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Common inflammatory mediators orchestrate pathophysiological

processes in rheumatoid arthritis and atherosclerosis
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RA is characterized by a systemic inflammatory state, in which immune cells and soluble mediators play a crucial role. These inflammatory

processes resemble those in other chronic inflammatory diseases, such as atherosclerosis. The chronic systemic inflammation in RA can be
considered as an independent risk factor for the development of atherosclerosis, and represents an important field to investigate the reasons

of the increase of acute cardiovascular events in RA. In the present review, we focused on several mediators of autoimmunity, inflammation
and endothelial dysfunction, which can be considered the most promising targets to prevent atherogenesis in RA. Among several mediators,

the pro-inflammatory cytokine TNF-� has been shown as a crucial factor to induce atherosclerosis in RA patients.
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Introduction

RA is a chronic inflammatory disease, which affects �1% of the
population world wide [1–3]. Its aetiology is still unknown.
However, RA is characterized by a systemic inflammatory state,
involving several organs, including joints, skin, eyes, lung and
blood vessels [4]. Immune cells and soluble inflammatory
mediators play a crucial role in RA pathogenesis. Various
leucocyte populations, orchestrated by several cytokines, chemo-
kines, growth factors and hormones, infiltrate rheumatoid tissues
and increase injury [5]. These inflammatory processes resemble
those in other chronic inflammatory diseases, such as athero-
sclerosis [6]. The activation of monocytes, T and B cells, vascular
endothelial cells and the elevation of circulating inflammatory
factors and markers characterizing both diseases, suggest that
different inflammatory disorders can be induced by common
inflammatory processes. In particular, inflammation in RA is now
considered as an independent risk factor for the development of
atherosclerosis [7–12]. This is suggested by several independent
findings, indicating a possible strong association between RA and
atherosclerosis. Atherogenesis is accelerated in RA patients [6]
and increases the mortality of these patients for acute cardiovas-
cular events [13–16]. The excess of cardiovascular mortality in RA
patients could be associated with the long-term corticosteroid
treatments against RA [17] or, intriguingly, with the increase of
circulating inflammatory cardiovascular factors known to play a
crucial role during atherogenesis [18]. Indeed, several soluble
mediators of autoimmunity, inflammation and endothelial dys-
function can be considered the most promising targets to prevent
atherosclerosis in RA.

Role of dyslipidaemia in the pathogenesis of

atherosclerosis in RA

Traditional atherosclerotic risk factors play a crucial role in the
development of atherosclerosis in patients with RA. Among
Framingham risk factors, an unbalance between levels and
activation of lipoproteins contribute to the acceleration of

atherosclerosis in RA. In particular, the suggested mechanisms
are subsequent to endothelial dysfunction. Increased spaces
between altered endothelial cells in RA patients permit the entry
of low-density lipoproteins (LDLs) [19]. Once retained in the
intima, LDLs are oxidized (OxLDL) and activate endothelial cells
to up-regulate adhesion molecules and the chemokine secretion to
recruit circulating leucocytes within atherosclerotic plaques [20].
When monocytes/macrophages infiltrate atherosclerotic plaques,
they uptake OxLDL and form the ‘foam cells’ that are considered
key players by secreting inflammatory mediators. Subjects
suffering from RA have increased levels of native OxLDLs [21].
Furthermore, functional abnormalities of the endothelium have
been detected in in various cohorts of RA patients [22, 23]. Given
this evidence, OxLDL are pivotal molecules in the development of
atherosclerosis in RA. They should be considered a crucial pro-
inflammatory stimulus in the vicious circle, which sustains chronic
inflammation in RA. New therapies targeting the modulation of
lipid profile in RA have been investigated with controversial
results [24, 25]. On the other hand, high-density lipoproteins
(HDLs) have been shown to exert anti-inflammatory activities in
both acute and chronic diseases [26]. Dimished levels of HDL
have been detected in RA patients [27]. Therefore, the increase of
HDL concentrations in RA could ameliorate both disease activity
and the associated atherosclerosis. A treatment with an apolipo-
protein A-1 mimetic peptide in combination with pravastatin has
inhibited CIA [28]. Lipid levels should be monitored in patients
with RA to minimize the cardiovascular disease. Further studies
are needed to determine the impact of specific lipoprotein
particles, small dense LDL and subfractions of HDL on long-
term risk of atherosclerosis in RA [29].

Rheumatoid autoimmunity and atherosclerosis: can

autoantibodies induce atherosclerosis?

Autoantibody production is a condition strongly associated with
RA. Little is known about autoantibodies and atherosclerosis in
both humans and animal models [30]. Although not only specific
for RA [31], RF increases the risk of developing both RA and
atherosclerosis [32, 33]. A recent study also showed an association
between autoantibodies against OxLDL and cardiovascular
disease in RA [34]. Unfortunately, in these studies the authors
did not investigate the autoimmune molecular mechanisms.
However, these studies represent a good starting point for future
investigations targeting autoantibodies (Fig. 1). The association
between aCLs and atherosclerosis have also been investigated and
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probably will be a very promising field of research in the future
[35, 36]. Endothelial cells could be the main target for
autoantibodies [37–42]. No data are available for antibodies
against citrullinated proteins, which are specific and predictive for
RA [43].

Rheumatoid inflammatory mediators and atherosclerosis

CRP

CRP is a member of the pentraxin family, first described in 1930
by Tillet and Francis [44] in the sera of patients suffering from
pneumonia. Mainly produced by the liver, CRP was considered
for many decades as a low, specific systemic marker of
inflammation. Recently, it has been shown that several cell types
are capable of secreting CRP in inflammatory microenvironments,
such as rheumatoid synovium and atherosclerotic lesions (Fig. 2)
[45–47]. In these inflamed tissues, CRP directly activates immune
cells with the secretion of other inflammatory molecules, by
initiating a vicious circle that maintains and increases the
inflammatory state [48]. This experimental evidence strongly
supports CRP as an active inflammatory mediator with both
systemic and local effects. In addition, this may suggest that
inflammatory disorders, characterized by high levels of CRP, can
develop a secondary immune cell activation, which may result in

the increase of atherogenesis. Therefore, the chronic increased
CRP serum levels in RA patients [49] can directly induce an
acceleration of atherosclerosis and its complications [50, 51].
Numerous prospective epidemiological studies showed that in
healthy subjects, serum CRP predicts myocardial infarction
mortality [51–53], stroke [54–56] and arrhythmias, including
sudden cardiac death [57]. A meta-analysis of 14 prospective
long-term studies showed that after correction for age, smoking
and other cardiovascular risk factors, CRP was strongly related
to coronary heart disease [58]. These studies show that CRP
should be considered a direct pro-inflammatory factor in
the pathogenesis of inflammatory diseases such as RA and
atherosclerosis.

TNF-�

TNF-� is a classical pro-inflammatory mediator and a member of
a cytokine family including Fas ligand and CD40 ligand. TNF-�
induces deleterious effects in several inflammatory diseases
through the binding with two different receptors (called types I
and II), which are expressed in all cell types except erythrocytes
[59]. This suggests that TNF-�, as CRP, can mediate both
local and systemic responses during inflammatory diseases (Figs 3
and 4). RA as well as atherosclerosis represents an inflamma-
tory disorder in which TNF-� play a crucial role. This is strongly
supported by studies in both humans and animal models.

FIG. 4. Adipose tissue produces pro- and anti-inflammatory adipocytokines
involved in both RA and atherosclerosis pathophysiology. Adiponectin is
considered one of the most promising natural anti-inflammatory mediators against
RA and atherosclerosis. The other adipocytokines are currently under investiga-
tion, with still controversial results in the regulation of inflammatory processes. The
majority of publications consider these adipocytokines as ‘pro-inflammatory’, rather
than ‘anti-inflammatory’.

FIG. 1. Autoantibody production in RA subjects could increase atherosclerosis.
Auto-antigens (autoAg) are captured in the blood stream, and then presented to B
lymphocytes by antigen-presenting cells in the lymphnode. Here, B lymphocytes
differentiate to plasma cells and produce autoantibodies (autoAb), which might be
involved in increasing atherosclerosis in RA.

FIG. 2. CRP increases both atherosclerosis and RA. CRP is mainly secreted by
hepatocytes in the blood stream. CRP increases immune and vascular cell
functions and tissue inflammation. Inflammatory cells in synovium and athero-
sclerotic plaque further produce CRP by increasing CRP-mediated local
inflammation.

FIG. 3. Rheumatoid joints secrete pro-inflammatory soluble factors, which could
accelerate atherosclerosis. Several mediators, released in the blood stream by the
inflamed joints, accelerate atherosclerosis in RA patients. Among these, TNF-� is
the most promising target to reduce athersoclerosis associated with RA.
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Mouse models of arthritis have also been developed independent
of TNF-� [60–62]. However, blockade of TNF-� activity has been
shown to influence both disease and inflammatory cells in mice
[63, 64]. In humans, the direct positive association between serum
levels of TNF-� with the activity of RA [65]. In addition, clinical
improvements obtained in several clinical trials targeting TNF-�
indicate a promising therapeutic strategy [66]. During athero-
sclerotic complications, such as myocardial ischaemia, TNF-�
plasma levels have been shown to be very high [67–70]. The
inflammatory cascade mediated by TNF-� is quite similar in RA
and atherosclerosis, suggesting a deleterious role of this cytokine
in both diseases. TNF-� may induce atherosclerosis in RA
patients by interfering with various processes. It not only activates
inflammatory and endothelial cells [71, 72], but also induces pro-
thrombotic states, insulin resistance and dyslipidaemia [72].
Accordingly, anti-TNF-� treatment has been shown to increase
HDL cholesterol [73–75] and improve insulin resistance [76, 77]
and, transiently also endothelial dysfunction [78, 79]. Although
the benefits in endothelial function induced by anti-TNF-�
treatments are still controversial [80, 81], improvement of the
other aforementioned conditions have to be considered a crucial
contribution in the development of secondary atherosclerosis in
RA patients [82]. However, the absence of analysis of acute
cardiovascular events as clinical end-points in clinical trials with
anti-TNF-� treatments is still the strong limitation of the benefits
of these therapies in rheumatoid-associated atherosclerosis (Fig. 3)
[83–85]. The assessment of cardiovascular global risk, by using
serum markers or other indicators, is clearly not sufficient to
propose new treatment indications in order to to improve the
atherosclerotic burden in RA patients. Therefore, in the future the
most important field of investigation for anti-TNF-� treatments
for rheumatoid patients should be focused not only on improving
joint symptoms, but also on reducing cardiovascular disease
burden for these patients.

The RANK ligand (RANKL)/RANK/osteoprotegerin

(OPG) axis

The RANKL/RANK/osteoprotegerin (OPG) system is a crucial
molecular mechanism in the bone resorption and joint destruc-
tion in RA [86]. OPG is a natural decoy for RANKL, which
inhibits RANKL binding with its cognate receptor RANK on the
cell surface by preventing osteoclast differentiation and, thus,
reducing bone resorption. Several cytokines, including IL-1 and
TNF-�, have been shown to regulate this system [87–89]. Recent
evidence suggests that RANKL and OPG balance is also crucial in
atherosclerotic plaque calcification, a condition which is diffused
in long-standing RA patients [90] and favours plaque rupture
[91, 92]. The role of RANKL and OPG in plaque calcification has
also been shown in knockout mouse models [93–95]. Circulating
RANKL induces plaque instability in humans by inducing
monocyte chemoattractant protein-1 (MCP-1) and MMP produc-
tion [96]. On the other hand, serum levels of OPG are increased in
RA patients and independently associated with coronary artery
atherosclerosis [97]. These studies indicate that RANKL/OPG
could represent a very important molecular field of investigation
to better understand the increase of cardiovascular risk in RA.
The strongest limitation for the clinical use of these markers is
represented by their poor specificity. However, the RANKL/
RANK/OPG axis could be a promising target for future therapies.
In this context, experimental data in animal models have provided
the first evidence for the therapeutic use of OPG as a possible
pharmacological agent to reduce arterial calcification [98]. On
the contrary, human data have suggested a direct relationship
between increased OPG serum levels and plaque destabilization.
This may imply that elevated OPG levels could be compensatory
rather than causational in atherosclerotic calcification. Further
clinical investigations with large numbers of patients are required

to better clarify the role of serum sRANKL and OPG in
RA-induced atherosclerotic plaque calcification.

Adipocytokines

Since the discovery of leptin in 1994 [99], white adipose tissue
(WAT) has been found to secrete several inflammatory mediators,
which have been called ‘adipokines’ or ‘adipocytokines’ (Fig. 4).
These molecules orchestrate via endocrine, paracrine, autocrine
and juxtacrine mechanisms, and both physiological and physio-
pathological processes, including food intake, insulin sensitivity,
immunity and inflammation [100, 101]. Adipocytokines induce
their activities through the binding to selective transmembrane
receptors on different cell types. At present, the most studied
adipocytokines are adiponectin, leptin, resistin, visfatin and also
TNF-�. Leptin is a non-glycosylated peptide hormone, encoded
by the gene obese (ob) in mice and by the gene LEP in humans
[99]. In animal models, its synthesis is regulated by food intake,
sex hormones and inflammatory mediators, and its levels are
negatively correlated with glucocorticoids and positively with
insulin [102–105]. The role of sex hormones is also confirmed by
studies performed in humans, showing that leptin levels are higher
in women than in men [106]. Leptin levels have also been found
increased in humans in several inflammatory diseases, including
obesity, metabolic syndrome, RA and atherosclerosis [107–109].
Direct pro-inflammatory activities of leptin on immune response
have been shown in human and murine macrophages [110, 111],
human neutrophils [112, 113], NK cells [114], dendritic cells [115],
T lymphocytes [116, 117] and synovial fibroblasts [118].
Accordingly, leptin-deficient mice, which suffer from thymus
atrophy, are immunodeficient animals [119] and are less prone
than non-leptin-deficient mouse to develop inflammatory disease
[120]. On the basis of these studies, leptin has been investigated
as a marker of disease activity in RA patients. On this regard,
controversial results have been published [121–124]. Furthermore,
anti-TNF-� antibody treatment with adalimumab did not have
any effect on serum levels of leptin in RA patients [125].
Therefore, although a crucial role of leptin in inflammatory
processes has been shown in humans and animal models [126],
further investigations are needed to better understand its active
role in RA and associated atherosclerosis. Probably, leptin half-
life and consumption in rheumatoid joints could be the most
promising field of investigation [127]. Recently, other pro-
inflammatory adipocytokines have also also discovered. In
humans, resistin is secreted by adipocytes and macrophages,
while in rodents it has been identified in WAT and haematopoietic
tissues [128]. However, resistin seems to play different roles in
humans and rodents. In humans, resistin has been shown to
induce pro-inflammatory activities on immune cells in chro-
nic inflammatory diseases, including RA and atherosclerosis
[129–133]. In RA patients, resistin serum levels have been found
increased and associated with higher levels of IL-1Ra [134, 135].
Accordingly, anti-TNF-� therapy rapidly reduces resistin serum
levels, indicating that this cytokine is involved in the regulation of
resistin secretion [136]. On the other hand, although the injection
of resistin into mice joints induces an arthritis-like condition [130],
other studies indicate that the initial enthusiasm for animal disease
model should be limited [137]. The main reason is that resistin
levels depend on both nutritional state and hormonal environ-
ment. On the contrary, in murine models of atherosclerosclerosis,
resistin has been detected in sclerotic lesions and its level has been
found correlated with the severity of the lesion [133]. Therefore,
further studies are needed to investigate the role of restitin in
atherosclerosis acceleration in RA. Visfatin, apelin, vaspin and
hepcidin are the most recently discovered adipocytokines [137].
Their physiological and pathophysiological roles in chronic
inflammatory diseases are currently unclear and further investiga-
tions are needed. On the contrary, the adipocytokine adiponectin
is considered one of the most promising targets against chronic
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inflammatory diseases, including atherosclerosis and RA.
Adiponectin is prevalently produced in WAT and has been
shown to induce anti-inflammatory activities in both humans and
animal models. The ablation of the adiponectin gene induces
a dramatic insulin resistance in mice under high-fat or high-
sucrose diet [138]. This pro-diabetic condition in combination with
the increased fatty acid levels and increased proliferation of
vascular cells strongly suggests that hypoadiponectinaemia
induces a pro-atherogenic state in mice [139]. A direct anti-
inflammatory activity of adiponectin has also been shown in
humans [140, 141]. Basic research and clinical studies suggest that
adiponectin could reduce atherosclerosis in both humans and
animal models and should be considered a promising target for
anti-atherosclerotic therapies [142–144]. The crucial role of
adiponectin in RA also suggests a possible pathophysiological
trigger of atherosclerosis in arthritic patients and animal models
[145, 146]. Anti-TNF-� therapies have already shown to increase
adiponectin levels in RA patients [147–150]. Further studies in
the future will probably clarify whether therapies increasing
adiponectin levels will be able to reduce the acceleration of
atherosclerosis in RA.

CD40 ligand

CD40–CD40 ligand (CD40L) interactions are crucial in both RA
and atherosclerosis pathophysiology [151, 152]. Therefore, CD40
could represent another common pro-inflammatory trigger by
which RA accelerates atherosclerosis. CD40 has been shown on B
cell, dendritic cell, monocyte, macrophage, mast cell, fibroblast
and endothelial cell membranes. It regulates several immune
functions, such as the B-cell response, antigen-presenting cell
activity, monocyte migration and survival [153–155]. Also, platelet
activation is induced by CD40–CD40 ligand interactions [156].
Although CD40L can also mediate inflammation independently
of its cognate receptor CD40 [157], their binding remains a crucial
event in triggering immune cell functions in both humans and
animal models [158, 159]. CD40 binds with two forms of ligand.
The first form (CD154) is expressed on activated T- and other
immune cell membrane, while the second one is a soluble form,
called soluble CD40 ligand (sCD40L) [155]. The soluble form is of
particular interest because it has been shown as a serological
prognostic factor in coronary and cerebral vascular diseases [160].
Furthermore, elevated levels of sCD40L in serum of patients with
systemic autoimmune diseases have been shown [161]. After the
binding with CD40 ligands, CD40 can be internalized. Depending
on the cell type, the intracellular signal is transduced through
different pathways, involving TNF receptor-associated factors
(TRAFs) [162] and several kinases [163, 164]. The activity of
CD40 ligands is considered pro-inflammatory in the majority of
cell types expressing CD40. Therefore, blocking CD40–CD40L
interactions and the modulation of the downstream intracellular
signal transduction represent a promising target against inflam-
matory disorders [165, 166]. Several pharmacological agents
have been shown to reduce CD40L levels both in vivo and
in vitro [167]. Furthermore, anti-CD40L antibody treatment has
been shown to increase atherosclerotic plaque stability [168]
and limit both atherogenesis [158] and the evolution of estab-
lished atherosclerosis in mice [159]. The use of mAbs anti-
CD154 (the form of CD40L expressed on cell membranes) could
represent a powerful tool in the treatment of both RA and
atherosclerosis [169, 170]. Phase I/II trials of anti-CD40L
antibody treatments in humans with lupus nephritis have shown
some positive results [171]. However, the increase of thrombotic
events has temporarily stopped these studies in humans. Other
clinical studies with the administration of antibodies better
tolerated are needed to evaluate a possible modulation in
RA-induced atherosclerosis.

IL-18

IL-18 has been originally identified as an IFN-�-inducing factor in
Kupffer cells and macrophages [172]. More recently, IL-18 has
been shown as a crucial inducer of IFN-� secretion in T
lymphocytes, NK cells [173, 174] and Th1 [175–177]. Several
immune diseases, such as juvenile idiopathic arthritis and RA,
have been found associated with high levels of IL-18 (Fig. 3)
[178–181]. At present, the molecular mechanisms by which IL-18
induces pro-inflammatory activities are under investigation. A
recent paper demonstrated that IL-18 induces not only IFN-�, but
also serum amyloid A (SAA) protein production from rheumatoid
synovial fibroblasts [182]. Although the molecular pathways
remain unknown, other works showed a clear association between
IL-18 levels and atherosclerosis. IL-18 is highly expressed in
mouse atherosclerotic lesions [183]. The progression of athero-
sclerosis is reduced in IL-18-deficient ApoE knockout mice [184].
In addition, serum levels of IL-18 are strong predictors of
cardiovascular death in stable and unstable angina patients
and are positively associated with carotid intima-media thickness
[185–187]. For these reasons, the increase of IL-18 in RA patients
could contribute to the acceleration of atherosclerosis.

IL-20

IL-20 is a cytokine discovered in 2001 [188] and belonging to the
IL-10 family [189]. Although 28% of amino acid sequences of
IL-20 are identical to IL-10, crystallographic analysis shows that
IL-20 and IL-10 form different structures (IL-20 is a monomer,
while IL-10 is an intercalating dimer) [190]. These structural
characteristics could partially explain the different functions of
these two cytokines. Cytokines belonging to the IL-10 family
exhibit substantial sharing of IL-20 receptor complexes (IL-20R1
and IL-20R2), by increasing the well-known cytokine redundancy
[191]. Despite this reduced selectivity for its two receptors, several
pro-inflammatory activities and clinical implications of IL-20 have
been shown in inflammatory disorders. In a recent study,
detection of IL-20 was increased in both inflamed synovium and
plasma of patients with RA (Fig. 3) [192, 193]. Also in SFs, IL-20
levels were higher than in controls [192]. This suggests that IL-20
is secreted by macrophages and synovial fibroblasts within
rheumatoid tissue and also released in the circulation as a
systemic factor. IL-20 also induces local pro-inflammatory
activities in inflamed synovium. In fact, in an autocrine manner
IL-20 promotes the secretion of other inflammatory mediators by
fibroblasts [192]. The role of IL-20 in atherosclerosis is still
unclear [194]. Increasing evidence suggests that IL-20 induces
atherosclerosis through two different mechanisms shown in mice
and humans. First, as a direct autocrine mechanism, IL-20,
secreted by macrophages localized in atherosclerotic plaques,
induces a local promotion inflammation in mice [195]. This was
observed in Apolipoprotein E-deficient mice. On the other hand,
IL-20 promotes atherosclerosis through an endocrine systemic
pathway. This is an indirect mechanism, secondary to IL-20
release from local inflammatory sites, such as rheumatoid
synovium or already advanced atherosclerotic plaques. IL-20 in
the circulation induces endothelial cell proliferation, with
an increase of neovascolarization in human unstable plaques
[196–198]. Therefore, IL-20 secreted within atherosclerotic pla-
ques or released in the circulation, contributes to the development
of atherosclerosis and could be a very promising target for
modulating both RA and atherosclerosis.

MCP-1

MCP-1, also called CCL2, is a well-known CC chemokine and a
classical chemoattractant for monocytes [199]. Recent studies
showed that MCP-1 is also capable of attracting CD45ROþ T
lymphocytes [200] and NK cells [201]. Furthermore, MCP-1 is
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also a potent histamine-releasing factor [202], while its activity on
dendritic cells remains controversial [203, 204]. This evidence
support the relevant role of MCP-1 during inflammatory
processes. Both RA and atherosclerosis, which are characterized
by mononuclear cell infiltrates, are pathological disease models to
evaluate pro-inflammatory activities of MCP-1 [205–207]. Mice
deficient for either MCP-1 or its cognate receptor (CCR2) develop
less atherosclerosis [208, 209]. In rats, treatment with blindarit (an
inhibitor of MCP-1) improved the course of adjuvant arthritis
[210]. In additon, MCP-1 serum levels in humans have been
associated with the incidence of coronary artery disease in the
general population, and with the clinical symptoms of JRA
[211–213]. On the basis of this evidence, MCP-1 should be
considered a potent RA and atherosclerotic factor and a target for
selective therapies (Fig. 3). Few clinical studies have already been
performed. For instance, pioglytazone has been shown to inhibit
stent restenosis in atherosclerotic rabbits through the reduction of
MCP-1 [214]. A direct demonstration of the benefits of MCP-1
inhibition in atherosclerosis has been performed by using
antibodies anti-MCP1 or anti-MCP-1 gene therapies (Fig. 3)
[215, 216]. However, much remains to be studied in RA, since the
first clinical trial using an anti-MCP-1 monoclonal antibody
in humans did not result in clinical or immunohistological
improvements [217].

Fractalkine

Among the four chemokine families, CXC3C-chemokine family
contains only one member that is called fractalkine or alter-
natively CX3CL1 [218]. Fractalkine has been shown to play a pro-
inflammatory role in the pathogenesis of RA [219]. This is
supported by both in vitro and in vivo evidence. Fractalkine and its
cognate receptor CX3CR1 are up-regulated in several inflamma-
tory cell populations in RA patients (Fig. 3) [220–223].
Furthermore, in adjuvant-induced arthritis rats fractalkine has
been found crucial in monocyte chemotaxis within inflamed joints
[224]. This study was also confirmed by a more recent work, which
showed a significant improvement in murine CIA when fractalk-
ine was inhibited [225]. In addition, two clinical studies showed
that serum levels of soluble fractalkine correlate with disease
activity of RA and are not influenced by anti-TNF-� antibody
treatment in humans [226, 227]. Therefore, strong evidence
supports fractalkine as a pivotal agent in the pathogenesis of
RA pathogenesis, independently on TNF-�. On the other hand,
growing evidence also suggests that fractalkine may also be
involved in atherosclerosis. In fact, high levels of fractalkine
mRNA has been detected in atherosclerotic lesions [228].
Furthermore, fractalkine increases CD8þ T lymphocyte and
monocyte recruitment within the plaque [229, 230]. In addition,
gene polymorphisms of CX3CR1 have been associated with the
increase of coronary artery disease [231]. In contrast, polymorph-
isms of CX3CR1 do not influence peripheral artery disease [232].
These findings suggest that fractalkine/CX3CR1 interactions may
increase both coronary artery disease and RA. Further studies are
needed to evaluate the role of fractalkine in RA-induced
acceleration of atherosclerosis.

MMP-9

MMPs are proteolytic enzymes, which regulate the cell–matrix
composition [233, 234]. The main substrates of MMP-9 are
denatured collagen (gelatins) and type 4 collagen, which are the
pivotal components of the basement membranes. Monocytes and
lymphocytes, activated by cytokines, chemokines, eicosanoids and
peptidoglycans [235], secrete MMP-9 to cleave basement mem-
branes and enter into the inflamed tissues. MMP-9 is secreted as
an inactive pro-enzyme (called zymogen), which is activated by the
removal of a domain, which renders the Zn site able for
hydrolysis. MMP-9 activation is a crucial mechanism of tissue

injury in several inflammatory diseases, including RA (Fig. 3)
[236]. Inhibitors and activators regulate MMP-9 activation [237].
An imbalance between MMP and its tissue inhibitors of
metalloproteinases (TIMPs) leads to excess of activated MMP,
which results in an increased cartilage degradation. This local
activity is also supported by the systemic effects of MMPs. In fact,
serum levels of MMP have also been related with the severity of
progression of RA [237]. Rheumatoid synovium has been
proposed as the main source of MMP-9, which is released in SF
and blood circulation [238]. Further investigations are needed to
evaluate the complex MMP activity systems, with respectively,
inhibitors and activators. An imbalance between these factors is
thought as a crucial step during atherosclerotic plaque formation
and plaque stability. Expression of MMP-9 mRNA and protein in
unstable plaques has been found much higher than in stable
plaques in both humans and mice [239–241]. This increase of
MMP-9 in unstable plaques is in accordance with the increased
infiltration of cells responsible for its secretion, such as macro-
phages and T lymphocytes [240]. MMP-9 reduces plaque stability
by the degradation and digestion of the matrix components of the
fibrous cap and by increasing neovascularization [242, 243]. These
studies clearly indicate that MMP-9 should be considered as an
important factor in atherosclerotic plaque formation in RA
patients. Therapies aimed at reducing or increasing the expression
of MMP-9 inhibitors may serve as promising options in these
patients. In this case, corticosteroids, statins and the intravenous
infusion of gamma globulins have been already shown to decrease
the amounts of MMP-9 [244–247]. Clinical trials are needed to
validate these therapies.

Sex hormones

RA and atherosclerosis are inflammatory diseases influenced by
hormonal profile [248, 249]. Oestrogens are considered crucial
players in both diseases, by regulating both immune system and
lipid profile [250, 251]. Oestrogens bind two receptors, called
oestrogen receptor (ER)� or ER�, and, as a dimer, enhance gene
promoters in several cell types [252]. Oestrogens modulate several
functions in immune cell, including white blood cell recruitment at
inflammatory sites, endothelial nitric oxide (NO) production,
MMPs and acute-phase protein production [253]. However, these
inflammatory processes regulated by oestrogens do not give an
explanation for the clinical association between RA and athero-
sclerosis. In fact, the female hormone profile should prevent
atherosclerosis and increase the risk of RA [254]. However,
atherosclerosis has been found accelerated in pre-menopausal
female patients with RA [255]. This condition clearly suggests that
accelerated atherosclerosis in RA is a multifactorial process.
Animal models are needed to better clarify the role of oestrogens in
accelerated atherosclerotic processes characterizing RA [256, 257].

Insulin

Other hormones with a possible role during atherogenesis have
been found increased in RA patients [258–260]. Indeed, insulin
could be considered as a crucial factor in RA-induced athero-
sclerosis acceleration. Insulin is an anabolic essential hormone for
the maintenance of glucose homeostasis, tissue growth and
development [261]. It is secreted by the pancreatic � cells,
mainly through two distinct rhythms, called ‘extrinsic’ (in
response to meals) or ‘intrinsic’ (with periods of 5–10min and
60–120min, in the absence of food intake) [262]. Rhythm
alterations, mainly due to defects on insulin secretion or insulin
properties, characterize the development of glucose intolerance
and the different types of diabetes mellitus [262]. Glucose
intolerance has been found associated with the levels of acute-
phase reactants in RA [263]. In these patients, glucose intolerance
is mainly due to the unbalance of two different mechanisms: (i) the
increase of peripheral insulin resistance, a pro-atherosclerotic
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condition, which is mediated by pro-inflammatory cytokines
(mainly TNF-� and the other adipocytokines) and free fatty acids;
and (ii) the use of corticosteroid therapy, which induces iatrogen
diabetogenic effects [264–267]. Surprisingly, immunosuppressive
therapy with corticosteroids has been also shown to reduce insulin
resistance [263]. This suggests that insulin resistance in RA is
mainly caused by the inflammatory mediators. Insulin resistance
has also been associated with the increase of cardiovascular
disease [268, 269]. Insulin or insulin-like growth factor (IGF)-1
increase atherosclerosis in humans by the direct induction of pro-
inflammatory activities on leucocytes, endothelial cells and
vascular smooth muscle cells [270–273]. These studies clearly

indicate that insulin could be a promising prognostic marker for
therapies targeting soluble inflammatory mediators in RA. At
present, anti-TNF-� therapies have been shown to reduce insulin
resistance in RA patients [274–277]. Further experimental
evidence is needed to show if the increase of insulin sensitivity
could reduce atherosclerotic processes in RA patients.

Rheumatoid-induced endothelial dysfunction and

atherosclerosis: adhesion molecules

Endothelial dysfunction is considered as an early step in the initial
phases of the atherosclerotic process [278]. The endothelium is a
physical barrier between the blood and the intima of vascular wall,
essential for the maintenance of vascular homeostasis. Endothelial
cell activation and dysfunction are the results of systemic
autoimmune processes, in which autoantibodies could play a
crucial role. In RA patients, a marked decrease in arterial
compliance (measured as pulse-wave analysis) has been showed
in the absence of traditional cardiovascular risk factors [279, 280].
In addition, soluble biomarkers of endothelial dysfunction, such
as vascular cell adhesion molecules (VCAM)-1, intercellular
adhesion molecule (ICAM)-1 and endothelial leucocyte adhesion
molecule (ELAM)-1, are increased in RA patients in comparison
with healthy controls [281]. The molecular mechanisms, that
generate endothelial dysfunction in RA patients, are still unclear.
Innate immune system and circulating endothelial progenitor cells
have also been investigated, respectively, in mice and humans, but
at present, more evidence is needed to support their implications
in atherosclerotic processes [282, 283]. The main contribution
appears to involve autoantibody activities, but much remains to
be clarified.

Other mediators: microparticles

MPs are small (0.1–1�m) membrane-bound vesicles circulating
within peripheral blood, which recently have been shown to be

TABLE 1. Role of inflammatory mediators in RA and atherosclerosis

Factor Functions RA Atherosclerosis

Lipoproteins Humans: Lipid profile regulates inflammation
Animal models: Lipids increase mainly atherosclerosis

LDL: increase
HDL: decrease

LDL: increase
HDL: decrease

Autoantibodies Humans: possible activity against endothelial cells.
Animal models: no direct evidence in pathophysiology

Probably increase Probably increase

CRP Humans: pro-inflammatory activity in immune cells.
Animal models: pro-inflammatory in rabbits

Increase Increase

TNF-� Humans: pleiotropic inflammatory activity (except red cells)
Animal models: pro-inflammatory.

Increase Increase

RANKL Humans: increase of plaque instability
Animal models: increase of vascular calcification

Increase Increase

Adiponectin Humans: anti-inflammatory in vascular and immune cells
Animal models: anti-inflammatory in immune cells

Decrease Decrease

Other adipocytokines Humans: up regulation of leucocyte functions
Animal models: increases inflammation (except resistin)

Increase Increase

CD40L Humans: regulation of immune cell functions and survival
Animal models: increase of leucocyte recruitment

Increase Increase

IL-18 Humans: induction of cytokine secretion in T cells
Animal models: it is expressed in inflammed tissues

Increase Increase

IL-20 Humans: neovascularization in inflamatory tissues
Animal models: promotion of inflammation in tissues

Increase Increase

MCP-1 Humans: chemoattractant for monocytes, T cells
Animal models: activation of immune cells

Increase Increase

Fractalkine Humans: chemoattractant for lymphocytes
Animal models: chemoattractant for monocytes

Increase Increase

MMP-9 Humans: plaque instability and tissue damage
Animal models: plaque instability and tissue damage

Increase Increase

Sex hormones Humans: oestrogens modulate immune cell functions
Animal models: anti-inflammatory effects in vitro

Increase Decrease

Insulin Humans: increase of leucocyte functions
Animal models: increase of vascular inflammation

Increase Increase

Adhesion molecules Humans: increase of leucocyte recruitment in tissues
Animal models: increase of leucocyte rolling and migration

Increase Increase

MP Humans: platelet MP increase leucocyte aggragation
Animal models: platelet MP increase leucocyte arrest to inflamed endothelium

Not known Probably increase

FIG. 5. MP involvement in RA and atherosclerosis. MPs from platelets, endothelial
cells and leucocytes are currently under investigation for a possible role in
atherosclerosis and RA. The role of platelet MP in atherosclerosis acceleration in
RA is the most promising field for researches. MP: microparticles.
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associated with thrombotic and inflammatory diseases in humans
and mice [284–286]. Because of their small size, MPs quickly
circulate in the blood stream and induce potent pro-inflammatory
activities, through the binding to residual receptors and ligands
expressed on their membrane surface (Fig. 5). Platelet MPs are the
most dangerous, because they favour monocyte survival and
adhesion to endothelial cells [287]. Platelet MPs also induce
leucocyte aggregation to other leucocytes [288] and secretion of
IL-1� [289]. On the other hand, T-cell-derived MPs may induce
macrophage apoptosis [290]. On the basis of these premises, RA
and associated atherosclerosis represent an important disease
model, in which mainly platelet MP can induce injury. Platelet
MPs have been found to be elevated in plasma and correlated with
disease activity in RA patients [291]. Platelet MPs are also
detected in SFs of RA patients, although granulocyte and
monocyte MPs are predominant here [292]. Within inflamed
joints, MPs promote hypercoaguability and synovial activation,
and thus favour articular destruction [293]. In the blood stream,
increased levels of MPs have been associated with atherosclerosis.
In this case, mainly endothelial MPs have been found elevated in
acute complications of atherosclerosis, such as acute coronary
syndromes [294, 295]. Therefore, RA and atherosclerosis appear
to be associated with the increase of different MPs, derived from
different cell types. Further studies are needed to investigate in
more detail a possible clinical role of MPs in these associated
diseases.

Conclusions

Clinical studies showed that RA is a condition that accelerates
atherosclerosis. The strong association between these chronic
inflammatory diseases is probably linked to common inflamma-
tory processes and hormonal profile (Figs 2–5). Emerging
therapeutic strategies for reducing the cardiovascular risk in RA
are under investigation [296–300]. Among several mediators
(Table 1), cytokines (mainly TNF-�) and chemokines represent
the most promising therapeutic targets to reduce atherosclerosis
and its complications in RA patients [301]. Anti-TNF-� treat-
ments have shown the crucial role of this cytokine in the RA.
Further studies are also needed to show benefits in the accelerated
atherosclerosis in RA.
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137 Lago F, Dieguez C, Gómez-Reino J, Gualillo O. The emerging role of adipokines as

mediators of inflammation and immune responses. Cytokine Growth Factor Rev

2007;18:313–25.
138 Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin–a

key adipokine in the metabolic syndrome. Diabetes Obes Metab 2006;8:264–80.
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