 it is assumed that the presence of antibodies

does not affect the infection pressure at all, so that all

3 parameters e, f and b are equal. The symbols and

parameters as well as the model descriptions are

summarized in Tables 2 and 3.

The transmission matrix (4) and matrix ex-

ponentiation (5) allow an intuitive extension ofmodel

Table 1. PCR and IFAT status of animals in the

four-compartment models

PCR
positive
(xi=1)

PCR
negative
(xi=0)

IFAT positive (yi=1) I M: maternal antibodies
R: acquired antibodies

IFAT negative (yi=0) I S

IFAT+ /PCR- [M ] IFAT-/ PCR- [S ]

IFAT+/ PCR+ [I ]

IFAT+ /PCR- [R]

a

d

µ

βf

e

Fig. 2. Graphical representation of model 20. Four

compartments represent the maternally protected

subpopulation (M), the populations of susceptible (S),

infected (I) and immune (R) animals. At the end of each

age-interval animals move between the compartments

with age-independent rates. The rates b, e and f

correspond respectively to the acquisition rates without

humoral protection of the host, with acquired immunity

and with passive maternal protection. The parasites are

eliminated with rate m, and a and d are the respective

rates at which maternal and acquired antibodies are lost.

dM(t)=dt

dS(t)=dt

dI(t)=dt

dR(t)=dt

0
BBBB@

1
CCCCA=

x(a+f ) 0 0 0

a xb 0 d

f b xm e

0 0 m x(e+d)

2
66664

3
77775*

M(t)

S(t)

I(t)

R(t)

0
BBBB@

1
CCCCA=A*

M(t)

S(t)

I(t)

R(t)

0
BBBB@

1
CCCCA, (4)

Transmission dynamics of T. equi and B. caballi 557

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182008004204
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:39:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182008004204
https:/www.cambridge.org/core


Table 2. Symbols and biological interpretation of the parameters

Symbol Biological interpretation

a Rate of loss of maternal antibodies
b Infection rate of adult susceptible animals (S2)
f Infection rate of animals with colostral antibodies
g Infection rate of young susceptible animals (S1)
k Transition rate from S1 to S2

m Parasite elimination rate
e (Re-)infection rate of immune animals
d Antibody elimination rate
M(0) Initial proportion of animals in the cohort

with colostral antibodies
S(0) Initial proportion of susceptible animals in the cohort
S1(0) Initial proportion of young susceptible animals in the cohort
S2(0) Initial proportion of adult susceptible animals in the cohort (=0)
I(0) Initial proportion of infected animals in the cohort
R(0) Initial proportion of animals in the cohort with acquired immunity

Table 3. Notation and description of models used

Notation Model description

Two-compartment models
10 Two-compartment model considering susceptible (S) and infected (I)

animals. Animals are infected with a rate b and lose infection with a
rate m (equation (2)).

Four-compartment models
20 Four-compartment model considering animals with colostral

antibodies (M), susceptible (S), infected (I) and animals with
acquired immunity (R). Animals lose colostral antibodies with a rate
a. M and S become infected with rates f and b respectively. Infection
is lost with a rate m and acquired antibodies are lost at a rate d. Animals
with acquired immunity become reinfected at a rate e (equation (5)).

21 As 20, but infection rates for animals with colostral antibodies and
animals with acquired immunity are equal: f=e.

22 As 20, but colostral antibodies are postulated to have no effect on the
infection rate: f=b.

23 As 20, but presence of any antibodies is assumed not to affect the
infection rate: b=e=f.

23* Model used to compute the likelihood of model 10 to compare it to
four and five compartment models. Similar to model 23, but with
fixed values for the parameters b, m and I(0) estimated usingmodel 10.

Five-compartment models
30 As 20 but additionally considering different infection rates for neonate

susceptible (S1) and adult susceptible animals (S2). S1 are infected
with the rate g and transfer to S2 with a rate k. S2 are infected with the
rate b (equation (6)).

31 As 30, but the infection rate for neonates with colostral antibodies
and without colostral antibodies are assumed to be equal f=g.

32 As 30, but colostral antibodies are considered protective for infections
f=0.

33 As 30, but adult animals are considered protected against disease b=0.

Subdivions by sexa

20A Model 20 applied to the total sample.
20B Model 20 applied to females, males and geldings separately.
20C Model 20 applied to {females and males combined} and {geldings}

separately.
20D Model 20 applied to {females and geldings combined} and {males}

separately.
20E Model 20 applied to {females} separately and {males and geldings

combined}.

a Notation analogous for models 21–33.
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10 to incorporate immunological information.

Medley et al. (1993) have developed similar models

for theileriosis using ODEs, but the number of

parameters to be estimated in their models was very

high. Because no adequate samples were available to

estimate all parameters simultaneously, they esti-

mated some parameters based on single ODEs and

the corresponding parts of the data. This procedure

introduces bias into the estimates (Randolph and

Nuttall, 1994). Even if the present model over-

simplifies the complexity of the actual disease pro-

cesses, it allows one to simultaneously estimate all

parameters based on the same data set, and thus to

incorporate interaction effects between PCR and

IFAT information. This finally provides a more

accurate description of the transmission dynamics.

Five-compartment model

The assumption for the four-compartment model

that the infection rates are age-independent may not

be adequate. Thus the model is further expanded by

subdividing the compartment of susceptibles into

young susceptible animals (S1) and old susceptible

animals (S2) as depicted in Fig. 3. The principal

dynamics of the model are the same as in the four-

compartmentmodel, howeverS1become infected at a

rate g different to the rate b at which adult suscep-

tible animals (S2) are infected.S1 transfer toS2 with a

rate k. The corresponding system of ODEs in matrix

form is

The symbols and parameters are summarized in

Table 2. In analogy to the four-compartment model,

the system of ODEs is solved by integrating the left

and the right terms in equation (6) over the time

range [0, t] to obtain the explicit solution. For the

initial states, we assume that M(0)+I(0)+S1(0)+
S2(0)+R(0)=1 and that R(0)=S2(0)=0. The pro-

cedures in the statistical software R are identical to

those utilized for the four-compartment model.

Again, variants of the model allow the testing of

particular hypotheses. Model 31 assumes that ani-

mals with colostral antibodies and young susceptible

animals have the same rate of infection (f=g). Model

32 assumes that foals with colostral antibodies are

protected from infection (f=0) and model 33 as-

sumes that adult susceptible animals are immune to

infection (b=0). A summary of the model variants is

presented in Table 3.

Maximum likelihood estimation

Model 10 returns a proportion of infected animals

I(t) as a function of age t. This corresponds to the

probability of an animal being infected at age t. The

proportion of susceptible horses at age t corresponds

to 1xI(t). Assuming that the infection statuses of the

horses in the sample are independent of each other,

the estimation of the parameters is based on the

maximization of the following binomial likelihood

function (L) :

L(b,m, I(0))=
YN
i=1

I(ti)
xi(1xI(ti))

1xxi , (7)

where N=number of individuals in the population;

xi=infection status (1 or 0) of individual i

(PCR);

ti=age of individual;

or equivalently, the maximization of the following

log-likelihood function (LL) :

LL(b,m,I(0))=
XN
i=1

{xi log(I(ti))+(1xxi)log(1xI(ti))}:

(8)

dM(t)=dt

dS1(t)=dt

dS2(t)=dt

dI(t)=dt

dR(t)=dt

0
BBBBB@

1
CCCCCA
=

x(a+f ) 0 0 0 0

a x(k+g) 0 0 0

0 k xb 0 d

f g b xm e

0 0 0 m x(e+d)

2
666664

3
777775
*

M(t)

S1(t)

S2(t)

I(t)

R(t)

0
BBBBB@

1
CCCCCA
=A*

M(t)

S1(t)

S2(t)

I(t)

R(t)

0
BBBBB@

1
CCCCCA
: (6)

IFAT+ /PCR- [M ] IFAT-/ PCR-[S1]

IFAT+/ PCR+ [I ]

IFAT+ /PCR- [R]

a

d
µ

βf

e

IFAT-/ PCR- [S2]

g

k

Fig. 3. Graphical representation of model 30. Five

compartments represent the maternally protected

subpopulation (M), the populations of susceptible foals

(S1), susceptible adults (S2), infected (I) and immune (R)

animals. At the end of each age-interval animals move

between the compartments with age-independent rates:

The rates f, g, b and e correspond respectively to the

acquisition rates for foals with passive maternal

protection, for foals without humoral protection, for

adult animals without humoral protection and animals with

acquired immunity. The parasites are eliminated with rate

m, and a and d are the respective rates at which maternal

and acquired antibodies are lost. Susceptible foals transfer

to the compartment of susceptible adults at a rate k.
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Models 20, 21, 22 and 23 (Table 3) consider 4

compartments based on the combinations of 2 con-

ditions (PCR and IFAT, compare Table 1) and re-

turn the proportion of animals in each compartment

at any given age t. The probability of finding an ani-

mal in a given compartment thus corresponds to this

proportion at the corresponding time t. Assuming

independence of the infection and immunological

statuses, the likelihood for this case is a multinomial

likelihood function:

L(b, m, e, f , d,M(0), I(0))

=
YN
i=1

ps(ti)
(1xxi)(1xyi)pI(ti)

xi(pM(ti)+pR(ti))
(1xxi)yi :

(9)

The corresponding log-likelihood function is:

LL(b,m, e, f , d,M(0), I(0))

=
XN
i=1

{(1xxi)(1xyi) log(ps(ti))+xi log(pI(ti))

+(1xxi)yi log(pM(ti)+pR(ti))}, (10)

where N=number of animals in the population;

xi=PCR status (1 or 0) of individual i ;

yi=IFAT status (1 or 0) of individual i.

Models 30, 31, 32 and 33 (Table 3) consider 5

compartments based on the combinations of 2 con-

ditions (PCR and IFAT, compare Table 1) and re-

turn the proportion of animals in each compartment

at any given age t. Again, assuming independence of

the infection and immunological statuses, the likeli-

hood for this case is the following function:

L(b, m, e, f , d,M(0), I(0))

=
YN
i=1

(ps1(ti)+ps2(ti))
(1xxi)(1xyi)pI(ti)

xi(pM(ti)

+pR(ti))
(1xxi)yi : (11)

The corresponding log-likelihood function is:

LL(b,m, e, f , d,M(0), I(0))

=
XN
i=1

{(1xxi)(1xyi) log(ps1(ti)+pS2(ti))

+xi log(pi(ti))+(1xxi)yi log(pM(ti)+pR(ti))}:

(12)

The data used to calculate the log-likelihoods (8),

(10) and (12) are from the cross-sectional study in

southwest Mongolia (Rüegg et al. 2007), where the

data sets forT. equi andB. caballiwere obtained from

the same horse population. To find the maximum

likelihood (ML) estimates of the parameters, the

LL-functions (8), (10) and (12) given the data are

maximized using the optim function of the statistical

package R. The function is specified to use the ‘L-

BFGS-B’ algorithm (Byrd et al. 1995), a Newton

procedure that allows for box constraints. Newton

procedures generally provide good local convergence

criteria, but since we search for global maxima, the

starting points need to be selected carefully. The

value of 0.1 for all parameters was assessed to be an

appropriate starting point. For nested models, the

ML estimates of the embedded model were used as

starting point. For biological reasons, the parameter

values are constrained to be larger than 0 and M(0)

and I(0) are additionally constrained to be smaller

than 1.

To evaluate the effect of gender on disease trans-

mission, the horse population is subdivided into 4

combinations of females, males and geldings and the

models are fitted to each of the subpopulation (re-

presented as {}) separately. A model fitted to the

whole sample, i.e. {females, males, geldings}, is de-

noted by A (e.g. model 20A). A model fitted to {fe-

males}, {males} and {geldings} separately is referred

to as B (e.g. model 20B), a model with a separate fit

for the 2 subpopulations {females+males} and

{geldings} is referred as C, for {females+geldings}

and {males} as D and finally for E {females} and

{males+geldings} (see Table 3). The LL value for a

particular combination is defined as the sum of the

LLs of the individual fits to each of the corre-

sponding subpopulations. Because geldings are

castrated at age 1, the starting values of the model for

geldings are chosen as the corresponding proportions

of M, S (resp. S1, and S2 for the 5 compartment

models), I and R of 1-year-old {males} in the com-

bination B or analogously of 1-year-old {fe-

males+males} in the combination C. For simplicity,

the general model is referred to without an alpha-

betical extension (e.g. model 10, model 20, model 21

etc.). The alphabetical suffix is only used for models

fitted to a particular subdivision into gender groups.

Model comparison

Model 10 assumes that antibodies do not influence

the infection rate. Because its likelihood function

does not take into account the IFAT results, the LL

can not be directly compared to those of the 4- and 5-

compartmentmodels (Table 4).Model 23 is based on

the same assumption as model 10, but includes the

IFAT data in calculating the likelihood function. To

compare the results from model 10 with the ones of

the more complex models, a modified version of

model 23 is used. The parameters b, m and I(0) in

model 23 are fixed by using the corresponding ML

estimates from model 10, and the remaining para-

meters a, d and M(0) are estimated. We will refer to

this derived model as model 23*. To verify that the

remaining parameters a, d andM(0) in model 23* do

not have any influence on the PCR prevalence, and
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hence thatmodel 23*would correctly reflect the PCR

prevalence estimated for model 10, the parameters a

and d are varied between 0 and 100 andM(0) is varied

between 0 and 1xI(0) (since M(0)+S(0)+I(0)=1)

and the results are compared (Fig. 4). Thus model

23* provides an interfacemodel to comparemodel 10

to the four- and five-compartment models.

Model selection

Todecidewhichmodel performsbestwith theT. equi

and the B. caballi data sets, we first compute the log-

likelihood of each of the competing models, and plot

them against the number of parameters (Fig. 5). For

clarity, the negative log-likelihood scores (NLL) are

plotted. Starting with the simplest model 23*, the

models with the steepest decrease in NLL score

per number of parameters are further investigated

(Fig. 5, grey line). Neighbouring models on this line

are compared pair-wise as follows. The difference in

NLL of 2 competingmodels is tested by comparing it

with an empirical 95%-quantile. The null hypothesis

is that the more complex model does not improve the

fit. To accept the more complexmodel, the reduction

of the NLL compared to the simpler model needs to

be larger than the empirical 95%-quantile (a=0.05),

i.e. a reduction of the magnitude observed would

occur due to chance alone in less than 5% of the cases.

To compute the empirical 95%-quantile, 500 popu-

lations are simulated under the null hypothesis that

the simpler model is true. The simulated populations

have the same size (N=510) and the same gender
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Fig. 4. Effect of varying the model parameters a (panel A), d (panel B) and M(0) (panel C) in model 23 for fixed values

of the remaining parameters. The values of the parameters b, m and I(0) are set identical in model 10 and model 23. To

evaluate the effect of varying a, d and M(0), the age-dependent prevalence of PCR+ animals is plotted for both models

(thick lines) and the proportion of IFAT+ animals is plotted for model 23 (thin lines). The parameters a, d and M(0)

appear not to have any effect on the PCR prevalence, as the age-dependent prevalences in models 10 and 23 are

identical in the graph (thick lines).

Table 4. Results of the pair-wise model comparisons using Monte Carlo simulations

Model I Model II NLL I NLL II
Difference
of NLL

Difference in #
of parameters

Empirical
95%-quantile

Empirical
p-value

Theileria equi
23*A 23A 289.3 281.4 7.9 3 40.70 0.149
23A 23C 281.7 271.8 9.8 4 11.25 0.122

Babesia caballi
23*A 23A 479.2 474.0 5.2 3 0.85 0.004
23A 22A 474.0 460.6 13.4 1 2.38 0.002
22A 20A 460.6 456.4 4.2 1 1.92 0.008
20A 32A 456.4 454.6 1.8 1 1.51 0.007
32A 20D 454.6 446.3 8.3 6 14.190 0.220
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distribution (f :m : g :NA=259 : 118 : 128 : 5) as the

original data set. A PCR and IFAT status is

attributed to the individuals, based on simulation

using the simpler model with theML estimates from

the field data. The simulated data sets are then fitted

using the same optimization routine as described

above, and the difference of the NLL values is

calculated for each simulated population. If the op-

timization does not converge with the default toler-

ance, the NLL-function is scaled by a factor of 10

thereby reducing the tolerance by this factor. Finally,

if convergence is still not obtained, the correspond-

ing population is replaced. The 95%-quantile of

the resulting empirical sampling distribution of

the NLL-differences is then compared to the NLL-

difference derived from the field data. The pairwise

comparisons are continued following the model

series represented in Fig. 5 (grey line) until the null

hypothesis of no difference between 2 successive

models cannot be rejected. The last significant model

is considered to best fit the data. For the final selected

model, the 95% bootstrap confidence intervals (CI)

of its parameters are computed.

RESULTS

Models 10 and 23

If the maximum likelihood estimates for b, m and I(0)

of model 10 are introduced into model 23, the course

of the PCR prevalences are identical for both models

(Fig. 4). Modification of the parameters a, d, and

M(0) in model 23 does not alter the course of the

PCR prevalence but has significant impact on the

IFAT prevalence.

Best-fitting models

Theminimal values of the negative log-likelihood for

all models are plotted versus the number of para-

meters in Fig. 5. Based on this plot, forT. equi, model

23* applied to the undivided population (referred to

as 23*A) is compared to model 23A and the null

hypothesis cannot be rejected at a 5% test level

(empirical p-value=0.15). Also the succeeding

comparison between model 23A for the undivided

population and model 23C applied to the population

subdivided into {females+males} and {geldings}

revealed no significant difference (empirical p-

value=0.122, Fig. 5A, Table 4). These findings

indicate that the IFAT does not provide additional

significant information to the transmission dynamics

process and thus antibodies do not appear to influ-

ence the transmission of T. equi. The ML estimates

for b, m and I(0) and their 95% bootstrap confidence

intervals are given in Table 5 and the age-dependent

PCR-prevalence of the best fittingmodel is plotted in

Fig. 6A. In summary, as m is 0.014,T. equi remains as

a life-long infection (95% CI of 1/m=17.9

years–Infinity). From theML estimate of b (0.446) it

can be deduced that half the animals are expected to

be infected with T. equi at about 2 years of age (95%

CI of 1/b=1.4–3.1years) and I(0) suggests that

10 15 20

27
0

27
5

28
0

28
5

29
0

Number of Parameters

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

T. equi

A

23*A

23A
22A
21A

20A

23*B

23B 22B

21B

20B

23*C

23C 22C
21C

20C

23*D

23D

22D

21D/ 21E

20D

23*E

23E 22E

20E

10 15 20 25

45
0

46
0

47
0

48
0

Number of Parameters

B. caballi

B23*A

23A

22A
21A

20A

30A
31A

32A

33A

23*B

23B

22B
21B

20B

30B
31B/ 32B

33B

23*C

23C

22C
21C

20C

30C

33C

31C/ 3
2C

23*D

23D

22D/ 21D

20D

30D
31D/ 32D

33D

23*E

23E

22E
21E

20E

30E32E

33E

31E

Fig. 5. Comparison of the fitting characteristics of competing models (Table 3) for (A) Theileria equi and (B) Babesia

caballi. The negative log-likelihood is plotted against the number of parameters used in the model. The best fitting

models are compared pair-wise along the border of the convex hull from the plotted points since these models are better

than all competing models with the same number of parameters. Starting with the model with the least number of

parameters (grey circles), models on the border are pair-wise compared (grey lines) until a non-significant difference is

reached (grey broken line).
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12.5% (95% CI: 4.3–20.7%) of the population are

already infected at birth.

For B. caballi, the models 23*A, 23A, 22A, 20A,

32A applied to the undivided population and model

20D applied to the population subdivided into {fe-

males+geldings} and {males} are compared pair-

wise (grey line, Fig. 5B, Table 4). The first 4

comparisons all reject the null hypothesis that the

simpler model performs better (Table 4). The suc-

ceeding comparison of model 32A to model 20D,

however, detects no statistically significant difference

(empirical p-value=0.220). Thus, a single fit of

model 32A for the whole sample represents the epi-

demiology of B. caballi in the sampled population

best. A summary of the ML estimates for the para-

meters and their 95% bootstrap confidence intervals

are given in Table 5. The age-dependent PCR- and

IFAT-prevalences of the best fitting model are

plotted in Fig. 6B. Thus, colostral antibodies protect

foals from infection (f=0) and have a half-life of

approximately 3 months (95% CI of 1/a=1.4–7.6

months). Further, the infection rates of susceptible

foals (g=1.578) differs significantly from that of

older susceptible animals (b=0.054) with susceptible

foals being expected to become infected within 8

months (95% CI of 1/g=1.5 months – 1.2 years)

whereas for adult susceptible animals this is expected

after roughly 18 years (95% CI of 1/b=3.3–100

years). The rate k=0.969 indicates that the suscep-

tible foals are expected to transfer to the category S2

at the age of approximately 1 year (95% CI of 1/

k=1.8 months–2.6 years). As m=0.653, B. caballi is

expected to persist in its host for roughly 1.5 years

(95% CI of 1/m=10.9 months–5.1 years). If an ani-

mal has eliminated the parasite, the typical time to

acquire a new infection is of the order of 14 years

(95% CI of 1/e=5–1000 years). Thus, with a life

expectancy of 20 years re-infection is rather unlikely

to occur. The ML estimates for I(0) and M(0) indi-

cate that Î(0)=12.6% (95% CI=2.4–21.7%) of foals

are infected at birth or very shortly afterwards and

M̂(0)=58.5% (95% CI=36.9–84.8%) receive colos-

tral antibodies from their mothers. Therefore for

100%xÎ(0)xM̂(0)=28.9% (95% CI=6.0–52.7%)

of the births, the mare was not exposed to B. caballi

prior to birth. Because the estimate for d=0.00,

antibodies against B. caballi appear not to be elimi-

nated.

DISCUSSION

The results of the model selection show that T. equi

and B. caballi have very different transmission dy-

namics, and provide a further piece of evidence for

the current debate on the systematic classification of

T. equi. The PCR-prevalence of T. equi observed in

Fig. 6A shows a cumulative age-dependent course,

whereas the prevalence peak at 11 months in Fig. 6B

(B. caballi) is very similar to the patterns observed

with B. bovis and B. bigemina in cattle (Mahoney,

1962). The results of the present study also support

the anecdotal reports of various authors (Hourrigan

and Knowles, 1979; Schein, 1988; de Waal and van

Heerden, 1994) that T. equi remains as a life-long

infection, whereas the expected persistence of

B. caballi in its host is 1.5 years which is similar to the

postulated persistence of 1 to 4 years. The estimated

half-life of colostral antibodies against B. caballi of 3

months agrees with previous findings that maternal

antibody titres against B. caballi are already below

the detectable cut-off at approximately 4 months

of age (Donnelly et al. 1982; Rüegg et al. 2006). The

result that acquired antibodies are not eliminated

is in agreement with experiments conducted by

Tenter (1984), in which IFAT antibodies against

T. equi and B. caballi remained throughout the

observations (476 and 190 days post-infection, re-

spectively). Our analysis thus indicates that the ap-

proach of estimating host infection rates based on

serological data applied by Mahoney and coworkers

(Mahoney, 1969; Mahoney and Ross, 1972) is ad-

equate, and may also be applied to equine piro-

plasmoses. It also implies that for the diagnosis of

T. equi-positive IFAT results generally correspond

to an actual infected status, whereas, for B. caballi, a

horse may be seropositive without harbouring the

parasite.

In this work, the infection rates b, f, g and e are

considered to be age independent. The better per-

formance of model 32A compared to model 20A,

however, indicates that a differentiation of suscep-

tible foals and susceptible adult animals provides a

better fit to the data. Also, the binomial likelihood

function assuming independence of the PCR and the

IFAT result within the same individual may not be

Table 5. Maximum likelihood estimates (MLE) and

95% bootstrap confidence intervals (using 500

bootstrapped populations) of the best performing

models for Theileria equi and Babesia caballi

MLE 95% CI

Model 10A for T. equi
b 0.446 0.321–0.695
m 0.014 0.000–0.057
I(0) 0.125 0.043–0.207

Model 32A for B. caballi
a 4.249 1.566–8.370
b 0.054 0.010–0.305
m 0.653 0.196–1.097
e 0.070 0.001–0.200
f — —
g 1.578 0.884–7.798
k 0.969 0.397–6.507
d 0.00 0.00–0.158
M(0) 0.585 0.369–0.848
I(0) 0.126 0.024–0.217
S1(0) 0.289 0.061–0.527

Transmission dynamics of T. equi and B. caballi 563

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182008004204
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:39:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182008004204
https:/www.cambridge.org/core


the best choice. More complex models could account

for these shortcomings. However, it should be noted

that the interpretability of a model suffers with in-

creasing complexity. The exponential dynamics and

binomial likelihood of the models presented here can

be understood intuitively. It is also the case that the

infection rates vary within a year due to varying tick

activity. In our model the seasonal variation is

averaged to yield simple infection rates per annum.

Similarly, the time for interstadial development of

the transmitting tick and the resulting latencies in the

transmission process are also neglected. The model

fit illustrated in Fig. 6 suggests that these simplifi-

cations are nonetheless reasonable. It is also not

known if the infection rate in ticks remains constant

from year to year, and the age dependency that we

have found could have been due to increased tick

infectivity in the sampling year. However, from an-

ecdotal reports from the owners of the horses in-

vestigated, there has not been an increase in

piroplasmosis cases in the sampled population,

which, considering the difference between b=0.054

and g=1.578, would have been expected to be dra-

matic. It should also be noted that despite confirmed

presence of T. equi and B. caballi in the tick

Dermacentor nuttalli (Battsetseg et al. 2002), the ob-

served prevalences in ticks from the study area were

0‰ (95% CI=0–4‰) forT. equi and 6‰ (1–17‰) for

B. caballi (Rüegg et al. 2007). In the absence of re-

liable data for the parasite distribution in ticks it is

difficult to test additional hypotheses, including the

population dynamics of the vector.

The fundamental aim of the approach presented

here is to address the shortcomings of the statistical

methods often used in epidemiology, such as (a) fit-

ting models with no (meaningful) relationship to the

underlying transmission process and (b) making

asymptotical assumptions about the test statistics

which may not be justified. The approach in the

present article provides alternatives to (a) and (b). As

an example for (a), methods like generalized linear

models (GLM) allow a flexible fit to data, but the

resulting parameter estimates are often difficult or

even impossible to interpret in biological terms. To

address this point, the models presented in this ar-

ticle describe the transmission dynamics of T. equi

and B. caballi with biologically interpretable para-

meters. Consequently, the parameter estimates can

be compared to results from experimental studies to

evaluate their reliability and validity. These com-

parisons have shown that our models provide rel-

evant insights into the epidemiological processes

involved in the transmission of equine piro-

plasmoses. To address point (b), likelihood ratio

tests are applied using empirical probability dis-

tributions of the test statistic generated with Monte

Carlo simulations. Conventionally, a x2-distribution
is used for the likelihood test statistic to select the

best fitting model. However, this asymptotical dis-

tribution is only valid under conditions which are not

satisfied formany of ourmodel comparisons. Indeed,

a likelihood ratio test based on a x2-distribution with

3 degrees of freedom would yield a p-value of 0.001

for the comparison ofmodel 23*A and 23A forT. equi

as opposed to the non-significant empirical p-value of

0.122 based on ourMonte Carlo approach. Similarly,

for the comparison of model 32A versus 20D for

B. caballi, the p-value based on a x2-distribution with
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Fig. 6. Plot of the observed PCR (black bullets) and IFAT prevalence (grey bullets) with 95% binomial confidence

intervals (whiskers) for (A) Theileria equi and (B) Babesia caballi. The best fitting models using the maximum likelihood

estimates for the corresponding parameters, 10A and 32A respectively, return the age-dependent PCR prevalence

(black line) and IFAT prevalence (grey line).
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6 degrees of freedomwould be 0.011 compared to the

empirical p-value of 0.221 which is non-significant.

Thus, in each case, the putative significant p-values

of the test with a x2-distribution would lead to a

wrong model selection.
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