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ABSTRACT

Summary: We present a suite of UNIX shell programs for processing
any number of phylogenetic trees of any size. They perform
frequently-used tree operations without requiring user interaction.
They also allow tree drawing as scalable vector graphics (SVG),
suitable for high-quality presentations and further editing, and as
ASCII graphics for command-line inspection. As an example we
include an implementation of bootscanning, a procedure for finding
recombination breakpoints in viral genomes.
Availability: C source code, Python bindings and executables
for various platforms are available from http://cegg
.unige.ch/newick_utils. The distribution includes a manual and
example data. The package is distributed under the BSD License.
Contact: thomas.junier@unige.ch
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1 INTRODUCTION
Phylogenetic trees are a fundamental component of evolutionary
biology, and methods for computing them are an active area of
research. Once computed, a tree may be further processed in various
ways (Table 1). Small datasets consisting of a few trees of moderate
size can be processed with interactive GUI programs. As datasets
grow, however, interactivity becomes a burden and a source of
errors, and it becomes impractical to process large datasets of
hundreds of trees and/or very large trees without automation.

Automation is facilitated if the programs that constitute an
analysis pipeline can easily communicate data with each other.
One way of doing this in the Unix shell environment is to make
them capable of reading from standard input and writing to standard
output—such programs are called filters.

Although there are many automatable programs for computing
trees [e.g. PhyML (Guindon and Gascuel, 2003), PHYLIP
(Felsenstein, 1989)], programs for processing trees [e.g. TreeView
(Page, 2002), iTOL (Letunic and Bork, 2007)] are typically
interactive. Here, we present the Newick utilities, a set of
automatable filters that implement the most frequent tree-processing
operations.

∗To whom correspondence should be addressed.

Table 1. Selected Newick utilities programs and their functions

Program Function

nw_clade Extracts clades (subtrees), specified by labels
nw_distance Extracts branch lengths in various ways (from root,

from parent, as matrix, etc.)
nw_display Draws trees as ASCII or SVG (suitable for further

editing for presentations or publications), several
options

nw_match Reports matches of a tree in a larger tree
nw_order Orders tree nodes, without altering topology
nw_rename Changes node labels
nw_reroot Reroots trees on an outgroup, specified by labels
nw_trim Trims a tree at a specified depth
nw_topology Retains topological information

SVG, Scalable vector graphics.

2 RESULTS
The Newick utilities have the following features:

• no user interaction is required;

• input is read from a file or from standard input; output is written
to standard output;

• all options are passed on the command line (no control files);

• the input format is Newick (Archie et al., 1986);

• the output is in plain text (Newick, ASCII graphics or SVG);

• there are no limits to the number or size of the input trees;

• each program performs one function, with some variants; and

• the programs are self-documenting (option -h).

2.1 Example: Bootscanning
Bootscanning (Salminen, 1995) locates recombination breakpoints
by identifying (locally) closest relatives of a reference sequence. An
example implementation is as follows:

(1) produce a multiple alignment of all sequences, including the
reference;

(2) divide the alignment into equidistant windows of constant
size (e.g. 300 bp every 50 bp);

(3) compute a maximum-likelihood tree for each window;

(4) root the trees on the appropriate outgroup (not the reference);
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Fig. 1. Bootscanning using PhyML, EMBOSS, Muscle, Newick utilities,
GNUPlot and standard Unix shell programs. The species with the lowest
distance is the reference’s nearest neighbor (by distance along tree branches).
A recombination breakpoint is predicted near position 450, as the nearest
neighbor changes abruptly.

(5) from each tree, extract the distance (along the tree) from the
reference to each of the other sequences; and

(6) plot the result (Fig. 1).

The distribution includes a Bash script, bootscan.sh, that
performs the procedure with Muscle (Edgar, 2004) (Step 1),
EMBOSS (Rice et al., 2000) (Step 2), PhyML (Step 3),
GNUPlot (Step 6) and Newick utilities for Steps 4 and 5. This
method was used to detect breakpoints in human enterovirus
(Tapparel et al., 2007).

3 DISCUSSION
The Newick utilities add tree-processing capabilities to a shell user’s
toolkit. Since they have no hard-coded limits, they can handle large
amounts of data; since they are non-interactive, they are easy to
automate into pipelines, and since they are filters, they can easily
work with other shell tools.

Tree processing may also be programmed using a specialized
package [e.g. BioPerl (Stajich et al., 2002), APE (Paradis et al.,
2004) or ETE (Huerta-Cepas et al., 2010)], but this implies
knowledge of the package, and such programs tend to be slower
and use more resources than their C equivalents. The difference is
particularly apparent for large trees (Fig. 2).

3.1 Python bindings
To combine the advantages of a high-level, object-oriented language
for the application logic with a C library for fast data manipulation,
one can use the Newick utilities through Python’s ctypes module.
This allows one to code a rerooting program in 25 lines of Python
while retaining good performance (Fig. 2). A detailed example is
included in the documentation.

Some users will feel more at ease working in the shell or with
shell scripts, using existing bioinformatics tools; others will prefer
to code their own tools in a scripting language. The Newick utilities
are designed to meet the requirements of both.
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Fig. 2. Average run times (10 samples) of rerooting tasks on various tree
sizes in different implementations. The task involved reading, rerooting and
printing out the tree as Newick. Runs of the BioPerl and APE implementation
on the 20 000-leaf tree did not complete. Error bars show 1 SD. Computer:
3 GHz 64 bit Intel Core 2 Duo, 1 GB RAM, Linux 2.6. Made with R (R
Development Core Team, 2008).
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