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ABSTRACT 
Axisymmetric density distributions are constructed which are invisible when viewed 
from a range of inclination angles i. By adding such distributions to a model galaxy, it 
can be made either discy or boxy without in any way affecting its projected image. As 
the inclination of a galaxy decreases from edge-on to face-on, the range of 'invisible' 
densities, the uncertainty in the deprojection, and the sensitivity of the deprojection to 
noise all increase. The relation between these phenomena is clarified by an analysis of 
Palmer's deprojection algorithm .. 

These results imply that disc-to-bulge ratios are in principle ill-determined from 
photometry unless the disc is strong or the system is seen precisely edge-on. Further 
observational ~ork should therefore concentrate on systems that are believed to be 
nearly edge-on. The uncertain role of third integrals in galaxies makes it unclear to 
what degree this indeterminacy can be resolved by kinematic studies. 

Key words: galaxies: fundamental parameters - galaxies: kinematics and dynamics -
galaxies: photometry. 

1 INTRODUCTION 

Since many galaxies are at least approximately axisymmetric 
and transparent, it is desirable to be able to estimate the 
three-dimensional luminosity density p(r, 0) of an axisymmetric 
galaxy from its projected surface brightness I(x,y), given an 
assumed inclination angle i between the galaxy's symmetry 
axis (the z-axis) and the line of sight to the observer. The 
Richardson-Lucy algorithm (Richardson 1972; Lucy 1974) 
has been successfully used to recover distributions p(r,O) for 
a large number of galaxies with i assumed different from 90° 
(e.g., Binney, Davies & Illingworth 1990; van der Mare11991; 
Dehnen 1995). 

The uniqueness of the resulting model galaxies is unclear, 
however. On the one hand, Rybicki (1986) gave a simple 
argument based on the 'Fourier slice theorem' that, for i =1= 90°, 
any given surface brightness distribution I(x,y) must be the 
projection of an infinite number of luminosity densities p(r,O). 
On the other hand, Palmer (1994) proved that the relationship 
between I and P is unique for i =1= 0 provided that the density 
p(R,O) is 'band-limited': that is that its expansion in Legendre 
polynomials P1( cos 0), 

L 

p(r, 0) = Lp,(r)P,(cosO), (1) 
1=0 

contains only a finite number of terms. Since any plausible 
luminosity density p can be approximated to sufficient accuracy 
by a band-limited density p, Palmer's result suggests that for 
practical purposes the relationship between I and P is one-to­
one for all i =1= 0°. 

© 1996 RAS 

If two space densities can be found that, for fixed i, project 
to the same surface brightness distribution, then the difference 
between these densities projects to zero brightness. We refer to 
such an 'invisible' density distribution as a 'konus' density. Here 
we demonstrate by explicit construction of a family of konus 
densities that, for i =1= 90°, an infinite number of physically 
plausible luminosity densities are compatible with a given 
surface brightness distribution. In particular, we show that 
one may choose between discy and boxy luminosity densities 
for the same photometric data. 

We describe how the range of possible luminosity densities 
that are compatible with a given surface brightness distribution 
grows continuously as the inclination varies from edge-on to 
face-on, and how this change is reflected in the division of 
the space of possible luminosity densities p(r,O) into its three 
parts: konus densities, densities that can be obtained by an 
extension of Palmer's inversion algorithm, and other visible 
densities. 

In Section 2, we construct a family of konus densities 
and show that by adding one of these to a given deprojected 
brightness distribution we can turn a boxy distribution into a 
discy one, or vice versa. In Section 3 we show that Palmer's 
algorithm can provide a consistent deprojection of data that do 
not derive from a band-limited density distribution provided 
certain conditions on the data are satisfied. These conditions 
will be satisfied by most data when the assumed inclination 
angle is i ~ 90°, and become more and more restrictive as 
i -+ O. 

Section 4 discusses the effects of noise in the data, the 
division of the space of possible surface brightness distribu-
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tions into ones that can be deprojected and ones that cannot, 
and the implications of the existence of konus densities for the 
detectability of low-luminosity discs in elliptical galaxies. 

Section 5 sums up. In an appendix we give a group­
theoretic proof of the result that resolves the apparent conflict 
between the papers of Rybicki and Palmer: namely that the 
Fourier transform of a band-limited distribution is itself band­
limited. 

2 KONUS DENSITIES 

We now show that there exist distinct three-dimensional light 
distributions that are both physically plausible - i.e., are 
smooth and sufficiently compact - and project to the same 
surface brightness distribution. This we do by explicitly calcu­
lating a family of axisymmetric luminosity distributions which 
are invisible when viewed at all inclination angles smaller than 
some critical value. 

We start with a review of Rybicki's (1986) application of 
the Fourier slice theorem. By writing the axisymmetric density 
p(x) in terms of its Fourier transform A(k), 

p(x) = (2~)3 J d\ A(k) exp(ik . x), 

and projecting this along z, say, 

I(x,y) = J dz p(x) 

= (2~)2 J d\A(k""ky,O)o(kz)exp(ik' x), 

(2) 

(3) 

we see that the Fourier transform of the projected surface 
density I(x,y) is the two-dimensional slice A(k""ky, O) of A(k). 
This simple result is known as the Fourier slice theorem. 

Consider now the projection of an axisymmetric density 
distribution. From the observed image we can obtain the two­
dimensional slice of the density's Fourier transform with k 
perpendicular to the direction of projection. However, because 
of the assumed axial symmetry, all lines of sight that are 
related to the actual line of sight by a simple rotation around 
the symmetry axis must give identical images. Therefore by 
symmetry the Fourier transform is in fact known in all parts of 
Fourier space that are swept by rotating this two-dimensional 
slice around the object's symmetry axis. 

If the density distribution is observed edge-on, this 
sweeping process covers all of Fourier space, and the three­
dimensional density can be uniquely recovered from the pro­
jected image. In a face-on view, only a single Fourier plane is 
known even after the sweeping process, and, as is well-known, 
the deprojection is in this case highly non-unique. If, however, 
the direction of projection is inclined with respect to the sym­
metry axis by an angle i +- 90°, then the rotation of the Fourier 
slice leaves a cone around the symmetry axis with half-angle 
(90° -i) uncovered - the so-called 'cone of ignorance'. The 
surface of this cone opens to a plane (half-angle 90°) in the 
face-on case, and closes around the symmetry axis in an edge­
on projection (half-angle 0°). Any density distribution derived 
from a Fourier transform that is non-zero only in the cone 
of ignorance will have zero projected brightness and thus be 
a konus distribution. Conversely, a density distribution whose 
Fourier transform is non-zero anywhere outside the cone of ig­
norance will have non-zero projected brightness. Hence konus 

densities are precisely those densities whose Fourier transforms 
are non-zero only in the cone of ignorance. Note that a konus 
density for inclination i is also a konus density for any incli­
nation i' < i, since the cone of ignorance for i lies within the 
cones of ignorance for all smaller inclinations. 

In the following we use Cartesian coordinates (x,y,z) and 
cylindrical polar coordinates (R,4>,z) in the galaxy-intrinsic 
frame, with z along the symmetry axis, and (x',y',z') coor­
dinates in the frame of the observer, such that projection is 
along ezl and the x = x' -axis is the line of nodes. The in­
clination angle i is measured between ez and ezl , the eraxis 
having direction (0, sin i, cos i) in the galaxy-intrinsic frame. 
The boundary of the cone of ignorance in k-space is given by 

(4) 

or 

Ikzl = kR tani. (5) 

The physical density corresponding to a Fourier density 
A(k) in the cone of ignorance is then 

PK(X) = (2~)3 J dkRkR J dkz exp(ikzz) 

(6) 

X 121< d4>k exp[iRkR cos( 4>k - 4»] A(k), 

where k == (kR cos 4>k. kR sin 4>k, kz). By symmetry, A(k) must be 
independent of 4>k, so as not to generate a dependence of PK(X) 
on 4>. Thus the 4>k-integral simply evaluates to 21tJo(kRR), 
where Jo is the usual Bessel function. We will, moreover, 
assume that A(k) is a symmetric function with respect to 
kz =0, 

A(k) = ~ [B(kR,kz) + B(kR' -kz)] , (7) 

so that PK(X) becomes the cosine-Bessel transform 

1(' 
PK(R,z) = 21t2 Jo dkR kRJo(kRR) 

00 

x J dkz cos(kzz)A(kR,kz)' 

(8) 

kRtani 

2.1 A specific family of konus densities 

From the discussion above it is clear that A(k) must be zero 
on and outside the cone of ignorance. So that it leads to a 
physically reasonable space density we also require it to be 
smooth, and to have certain characteristic scales. This last 
requirement derives from the fact that a konus density must 
necessarily be positive in some parts of space and negative 
in others, and after adding a konus density to a visible one 
we want the resulting density to be everywhere non-negative. 
This requires that the konus density remain finite as r -+ 0 
and fall off sufficiently rapidly as r -+ 00. Consequently, the 
konus density must have certain characteristic scales, and these 
will be inversely related to corresponding scales in its Fourier 
density A(k). 

It is likely that a general investigation of Fourier densities 
that are confined to the cone of ignorance will be a difficult 
numerical problem. We have therefore sought an analytical 
example and, after some experimentation with Gradshteyn 
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& Ryzhik (1980; hereafter GR), have concentrated on the 
following family of konus Fourier densities: 

A(k) = {oIC2eXp(-exIC) exp(-pkR) for IC > 0, (9) 
otherwise, 

where 

IC == Ik.l- kR tan i. (10) 

A(k) decreases smoothly to zero on the boundary of the cone 
(IC = 0) and has its main contribution in a limited region of 
Fourier space around the k.-axis, as determined by the two 
characteristic length scales ex and p. 

With this A(kR,k.), the cosine-Bessel transform of (8) can 
be done simply. The k.-integral gives 

"" 
! dk. cos(k.z) ~ exp(-exIC) 

kR tani 

iP ex COS(ZkR tan i) - z sin(zkR tan i) 
= iJex2 ex2 + Z2 

= gl (z) COS(ZkR tan i) + g2(Z) sin(zkR tan i), 

where we have used formula 3.893.2 of GR and 

2ex3-6exz2 
gl(z) == (ex2 + z2)3 

2z3-6ex2z 
g2(Z) == (ex2 + z2)3. 

(Ha) 

(llb) 

Note that for z ~ ex the cosine and sine terms in this equation 
decrease oc z-4 and oc Z-3, respectively. 

Before proceeding further with the wave density in equa­
tion (9), it is instructive to replace the term exp(-pkR) by 
(2kR)-Ic5(kR). Then the remaining integral can immediately be 
done, and we obtain the density of a plane-parallel sheet 

(12) 

The surface density obtained on integrating along any direction 
with inclination i' =1= 90° is 

Is(i') = !dZ'Ps(Z) =! dz.,ps(z) 
cos I 

-"" 

(13) 

Only when the sheet is seen edge-on (i' = 90°) is the massive 
wire along k. part of the slice in Fourier space about which 
information is available, and only in this case will the pro­
jected density be non-zero, with positive or negative values, 
depending on the vertical coordinate y' = z. 

We now return to the exponential wave density (9). GR, 
formula 6.751.3, give the integral 

Co = 1"" dkR exp( -PkR) COS(ZkR tan i) JO(kRR) 

_ (A + .JA2+B) 1/2 

- ,Ji.JA2+B 

where 

A == R2 - z2 tan2 i + p2, 

B == 4p2Z2 tan2 i. 
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(14) 

(15) 
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From this we may obtain the two kR-integrals required in (8) 
as 

iJCo PDI + 4pz2 tan2 i D2 
(16) 

= -ap = ,JiD3 

and, with a == z tan i, 

81 = 1"" dkR kR exp( -PkR) sin(zkR tan i) Jo(kRR) 

iJCo z tan i (-DI + 4p2 D2) 
(17) 

= -a;; = ,JiD3 

where 

DI ==A2+AVA2+B-B, 

D2 == A+ ~V A2 +B, (18) 

D3 == (A+VA2+ Br/2 (A2+B)3/2. 

Thus, finally, the density corresponding to the Fourier 
density (9) may be written as 

(19) 

with the functions gj(z) defined by equations (llb), and the 
remaining auxiliary quantities specified in equations (14) -
(18). 

This density is (i) everywhere non-singular, (ii) compact, 
and (iii) by construction, invisible at all inclinations smaller 
than i. To prove (i) we note from (15) that for P =1= 0 A2 ~ 0 
and B ~ 0, but both cannot be zero simultaneously. Thus 
the denominator D3 of both CI and 81 is positive definite. 
Also, for ex =1= 0 the denominator of both gl(z) and g2(Z) 
is positive definite. To show (ii) we consider the asymptotic 
behaviour at large Rand z. For R -+ 00 at fixed z, we have 
A oc R2, B oc RO, CI oc A-3/2 oc R-3, 81 oc R-3 and, since 
gi are independent of R, also PK oc R-3• For z -+ 00 at 
fixed R, A oc z2, B oc z2, CI oc z-3, 81 oc z-2, and PK oc 
g2(Z) 81 (R, z) oc z-s. Finally, for the special direction given 
by R2 = z2tan2i, we have A = p2, B = 4p2R2, and with 
r2 = R2 + z2 CI oc r- I / 2, 81 oc r- I / 2, gl oc r-4, g2 oc r-3 and so 
PK oc r-7/ 2• 

To confirm that this PK(R,z) is invisible in projection 
for the inclination angle i used in its construction, or indeed 
in any more face-on projection i' with i' ~ i, we have inte­
grated the density (19) numerically along lines of sight, using 
a Romberg mid-point rule algorithm and equation (18) of 
Binney et al. (1990). At all image points tried the projected 
density was found to be vanishingly small for i' ~ i, and then 
to rise relatively rapidly from zero for i' ~ i. 

The konus densities (19) tend at large R and small z to 
constant-scale-height discs. To see this, we first note that for 
R -+ 00 and fixed kR the Bessel function in equations (16) and 
(17) is asymptotically 

Jo(kRR) ,.., (1tk~R) 1/2 cos (kRR - i) + 0 (k:R) . (20) 

Thus, as R -+ 00, only wavenumbers near kR = 0 (very long 
wavelengths) contribute to the konus density (19), suggesting 
an asymptotic connection to the plane-parallel sheet solution 
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Figure 1. Contour plots in the meridional plane of two konus densities: C( = P = 1, i = 45° (left panel); C( = 0.75, P = 4, i = 80° (right panel). 
Contours are uniformly spaced in log(lpl) and for negative density are dotted. 

(12). To make this more explicit, we rewrite the konus density 
(19) as 

1 100 
PK(R,z) = 2n2R2 0 dx xJo(x) exp(-px/R) 

x [gl(Z) cos (~xtani) + g2(Z) sin (~xtani)] . 
(21) 

For R -+ 00, the konus density takes its largest values near 
the R-axis (z <:: R); at z '" R it is smaller by a factor of 
order (P/R)2. Thus we may approximate the square bracket 
in the last equation by simply gl(Z), after which the remaining 
integral gives (GR, 6.623.2) 

gl(Z) 100 

PK(R,z) ~ 2n2R2 0 dxxJo(x)exp(-px/R) 
(22) 

P 0(3 - 30(z2 

n2R3 (0(2 + z2)3' 

which is the plane-parallel sheet solution (12) multiplied by 
a factor proportional to R-3• Thus asymptotically for large 
R, the konus density (19) approaches a disc-like configuration 
that consists of a thin positive-density disc surrounded by a 
thicker layer of negative density. 

2.2 Some illustrations 

Fig. 1 shows contour plots in the meridional (R,z) plane 
of two members of this family of konus densities. The first 
is constructed with parameters 0( = P = 1 and i = 45° in 
equation (9), the second with 0( = 0.75, P = 4, and i = 80°. 
Solid contours in Fig. 1 delineate regions in which the konus 
density is positive, dotted contours signify regions of negative 
density. The structure apparent in Fig. 1 is typical of all the 
konus densities we have generated from equation (9) - a 
region of positive density around the minor axis is followed by 
a region of negative density at i~termediate latitudes, and then 

by another region of positive density around the R-axis. The 
approach as R -+ 00 of this last region to the plane-parallel 
sheet is apparent; at the largest radius plotted, the asymptotic 
density in the mid-plane, p(R,O) ~ p/(n2R30(3), is accurate to 
better than a per cent. 

These density distributions project to zero surface bright­
ness for all observers viewing them from inclinations if ~ 45° 
and if ~ 80°, respectively - such lines of sight pass through 
regions of both positive and negative density. On the other 
hand, in an edge-on view (i = 90°) there are lines of sight that 
pass through only the region of positive density near the R­
axis, or only the region of negative density above it, depending 
on height z. The structures in the right-hand panel of Fig. 1 
appear to be flattened because for high inclination the cone of 
ignorance is narrow, allowing only for fairly long-wavelength 
components in the radial direction. 

By adding or subtracting such density components to a 
'visible' density distribution, such as those commonly inferred 
for elliptical galaxies, it is clearly possible to generate intrinsic 
disc-like or peanut-like components without altering the ob­
served image. Ideally one would demonstrate this by choosing 
an underlying elliptical density distribution pdR,z), such as a 
modified Hubble profile, say, and adding a variety of possible 
konus densities. Since here we have fixed the functional form 
of the konus density (19) a priori, we will instead vary the 
functional form of the elliptical density distribution. Fig. 2 
shows three examples of such superpositions 

p(R,z) = pj(R,z) + f PK(R,zIO(,P, i). (23) 

In the top panel of Fig. 2 a boxy density distribution is obtained 
by subtracting a multiple of the 45°-konus density of Fig. 1 
from the elliptical density distribution 

P3(m) == pom-1(m + mc)-2. (24) 

Here m is the usual spheroidal radius m2 == R2 + z2 / q2. This 
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boxy distribution and the elliptical model (24) project to ex­
actly the same elliptical isophotes for all inclination angles 
if ~ 45°. The middle panel of Fig. 2 shows contours of a 
strongly discy intrinsic distribution, obtained by adding a mul­
tiple of the ex = 2, P = 4, 45°-konus density to the quasi-halo 
density 

P2(m) == po(m2 + m~rl. (25) 

Again the isophotes of this discy model are precisely elliptical 
when viewed under inclination angles if ~ 45°. Finally, the 
bottom panel of Fig. 2 shows the superposition of the quasi­
halo model (25) with the 80° -konus density of Fig. 1; this 
shows that invisible disc-like structures can be generated even 
for high inclination if ~ 80°. 

It is not entirely clear which of the features of the exam­
ples we have shown is generic and which determined by the 
peculiarities of the particular family of konus densities with 
which we have worked. Certainly, it would be straightforward 
to generate konus densities with different asymptotic profiles 
from the ex: R-3,z-5 characteristic of our family: densities 
with steeper asymptotic profiles could be generated either by 
differentiating equation (19) w.r.t. p, or by replacing the ex­
ponential in equation (9) by a Gaussian, say. Also, it is clear 
that any konus density must be made up of approximately 
conical shells of positive and negative density, and it seems 
unlikely that any has fewer than the three cones characteristic 
of our family. Konus densities with more cones certainly exist, 
as one may demonstrate simply by adding konus densities of 
the family (19) for different values of i. For example, Fig. 3 
shows the result of adding half the 45°-density of Fig. 1 to the 
80°-density of Fig. 1. The combined konus density is invisible 
at i ~ 45°, and at r > 4kpc it has three conical regions of 
positive density and two regions of negative density. Adding 
such a density to an ellipsoidal model would not merely effect 
the transition from discy to boxy distributions. 

The examples of Fig. 2 are significantly influenced by a 
combination of the R-3 asymptotic profile and the fact that 
for R ~ P the region of highest density around the R-axis 
tends to a constant-scale-height disc. Between them these limit 
the amplitude f of the konus density which can be added 
to a spheroidal distribution without generating implausible 
isodensity surfaces. 

Far from the origin, the structure of a konus density will 
be dominated by the behaviour of its Fourier transform near 
the origin of k-space. It happens that the particular wave­
density (9) has a pronounced peak at (kR = O,kz = 2IP), with 
the result that waves that run parallel to the z-axis become 
dominant at large r. The tendency to a constant-scale-height 
disc discussed above is a manifestation of this fact. In princi­
ple there is no reason why the Fourier transform of a konus 
density should not be zero along the kz-axis. In this case the 
konus density would at large R be dominated by waves with 
non-zero kRlk .. and would not tend to a constant scale-height 
disc. Some such Fourier transforms might lead to analyti­
cally tractable k-space integrals, or the integrals could be done 
numerically. Hence it is clear that the range of physically rea­
sonable konus densities is certainly larger than that displayed 
by the family (19). 

As the inclination increases towards edge-on, the angular 
scales of the konus densities decrease and the form of the 80°_ 
konus density of Fig. 1 suggests that the available freedom 
in bpi p is less at higher than at lower inclinations. However, 
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Figure 2. Discy and boxy systems with elliptical surface brightness 
contours. Each panel shows contours in the meridional plane for two 
deprojections of the same surface brightness data. The dotted elliptical 
contours correspond to one of the densities Pi of equations (24) or 
(25). The full contours show the sum of these densities and a konus 
density of plausible amplitude f. Top panel: j = 3, q = 0.7, Inc = 2; 
Of. = P = 1, i = 45°, f < O. Middle panel: j = 2, q = 0.7, Inc = 2; Of. = 2, 
P = 4, i = 45°, f > O. Bottom panel: j = 2, q = 0.5, Inc = 3; Of. = 0.75, 
P = 4, i = 80°, f > O. 
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for the plane of the sky. Then the projection 1 of p may be 
8 written 

CI 
r:l. 

6 t=-_--

..101 4 '----
......... .. 

2 

2 4 6 8 
R / kpc 

Figure 3. A linear combination of the two konus densities of Fig. 1: 
half the left panel has been added to the right panel. The resulting 
konus density has five conical regions and is invisible at inclinations 
i.;;; 45°. 

because this statement is based on the detailed form of our 
konus densities, it is not well established. We shall return to 
this point with different arguments below. 

We have illustrated the effects of deprojection degeneracy 
by adding konus densities to intrinsically spheroidal distribu­
tions, whose isophotes are elliptical. But we could equally well 
have added konus densities to discy distributions that had 
pointed isophotes. Then we would have found that the am­
plitude and thickness of the disc implied by given data were 
highly ambiguous. 

3 LEGENDRE EXPANSIONS 

How do the results just presented relate to Palmer's (1994) 
proof that a band-limited density distribution can be uniquely 
recovered from its projected surface brightness for all inclina­
tions i =1= O? To understand this we will first review Palmer's 
algorithm, and then return to the konus densities described 
above. We employ galaxy-intrinsic spherical polar coordinates 
(r, 0, rjJ). 

3.1 Palmer's algorithm 

The Legendre polynomial expansion of a typical, smooth lu­
minosity density p(r, 0) will be the infinite sum 

00 

p(r, 0) = LPI(r)PI(cosO). 
1=0 

(26) 

For simplicity we assume that p is symmetric about the equa­
torial plane, with the result that only even 1 need be included 
in the sum. Let (s, qJ) be suitably oriented polar coordinates 

00 

1(s,qJ) = !Io + L In(s)cosnqJ. 
n=2,4 ... 

(27) 

Ifp were band-limited, the sum over n in (27) would run only 
up to n = L, the largest value of 1 involved in the Legendre 
polynomial expansion ofp. Thus the Fourier decomposition of 
the projection of a band-limited density distribution is band­
limited in the conventional sense. 

We consider the band-limited approximations p(L) to p 
that are obtained by setting to zero all the In with n > L. Let 
the Legendre polynomial expansion of p(L) be 

L 

p(L) = L plL)(r)P,(cos 0). 

1=0 

(28) 

By expressing the (r, 0, rjJ) coordinates natural to the galaxy 
in terms of coordinates (s, qJ, z') natural to the observer, and 
integrating along z', Palmer shows that 

L 100 

In(s) = 4"'ni(cosi) plL)(r)pi(/l) ~, 
L.J' r2 -S2 

l=n s 

(29) 

(/-0) oven 

where pi is related to the conventional associated Legendre 
function p,n by 

(1-lnl)! n /l==cos(arcsin(s/r») 
-"-::----'--"-:-, P, and 
(1 + Inl). = -"/1-s2/r2. 

pi == (30) 

[With this definition, J~l dx (Pi)2 = 2/(21 + 1).] Palmer shows 
that, when i =1= 0, equations (29) can be converted into expres­
sions for the plL) in terms of the In, which may be determined 
observationally. Specifically, 

211![(21)!]-1/21°O _d [i:L)(oor)] doo plL)(r) = 
2nrpl(cos i) 1 doo 00' ,Joo2 - 1 ' 

where 

1'=1+2 

100 (L) I rdr 
x P" (r)p,,(/l) ~. 

• ",r2 - s2 

(31) 

(32) 

Palmer's proof that band-limited densities can be uniquely 
inverted follows from the fact that for i =1= 0 this system of 
equations can be straightforwardly solved: one first finds p<J:), 
which depends only on h. Then one solves for P<i:-2' which 
depends on h-2 and p<J:), and so on down the series of the plL). 

3.2 Extension to non-band-limited data 

We now investigate under what circumstances Palmer's algo­
rithm can be used to deproject a surface brightness distribu­
tion 1(s, rjJ) that is not band-limited. Consider the difference 
between the band-limited approximations p(L+2) and p(L) to 
p that are obtained with Palmer's method by truncating the 
Fourier series (27) for 1 at n = L + 2 and n = L, respectively. 
We have that 

0PI == plL+2) - plL) 

= _ 211![(21)!]-1/21°O ~ [oil(oor)] doo 
2nrpl( cos i) 1 doo 00' ,J 002 - l' 

(33) 
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where for I = L + 2 

t5l U2 = IU2' 

and for I:S;; L 

L+2 100 
A L I· I rdr M,(s) = -4 P,,(COS/) OPI,(r)pl'(p)~. 

r2 -S2 
1'=1+2 s 

(34) 

(35) 

Consider now the way in which OPI depends upon the 
signal IU2 under the assumption that the In are slowly varying 
functions of s. For large I, the integral in equation (33) may 
be estimated as follows. We have 

(36) 

and the dominant contribution to the integral comes from 
u ~ 1, so 

1~ [ol,(ur)] du ~ -'PI011(r)1°O du 
I du ul .Ju2 - 1 I ul+1.Ju2 - 1 

(I-I)!! 1t A 

~ -I I!! iP,M,(r), 

(37) 

where P, is a number of order unity. Thus from equation (33) 

10 I~I(I-l)!! 
PI - I!! 

(21)!! plol,(r) 
(21-1)!! 4rpl(cosi)" 

(38) 

Note that, since I = I! !(I-l)! !/[(I-l)! !(I- 2)! !], we have for 
large I that I!!/(I-l)!! ~.jl. Hence for large I 

10PI(r)1 ~ 13/ 4 ol,(r) .. 
rpl(cos/) 

(39) 

Similarly, the integral in equation (35) can be estimated as 

100 I rdr 
op,,(r)pI'(p) ~ 

s ",r2-s2 

~ rx"Op,,(S) 100 
pI, (\/1- s2/r2) ;b 

s r2-s2 (40) 

(-I)'1t (I'+I)! (I-3)!! 
=rx"SOP,,(S) 2'+11! (I'-I)! (1-2)!! 

x 3F2( "+~+1 ,_"2', '21,1 + 1, ~; 1), 

where we have used equation 7.132.6 of GR. Here 3F2 is the 
generalized hypergeometric series, which in this case terminates 
after ~(l' -I) + 1 terms. In general we find that a reasonable 
approximation to the resulting scaling of t5l1 is 

101 ( )1 ~ ~ pl,(cosi)soPI'(s) 
IS L.J 1'(1/1')2 

1'=1+2 

L+2 1 (,')2 I ( .) '" ""' _ _ P,; cos I ol,,(s). 
L.J 1'1/4 I pl,( cos i) 

1'=1+2 I 

(41) 

This equation allows us to estimate the effect on the 
recovered density distribution of adding one more term h+2 
to the expansion of the surface brightness: every coefficient 
PI depends through (31) on the corresponding 'effective data' 
coefficient 1" and all of these are modified by the addition of 
h+2 in a way that we now estimate from (41). By equation 
(34), 01 U2 = IU2' so from (41) we have 

A 1 (L+2)2Pt+2(COSi) 
oh ~ (L + 2)1/4 ---y;- rlt~(cos i) I U2. 

(42a) 
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Figure 4. Typical Legendre functions normalized according to equation 
(30). 

Using this to eliminate 01 L from the corresponding expression 
for 01 L-2, we find 

t5l [ 1 PI+2 (cos i) pt-2( cos i) 
L-2 '" (L + 2)1/4 £1/4 ptt~( cos i) pt( cos i) 

1 pt:~(COSi)] (L+2)2 
+ (L + 2)1/4 ptt~(cos i) L - 2 h+2. 

(42b) 

The pattern of coefficients obtained by continuing this process 
down to arbitrary I is now apparent. The dependence of t5l1 on 
I L+2 is governed by the ratios of the type pI: -2k / pI:. Fig. 4 shows 
three typical Legendre functions. From this one sees that the 
functions pI: oc sin" i that occur in the denominators above 
fall monotonically as the inclination changes from edge-on to 
face-on, and become very small by a value of x == cos i which 
diminishes as I' increases. The functions pl:-2k that appear 
in the numerators above oscillate for small cos i, and tend 
to zero '" sin(l'-2k) i as cos i -+ 1. Consequently, the ratios of 
Legendre functions in (42) will be of order unity near i = 90° 
but be large for near face-on inclinations. In fact, in the limit 
i -+ 0 the products of Legendre functions in each term in the 
series of (42) will all be comparable because they all scale as 
sin-(L+2-1) i. For moderate inclinations and values of L, the 
ratio 01,fh+2 will be dominated by these products. Hence the 
addition of a small coefficient IU2 can profoundly modify the 
effective data 1, at all orders, and hence significantly change 
the recovered density distribution. 

As we have defined it, t5l1 is a function of the order L 
of the last included term. If deprojection is to make sense, 
the difference between the deprojections that one obtains on 
truncating the data at either order L or order L + 2 must tend 
to zero as L -+ 00. Consequently, we require limL .... oo t5l1 = 0 
for all I <: L. For i = 90°, the ratios of Legendre functions 
in equation (42) will evaluate to less than unity, so limL-+oo 01, 
is zero provided the Fourier coefficients h fall off at least as 
fast as L -2, as they will because the surface brightness is a 
continuous function of position angle on the sky. However, for 
small i, the limit will vanish only if the coefficients h falloff 
extremely rapidly since they must overwhelm the very rapid 
growth with L of the products of Legendre functions. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1996MNRAS.279..993G


1
9
9
6
M
N
R
A
S
.
2
7
9
.
.
9
9
3
G

1000 o. E. Gerhard and J. J. Binney 

3.3 An example 

It is instructive to see how these ideas work out in prac­
tice. Consider deprojecting a system whose noise-free surface 
brightness follows the modified Hubble profile 

_ 10 2 _ x2 + y2 / q~ . 
I(x,y) - 2 where Jl.2 = 1 + 2 . 

Jl.2 ro 
(43) 

The luminosity density of this system is 

P r2 
p(r, 0) = ~ where Jl.~ == 1 + "2 ( sin2 0 + cos2 0/ qi) 

Jl.3 ro 
(44) 

with 

q2I o 
Po= --, 

2q3rO (45) 

q~ = q~ csc2 i - cot2 i. 

By straightforward contour integration one may show that for 
this system 

(~_1)L/2 
210 a 

h(s) = ~(q22 + 1)S2 + rij ~--J---=1=_=a=2,-L--

where L is even and 

q22 -1 
a(s) == (q22 + 1) + 2(ro/s)2· 

Since 

(1 + vqjsin2 i+cos2 i( 
we have that h tends to zero with L as 

h '" sinL i(1 _ q~)L/2. 

(46) 

(47) 

(48) 

(49) 

When this is inserted into equations (42) for oi" the factor 
sinL+2 i in h+2 overwhelms the factors sin-(L+2-') i implicit 
in the products of Legendre functions, with the result that 
oi, '" sin' i just as I, '" sin' i. Thus Palmer's algorithm when 
used to deproject a noise-free modified Hubble profile might be 
expected always to converge to the same density distribution, 
independent of the inclination at which the system is viewed. 

Fig. 5 shows a numerical verification of this proposition. 
The open symbols show for a typical radius values oflog10 IpII 
that were recovered by deprojecting a modified Hubble system 
of axial ratio q3 = 0.6 and inclination i = 10°. The open 
symbols give the values obtained for L = 4, 6 and 8, while 
the full symbols give the values that one obtains by directly 
expressing p(r,O) as a Legendre series. It can be seen that, as 
L is increased, good values are obtained for more and more of 
the PI. A virtually indistinguishable figure could be shown for 
any other inclination angle i > O. Thus in this case Palmer's 
algorithm does seem to recover'the correct three-dimensional 
density from its projected surface brightness distribution. 

3.4 Konus densities and Palmer's algorithm 

We first demonstrate that the Legendre expansion of a konus 
density must contain an infinite number of terms; i.e., it cannot 
be band-limited. Indeed, if PI(r) = 0 for I> L, then by (29) it 

A 
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o 

-3 I-

-4 I-
I 

4 
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o 
I 

8 

-
• 

• 
-

• 

-
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10 

Figure S. Legendre coefficients for a galaxy that has the modified 
Hubble profile. An E4 galaxy is viewed at i = 10°. The full symbols 
show the values of 10glO Ip,l for this density distribution at a typical 
radius. The open symbols show the values of the same quantities that 
are recovered from the projected density for L = 4, 6, 8. Triangles give 
values of Po, squares of P2, pentangles of P4, and so forth. 

follows from the fact that h(s) = 0 for all s, that pdr) = 0 for 
all r. Repeating this argument with n = L - 1, ... in (29) we 
see that a band-limited density distribution with zero surface 
brightness is identically zero. Fig. 6 illustrates this result by 
showing for one of the konus densities of Fig. 1 the coefficients 
PI(r) with I ~ 250 at six values of r. 

By adding a konus density to a band-limited distribution, 
we see that a band-limited surface brightness I (s, 4» does not 
imply that the underlying density p(r,O) is band-limited, while 
equation (29) clearly shows that the reverse is true. 

Since, by construction, a konus density projects to zero 
surface brightness, one might think it impossible to recover 
such a density by Palmer's deprojection algorithm. Consider, 
however, the result of truncating the Legendre expansion of a 
konus density at order L. This band-limited density distribu­
tion projects to a band-limited surface brightness distribution 
I(L)(s, 4». For any finite L we may in principle deproject this by 
Palmer's algorithm. The band-limited result of this deprojec­
tion must coincide with our original truncated konus density, 
for otherwise the difference between these two densities would 
be a band-limited konus density, which we have just shown to 
be impossible. Repeating this experiment for larger and larger 
values of L, we obtain more and more accurate approxima­
tions to the original konus density, and in the limit L -+ 00 we 
obtain the konus density itself. Notice that this implies 

(50) 

where Pa stands for Palmer's operator. Indeed, as L increases, 
I(L) becomes smaller and smaller and vanishes in the limit 
L -+ 00. Hence Palmer's algorithm extracts better and better 
approximations to the konus density's PI from smaller and 
smaller values of 1,. Equations (42) give some insight into how 
this is achieved, although they describe a limiting process that 
is different from the one under consideration here: now with 
each increment in L, every I, varies, rather than just IL+2. 
In other words, we obtain a konus density from a series of 
Fourier series rather than from a single Fourier series. 
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• r = 0.3 
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Figure 6. The coefficients P/(r) with I ~ 250 for the 800 -konus density 
of Fig. 1. The larger the value of r, the more slowly PI declines with 
r. This reflects the fact that at large R these distributions approximate 
discs of constant scale-height. The 450 -konus density yields a similar 
figure. 

4 DISCUSSION 

4.1 Noise 

We have seen that equations (42) impose constraints on the 
behaviour of the Fourier coefficients II at large I that must 
be satisfied if a meaningful deprojection is to be obtained by 
Palmer's algorithm. When the surface brightness distribution 
I (s, <p) is contaminated by noise, these conditions must be 
violated at sufficiently large I, since noise will tend to make 
lId approximately independent of I for large 1. Moreover, as 
the assumed inclination i decreases, the conditions imposed by 
equations (42) become ever more severe, with the result that 
the value of I at which a given body of noisy data will first 
violate these conditions diminishes with i. 

In practice galaxy images are deprojected using the 
Richardson-Lucy (R-L) algorithm rather than Palmer's. Ex­
perience shows that for a given image there is a smallest value 
of i for which the R-L algorithm yields a plausible density 
distribution. When using the R-L algorithm, both images and 
density distributions are usually fitted by low-order functions 
of the angles <p and (). This smoothing process will strongly 
attenuate the high-frequency power in both data and model, 
but it will not amount to strict truncation of the implicit 
Fourier and Legendre expansions. Consequently, the R-L al­
gorithm will not be working with band-limited data or models. 
Equations (42) indicate that, at sufficiently small values of i, 
even the residual small high-I terms II in the data can make 
important contributions to the low-I coefficients PI. Since the 
high-order II will be noise-dominated, it follows that the in­
version will be entirely noise-dominated for sufficiently small 
assumed inclinations. Clearly, the deleterious effects of noise 
can only be increased by increasing the angular resolution at 
which the data are represented. 
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Figure 7. Contours of constant density in the meridional plane of a 
model of NGC 2300 obtained by the R-L deprojection algorithm. 
These are reminiscent of the sum of a konus density and an ellipti­
cal density distribution. The assumed inclination is i = 500 and the 
rms deviations of the projected model from the data are 0.006 mag. 
Reproduced from Hodtke (1995). 

We have seen that the low-amplitude brightness distri­
butions of truncated konus densities deproject to densities of 
amplitude unity. Any component of residual noise in smoothed 
data that is equal to the surface brightness of a truncated konus 
density can be matched only by projecting a truncated konus 
density. Hence no matter how such data are fitted, a model 
that fits the data accurately must include a truncated konus 
density of significant amplitude. Moreover, the less the data 
have been smoothed, and therefore the higher the value of L 
at which the underlying series are truncated, the smaller is the 
amplitude of noise in the data that is required to produce a 
konus density of unit amplitude. 

It is interesting to study a practical example of a truncated 
konus density being introduced into a model by noise in the 
data. Fig. 7 shows a deprojection of the surface brightness 
distribution of NGC 2300 for an assumed inclination angle of 
i = 500 • This galaxy is approximately E2, and has slightly boxy 
(a4 ;5 1 per cent) isophotes. The deprojection was done with 
the R-L algorithm of Binney et al. (1990) as implemented by 
W. Dehnen. After 10 iterations the rms deviation in surface 
brightness for six radial rays was 0.006mag. Despite this very 
accurate representation of the nearly elliptical isophotes, the 
contours of deprojected density in the meridional plane are 
strongly non-elliptical and their shapes vary with radius. The 
shapes of these contours suggest that a truncated konus density 
has been added to a smooth elliptical model. 

Ambiguities in the result of the deprojection can be 
avoided by introducing additional constraints, such. as that 
the deprojected density distribution should be as smooth as 
possible, or as elliptical as possible, etc. However, the realiza­
tion that many elliptical galaxies display fine structure such 
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as weak discs casts doubts on the wisdom of such prescrip­
tions. The successes of the R-L algorithm referred to in the 
introduction may in part be due to its effectively smoothing 
the angular density distribution during the deprojection, thus 
removing the higher P,(cosO). 

4.2 What can and cannot be seen 

We have made it plausible that Palmer's algorithm can be 
applied to some non-band-limited surface brightness distri­
butions in addition to band-limited ones. For any assumed 
inclination i, let 2Dp(i) denote the set of surface brightness 
distributions I that yield a well-defined deprojected density 
distribution in the limit L -+ 00 as Palmer's algorithm is suc­
cessively applied to the Fourier decomposition truncated at 
each order L. Then 2Dp(i) comprises nearly all surface bright­
ness distributions for i = 90° and shrinks continuously with i 
until at i = 0 it comprises only circularly symmetric brightness 
distributions. Thus, whereas in Palmer's original discussion the 
case i = 0, in which Palmer's algorithm cannot be applied even 
to band-limited distributions, appeared anomalous, we now see 
that it is merely the endpoint of a continuous evolution. 

For any given value of i, there is a set 3Dp(i) of density 
distributions that can be obtained by applying Palmer's algo­
rithm to all the members of 2Dp(i). One expects that the set 
3Op(i) of functions of two variables will have essentially the 
same size as the set 2Dp(i) of similar functions of which it is 
the image. No konus density lies in 3Dp(i) because to recover 
a konus density by Palmer's algorithm one has to change all 
the Fourier coefficients In at each stage of the limiting process, 
rather than adding one more term to the Fourier series. Hence 
the set of konus densities, 3DK(i), is disjoint from 3Dp(i). On 
adding a member of 3DK(i) to a member of 3Dp(i) we obtain 
a density distribution that lies in neither set. Hence the space 
of all possible density distributions falls into three parts as is 
schematically illustrated by Fig. 8. That figure also illustrates 
how 3DK(i) increases from the empty set to a large part of the 
space as i diminishes from 90°. to zero. 

4.3 Konus densities and discy distributions 

Konus densities are astrophysically important because addi­
tion of a konus density can change one's model of a given 
galaxy from discy to boxy or vice versa. About one third of 
elliptical galaxies show discy isophotes; this is most naturally 
interpreted as due to the presence of a weak, near-edge-on disc 
(Bender et al. 1989). Moreover, Rix & White (1990) showed 
that a substantial number of ellipticals without such isophote 
distortions might also contain non-negligible discs. However, 
the statement of Rix & White was that these discs would be 
merely too faint to detect in currently available data, whereas 
discs contributed by konus densities could not be photomet­
rically detected, even in principle. The amplitude of any disc 
that could be masked either by the addition of a konus den­
sity or by noise in the observations, decreases as the assumed 
inclination increases towards edge-on. 

One cannot place an upper limit on the luminosity of an 
'invisible' disc that can be added to a boxy galaxy without 
exploring the set of possible konus densities more thoroughly 
than we have been able to do. It seems clear that konus 
densities will always comprise a nested sequence of roughly 
conical regions of alternating positive and negative density. 

3Dp 

edge-on 

.. ........ -... __ ... _-.. _--_ ....... . 

! 
3DKI 

; 
; 
; 

i=45 

............ ~J,h~ ....... T" 
, 

face-on 
Figure 8. Schematic of function spaces. 

We have shown that some konus densities have more than the 
three conical regions that are characteristic of our basic family, 
but it seems unlikely that any have fewer. It is certain that great 
variety is possible in the way in which the peak value of Ipi 
within a conical region declines with radius in a konus density. 
For fixed inclination, our konus densities are characterized by 
two scale-lengths (X and p. The latter determines the radius 
beyond which the density in the equatorial plane falls as a 
power law, p ""' R-3, while (X sets the scale-height of the disc 
that emerges at z <: R as R -+ 00. These features are certainly 
specific to our examples rather than characteristic of konus 
densities as a whole. 

Galaxies are made up of stars moving collisionlessly on 
orbits in a given gravitational potential, and before one can 
feel free to add or subtract any component it is important to 
be assured that this can be constructed by placing stars on 
orbits. Fortunately, Lynden-Bell's (1962) demonstration that 
for any p(r,O) there correspond infinitely many distribution 
functions f(E,Lz ) assures us that this is so. 

In the light of the previous discussion, attempts to detect 
discs through their effect on kinematic observables assume 
greater importance. Unfortunately, uncertainty as to the role 
of a third integral in galaxy distribution functions makes this 
approach also difficult. If we knew that the distribution func­
tion were of the simple form f(E,Lz ), then each of the possible 
density distributions that are consistent with a given galaxy im­
age would predict different velocity profiles along the various 
lines of sight. Unfortunately, we have no reason to expect f to 
be of any particular form, and the prospects for disentangling 
the effects of ambiguity in p(r, 0) and ambiguity in phase-space 
structure seem slim. Said differently, for each of the infinitely 
many densities that are consistent with a given galaxy image, 
there correspond infinitely many possible distribution func­
tions f, and each f predicts different kinematics. It seems likely 
that for any two different densities we can find corresponding 
distribution functions that predict identical kinematics. 

S CONCLUSIONS 

We have shown that, for i =1= 90°, the deprojection ofaxisym­
metric density distributions is non-unique in practice as well as 
in principle. That is, there are different, astrophysically plau­
sible intrinsic density distributions that project to the same 
surface brightness. 

The difference between two such densities is invisible at 
all sufficiently face-on inclinations. It arises from a Fourier 
density in the 'cone of ignorance', the region of Fourier space 
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about which the observed image contains no information. 
Examples of such 'konus' densities can be constructed that are 
everywhere non-singular and decay rapidly with radius. 

By adding a konus density to any given model of the lu­
minosity distribution of a non-edge-on galaxy, one can change 
that model from discy to boxy or vice versa without, even in 
principle, altering the fit of the model to the photometric data. 
This phenomenon clearly limits the degree to which boxiness of 
isophotes, as measured by the parameter a4/a, for example, can 
be correlated with properties such as X-ray or radio luminos­
ity, which are independent of orientation to the line of sight; 
an X-ray- or radio-luminous galaxy may nearly always be in­
trinsically boxy as Bender et al. (1989) suggest, but since part 
of its boxiness is likely to be attributable to a konus density, 
it will not necessarily be apparently boxy. Hence our findings 
strengthen the significance of the results of Bender et al. 

The ambiguity associated with konus densities is least at 
near edge-on inclination. Then any added konus density will 
correspond to a thin disc, but the amplitude of this disc could 
still be significant. Thus, especially in the case of a weak disc, 
the disc-to-bulge ratio is photometrically undetermined. 

Kinematic data will in some cases enable one to choose 
between luminosity distributions with identical photometric 
appearance. But it seems unlikely that even the most complete 
kinematic data will always resolve all ambiguity, since the 
existence of a third integral for axisymmetric systems implies 
that an infinite number of distribution functions can generate 
each of the infinite number of intrinsic density distributions 
that are compatible with given photometric data. 

It also seems unlikely that studies of galaxy formation will 
be able to resolve the ambiguity discussed here, both because 
of the number of complex and poorly understood physical 
processes involved and because of the great variety of possible 
initial conditions for numerical simulations. 

The best prospect for making progress is to concentrate on 
studying the most edge-on systems, for which the photometric 
uncertainty is least. In such systems a cold disc would be 
unmistakable but an appropriate konus density could add to 
one's model a thin hot disc without affecting any observable. 

We have used Palmer's deprojection algorithm to clarify 
the way in which the ambiguity of the deprojection, which 
arises from the konus densities, increases as the assumed incli­
nation i decreases from edge-on. As i diminishes, the higher­
order terms in the Fourier decomposition of the surface bright­
ness affect more and more strongly the lower-order terms in 
the expansion of p(r,8) in Legendre polynomials. This has 
two consequences. First, the range of surface brightness dis­
tributions that can be successfully deprojected diminishes as 
i decreases. Second, with decreasing i the deprojected density 
becomes more and more sensitive to noise in the data. 

Although Palmer's algorithm is helpful for understanding 
the deprojection problem in general terms, it is much harder 
to program and use than the R-L algorithm. Also, it does not 
constrain p to be non-negative as does the R-L algorithm. 

Konus densities have infinitely many terms in their Legen­
dre expansions. The density distribution obtained by truncat­
ing such an expansion at high order projects to a faint surface 
brightness distribution. When this pattern of surface bright­
ness is present in smoothed noisy data, a truncated konus 
density of large amplitude is generated when the data are 
deprojected. We have illustrated this phenomenon using an 
image of NGC 2300. 
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The results presented here for the axisymmetric case also 
have implications for general triaxial systems. For they sug­
gest that the range of triaxial densities that are consistent with 
given photometry is far greater than is commonly assumed. 
In particular, our results suggest that the three-dimensional 
distributions that are compatible with given photometry differ 
not only in the orientation and lengths of their axes, as de­
scribed by Stark (1977), but also by the addition or subtraction 
of weaker, more local structures such as discs or dumbbells. 
The axisymmetric konus densities constructed here are spe­
cial examples of such local structures that for suitable viewing 
angles can be added to a triaxial system without altering its 
apparent image. It would be interesting to display explicitly 
the more general triaxial analogues of konus densities. 
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APPENDIX: BAND LIMITATION OF fj(k) 

Axisymmetric systems with band-limited densities p(x) evade 
the Fourier slice theorem because their Fourier transforms are 
also band-limited. That is, if fj(k) == I d3x exp(ik·x)p(x) is the 
Fourier transform of p and (k, 8, cf» are spherical polar coor­
dinates in k-space such that the axis 8 = 0 is aligned with the 
galaxy'S symmetry axis, then fj(k,8) = ~~=O Pt(k )PI( cos 8). As 
Palmer shows, knowledge of band-limited fj(k,8) in the com­
plement of Rybicki's 'cone of ignorance' suffices to determine 
fj(k, 8) for all k. In fact, fj(k) is determined by its value at only 
a finite number of values of 8 at each value of k. 

Palmer effectively demonstrates that fj is band-limited by 
explicit calculation. Here we show that this result follows easily 
from a general group-theoretic argument. 

Let the functions Im(x) for m = -1, ... ,1 form a basis for 
the spin-I irreducible representation of SO(3), where the action 
on II of a rotation R E SO(3) is 

R : I -+ f' with f'(x) == I(RT • x). (AO) 

(Here R is the rotation matrix associated with R.) Then by 
the uniqueness of the spin-I representation, any 1m can be 
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written as 
/ 

fm(x) = L fmm'(r)l'r(O,c/J). 
"r=-/ 

Fourier transforming equation (AO) we, have 

j'(k) = J d3x exp(ik· x')f'(x') 

= J d3x' exp(ik· x)f(RT • x) 

= J d3xexp[ik· (R· x)]f(x) 

= J d3kexp[i(RT • k)· x]f(x) 

=l(RT ·k). 

(Al) 

(A2) 

Consequently, the Fourier transforms j m also form a ba­
sis for a (21 + 1 )-dimensional irreducible representation of 
SO(3), and by the uniqueness of the spin-I representation we 
have 

/ 

lm(k) = L lmm'(k)Y,m(O,c/J). (A3) 
m'=-I 

A band-limited p(x) is a function that can be written as a 
linear combination of functions that are members of spin-I 
representations of SO(3) for 1 ~ L. By the above it immedi­
ately follows that p(k) has this last property and so is itself 
band-limited. 

This paper has been produced using the Royal Astronomical 
Society/Blackwell Science 'lEX macros. 
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