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ABSTRACT
Current and future galaxy surveys cover a large fraction of the entire sky with a significant
redshift range, and the recent theoretical development shows that general relativistic effects are
present in galaxy clustering on very large scales. This trend has renewed interest in the wide-
angle effect in galaxy clustering measurements, in which the distant-observer approximation is
often adopted. Using the full wide-angle formula for computing the redshift-space correlation
function, we show that compared to the sample variance, the deviation in the redshift-space
correlation function from the simple Kaiser formula with the distant-observer approximation
is negligible in galaxy surveys such as the Sloan Digital Sky Survey, Euclid and the BigBOSS,
if the theoretical prediction from the Kaiser formula is properly averaged over the survey
volume. We also find corrections to the wide-angle formula and clarify the confusion in
literature between the wide-angle effect and the velocity contribution in galaxy clustering.
However, when the FKP method is applied, substantial deviations can be present in the power
spectrum analysis in future surveys, due to the non-uniform distribution of galaxy pairs.

Key words: methods: analytical – cosmology: observations – large-scale structure of
Universe.

1 IN T RO D U C T I O N

In the past two decades, rapid experimental developments in large-
scale galaxy surveys have revolutionized our understanding of the
Universe such as the Sloan Digital Sky Survey (SDSS; York et al.
2000), the Two degree Field Galaxy Redshift Survey (2dFGRS;
Colless et al. 2001), and the WiggleZ Dark Energy Survey
(Drinkwater et al. 2010). In particular, matter fluctuations on large
scales remain in the linear regime, where it is simple to relate the
cosmological measurements to the governing cosmological param-
eters. Since two-point statistics provides a complete description of
the Gaussian random field, a great deal of effort has been devoted
to measuring the correlation function in configuration space and
the power spectrum in Fourier space (e.g. Tegmark et al. 2004b;
Cole et al. 2005; Eisenstein et al. 2005). The current state-of-the-art
measurements are Reid et al. (2010) power spectrum analysis of the
SDSS luminous red galaxy (LRG) samples, Blake et al. (2011b) cor-
relation function analysis of the WiggleZ survey, and Sánchez et al.
(2012) correlation function analysis of the Baryonic Oscillation
Spectroscopic Survey (BOSS; Schlegel et al. 2007). Moreover, fu-
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ture galaxy surveys such as Euclid1 and the BigBOSS2 are planned
to measure galaxies at higher redshift with larger sky coverage.
With enormous statistical power in these future surveys, theoret-
ical predictions of the redshift-space correlation function and the
power spectrum need to be further refined to take full advantage of
high-precision measurements.

Motivated by these recent developments, the relativistic descrip-
tion of galaxy clustering has been developed to meet the high ac-
curacy of theoretical predictions demanded by these surveys (Yoo,
Fitzpatrick & Zaldarriaga 2009; Yoo 2010). While measurements
of galaxy clustering are based on observed quantities such as the
observed redshift and the galaxy position on the sky, its theoret-
ical prediction is based on unobservable quantities such as the
real-space redshift and unlensed galaxy position. The relativistic
formula for the observed galaxy fluctuation is constructed by us-
ing the observed quantities, providing a complete description of
all the effects in galaxy clustering to the linear order in perturba-
tions (Yoo et al. 2009; Yoo 2010; Bonvin & Durrer 2011; Challi-
nor & Lewis 2011; Jeong, Schmidt & Hirata 2012). The relation
between the full Kaiser formula and the relativistic formula was

1 http://sci.esa.int/euclid
2 http://bigboss.lbl.gov
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clarified in Yoo et al. (2012) with a careful examination of gauge
issues and the Newtonian correspondence. These theoretical devel-
opments reveal that the relativistic effect is present in galaxy clus-
tering, and the relativistic effect itself provides new opportunities
to test general relativity on horizon scales in future galaxy surveys
(Yoo et al. 2012).

This recent trend has renewed interest in the wide-angle effect
in galaxy clustering measurements on large scales. The standard
method for computing the redshift-space correlation function and
its power spectrum on large scales is based on linear theory and
is described by the Kaiser formula (Kaiser 1987). On large scales,
where linear theory is applicable, the Kaiser formula provides a sim-
ple and physically transparent relation between the real-space δg and
the redshift-space δs galaxy fluctuations, and its two-point correla-
tion function (Hamilton 1992; Cole, Fisher & Weinberg 1994) or
the power spectrum (Kaiser 1987) can be readily computed. This
simple relation is made possible by adopting the distant-observer
approximation, in which the observer is far away from galaxies
in observation and hence the position angles of those galaxies are
virtually identical on the sky.

Therefore, it is natural to expect this assumption to break down
in wide-angle galaxy surveys, demanding a formalism for com-
puting the redshift-space correlation function without the distant-
observer approximation. When the distant-observer approximation
is dropped, there exist three different angles, two lines-of-sight di-
rections to the galaxy pair and the pair separation direction, and the
resulting correlation function in redshift space is an infinite sum
of plane waves with different angular momenta (see also, Fisher,
Scharf & Lahav 1994; Fisher et al. 1995; Heavens & Taylor 1995;
Hamilton & Culhane 1996 for the spherical power spectrum ap-
proach to redshift-space distortion). Exploiting the fact that the
geometry in question is confined to a plane, Szalay, Matsubara &
Landy (1998) first developed a simple expression for computing
the redshift-space correlation function by using the bi-polar spher-
ical harmonics. The wide-angle formalism is further completed in
Szapudi (2004) by noting that the correlation function configuration
specified by three angles can be expanded in terms of tripolar spher-
ical harmonics and the total angular momentum of this expansion
must vanish due to rotational invariance. Further extension in the
wide-angle formalism was made by Matsubara (2000) to compute
the correlation in a non-flat universe, by Pápai & Szapudi (2008) to
implement the full Kaiser formula, by Montanari & Durrer (2012) to
account for galaxy pairs at two different redshifts, and by Bertacca
et al. (2012) to add relativistic corrections.

In observational side, Okumura et al. (2008) analysed the SDSS
LRG sample to measure the baryonic acoustic oscillation (BAO)
scale in two-dimensional redshift-space correlation function on
large scales and found that the impact of the wide-angle effect
on their measurements is small. Samushia, Percival & Raccanelli
(2012) performed an extensive study of systematic errors in inter-
preting large-scale redshift-space measurements in the SDSS. By
quantifying the distribution of the opening angle as a function of
pair separation, they concluded that the wide angle effect is neg-
ligible in the SDSS. Beutler et al. (2011) used the 6dF Galaxy
Survey for their BAO measurements by using the angle-averaged
monopole correlation function. They concluded that the wide-angle
effect on the monopole correlation function measurements is minor:
�ξs

0 � 10−4 at the BAO scale, much smaller than the measurement
uncertainties.

However, Raccanelli et al. (2013) argue that the wide-angle effect
in galaxy clustering measurements is potentially degenerate with
the signature of modified gravity models and it should be consid-

ered interpreting measurements in future galaxy surveys. For galaxy
pairs that are widely separated in angle, the redshift-space corre-
lation function is sufficiently different from that obtained by using
the simple Kaiser formula with the distant-observer approximation,
and the deviation in the correlation function measurements might
be misinterpreted as the breakdown of general relativity. However,
at large opening angles, where the wide-angle effect is largest, there
are few galaxy pairs at a typical pair separation, and the measure-
ment uncertainties are larger. Therefore, it is important to quantify
the measurement uncertainties associated with galaxy pairs at large
opening angles, and it is described by the probability distribution of
the triangular shapes of galaxy pairs in each survey.

Here, we perform a systematic study of the wide angle effect
in galaxy clustering measurements in galaxy surveys such as the
SDSS, Euclid and the BigBOSS. Our results on the wide-angle ef-
fect in the SDSS agree with the previous work in Samushia et al.
(2012). On the other hand, there is no systematic study on the
wide-angle effect in future galaxy surveys. The lack of study in this
direction is partially due to the difficulty in predicting measurement
uncertainties in the correlation function, while various ways exist
to achieve this goal when measurements are already made such as
in the SDSS (see Samushia et al. 2012 for details). In contrast, it is
easier to predict measurement uncertainties in the power spectrum,
as each Fourier mode is independent on large scales. Therefore, our
strategy is as follows. We first quantify the probability distribution
of the triangular shapes formed by the observer and galaxy pairs
that fit in the survey regions. The redshift-space correlation function
can then be obtained by averaging each correlation function over all
triangular configurations. Secondly, we compute the redshift-space
power spectrum by Fourier transforming the resulting redshift-space
correlation function, and we quantify the systematic errors in the-
oretical predictions based on the simple Kaiser formula with the
distant-observer approximation by computing the covariance ma-
trix of the redshift-space power spectrum.

Our eventual conclusion is that galaxies in surveys are sufficiently
far away from the observer, and the distant-observer approximation
is highly accurate. However, one has to be careful to avoid sig-
nificant systematic errors when comparing theoretical predictions
with measurements, because the Kaiser formula with the distant-
observer approximation needs to be evaluated at a certain redshift
and the deviation from the uniform distribution of cosine angle μ is
substantial on large pair separations. Once these issues are properly
considered in estimating the redshift-space correlation function, the
systematic errors from the use of the Kaiser formula are negligible
in the SDSS and are completely irrelevant in future survey. Further-
more, since the power spectrum analysis in practice is performed in
a slightly different way, we investigate the systematic errors asso-
ciated with the present power spectrum analysis, which turn out to
be larger than the wide-angle effect.

The outline of this paper is as follows. In Section 2, the redshift-
space distortion formalism is discussed. We first introduce the
Kaiser formula for the redshift-space galaxy fluctuation and its
power spectrum, and we present the multipole expansion and the
covariance matrix. Secondly, we briefly review the wide-angle for-
malism for computing the redshift-space correlation function and
clarify the ‘wide angle effects’, i.e. the deviation from the simple
Kaiser formula with the distant-observer approximation. We then
make connection to the full relativistic formula for the observed
galaxy fluctuation and identify missing velocity corrections in the
Kaiser formula and the wide-angle formalism. In Section 3, we
present our main results on the systematic errors that may occur
in measuring the redshift-space correlation function and the power
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spectrum in the SDSS, Euclid, and the BigBOSS by using the simple
Kaiser formula with the distant-observer approximation. Finally, we
conclude in Section 4 with a discussion of our findings. For illustra-
tions, we adopt a flat � cold dark matter cosmology with �m = 0.27,
h = 0.703, ns = 0.966 and σ 8 = 0.809. Throughout this paper, we
only use linear theory, valid on large scales.

2 R EDSHIFT-SPAC E D ISTO RTION

Here, we briefly discuss the formalism for redshift-space distortion
necessary for computing the correlation function and the power
spectrum in Section 2.1 and for computing their multipole expansion
and covariance matrix in Section 2.2. We then review the extension
of the Kaiser formula to all sky and its deviation from the distant-
observer approximation in Section 2.3 and make a connection to
the full relativistic formula for the observed galaxy fluctuation in
Section 2.4.

2.1 Formalism

The observed distance s of a galaxy in redshift space is based on the
observed redshift z and differs from the real-space distance r due to
the line-of-sight peculiar velocity V as

s = r + V = r + f
∂

∂r
∇−2δm, (1)

where the comoving line-of-sight displacement is V = V /H, the
logarithmic growth rate is f = d ln D/d ln a, the growth factor D(z)
is normalized to unity at present, and the conformal Hubble pa-
rameter is H = aH . Using the conservation of the total number of
the observed galaxies in a small volume, ng(s)d3s = ng(r)d3r, the
observed galaxy fluctuation δs in redshift space is related to the
real-space fluctuation δg as

1 + δs = ng(r)

ng(s)

∣∣∣∣ d3s

d3r

∣∣∣∣
−1

= r2n̄g(r)

s2n̄g(s)

(
1 + dV

dr

)−1

(1 + δg). (2)

This relation is exact but assumes that the redshift-space distortion
is purely radial, ignoring angular displacements.

One can make a progress by expanding equation (2) to the linear
order in perturbations, and the redshift-space galaxy fluctuation is
then (Kaiser 1987)

δs = δg −
(

d

dr
+ α

r

)
V, (3)

where the selection function α is defined in terms of the (comoving)
mean number density n̄g of the galaxy sample as

α ≡ d ln r2n̄g

d ln r
= 2 + rH

1 + z

d ln n̄g

d ln(1 + z)
. (4)

By adopting the distant-observer approximation (r → ∞) and ig-
noring the velocity contributions, a further simplification can be
made (Kaiser 1987):

δs = b δm − dV
dr

=
∫

d3k
(2π)3

eik·s (b + f μ2
k) δm(k), (5)

where we used the linear bias approximation δg = b δm (Kaiser
1984). When we consider a fluctuation at one point such as δs,
there are no ambiguities associated with the line-of-sight direction,
and in equation (5) the cosine angle μk = ŝ · k̂ between the line-
of-sight direction ŝ and the wavevector k is always well defined,
regardless of the validity of the distant-observer approximation. It

is also noted that we ignore the angular displacement due to the
gravitational lensing.

Under the distant-observer approximation, all galaxies are far
away from the observer, and their position angles are virtually iden-
tical. In this case, equation (5) can be used to compute the power
spectrum in redshift space as (Kaiser 1987)

Ps(k, μk) = (b + f μ2
k)2Pm(k). (6)

Hereafter, we refer to equations (5) and (6) as the Kaiser formulae for
the redshift-space galaxy fluctuation δs and its power spectrum Ps,
but it is noted that equation (5) is the leading order terms ∼ O(δm)
of the full equation (3) based on the distant-observer approximation
in linear theory, and hence equation (6) ∼ O(δ2

m). To separate from
these ‘simple’ Kaiser formulae, we refer to equation (3) as the full
Kaiser formula for the redshift-space galaxy fluctuation, but we
explicitly spell out to distinguish the simple and the full Kaiser
formulae, whenever necessary to avoid confusion.

2.2 Multipole expansion and covariance matrix

The simple Kaiser formula for the redshift-space power spectrum is
anisotropic, and it is often convenient to expand Ps(k, μk) in terms
of Legendre polynomials Pl(x) as

Ps(k, μk) =
∑

l=0,2,4

Pl(μk)P s
l (k), (7)

and the corresponding multipole power spectra are

P s
l (k) = 2l + 1

2

∫ 1

−1
dμk Pl(μk)Ps(k, μk). (8)

With its simple angular structure, the simple Kaiser formula in equa-
tion (6) is completely described by three multipole power spectra

P s
0 (k) =

(
b2 + 2f b

3
+ f 2

5

)
Pm(k), (9)

P s
2 (k) =

(
4bf

3
+ 4f 2

7

)
Pm(k), (10)

P s
4 (k) = 8

35
f 2Pm(k), (11)

while any deviation from the linearity or the distant-observer ap-
proximation can give rise to higher order even multipoles (l > 4)
and deviations of the lowest multipoles from the above equations.

The correlation function in redshift space is the Fourier transform
of the redshift-space power spectrum Ps(k, μk). With the distant-
observer approximation the redshift-space correlation function can
be computed and decomposed in terms of Legendre polynomials
as

ξs(s, μ) =
∫

d3k
(2π)3

eik·s Ps(k, μk) =
∑

l=0,2,4

Pl(μ) ξ s
l (s), (12)

and the multipole correlation functions are related to the multipole
power spectra as (Hamilton 1992; Cole et al. 1994)

ξ s
l (s) = il

∫
dk k2

2π2
P s

l (k)jl(ks), (13)

P s
l (k) = 4π(−i)l

∫
dx x2ξ s

l (x)jl(kx), (14)

where jl(x) denotes the spherical Bessel functions and the cosine
angle between the line-of-sight direction n̂ and the pair separation
vector s is μ = n̂ · ŝ. With the distant-observer approximation, there
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are no ambiguities associated with how to define the line-of-sight
direction of the galaxy pair, as all angular directions are identical.

Due to the non-local nature of the power spectrum analysis, it
is easier to handle the complex geometries of a given survey in
measuring the correlation function. However, its covariance matrix
is highly correlated, and more importantly measurements of the
correlation function on large scales are difficult to interpret due to
the non-trivial integral constraints (Peebles 1980). By contraries,
the power spectrum is free from the integral constraints, and its
Fourier modes are independent. Therefore, we will quantify the
signal-to-noise ratios by using the redshift-space power spectrum,
while we will also present our results in configuration space.

A simplest unbiased estimator of the power spectrum in redshift
space is

P̂s(k) = 1

Vs
δs

k δs
−k − 1

n̄g
, (15)

where δs
k is the Fourier modes of the galaxy fluctuation in redshift

space and Vs is the survey volume. To make the estimator unbiased,
we subtract the shot-noise contribution due to the discrete nature
of galaxies. The central limit theorem dictates that once many un-
correlated modes of the power spectrum estimates are added, the
covariance matrix is well approximated by a Gaussian distribution.
With the Gaussian approximation, the covariance matrix can be
straightforwardly computed as (Meiksin & White 1999)

Cov
[
P̂s(k)P̂s(k

′)
] = 〈P̂s(k)P̂s(k

′)〉 − Ps(k)Ps(k
′)

= (δk,k′ + δk,−k′ )

[
Ps(k, μk) + 1

n̄g

]2

. (16)

Using equation (8), the covariance matrix of the multipole power
spectra is (Taruya, Nishimichi & Saito 2010)

Cov
[
P̂ s

l(k)P̂ s
l′ (k

′)
] = (2l + 1)(2l′ + 1)

2
δkk′

×
∫ 1

−1
dμk Pl(μk)Pl′ (μk)

[
Ps(k, μk) + 1

n̄g

]2

. (17)

The covariance matrix is diagonal in Fourier modes k, but is corre-
lated in angular multipoles l. With the redshift-space power spec-
trum in equation (6), the covariance matrix of the multipole power
spectra can be explicitly computed and is given in Appendix A.

In the limit of highly biased objects (β → 0), the redshift-space
power spectrum becomes independent of angle, and the covariance
matrix of the multipole power spectra become diagonal in angular
multipole:

Cov
[
P̂ s

l(k)P̂ s
l′ (k

′)
] = δkk′δll′ (2l + 1)

[
b2Pm(k) + 1

n̄g

]2

. (18)

Throughout this paper, we used equation (18) to compute the in-
trinsic variance of the corresponding multipole power spectra and
assumed that the shot-noise contribution is negligible (n̄g → ∞).
Moreover, the intrinsic variance of the multipole power spectra can
be further reduced by adding more measurements at each Fourier
mode. Given the survey volume Vs and the galaxy number density
n̄g, the effective number of Fourier modes is (FKP: Feldman, Kaiser
& Peacock 1994)

Nk = 1

2

4πk2dk

(2π)3

∫
dVs

(
n̄gPs

1 + n̄gPs

)2

� 1

2

4πk2dk

(2π)3
Vs, (19)

where for simplicity we assumed that the galaxy sample is limited
by the sample variance, not by shot-noise. The factor 2 in equation

(19) arises due to the fact that the Fourier modes represent a real
quantity, i.e. the galaxy number density ng.

2.3 Redshift-space distortion in wide-angle surveys

The redshift-space correlation function without the distant-observer
approximation was first computed in Szalay et al. (1998) by choos-
ing a specific coordinate system, in which their expansion in bipo-
lar spherical harmonics becomes particularly simple and there exist
only a finite number of terms. This calculation was extended to
non-flat universes (Matsubara 2000). Szapudi (2004) improved the
calculation of the redshift-space correlation function by expressing
it in terms of tripolar spherical harmonics, in which the expansion
coefficients depend only on pair separation and only a finite num-
ber of those coefficients are present. It was shown (Szapudi 2004)
that any coordinate system may be chosen to compute the redshift-
space correlation, but two including the choice by Szalay et al.
(1998) result in the most compact expression of the redshift-space
correlation function. Further extension of the calculation was made
first by Pápai & Szapudi (2008) to implement the selection func-
tion in the formula and secondly by Montanari & Durrer (2012) to
account for the case where two galaxies of the pair are separated at
two different redshifts.

Drawing on these previous developments, we briefly review the
formalism for computing the redshift-space correlation function
without the distant-observer approximation and discuss the devia-
tion from the simple Kaiser formula with the distant-observer ap-
proximation. The full Kaiser formula for the redshift-space galaxy
fluctuation in equation (3) can be recast in Fourier space as

δs =
∫

d3k
(2π)3

eik·s
(

b + f μ2
k − iμk

αf

k r

)
δm(k), (20)

and without adopting the distant-observer approximation the
redshift-space correlation function can be formally written as

ξs =
∫

d3k
(2π)3

eik·(s1−s2)Pm(k|z1, z2)

(
b1 + f1μ

2
k1

− iμk1

α1f1

k r1

)

×
(

b2 + f2μ
2
k2

+ iμk2

α2f2

k r2

)
, (21)

where the quantities with subscript index represent those for each
galaxy of the pair, located at redshift z1 and z2 with angle ŝ1 and
ŝ2. It is noted that with two different line-of-sight directions for
each galaxy there are two different cosine angles μk1 = ŝ1 · k̂ and
μk2 = ŝ2 · k̂, given a wavevector k.

Moreover, with two galaxies on the sky, the line-of-sight direction
n̂ of the pair can be defined in various ways. Following the lead by
Szalay et al. (1998) and Szapudi (2004), we define the line-of-sight
direction of the pair as the direction n̂, bisecting the pair in angles
(hence its cosine angle μk = n̂ · k̂ and μ = n̂ · ŝ, see Fig. 1 for the
configuration).

In literature, the ‘wide angle effects’ are often used to refer to the
deviation from the redshift-space power spectrum (the simple Kaiser
formula) in equation (6) or the redshift-space correlation func-
tion in equation (12). Comparing equation (21) with equation (6),
the deviation can be attributed to two physically distinct parts: one
involves the difference among three cosine angles μk1 , μk2 , and μk,
and the other arises from the additional velocity contribution in the
full Kaiser formula that is proportional to the selection function α

in equation (3). The former can be legitimately referred to as the
wide-angle effect, since it represents the deviation from the one and
only line-of-sight direction in the distant-observer approximation.
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Figure 1. Triangular configuration of the observer O and the galaxy pairs
G1 and G2. The opening angle of the galaxy pair is � ≡ 2θ = φ2 − φ1,
and the line-of-sight direction of the pair is defined as the direction n̂ that
bisects the pair in angle, forming an angle φ = (φ1 + φ2)/2 with the pair
separation. With the distant-observer approximation, three angles become
identical φ = φ1 = φ2 (θ → 0).

Though the latter is often referred to as the mode coupling (e.g.
Raccanelli, Samushia & Percival 2010; Raccanelli et al. 2013),
it just represents the additional velocity contribution, coupling the
density and the velocity components, but leaving each Fourier mode
uncoupled. Certainly, the latter effect is independent of how widely
in angle galaxy pairs are separated. Here, we refer to the above
effects as the deviation from the simple Kaiser formula with the
distant-observer approximation.

Given the observed positions of the galaxy pair, s1 = (ŝ1, z1)
and s2 = (ŝ2, z2), the triangular configuration formed by the galaxy
pair and the observer is depicted in Fig. 1, and the redshift-space
distances of the galaxy pairs and their pair separation are related as

s = [
s2

1 + s2
2 − 2s1s2 cos �

]1/2
, (22)

s1 = sin φ2

sin �
s, (23)

s2 = sin φ1

sin �
s. (24)

In Szapudi (2004), the full redshift-space correlation function in
equation (21) is expanded in terms of tripolar spherical harmonics,
and it is evaluated in three different coordinate systems. Following
Szapudi (2004) and Pápai & Szapudi (2008), we choose a
coordinate system, in which the triangle is confined in the x–y
plane and the pair separation vector s is parallel to the x-axis.3 With
this choice of coordinate system, the full redshift-space correlation
function can be described by a finite number of terms that depend
on two angles φ1, φ2 and pair separation s as

ξs(s, φ1, φ2) =
∑

i,j=0,1,2

aij (s, φ1, φ2) cos(iφ1) cos(jφ2)

+ bij (s, φ1, φ2) sin(iφ1) sin(jφ2), (25)

where the coefficients non-vanishing under the distant-observer
approximation are

a00 =
(

b1b2 + b2f1 + b1f2

3
+ 2f1f2

15

)
ξ 2

0 (s)

−
(

b2f1 + b1f2

6
+ 2f1f2

21

)
ξ 2

2 (s) + 3f1f2

140
ξ 2

4 (s), (26)

3 The choice of coordinate system is, however, a matter of preference, and
the resulting correlation function is independent of our choice.

a20 = −
(

b2f1

2
+ 3f1f2

14

)
ξ 2

2 (s) + f1f2

28
ξ 2

4 (s), (27)

a02 = −
(

b1f2

2
+ 3f1f2

14

)
ξ 2

2 (s) + f1f2

28
ξ 2

4 (s), (28)

a22 = f1f2

15
ξ 2

0 (s) − f1f2

21
ξ 2

2 (s) + 19f1f2

140
ξ 2

4 (s), (29)

b22 = f1f2

15
ξ 2

0 (s) − f1f2

21
ξ 2

2 (s) − 4f1f2

35
ξ 2

4 (s), (30)

the remaining coefficients are

a10 =
(

b2f1 + 2f1f2

5

)
α1

r1
ξ 1

1 (s) − f1f2

10

α1

r1
ξ 1

3 (s), (31)

a01 = −
(

b1f2 + 2f1f2

5

)
α2

r2
ξ 1

1 (s) + f1f2

10

α2

r2
ξ 1

3 (s), (32)

a11 = f1f2

3

α1α2

r1r2
ξ 0

0 (s) − 2f1f2

3

α1α2

r1r2
ξ 0

2 (s), (33)

a21 = −f1f2

5

α2

r2
ξ 1

1 (s) + 3f1f2

10

α2

r2
ξ 1

3 (s), (34)

a12 = f1f2

5

α1

r1
ξ 1

1 (s) − 3f1f2

10

α1

r1
ξ 1

3 (s), (35)

b11 = f1f2

3

α1α2

r1r2
ξ 0

0 (s) + f1f2

3

α1α2

r1r2
ξ 0

2 (s), (36)

b21 = −f1f2
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r2
ξ 1

1 (s) − f1f2

5

α2

r2
ξ 1

3 (s), (37)

b12 = f1f2

5

α1

r1
ξ 1

1 (s) + f1f2

5

α1

r1
ξ 1

3 (s), (38)

and we defined

ξn
l (x) =

∫
dk

2π2
knjl(kx)Pm(k|z1, z2), (39)

where Pm(k|z1, z2) = D(z1)D(z2)Pm(k|z = 0). These coefficients
are derived by extending the Pápai & Szapudi (2008) calculations
to the case with two different bias factors and selection functions
(Montanari & Durrer 2012). In this expansion, the redshift-space
correlation function with the distant-observer approximation in
equation (12) is

ξs(s, φ) = a00 + a02 cos 2φ + a20 cos 2φ

+ a22 cos2(2φ) + b22 sin2(2φ). (40)

Fig. 2 compares the full redshift-space correlation function in
equation (21) to the redshift-space correlation function with the
distant-observer approximation in equation (12). They are com-
puted by using equations (25) and (40), respectively. While the
latter is independent of the opening angle �, the former depends
on the triangular configuration characterized by � as well as the
pair separation s and the cosine angle μ = cos φ. The upper panels
show the deviation from the simple Kaiser formula with the distant-
observer approximation. Panel (a) illustrates the deviation due to
the wide-angle effect, in which the selection function is arbitrarily
set zero α = 0 and hence there is no velocity contribution. The de-
viation from the distant-observer approximation naturally becomes
substantial as the opening angle increases, but it remains small at
� ≤ 5 deg. With the feature in the correlation function around the
BAO scale, the ratio is not a simple scaling of pair separation s.
Panel (b) shows the full deviation from the simple Kaiser formula,
including the velocity contribution. Compared to Fig. 2(a), it is ap-
parent that the velocity contribution in this case is non-negligible,
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Figure 2. Full redshift-space correlation function in galaxy surveys. The
full redshift-space correlation function in equation (21) depends on the tri-
angular configuration (s, µ, �) formed by the galaxy pair and the observer
in Fig. 1. For illustration, we consider equilateral triangular shapes (i.e.
s1 = s2 and µ = 0). Upper panels show the ratio of the full correlation
function to the correlation function computed by using the distant-observer
approximation in equation (12) at the redshift of the galaxy pair (z1 = z2).
The deviation therefrom arises due to the wide-angle effect and the velocity
contribution. (a) The selection function is set α = 0, and there is no velocity
contribution, representing the deviation purely due to the wide-angle effect.
(b) The velocity contribution is considered (α = 2). (c) The distance from
the observer to each galaxy of the pair. Horizontal lines show the distance to
the redshifts in the label. For reference, the SDSS LRG covers the redshift
range z = 0.15–0.45 (Euclid: z = 0.7–2.0 and the BigBOSS: z = 2.2 ∼ 3.5).
Most galaxy pairs measured in these surveys will have small opening angles.
(d) Approximate velocity contribution αV/r with V = 10−3 (300 km s−1) to
the full Kaiser formula for the redshift-space fluctuation δs in equation (3).
For illustration, we assumed a uniform galaxy sample with b = 1 (or dark
matter). Uniform galaxy samples with higher bias factor would further re-
duce the deviation from the distant-observer approximation.

as we explain below. In Raccanelli et al. (2010), they computed the
wide-angle effect in various triangular configurations and tested the
accuracy of the wide-angle formula against numerical simulations.

While the velocity contribution is independent of how widely
galaxy pairs are separated in angle, the angular separation affects
the velocity contribution by changing the legs of the triangle. Panel
(c) shows the distance from the observer to each galaxy of the
pair as a function of opening angle. With a fixed pair separation
and a cosine angle, the galaxy pairs are closer to the observer as
the opening angle increases. For example, the pair galaxies (solid)
with s = 100 h−1Mpc in the equilateral configuration are about
300 h−1Mpc away from the observer to have an opening angle of
� = 10 deg. The distances to the closer galaxy of the pairs are even
closer for any triangular configuration with μ 
= 0. The horizon-
tal lines indicate redshifts at various distances, illustrating typical
distances to galaxies measured in galaxy surveys. To achieve a cer-
tain number of galaxies measured in each survey, galaxy surveys
are designed to cover a large cosmological volume, and galaxies in
those surveys are inevitably far away from the observer. Beyond the
SDSS, galaxies in surveys like Euclid and the BigBOSS will be at
least 1 h−1Gpc away from the observer. Consequently, the opening

angles of galaxy pairs in those surveys will be a few degrees at
maximum (pairs with largest separation s), and in most cases the
opening angles of galaxy pairs will be close to zero.

Panel (d) shows the approximate velocity contribution term αV/r

of the full Kaiser formula δs for the redshift-space galaxy fluctuation
in equation (3). For illustration, we assumed a typical line-of-sight
velocity of V = 10−3 (300 km s−1). As the opening angle increases,
the distance to galaxies decreases substantially, and this in turn
increases the velocity contribution. The inverse scaling with the
distance to galaxies arises due to the distortion in volume: The
volume element is proportional to r2 in the mean, and its perturbation
is therefore 2 δr/r ∼ 2 V/r with the peculiar velocity being the
leading contribution to the radial distortion δr � |s − r|. At a typical
opening angle � � 1 deg, the velocity contribution is negligible,
and its contribution to the correlation function is even smaller.

2.4 Connection to the relativistic formula

The general relativistic description of galaxy clustering has been
developed in the past few years (Yoo et al. 2009; Yoo 2010, see also
Bonvin & Durrer 2011; Challinor & Lewis 2011; Jeong et al. 2012).
The relativistic description of galaxy clustering follows the same
principle as in the redshift-space distortion: the observed number of
galaxies is conserved when expressed in terms of the physical and
the observed quantities (Yoo 2009). In the context of redshift-space
distortion, the physical quantities represent the real-space quantities,
and the observed quantities represent the redshift-space quantities.
However, the distinction in the physical and observed quantities
is more general than in the redshift-space distortion case, and its
understanding reveals the subtlety of those quantities associated
with gauge issues (Yoo et al. 2009; Yoo 2010).

Observed quantities such as the observed redshift are related to
physical quantities of galaxies at their rest frame by the photon
geodesic equation, and perturbations along the photon path result
in distortion in the observed quantities. The dominant contribution
to the distortion in the observed redshift is the peculiar velocity, but
there exist other relativistic contributions such as the Sachs–Wolfe
and the integrated Sachs–Wolfe effects (Sachs & Wolfe 1967). Sim-
ilarly, other velocity and relativistic contributions are present in the
observed galaxy fluctuation due to the distortion in volume between
the physical and the observed (Yoo et al. 2009; Yoo 2010).

In addition to the velocity contribution from the volume distor-
tion, another velocity term arises in conjunction with the evolution
of the source galaxy number density n̄g, characterized by the evo-
lution factor

e = 3 + d ln n̄g

d ln(1 + z)
, (41)

where the factor 3 arises due to the volume dilution and may be
absorbed into n̄g by redefining it as the physical number density.
In redshift space, the redshift-space distance s described by the ob-
served redshift is different from the real-space distance r, and with
the evolving galaxy population this mismatch gives rise to addi-
tional velocity contribution. In the conservation equation (2), this
contribution is represented by the ratio of the mean number densi-
ties n̄g(r)/n̄g(s) in real-space and redshift-space, and it is related to
the selection function in the full Kaiser formula in equation (3) as

α = d ln r2n̄g

d ln r
= 2 + rH

1 + z
(e − 3). (42)

Apparent in its definition, the selection function α contains two
physically distinct velocity contributions, by which the factor 2
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represents the volume distortion and is independent of the evolving
galaxy population, while the evolution factor e represents solely the
distortion due to the source population. It is now evident that setting
α = 0 requires a very strange evolution of the galaxy population. A
complete description of the connection between the Kaiser formula
and the relativistic formula and its related gauge issues are given in
Yoo et al. (2012).

In Yoo et al. (2012), we showed that while the Kaiser formula
is devoid of any relativistic contribution, it properly reproduces the
velocity contribution of the relativistic formula, except a missing
velocity contribution from the fluctuation in the luminosity distance.
Without it, the Kaiser formula can only describe galaxy samples
without any selection bias, except one from the observed redshift.
If galaxy samples are selected by its rest-frame luminosity, it has
additional velocity contribution that is proportional to the luminosity
function slope p at the threshold, and it can be implemented to the
full Kaiser formula by replacing the selection function

α → αfull ≡ α + 5p (Hr − 1), (43)

where the luminosity function slope is

p = d log n̄g

dM
= −0.4

d log n̄g

d log L
, (44)

and the absolute magnitude and luminosity are M and L,
respectively.

Furthermore, the mapping between the real-space and the
redshift-space takes place through the past light cone, as we observe
galaxies by measuring photons. In other words, galaxies at higher
redshift are not only farther away from the observer, but also farther
back in time. This implies the derivative term in the full Kaiser
formula for the redshift-space galaxy fluctuation in equation (3)
is the total derivative along the photon path:

d

dr
= ∂

∂r
− ∂

∂τ
, (45)

where τ is the conformal time. It is only with this relation that the
full Kaiser formula in equation (3) reproduces the complete velocity
terms in the relativistic formula. With the additional correction in
equation (43) due to the fluctuation in the luminosity distance, the
full Kaiser formula for the redshift-space galaxy fluctuation is (Yoo
et al. 2012)

δz = b δm −
(

d

dr
+ αfull

r

)
V

= b δm − 1 + z

H

dV

dr
− e V + 2 V − 2V

Hr

+ 1 + z

H

dH

dz
V − 5p

(
1 − 1

Hr

)
V . (46)

Again, we emphasize that in addition to the velocity contribution in
equation (46) there exist additional relativistic contributions (Yoo
et al. 2009, 2012; Yoo 2010). The relativistic contributions are
smaller than the velocity contributions, and they are omitted here
for simplicity.

The observation that the derivative from the Jacobian in
equation (2) is the total derivative reveals the mistakes made in
the Kaiser formulae in equations (5) and (20) in Fourier space and
hence its correlation function in equation (21). In all those cases, the
derivative term is regarded as a partial derivative in space, which is
sensible in equation (5) when only the leading contribution ∼ O(δ)
is considered. However, when the velocity terms are considered as
in equations (20) and (21), the time derivative should be considered

in order to fully recover the velocity terms in equation (46):

− dV
dr

= −1 + z

H

dV

dr
− V + 1 + z

H

dH

dz
V

=
∫

d3k
(2π)3

[
f μ2

kδk − iμk

H
(

v′
k − Hvk + dH

dz
vk

)]
eik·s,

(47)

where Vk = −iμkvk. Consequently, the full redshift-space corre-
lation function in equation (21) and the following equations (31)–
(38) are affected by the missing velocity contributions from the
time derivative. Therefore, it is noted that the velocity contribution
is in fact non-vanishing, even when αfull = 0 (or α = 0) or the
distant-observer approximation is adopted. These corrections can
be made to those equations in Fourier space, simply by replacing
the selection function

αfull → αfull + Hr − r
dH

dz
, (48)

where the time derivative v′
k of velocity is ignored, consistently

as other gravitational potential contributions. Note, however, that
while equation (48) accounts for the fact that equations (5) and (20)
(and hence the coefficients in equations 31–38) incorrectly compute
the total derivative in Fourier space, the selection function αfull in
equation (43) is correct.

3 R ESU LT

3.1 Survey geometry

Having established the formulae for computing the redshift-space
galaxy clustering and its associated error bars, we are now in a
position to quantify the deviation of galaxy clustering measure-
ments in galaxy surveys from the simple Kaiser formula with the
distant-observer approximation. Here, we consider the simplest sur-
vey geometry, in which the survey area is a single contiguous region,
fully characterized by its sky coverage fsky and redshift range. For
simplicity, we assume that the angular selection function is unity
within the survey region, and there are no holes in the survey region.
In practice, survey regions are a sum of disconnected patches on
the sky (e.g. York et al. 2000; Colless et al. 2001). Moreover, each
patch often contains numerous holes and is described by non-trivial
angular selection function, all of which discourage observers from
measuring galaxy clustering at a large separation (see, however,
Lynden-Bell 1971 for likelihood methods in these cases). Surveys
are often designed to have contiguous patches of size at best some-
what larger than the BAO scale (e.g. York et al. 2000; Schlegel
et al. 2007; Blake et al. 2010), but significantly larger patches are in
practice difficult to construct in the current generation of surveys.
Therefore, our simplified geometry will maximize the deviation
from the simple Kaiser formula with the distant-observer approx-
imation by allowing widely separated galaxy pairs to be used for
measuring galaxy clustering that are often unavailable in realistic
galaxy surveys.

The radial selection function is the expected number density of
galaxies, or the unclustered mean number density. In general, the
mean galaxy number density n̄g(z) is obtained by averaging the
observed galaxy number density over the survey area given redshift
bins, and hence it is subject to the sample variance error. Further
complication arises due to the way the galaxy sample is defined.
For example, if galaxies are selected based on luminosity, proper
treatments of K-correction and E-correction are required to ensure
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Figure 3. Redshift distribution of the SDSS galaxy sample and the evolution
factor e of its number density. In the upper panel, various curves show the
normalized redshift distributions (or the radial selection function) in equation
(49) for a galaxy sample with a constant comoving number density (e = 3:
solid) and the SDSS LRG sample (dotted). With the FKP weighting in
equation (50), the redshift distribution (dashed) is shifted to lower redshift
and is closer to the uniform (solid). The bottom panel shows the evolution
factor e of the galaxy number density. By definition, the uniform sample
has e = 3, diluting only due to the volume expansion. The dotted curve
represents the SDSS LRG sample, indicating that its number density evolves
rapidly in time (the comoving number density of the SDSS LRG sample is
shown as dashed, and the corresponding selection function α is shown as
dot–dashed). The galaxy samples in future surveys are assumed to have a
uniform distribution (e = 3: solid), but with different redshift ranges.

that galaxies are selected by the same luminosity threshold at their
rest frame and galaxies in the sample are an identical population
over the redshift range. So as to obtain physical insight, we consider
idealized situations, in which the comoving galaxy number density
is constant (e = 3 in equation 41) and the radial selection function
is constant (α = 2). We refer to these samples as ‘uniform’ galaxy
samples.4

We consider three galaxy surveys with the simplified geometry:
the SDSS, Euclid, and the BigBOSS. While the wide-angle effect
in the SDSS is already discussed at length in Samushia et al. (2012)
with correct survey geometry, we include the SDSS to set the stage
for our calculations of the wide-angle effect in future surveys, as
the wide-angle effect is largest in the SDSS among the surveys we
consider here.

Fig. 3 describes the redshift distribution of the SDSS galaxy
sample and the evolution factor e in equation (41). The redshift
distribution Pz(z) is simply the number of expected galaxies at a

4 In literature, a volume-limited galaxy sample is often synonymously used
as a uniform sample. However, a volume-limited sample refers to a galaxy
sample constructed by imposing a constant luminosity threshold at each
redshift (and hence different threshold in observed flux at each redshift),
while a uniform galaxy sample simply refers to a galaxy sample with a con-
stant comoving number density. A volume-limited sample can be a uniform
sample, but in principle they are unrelated.

given redshift bin and is related to the comoving galaxy number
density as

Pz(z) = 4πfsky

Ntot

r2

H
n̄g, (49)

where Ntot is the total number of observed galaxies, ensuring that
the redshift distribution is properly normalized. The redshift distri-
bution of a uniform galaxy sample (solid) in Fig. 3 is skewed to
higher redshift due to a larger volume at high redshift. The dotted
curve shows the approximate redshift distribution of the SDSS LRG
sample (Eisenstein et al. 2001; Cool et al. 2008), and the dashed
curve shows the redshift distribution with further FKP weighting
(Feldman et al. 1994)

w(r) ∝ n̄g

1 + n̄gP
, (50)

where P is the power spectrum at a scale of interest, but is often
assumed to be a constant. We adopt P = 104 (h−1Mpc)3 (e.g. Percival
et al. 2010).

The bottom panel shows the evolution factor e in equation (41)
and the SDSS LRG number density n̄g(z). The redshift distribution
is related to the evolution factor (and hence the selection function)
as

d ln Pz

d ln(1 + z)
= 2

1 + z

rH
− 1 + z

H

dH

dz
+ (e − 3)

= 1 + z

rH

(
α − r

dH

dz

)
. (51)

By construction, a uniform galaxy sample is of e = 3 (solid). The
dotted curve shows the evolution factor e of the SDSS LRG sample
(or the dot–dashed curve for the selection function α), illustrating
that non-trivial velocity contributions are present in galaxy clus-
tering due to the evolving population. The mean number density
(dashed) of the SDSS LRG sample is about a factor 10 lower at
z = 0.45 than at the lower boundary in redshift. For Euclid and the
BigBOSS, we assume uniform galaxy samples (solid curves) but
with different redshift ranges.

To quantify the probability distribution of triangle shapes in three
galaxy surveys, we create mock catalogues of galaxies by populating
the survey region with random particles, and tabulate the probability
distribution as a function of triangular configuration (s, μ, �) by
counting pairs. Figs 4 and 5 describes the probability distribution of
the cosine angle μ and the opening angle � of the galaxy samples
in the SDSS, Euclid, and the BigBOSS. The upper panels show the
distribution of the cosine angle at a given pair separation, averaged
over all pairs with various opening angles. In an idealized situation,
the cosine angle of pair separations should be uniformly distributed,
as it is nearly so for pairs with small separations (dotted). However,
even for a uniform sample, there exist somewhat more pairs along
the transverse direction than along the line-of-sight direction simply
due to the difference in volume of pairs

N‖
pair ∝

∫
dr

∫
d2n̂

1

2

[(
r + s

2

)2
+

(
r − s

2

)2
]

, (52)

N⊥
pair ∝

∫
dr

∫
d2n̂ r2 sin(θn̂ + �). (53)

Therefore, the fractional deviation to the leading order in � and s/r
is

�N‖
pair

N⊥
pair

�−3

2
s

sin θM

1 − cos θM

r2
max − r2

min

r3
max − r3

min

∼ − s

ravg

√
1 − fsky

fsky
, (54)
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Figure 4. Probability distribution of triangle shapes formed by SDSS
galaxy pairs and the observer. Pair distributions are affected by the number
density evolution and the survey geometry. For simplicity, the survey geom-
etry is defined in terms of redshift range and sky coverage only; no holes
or disjoint regions in the survey areas are assumed. Upper panels show the
distribution of the cosine angle between the pair separation vector s and
the line-of-sight direction n̂ bisecting the pair in angle. Bottom panels show
the distribution of the opening angle of galaxy pairs seen by the observer
at origin. Various curves represent different separation length s = |s| in
units of h−1Mpc. Thick solid curves show the distribution of the opening
angle, averaged over all galaxies with any pair separations. With the FKP
weighting, more weight is given to galaxies at lower redshift.

Figure 5. Probability distribution of triangle shapes formed by galaxy pairs
and the observer in Euclid and the BigBOSS, in the same format as Fig. 4.
It is assumed that the sky coverage of Euclid is a half (fsky = 1/2) and the
redshift range is z = 0.7–2.0. The BigBOSS is assumed to cover 14 000 deg2

(fsky = 0.34) at z = 2.2–3.5. Given the mean distance to galaxy pairs, typical
opening angles in these surveys are a lot smaller than in the SDSS. However,
the non-uniform distribution of µ is still present, as it is inherent to survey
geometry.

where θM is the maximum pair separation in angle and (rmax, rmin)
are the radial distances from the observer, specifying the survey
boundary.

The cosine angle μ between the pair separation and the line-
of-sight direction is affected by the sky coverage of each survey
(including the presence of disjoint regions and holes) and is largely
independent of distance to galaxies from the observer. The deviation
from the uniform distribution of the cosine angle is proportional to
the pair separation, but it also depends on the sky coverage. At
larger separation (dot–dashed), the boundary effect becomes more
important in determining the probability distribution, as certain tri-
angular shapes cannot fit in the geometry. Consequently, a proper
weight should be given to account for the non-uniform distribu-
tion of the cosine angle, when measuring the multipole correla-
tion functions or the multipole power spectra (Kazin, Sánchez &
Blanton 2012). Compared to the probability distribution in the SDSS
in Fig. 4, the μ-distribution in Fig. 5 is more uniform at the same
separation in Euclid and the BigBoss, reflecting the difference in
their sky coverage (Euclid: fsky = 0.5, BigBOSS: fsky = 0.34, SDSS:
fsky = 0.25).

The bottom panels show the distribution of the opening angle �

at a given pair separation, averaged over all galaxies with various
cosine angle. The distribution of the opening angle � is mainly
affected by distances to those galaxies from the observer, but it also
depends on the sky coverage of each survey. For a galaxy sample
with isotropic distribution, the mean cosine angle is μ̄ = 1/2, and
this configuration, placed at a distance r, would yield an opening
angle �̄ � 0.5 s/r , when � � 1. Naturally, the opening angle is
close to zero for pairs with small separations (dotted), while it peaks
at larger angle for pairs with larger separations (dot–dashed).

The change of the �-distribution due to the FKP weighting in
Fig. 4 is to broaden the distribution with a slight shift to a larger
opening angle, since its effect is largely to pull individual galaxies
to lower redshift. Thick solid curves in the bottom panels show
the distribution of the opening angle, averaged over all galaxies,
not restricted to pair separations. With fewer galaxies at large sep-
aration, the average opening angle of galaxy pairs in the SDSS is
close to zero (Okumura et al. 2008; Beutler et al. 2011; Samushia
et al. 2012). Compared to the probability distribution in the SDSS
(Samushia et al. 2012), our probability distribution function in Fig. 4
prefers slightly larger opening angles due to the idealized geome-
try. The �-distribution in Fig. 5 is much smaller than in the SDSS,
primarily because galaxy pairs in Euclid and the BigBOSS are far-
ther away by a factor of few on average. For pair separations we
considered in Fig. 5, the impact of the sky coverage on the �-
distribution is rather weak in Euclid and the BigBOSS. However,
the sky coverage or the presence of disjoint regions in practice puts
significant constraints on the probability distribution, further reduc-
ing the opening angles, as galaxies in two disjoint regions are not
used for computing the correlation function.

3.2 Deviation from the simple Kaiser formula with the
distant-observer approximation

With the full probability distribution of the triangular configuration
formed by galaxy pairs and the observer, we are now ready to
compute the full redshift-space correlation function, accounting
for the deviation from the simple Kaiser formula with the distant-
observer approximation. At a given separation s and a cosine angle
μ, there exist a number of galaxy pairs with various opening angle,
shown in the bottom panels of Figs 4 and 5. Galaxy pairs that are
closer to the observer have larger opening angles at fixed values of s
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and μ. For each opening angle � available in a given survey region,
we use equation (25) to compute the full redshift-space correlation
function ξ s(s, φ1, φ2), where two angles φ1 and φ2 between the pair
separation vector s and two different line-of-sight directions x̂1 and
x̂2 are related to the opening angle � and the cosine angle μ as

μ = cos

(
φ1 + φ2

2

)
, (55)

� = φ2 − φ1. (56)

The triangular configuration is fully specified either by (s, μ, �) or
by (s, φ1, φ2). The resulting correlation function is then averaged
over all galaxy pairs with the same pair separation s and the cosine
angle μ as

ξs(s, μ) =
∫

d� P (�, μ, s) ξs(s, φ1, φ2)∫
d� P (�, μ, s)

, (57)

where the probability distribution P(�, μ, s) in the bottom panel
of Figs 4 and 5 is proportional to the number of galaxy pairs at
a given triangular configuration. We then decompose the resulting
correlation function into the redshift–space multipole correlation
functions by using

ξ s
l (s) = 2l + 1

2

∫ 1

−1
dμ Pl(μ) ξs(s, μ). (58)

The non-uniform distribution of the cosine angle μ in Figs 4 and 5
prevents from using a simple approach to obtaining the multipole
correlation functions:

ξ s
l (s) 
= 2l + 1

2

∫
dμ Pl(μ)

∫
d� P (�, μ, s) ξs(s, φ1, φ2)∫

dμ
∫

d� P (�,μ, s)
. (59)

Top panels in Figs 6–8 show the difference of the multipole cor-
relation functions ξ s

l (s) by using equation (13) with the distant-
observer approximation from those obtained by considering the full
redshift-space correlation function in equation (57). For simplicity,
we assume that the bias factor of the galaxy samples is unity and
constant in time. In computing ξ s

l (s) with the distant-observer ap-
proximation, we consider three different cases: mean-redshift (dot-
ted), volume-weighted (dashed), and pair-weighted (solid). As the
simplest case (dotted), we compute ξ s

l (s) by evaluating Ps(k, μk) in
equation (6) at the mean redshift, accounting for the change in the
logarithmic growth rate f and the growth factor in the matter power
spectrum Pm(k|z̄). As the next case and a better representation of the
measurements, we average the correlation function ξ s

l (s) with the
distant-observer approximation over the survey volume (dashed).
As our last case with the highest sophistication (solid), we compute
ξ s
l (s) by evaluating equation (57), but with the full redshift-space

correlation function ξ s(s, φ1, φ2) replaced by the simple Kaiser for-
mula ξ s(s, μ) in equation (12). While the simple Kaiser formula is
independent of �, we evaluate ξ s(s, μ) at the mean redshift of the
pair, accounting for the change of pairs at different redshifts.

The three different ways (various curves) of computing ξ s
l (s)

with the distant-observer approximation yield nearly identical re-
sults for the SDSS samples in the top panels of Fig. 6. The
monopole ξ s

0 (s) becomes negative around s ∼ 130 h−1Mpc, while
the quadrupole ξ s

2 (s) is negative and the hexadecapole ξ s
4 is positive

on all scales. The differences in the multipole correlation functions
are �10−3 on all scales, which is less than a per cent level of ξ s

l (s)
for s ≤ 200 h−1Mpc. However, on large scales s � 200 h−1Mpc
the correlation function itself is very small, such that the fractional
deviation becomes large >10 per cent. Grey curves show the cal-
culation for the SDSS LRG sample with the FKP weighting. No

Figure 6. Systematic errors of the simple Kaiser formula with the distant-
observer approximation for the SDSS uniform galaxy sample. Grey curves
in each panel represent those for the SDSS LRG with the FKP weighting.
Top rows show the difference in the multipole correlation functions ξ s

l (s),
and bottom rows show the fractional deviation in the multipole power spectra
P s

l (k). Given a pair separation s and a cosine angle µ, the correlation function
is obtained by averaging over all galaxy pairs with different opening angles
� that fit in the SDSS geometry described in Section 3.1 (equation 57).
The multipole correlation functions are obtained by accounting for the non-
uniform distribution of the cosine angle µ in Fig. 4, and the multipole power
spectra are obtained by Fourier transforming the corresponding multipole
correlation functions (see equation 14). Compared to the full redshift-space
correlation function, the fractional deviation of the simple Kaiser formula
with the distant-observer approximation is obtained in three different ways
of evaluation (see text for details): mean-redshift (dotted), volume-averaged
(dashed), and pair-weighted (solid). Upper panels: difference in the multi-
pole correlation functions ξ s

0 (s), ξ s
2 (s), and ξ s

4 (s). Bottom panels: fractional
deviation of the multipole power spectra P s

0 (k), P s
2 (k), and P s

4 (k). The dif-
ference in various curves is largely obscured, as the scales in the bottom
panels are vastly different from those in the upper panels. The measurement
uncertainties are computed by using the covariance matrix in equation (18),
valid in the limit of highly biased objects with negligible shot-noise con-
tribution. The measurement uncertainties are in practice larger and weakly
correlated.

Figure 7. Systematic errors of the simple Kaiser formula with the distant-
observer approximation in Euclid. Each panel shows the fractional deviation
in the multipole correlation function ξ s

l (s) and the multipole power spectra
P s

l (k). A small but sudden change in ξ s
0 (s) arises at s ∼ 130 h−1Mpc when

the monopole changes its sign to negative, crossing zero. The survey vol-
ume is Vs = 96 (h−1Gpc)3, approximately 50 times larger than in the SDSS.
Correspondingly, the error bars and the minimum wavenumber are smaller.
Galaxies in Euclid are farther away than in the SDSS. The correlation func-
tions with the distant-observer approximation (dotted) at the mean redshift
are off in amplitude, while their shape is still consistent.
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Figure 8. Systematic errors of the simple Kaiser formula with the distant-
observer approximation in the BigBOSS, in the same format as Fig. 7. The
survey is narrower but deeper than Euclid, yielding Vs = 82 (h−1Gpc)3,
similar to Euclid. The Kaiser formula is accurate in all practical senses.

substantial difference is present. With the FKP weighting, the mean
redshift is reduced to z̄ = 0.27 from z̄ = 0.34, and the deviation
from the simple Kaiser formula is slightly larger than for the SDSS
uniform sample. Since the redshift range of the SDSS is rather nar-
row z = 0.15–0.45, three different ways of computing the simple
Kaiser formula with the distant-observer approximation agree well
with each other.

Bottom panels of Figs 6–8 quantify the systematic errors in the
monopole P s

0 (k), the quadrupole P s
2 (k), and the hexadecapole P s

4 (k)
power spectra in the simple Kaiser formula with the distant-observer
approximation, where the simple Kaiser formula is again computed
by using three different methods (various curves). Using equation
(14), the full redshift-space multipole power spectra are computed
by Fourier transforming the full redshift–space multipole correla-
tion functions, and the error bars are obtained by using the covari-
ance matrix in equation (18).

The deviation from the distant-observer approximation is again
negligible for the SDSS samples on almost all scales (see, also,
Samushia et al. 2012). It deviates at most 4 per cent for the monopole
and 8 per cent for the quadrupole at the smallest wavenumber avail-
able in the survey, while the deviation in the hexadecapole is some-
what larger than in the monopole and the quadrupole due to its
sensitivity to larger separation, s ∼ l/k.

Figs 7 and 8 show the systematic errors of the simple Kaiser
formula with the distant-observer approximation in Euclid and the
BigBOSS. Since galaxies in these surveys are farther away from
the observer than in the SDSS, the deviation in the multipole corre-
lation functions at a given separation is even smaller, despite their
somewhat larger sky coverage than in the SDSS. In Figs 7 and 8,
we now plot the fractional deviations for the multipole correlation
functions. With larger redshift ranges in Euclid and the BigBOSS,
three different ways of computing the simple Kaiser formula start
to diverge from each other. The mean redshifts of the surveys are
z̄ = 1.4 and 2.8, and the redshift–space multipole correlation func-
tions at the mean redshift differ from those averaged over the survey
volume, because the former evaluates b2(z̄)D2(z̄), b(z̄)f (z̄)D2(z̄),
f 2(z̄)D2(z̄) in equations (9)–(11) at the mean redshift, while the
latter averages b2D2, bfD2, f 2D2 over the survey volume, though
the difference is less than 10 per cent.

The simplest method (dotted) of computing the multipoles at
the mean redshift yields the multipole correlation functions off in
amplitude at the 2–4 per cent level on small scales, but the shape is
still consistent with the full redshift-space correlation function. The

volume-averaged correlation functions (dashed) are better estimates
of the full redshift-space correlation function, practically on all
scales considered in the plot. While the pair-weighted correlation
functions (solid) perform better than the volume-averaged for higher
multipoles, the difference is rather small, and it is computationally
more expensive, as it needs to be computed for each pair of galaxies.
The deviation in the multipole power spectra in the bottom panels
are correspondingly small as in the multipole correlation functions
in the upper panels. Note again that the scales of the plot in the
bottom panels are different from those in the upper panels. With
more volume at higher redshifts, these surveys can probe larger
scales (smaller kmin), and the measurement uncertainties at a fixed
scale are substantially reduced by more than a factor of 5. However,
as is evident in Figs 7 and 8, the simple Kaiser formula with the
distant-observer approximation is in all practical purposes accurate
in the future surveys.

3.3 Wide-angle effect in power spectrum analysis

We have discussed the wide-angle effect in the correlation function
and the power spectrum measurements in the galaxy surveys. In our
comparison, the simple Kaiser formula with the distant-observer
approximation is compared to the full redshift-space correlation
function in equation (21). However, since no analytic formula ac-
counting for the velocity contribution and the wide-angle effect is
available for the redshift-space power spectrum, the deviation in
the multiple correlation functions from the simple Kaiser formula
is Fourier transformed to compute the deviation in the redshift mul-
tipole power spectra. While this procedure should yield the correct
result in an ideal case as the correlation function and the power
spectrum are Fourier counterparts, the power spectrum analysis in
practice is performed in a different way, and these two statistics
contain not completely overlapping information as considered only
over limited and different ranges of scale.

In general, the power spectrum analysis is performed by us-
ing a weighted quadratic function of the observed galaxy number
density field, and various methods in the power spectrum anal-
ysis differ in how they choose the pair-weighting function (see
Tegmark et al. 1998). The standard method including the FKP
method is the simplest, in which the weighted number density field
nw

g (s) = w(s)ng(s) is Fourier transformed, and their amplitude is an
estimate of the redshift-space power spectrum

P̂s(k) ≡ |nw
g (k)|2 − Pshot(k), (60)

where Pshot(k) represents the shot-noise contribution. Again, we
assume that the shot-noise contribution is negligible.

The FKP method is designed to measure the monopole power
spectrum, not the anisotropic redshift-space power spectrum.5 Few

5 An alternative to this trend has been well developed (Binney & Quinn
1991; Fisher et al. 1994, 1995; Heavens & Taylor 1995; Ballinger, Heavens
& Taylor 1995; Hamilton & Culhane 1996), in which the observed galaxy
number density is decomposed in terms of radial and angular eigenfunctions
of the Helmholtz equation. The analysis is performed on a sphere, explicitly
accounting for each line-of-sight direction of galaxies. It forms the most
natural basis for all-sky analysis, and it becomes identical to the traditional
power spectrum analysis on a small patchy of sky. We refer the reader to
the pedagogical review for all-sky likelihood analysis (Hamilton 2005). It
has been applied to various galaxy surveys in the past (Fisher et al. 1995;
Tadros et al. 1999; Hamilton, Tegmark & Padmanabhan 2000; Taylor et al.
2001; Padmanabhan, Tegmark & Hamilton 2001; Tegmark, Hamilton & Xu
2002; Percival et al. 2004; Tegmark et al. 2004a, 2006; Shapiro, Crittenden
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exceptions are Cole et al. (1994) and Yamamoto et al. (2006) analy-
sis of the 2dFGRS. In the former, only pairs in the same but small an-
gular patchy are correlated to ensure that those pairs share the same
line-of-sight direction. With this prescription, the power spectrum
analysis, however, suffers from non-trivial window function, alias-
ing of modes, and larger computing cost. No further development or
application to observation has been made along this direction. In the
latter, a simple method is proposed to account for the line-of-sight
direction change in the power spectrum analysis (Yamamoto et al.
2006), while keeping the simplicity in the FKP method. We adopt
it to compare the difference among various methods in the power
spectrum analysis.

In the standard FKP method, the ensemble average of the power
spectrum estimate in equation (60) is〈
P̂s(k)

〉 =
∫

d3s1

∫
d3s e−ik·s n̄w

g (s1) n̄w
g (s2) ξs(s1, s2), (61)

where the separation vector is s = s1 − s2 and the full redshift-space
correlation function ξs(s1, s2) depends on the triangular configura-
tion of the pair, including the opening angle � seen from the ob-
server. Since we use the weighted number density nw

g (s) rather than
the fluctuation δg, the normalization of the weight function must
be chosen to ensure that the power spectrum estimate is unbiased
(Feldman et al. 1994),〈
P̂s(k)

〉 =
∫

d3k′

(2π)3
Ps(k

′) |n̄w
g (k − k′)|2, (62)

and the normalization condition is

1 =
∫

d3k
(2π)3

|n̄w
g (k)|2 =

∫
d3s

[
n̄w

g (s)
]2

. (63)

The weighted mean number density n̄w
g is often referred to as the

survey window function, and its dimension is [n̄w
g (k)] = V 1/2 and

[n̄w
g (s)] = V −1/2. Fig. 9 delineates the survey window functions.

The window functions of four different surveys are largely self-
similar, as each survey differs only in the redshift depth and sky
coverage. While the survey window function is anisotropic, it can
be conveniently decomposed in terms of its multipole functions due
to the azimuthal symmetry of the survey geometries we considered
in the paper. The monopole (solid) reflects the characteristic scale
set by the survey volume, and higher multipoles account for the
anisotropy of the survey geometry. When the survey volume is
infinite, the monopole becomes the Dirac delta function, and the
higher multipoles vanish.

Using equation (8), the multipole power spectra are obtained by
angle-averaging the redshift-space power spectrum in equation (61)
as〈
P̂ s

l(k)
〉 = (−i)l(2l + 1)

∫
d3s1

∫
d ln s s3jl(ks)

×
∫

d2 ŝ Pl( ẑ · ŝ) n̄w
g (s1) n̄w

g (s2) ξs(s1, s1 − s), (64)

& Percival 2012, see also Rassat & Refregier 2012; Pratten & Munshi 2013;
Yoo & Desjacques 2013 for recent theoretical development). While the FKP
method has been extensively used in recent galaxy surveys (e.g. Percival
et al. 2010; Reid et al. 2010), the spherical Fourier analysis provides an
alternative, and this method is devoid of any wide-angle effect (hence it
is not the subject of current investigation). However, the downside of this
all-sky analysis is the ambiguity in relating the angular multipole l to the
cosine angle µk relative to the line-of-sight direction. On small scales, this
ambiguity in the correspondence is disadvantageous, as most theoretical
models of non-linear redshift-space distortion build on the distant-observer
approximation.

Figure 9. Survey window function multipoles. The survey window func-
tion |nw

g (k)|2 is decomposed in terms of Legendre polynomials, and only
multipoles up to l = 6 are plotted. For illustration, the window function is
re-normalized to unity at k = 0 for the monopole. While the top two panels
represent the same survey geometry, their window functions are slightly
different due to different weighting scheme.

where the line-of-sight direction is set to be ẑ-direction and we
used∫

d2 k̂ e−ik·s Pl(n̂ · k̂) = 4π(−i)l jl(ks) Pl(n̂ · ŝ). (65)

With the distant-observer approximation, the angular integral in
equation (64) becomes∫

d2 ŝ Pl( ẑ · ŝ) ξs(s1, s1 − s) → 4π

2l + 1
ξ s
l (s), (66)

and we recover equation (14) for the multipole power spectra P s
l (k).

It becomes clear in equation (64) that the standard FKP method can-
not be used to measure the anisotropic redshift-space power spec-
trum because the line-of-sight direction is fixed as the ẑ-direction,
independent of the pair configuration. This is the reason that the
FKP method is used solely for the monopole power spectrum, as
is originally intended. However, one issue is that the redshift-space
correlation function is Fourier transformed without accounting for
the non-uniform distribution of the cosine angle μ.

It is apparent in equation (64) that the redshift-space multipole
power spectrum is estimated without accounting for the pair distri-
bution. While the one-point window functions n̄w

g (si) are consid-
ered, the window function for the pair distribution (or the two-point
window function) is not considered in estimating the redshift-space
power spectrum. For example, the monopole power spectrum will
be estimated by summing all pairs within the survey weighted by the
window function, such that it will be biased if the geometry is like
a pencil beam, because pairs within the survey are mostly separated
along the line-of-sight direction. Naturally, this issue gives rise to
negligible systematic errors on small separations compared to the
survey scale, but we show in Fig. 10 that it can cause significant
systematic errors on large scales.

Due to the simplicity of the FKP method, Yamamoto et al.
(2006) attempt to extend the FKP method for the anisotropic
redshift-space power spectrum by using a pair-dependent direction
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Figure 10. Fractional deviation of estimates of the redshift-space multipole power spectra, relative to the simple Kaiser formula with the distant-observer
approximation. All the redshift-space multipole power spectra are scaled by a constant factor to match the monopole on small scales for comparison. Each
column shows the monopole, the quadrupole, and the hexadecapoles, and each rows represents four different surveys. The multipole power spectra with the
distant-observer approximation are volume-averaged over the survey volume and convolved with the survey window function. Three different curves represent
different estimates of the redshift-space multipole power spectra. While these estimators differ only in defining the line-of-sight direction for galaxy pairs (FKP,
Feldman et al. 1994; YAM, Yamamoto et al. 2006; SML, Szalay et al. 1998), they are identical for the monopole power spectrum, and two methods (YAM and
SML) yield similar results for higher multipoles, as their line-of-sight directions are nearly identical due to large distances to galaxy pairs in surveys.

sh ≡ (s1 + s2)/2 as the line-of-sight direction for each pair, such
that the estimators for the redshift-space multipole power spectra
are

P̂ Y
l (k) ≡

∫
d3s1

∫
d3s e−ik·s nw

g (s1) nw
g (s2) Pl(ŝh · k̂). (67)

Their ensemble averages are

〈
P̂ Y

l (k)
〉 = (−i)l(2l + 1)

∫
d3s1

∫
d ln s s3jl(ks)

×
∫

d2 ŝ Pl(ŝh · ŝ)n̄w
g (s1) n̄w

g (s2) ξs(s1, s1 − s), (68)

and we recover the same limit with the distant-observer approxi-
mation. As opposed to the standard FKP method, the Yamamoto
method is computationally more expensive, because one cannot
simply Fourier transform the weighted number density nw

g and com-
pute its amplitude to estimate the redshift-space multipole power

spectrum, instead it has to be estimated by a pair-dependent way.
As another way of measuring the redshift-space multipole power
spectra, we also consider a variant of the Yamamoto method by
using the line-of-sight direction n̂ that bisects the pair in angle (see
Fig. 1). All of the three FKP-based methods agree for the monopole
power spectrum, as the angle average of the wavevector removes
the need to define the line-of-sight direction, and as is intended in
the original FKP method. Regarding the non-uniform distribution
of cosine angle μ, this issue is not addressed in any of the three
methods for measuring the redshift-space multipole power spectra,
and we find that substantial systematic errors arise from this issue
in future surveys.

Fig. 10 compares the three different estimates of the redshift-
space multipole power spectra to the simple Kaiser formula with
the distant-observer approximation. We compute the redshift-space
multipole power spectra for each method by generating random cat-
alogues of galaxies and by considering a spherical volume integral
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of the full redshift-space correlation function ξs(s1, s2) in equations
(64) and (68) from each galaxy in the catalogues. For compari-
son, we obtain the theoretical prediction by convolving the simple
Kaiser formula at the mean redshift with the survey window func-
tion as in equation (62). Four different surveys are displayed in four
rows, and the redshift-space multipole power spectra are presented
in three columns.

In the previous section, the redshift-space correlation function
is averaged over the different opening angle �, the multipole cor-
relation functions ξ s

l (s) are then obtained by accounting for the
non-uniform distribution of cosine angle μ, and they are finally
Fourier transformed to obtain the redshift-space multipole power
spectra P s

l (k). However, in equation (61), the power spectrum re-
ceives contributions with equal weight from all the correlation func-
tion at a given (s, μ) but with different opening angle �, which
will change the normalization even on smallest scales, where the
distant-observer approximation is accurate. Therefore, we scale the
monopole power spectrum estimate with a constant factor to match
the convolved monopole power spectrum with the distant-observer
approximation at k = 0.1 h Mpc−1, but the same scale factor is used
to scale the quadrupole and the hexadecapole power spectra. These
scale factors result in 10–20 per cent shifts in amplitude for each
survey, but they can be absorbed into unknown galaxy bias factor.

The left-hand column shows the monopole power spectrum for
each survey, and the three different methods yield identical re-
sults for the monopole. The deviation of the monopole estimates
in the SDSS is negligible, compared to the sample variance, and
the simple Kaiser formula with the distant-observer approximation
provides a good approximation to the monopole power spectrum
measurement. As galaxies in Euclid and the BigBOSS are farther
away than in the SDSS, the wide-angle effect becomes irrelevant in
these surveys. However, while the survey volume in Euclid and the
BigBOSS is dramatically larger than in the SDSS, the sky coverage
increases only a little, especially so in the BigBOSS. This affects
the distribution of cosine angle μ at the largest separations, and the
deviation in the monopole power spectrum is larger than the sample
variance, a potential systematic error that needs to be addressed in
the future surveys.

The middle and the right-hand columns show the quadrupole
and the hexadecapole power spectra. Note that the standard FKP
method is not intended to measure the anisotropic redshift-space
power spectrum.6 Two methods correctly define the line-of-sight
direction for each galaxy pair and yield virtually identical results for
the quadrupole and the hexadecapole. As opposed to the monopole
power spectrum, where the deviations accumulate, the effect of the
non-uniform distribution of μ is smaller for the quadrupole and
the hexadecapole, as the higher order Legendre polynomials oscil-
late around zero. There exist small but wiggly deviations on small
scales for the hexadecapole power spectrum. On those scales, the
distant-observer approximation is accurate and the μ-distribution
is uniform. We suspect that the few per cent level deviations on
small scales are numerical artefact, arising from the complication

6 Blake et al. (2011a) measured the WiggleZ redshift-space power spectrum
by using both the standard FKP and the Yamamoto methods. Although no
significant detection is made for the hexadecapole power spectrum P4(k)
in the WiggleZ survey, they find that both methods yield measurements of
the monopole and the quadrupole power spectra, consistent with each other.
While the sky coverage in the WiggleZ survey is ∼1000 deg2, it is divided
into six disjoint regions, each of which is subtended by ∼10 deg. Therefore,
as noted in Blake et al. (2011a), a single line-of-sight assignment to all
galaxies in each region is a good approximation in the WiggleZ survey.

of multidimensional integration in equation (62) and the sensitivity
to angular structure in the survey window function.

4 D I SCUSSI ON

We have investigated the wide-angle effects in galaxy clustering
measurements in galaxy surveys such as the SDSS, Euclid and
the BigBOSS. We have found that compared to the measurement
uncertainties associated with the redshift–space multipole correla-
tion functions the wide–angle effects are negligible in the SDSS
(as discussed in Samushia et al. 2012) and they are completely
irrelevant in the future surveys, provided that the Kaiser formula
is averaged over the survey volume to represent the redshift-space
correlation function at the representative redshift. While we have
reached the same conclusion in the power spectrum analysis, the
standard power spectrum analysis based on the FKP method is per-
formed in a slightly different way, carrying a systematic flaw that
can result in substantial systematic errors in the future surveys. Fur-
thermore, we have clarified a connection of the Kaiser formula to
the relativistic formula of galaxy clustering, and have found cor-
rections to the formula often used for computing the correlation
function of widely separated pairs.

In literature, the ‘wide angle effects’ are often used to refer to the
deviation from the simple Kaiser formula with the distant-observer
approximation, but they arise owing to two physically distinct ef-
fects. First, the two-point correlation function involves a triangle
formed by a galaxy pair and the observer, and the triangle is de-
scribed by two line-of-sight directions and the pair separation. The
two line-of-sight directions of each galaxy deviate from the one and
only line-of-sight direction in the distant-observer approximation,
and the resulting correlation function depends on the triangular con-
figuration, whereas the simple Kaiser formula is just a function of
the pair separation and the angle it makes with the line-of-sight di-
rection. This effect is legitimately called the wide-angle effect. The
other effect that contributes to the deviation from the simple Kaiser
formula is the velocity contribution to galaxy clustering in redshift-
space. Even in linear theory, the velocity terms are present in the
full Kaiser formula, arising from the mapping of galaxy number
densities in real-space to redshift-space. Moreover, the relativistic
treatment of galaxy clustering reveals the presence of the grav-
itational potential contribution to galaxy clustering, though their
corrections are even smaller than the velocity contribution. This ef-
fect is often referred to as the wide-angle effect, but is independent
of how widely galaxy pairs are separated on the sky.

We have made a connection of the full Kaiser formula to the rel-
ativistic description of galaxy clustering (Yoo et al. 2012). The full
Kaiser formula is valid up to the velocity contribution, only when
galaxy samples are selected without any bias, except one from the
observed redshift. Furthermore, we have found that even the full
Kaiser formula is not properly considered in the formula for com-
puting the redshift-space correlation function (Szalay et al. 1998;
Szapudi 2004; Pápai & Szapudi 2008). In light of the relativistic
treatment, the derivative in the Jacobian mapping to redshift-space
involves the time derivative as well as the spatial derivative, as
we only observe galaxies in the past light cone. The (missing)
time derivative give corrections to the velocity contribution. While
these terms again contribute to negligible systematic errors, they
can be readily implemented to the existing formula by modifying
the selection function α (see, Section 2.4 for details).

The main reason that the deviation from the distant-observer
approximation is small is already evident in Fig. 2: Galaxies in
typical surveys are substantially far away from the observer, and
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there are simply not many galaxies in the local neighbourhood,
where the opening angles of galaxy pairs can be large. For example,
typical galaxy pairs at a separation s � 100 h−1Mpc in the SDSS
would appear subtended by less than 5 deg on the sky, and this
trend is accelerated in future surveys at higher redshifts, where
typical distances to galaxy samples in those surveys are at least
twice larger than in the SDSS. A similar argument can be made to
attempt to reach the opposite conclusion: given a typical distance r
to galaxy pairs in a survey, the deviation from the distant-observer
approximation becomes substantial as widely separated galaxy pairs
are considered. This argument is in fact true, and non-negligible
deviations (>10 per cent) in the multipole correlation functions in
Fig. 6 exist at s > 400 h−1Mpc, while the deviations in future surveys
at higher redshifts are substantially smaller (see, Figs 7 and 8).
However, the deviations are smaller than one naively expects: at a
given pair separation s and cosine angle μ, the correlation function
ξ s(s, μ) is obtained by averaging the full correlation function ξ s(s,
μ, �) over all galaxy pairs with different opening angles �. With
more volume at a larger distance from the observer, the correlation
function is skewed to that of galaxy pairs farther away from the
observer, of which the opening angles are smaller.

However small, the deviations may matter in the era of precision
cosmology. To quantify the systematic errors associated with the
distant-observer approximation, we have computed the covariance
matrix of the redshift-space multipole power spectra, obtained by
Fourier transforming the redshift–space multipole correlation func-
tions, accounting for the deviation from the distant-observer approx-
imation. In agreement with Samushia et al. (2012), we have found
that the systematic errors by using the distant-observer approxima-
tion are negligible in the SDSS on all scales (see Fig. 6), provided
that the Kaiser formula with the distant-observer approximation is
properly evaluated. It is found that averaging the prediction of the
Kaiser formula over the survey volume yields the best match to the
full redshift-space clustering measurements, while the evaluation at
the mean redshift of the survey would be just fine at the few per cent
level in amplitude (the shape is correctly estimated in both cases).
Furthermore, this conclusion remains valid in future surveys such
as Euclid and the BigBOSS at higher redshifts (Figs 7 and 8). At
a given pair separation (with fixed sky coverage), one would need
a survey at a higher redshift to reduce measurement uncertainties
associated with that scale by sampling more independent Fourier
modes, σ ∝ 1/

√
Nk ∝ 1/

√
V ∝ 1/r . However, since the deviation

from the distant-observer approximation is to the least, sin � �
� ∝ 1/r or |cos � − 1| � �2 ∝ 1/r2, the systematic errors in the
distant-observer approximation can only decrease in a survey at
higher redshifts, and they are already negligible in the SDSS.

While the distant-observer approximation is accurate in those
surveys, the power spectrum measurements have an issue in the
standard power spectrum analysis. Although negligible in the SDSS,
we have found that the non-uniform distribution of cosine angle μ

between the line-of-sight and the pair separation directions is not
properly considered in the standard power spectrum analysis and
can be a substantial source of systematic errors in the future surveys
(see Fig. 10).

Our conclusion should be taken with caution that systematic er-
rors incurred by adopting the distant-observer approximation for
computing the redshift-space galaxy clustering are negligible in
generic galaxy redshift surveys such as the SDSS, Euclid, and the
BigBOSS, provided that the correlation function or the power spec-
trum is obtained by properly averaging over all galaxy pairs in
the surveys. Certainly, one could divide survey regions into multi-
ple redshift bins with narrow width to prevent further dilution of

the correlation function or the power spectrum due to averaging
over galaxy pairs at farther distances (see e.g. Asorey et al. 2012;
Montanari & Durrer 2012). However, it still remains to be demon-
strated whether the systematic errors of the distant-observer approx-
imation in those survey configurations can be important, because
smaller volumes in those redshift bins lead to larger measurement
uncertainties.

Alternatively, instead of using the currently popular methods dis-
cussed in this paper, one can choose to use the maximum likelihood
methods and measure the correlation function ξ s(s, φ1, φ2) or the
spherical power spectrum based on spherical Fourier decomposi-
tion (e.g. Fisher et al. 1994; Heavens & Taylor 1995; Tegmark et al.
2004b; Hamilton 2005). Under the approximation that the underly-
ing distribution is Gaussian, this will circumvent the issues of the
wide-angle effect and the non-uniform distribution on large scales.
Further decomposition into the standard redshift-space multipole
correlation function ξ s

l (s) or power spectrum P s
l (k) would require

the assumption that the observed correlation function or spherical
power spectrum be well described by the simple Kaiser formula
with the distant-observer approximation, which we showed is a
good approximation. We suspect that maximum likelihood meth-
ods may provide optimal ways to measure large-scale clustering
without significant issues discussed in this paper.
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A P P E N D I X A : C OVA R I A N C E M AT R I X O F
MULTIPOLE POW ER SPECTRA

With the distant-observer approximation, the redshift-space power
spectrum is well described by the simple Kaiser formula in
equation (6) in the linear regime, and it consists of only three mul-
tipole power spectra. While the covariance matrix of the multipole
power spectra is diagonal in Fourier modes ∝δkk′ , they are corre-
lated between different angular multipoles. Using equation (17), the
diagonal components of the covariance matrix can be computed as
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where P̃ s
0 ≡ P s

0 + 1/n̄g and we suppressed the scale-dependence
of the multipole power spectra and their covariance matrix. In
Taruya et al. (2010), there were minor typos in their equation (C4)
for Cov[P̂ s

2P̂ s
2]. The off-diagonal components of the covariance

matrix are
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Figure A1. Cross-correlation of the multipole covariance matrices. As a
function of β = f/b, various curves show the cross-correlation coefficients
r02 (solid), r04 (dashed), r24 (short dashed). With increasing thickness, each
curve represents galaxy samples with n̄gPg = 0.2 (thin), 1 (thicker), and 10
(thickest).

The degree to which the covariance matrix of the multipole
power spectra is correlated is described by the cross-correlation
coefficients:

rl1l2 = Cov
[
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l1 P̂
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]
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ranges from zero (uncorrelated) to unity (perfectly correlated).
Fig. A1 shows the cross-correlation coefficients. Three different
curves show the coefficients r02 (solid), r04 (dashed), and r24 (short
dashed), respectively. For each curve, there exist three different
thickness, by which three ratios of the sample variance to the shot
noise are considered. Throughout the paper, we considered the sam-
ple variance limited case n̄gPg = ∞, in which the galaxy number
density is high and the shot noise contribution is negligible. The
cases with n̄gPg = 10 (thickest), 1 (thicker), and 0.2 (thin) approx-
imately correspond to the SDSS LRG sample at k = 0.01, 0.15,
and 0.3 h Mpc−1, respectively. All of three cases show that the co-
variance matrix becomes uncorrelated in the limit of highly biased
galaxy sample (β → 0).
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