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The neural control of “cooperative” hand movements reflecting “opening
a bottle” was explored in human subjects by electromyographic (EMG)
and functional magnetic resonance imaging (fMRI) recordings. EMG
responses to unilateral nonnoxious ulnar nerve stimulation were ana-
lyzed in the forearm muscles of both sides during dynamic movements
against a torque applied by the right hand to a device which was com-
pensated for by the left hand. For control, stimuli were applied while
task was performed in a static/isometric mode and during bilateral syn-
chronous pro-/supination movements. During the dynamic cooperative
task, EMG responses to stimulations appeared in the right extensor and
left flexor muscles, regardless of which side was stimulated. Under the
control conditions, responses appeared only on the stimulated side.
fMRI recordings showed a bilateral extra-activation and functional coup-
ling of the secondary somatosensory cortex (S2) during the dynamic co-
operative, but not during the control, tasks. This activation might reflect
processing of shared cutaneous input during the cooperative task. Corre-
spondingly, it is assumed that stimulation-induced unilateral volleys are
processed in S2, leading to a release of EMG responses to both fore-
arms. This indicates a task-specific neural coupling during coopera-
tive hand movements, which has consequences for the rehabilitation
of hand function in poststroke patients.

Keywords: bilateral reflex responses, hand function, motor control,
secondary somatosensory cortex, unilateral nerve stimulation

Introduction

In contrast to the lower limbs, a great variety of uni- and bi-
manual functional hand/arm movements exist that requires a
specific neural control. In monkeys, it was suggested that the
supplementary motor area (SMA) of one hemisphere influ-
ences the motor outflow of both hemispheres (Jenny 1979;
Rouiller et al. 1994). Furthermore, the primary (Donchin et al.
1998; Kermadi et al. 1998) and nonprimary motor cortex (Tanji
et al. 1987) as well as the prefrontal cortex (Theorin and
Johansson 2010) are assumed to play an essential role in the
execution of bimanual tasks. Previous research has indicated
that distributed neural networks coordinate interlimb coordi-
nation including cortical and subcortical areas (Kazennikov
et al. 1999; Stephan et al. 1999; Kermadi et al. 2000; Debaere
et al. 2001; Swinnen 2002), and their involvement might be
task-specific (Ohki and Johansson 1999; Bracewell et al. 2003;
Wiesendanger and Serrien 2004; White et al. 2008; Alberts and
Wolf 2009; Heitger et al. 2012).

Most human studies on bimanual tasks involve the perform-
ance of bilateral separate, symmetrical, or reciprocal move-
ments (Kelso et al. 1979; Marteniuk et al. 1984; Fowler et al.
1991; Donchin et al. 1998; Swinnen 2002; McCombe Waller
and Whitall 2008; Liuzzi et al. 2011), or object manipulation

tasks (Johansson et al. 2006; Theorin and Johansson 2007),
while cooperative hand movements are rarely studied (for
review, see Obhi 2004). So far it has been demonstrated by
functional magnetic resonance imaging (fMRI; Puttemans
et al. 2005; Johansson et al. 2006; Theorin and Johansson
2007; Grefkes et al. 2008; Goble et al. 2010) and magnetoence-
phalography (Disbrow et al. 2001), the brain activation pattern
during bimanual hand movements is task- and condition-
dependent. This includes the activation of the SMA, the
primary motor cortex (M1), the premotor cortex (PMC), and
the secondary somatosensory cortex (S2). However, the role of
these cortical areas has not yet been investigated during coop-
erative hand movements.

The task investigated here, that is, a “bottle opening” move-
ment against a defined resistance, requires bimanual “coopera-
tive”movements, in which one hand supports the action of the
other one in order to complete the task. Although many daily
tasks involve cooperative hand movements, little is known
about the underlying neural mechanisms.

The distribution of electromyographic (EMG) responses in
arm muscles evoked by nerve stimulation allows analysis of
the connectivity of neural circuits involved in a specific task
(Michel et al. 2008; Dietz et al. 2011). In cases of uni- or bilat-
eral separate arm movements, this approach is known to evoke
EMG responses in the forearm muscles ipsilateral to the stimu-
lation site (Zehr and Kido 2001). It is expected that, during co-
operative hand movements, a neural coupling is reflected in
reflex EMG responses to unilateral nerve stimulation in the
forearm muscles of both sides.

Additionally, we used fMRI in order to identify brain areas
involved in the cooperative hand movement task as comp-
lementary information. This includes the assumption that the
supraspinal pathways and centers, mediating the bilateral
reflex EMG responses, can be detected by the imaging study.
The aim was to identify the cortical areas involved in the coop-
erative hand movements and whether they differ from those
activated in the control conditions. We hypothesize that the
neural coupling during cooperative hand movements is
achieved by an exchange of information from each hand to
both hemispheres at a brainstem level, followed by a proces-
sing of the afferent input in specific cortical sensori-motor
areas (e.g., SMA, PMC, and S2), which leads to an appropriate
control of cooperative hand movements. Since S2 is suggested
to be involved in the integration of information from the 2
sides of the body (Lin and Forss 2002) and is modulated by
task effort (Heuninckx et al. 2005; Goble et al. 2010), we
hypothesize that neural processing of cooperative hand move-
ments can be achieved by an involvement of S2. Subsequently,
we performed psycho-physiological interactions (PPIs) and
functional connectivity (FC) analyses to estimate the functional
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coupling between brain regions of interest (ROIs) with relation
to task performance.

Methods

General Procedures and Experimental Conditions
This study was approved by the Ethics Committee of the Canton of
Zurich and conformed to the standards set by the Declaration of Hel-
sinki. All subjects were informed about the experiment and gave
written consent for their participation. The “electrophysiological” re-
cordings were performed in 12 right-handed (Oldfield 1971) healthy
volunteers (mean age 27.3 years, range 25–32 years; 4 males). Twenty
right-handed healthy volunteers (mean age: 33 ± 9.8 years; 13 males)
participated in the “fMRI study.” Four of the volunteers participated in
both studies. Only right-handed subjects were chosen in order to avoid
an additional variable that could influence the results.

Electrophysiological Study
A device that allows the performance of cooperative movement tasks
of the upper limbs was constructed together with the Swiss Federal In-
stitute of Technology Zurich (ETHZ) for the electrophysiological
experiments (patent registration number E 11167554). The device
comprises 2 handles representing a bottle that is placed horizontally in
front of the subject (Fig. 1A). The diameters of the 2 handles corre-
sponded approximately to the 2 ends of a normal bottle (right 5 and
left 7 cm). Torque and angular rotation sensors allowed the recording
of torsional moments and the position of the handles on both sides.
For the cooperative movement task, the 2 ends of the “bottle”were me-
chanically connected, that is, when a torque was applied on one side it
became transmitted to the other side. Therefore, the resistance was
constant throughout a movement cycle on both sides. This cooperative
mode was either used dynamically (the handles could be turned in op-
posite directions against a predefined resistance) or statically (the
handles were blocked for reciprocal rotation).

The maximum torque (MaxT) of each subject was determined in the
static mode of the device. The highest value of 3 attempts was taken.
For the 2 experimental conditions, the resistance of the device was set
to 20% MaxT. In the dynamic task (dyn-coop), subjects performed
rhythmic “opening” movements, that is, extension of the right wrist
and flexion of the left wrist (frequency of 45/min, indicated by a metro-
nome), with the right hand counteracted by the left hand, that is, both
hands were free to rotate during the dynamic task. A visual feedback
about the torques applied to the device by both hands was provided
through a potentiometer. In one control task (stat-coop), subjects
exerted a bimanual reciprocal isometric/static torque of 20% MaxT on
the handles (indicated again on a screen placed in front of the subject),
with the right forearm extensors counteracted by the left flexor
muscles thus mimicking the opening task. An additional control task
consisted in a frequently investigated upper limb task (Swinnen 2002),
that is, bilateral synchronous pro-/supination movements (pro-sup; fre-
quency of 40–50/min) with freely held dumb-bells (1 or 2 kg, depend-
ing on the EMG background activity which had to match the EMG
activity during the dynamic task as good as possible). This task was
chosen for control as we expected a similar dynamic proprioceptive
input becomes generated as during the dyn-coop task. Each of the 3
motor tasks was performed approximately 80 times. Figure 1B shows
an overview over the setups for the different experimental conditions.

Recording of Biomechanical and Electromyographic Signals
The angular position and torque signals were measured separately for
both sides. EMG recordings were made using surface electrodes placed
over the forearm flexor (Musculus flexor carpi ulnaris) and extensor
(M. extensor carpi radialis) muscles and over the M. deltoideus pars
clavicularis muscles of both arms. All signals were sampled at 1000 Hz
and recorded using Soleasy v. 4.1 (ALEA Solutions GmbH Software
and Instrumentation, Switzerland). EMG signals were amplified
(10 000-fold) and band-pass filtered (30–300 Hz). Afterwards, the
signals were transferred together with biomechanical signals to a per-
sonal computer via an analog-to-digital converter. Further processing
of the data was done using Soleasy v. 4.1. EMG signals were offset cor-
rected, rectified, and band-stop filtered (45–55 Hz) before root mean
square (RMS) values, averages, and grand averages were calculated.

Ulnar Nerve Stimulation
The distal part of the ulnar nerve was randomly stimulated 15 times per
side at the onset of movement cycles at the right or left forearm for the
release of reflex responses in the arm muscles. The stimulation electro-
des (2.63 cm2 in size; Neuroline 700, Ambu, Ballerup, Denmark) were
placed over the ulnar nerve at both wrists with an interelectrode space
of 2 cm.

Electrical pulses were administered by an Electro Stimulator (AS
100, Alea Solutions, Zurich, Switzerland). Each electrical stimulus con-
sisted of a train of 4 biphasic pulses with 2 ms duration per pulse and a
frequency of 200 Hz resulting in total stimulus duration of 17 ms. The
intensity was set on 1.5 times motor threshold (MT). MTwas defined as
the lowest intensity leading to a visible twitch of the M. abductor digiti
minimi. It was determined by stepwise increasing the intensity. This

Figure 1. Experimental set-up and experimental conditions. (A) Technical construction
of the device. There are 2 torque sensors (typ: burster 8645) marked as (5). These 2
sensors separately measure the torque signals of the 2 sides. The main shaft (2) is
unlocked resulting in one shaft connecting the 2 sides of the device for torque
transmission. The 2 position sensors (4) were located on each handle separately. The
device shown allows the performance of dynamic bilateral cooperative and static
bimanual hand movements against a resistance. During the dynamic and static tasks,
the torque exerted by the right hand was transmitted to the left hand for compensation
and counteraction. The torques exerted on each side were indicated on a screen in
front of the subject. (B) Experimental conditions. Schematic drawings of all
experimental conditions included in the study. The main condition was the
performance of dynamic cooperative hand movements (a, dyn-coop). The controls
were: bilateral pro- and supination movements (b, pro-sup); static (isometric)
cooperative hand movements (c, stat-coop); synchronous up and down wrist
movements (with approximately the same movement amplitude and velocity as in a)
holding the device (d, non-coop-1), and reciprocal left-right up and down wrist
movements without device (e, non-coop-2). The conditions a and b were applied in
both the electrophysiological and fMRI studies. The condition c was only applied in the
electrophysiological study and conditions d and e only in the fMRI study.
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nonnoxious stimulation intensity (1.5 MT) is known to evoke
cutaneous reflexes (Yang and Stein 1990). A similar stimulus paradigm
has previously been used to investigate neural limb coupling during
locomotion in healthy subjects (Michel et al. 2008; Dietz et al. 2009)
and poststroke patients (Kloter et al. 2011).

In a pilot study, we compared the effects of median, radial, and
ulnar nerve stimulation. The bilateral responses to ulnar nerve stimu-
lation were more reproducible, and the stimuli were less painful than
median nerve stimulation. Superficial radial nerve stimulation was
more difficult to perform (perception threshold is a quite subjective
measure). Therefore, we used ulnar nerve stimulation in our study. The
stimulation electrodes were attached with a surgical tape after deter-
mining the optimal stimulation site. The MT of each person was
checked to confirm that it was constant during and after the exper-
iment.

The stimuli were randomly released every third to sixth cyclic move-
ment triggered by a change in torque of 0.035 Nm, that is, about 100
ms after the start of the opening (dyn-coop) movement of the right
hand and every 5–9 s during the control tasks. A dummy signal was re-
leased at the same time point without stimulation and was used to
record the nonstimulated EMG, that is, background activity.

Reflex Data Analysis
Reflex responses were analyzed by calculating the RMS of EMG signals
including all samples within a time window of 50–200 ms after the
start of stimulation. The window was chosen according to the appear-
ance of the main components of the reflex responses. The responses
were compared with the RMS of background EMG activity within the
same time window following “dummy” stimulations using a multi-
variate General Linear Model (GLM) with post hoc paired t-test with
Bonferroni correction. The factors for the GLM were condition, stimu-
lation side, and recording site.

The responses were mostly suppressive. The amplitude of the reflex
response (maximal negativity/suppression; maximal positivity/facili-
tation) was compared with that of background activity in the nonstimu-
lated recordings. The onset of reflex responses was determined
manually. The differences in latency were also compared by a GLM
with post hoc paired t-test with Bonferroni correction. Pearson corre-
lations were applied in order to evaluate the similarities between the
shape of the EMG response patterns recorded from the right forearm
extensors and left forearm flexor muscles during the dyn-coop
opening task, following unilateral nerve stimulation on the ipsilateral
and contralateral sides, respectively.

fMRI Study
For the fMRI study, a hand-held MR-compatible device was used corre-
sponding to the bottle device used in the EMG experiment, constructed
by the ETHZ. In total, 20 volunteers performed the dyn-coop condition
with the left hand resisting the opening movements guided by the
right hand (ca. 20% MaxT) with a frequency of 45/min, so that the right
extensors and left flexors were activated.

For control, the same participants performed a bilateral synchro-
nous pro-sup movement task of both arms, with a frequency of 45/min
while holding fMRI-compatible dumb-bells of 500 g. Additionally, 13
(out of 20) randomly selected volunteers performed 2 additional “non-
coop” tasks. During the “non-coop-1” task, they held the device and
executed symmetrical wrist extension and flexion movements (cf.
Fig. 1B, non-coop-1). The rationale for this choice of task was to have a
control task in which subjects performed synchronized (in-phase) but
noncooperative wrist movements. This control was included to see
whether activation of a brain region is exclusively influenced by the
factor “cooperative movement” or by the factor wrist movement during
extension and flexion movements in the dyn-coop task. During
the “non-coop-2” task, subjects performed the same reciprocal hand
wrist movements during the dyn-coop condition but without holding
the device (cf. Fig. 1B, non-coop-2). Thus, the factor “bimanual hand
movement” was kept constant, but the factor “hand cooperation” was
minimized.

For all tasks, pacing was achieved by visual cues, which were
shown via a mirror system, indicating the start of the requested

movement (movement onset was further controlled by the exper-
imenter). The synchronization between the fMRI clock and the tem-
poral onset of the visual cues was controlled by Presentation (www.
neurobs.com/presentation). Each task was performed separately (6
min duration) and was arranged in a block design: During each block,
7 opening-closing or pronation-supination movements were followed
by rest periods of 8–10 s. For each experimental condition, participants
performed 10 blocks (=70 trials). Task presentation was randomized
across subjects to avoid order effects. To prevent head movements during
the fMRI scan, a neck-pad was used to fixate the head. In addition, sub-
jects were only included if overall head motion was <1.5 mm in trans-
lation and 1.5° in rotation. We therefore believe that any task-related
activity was not influenced by head motion.

fMRI Acquisition
For all tasks, fMRI was performed at the University Hospital of Zurich
on a Philips Ingenia 3-T whole-body MRI system (Philips Medical
Systems, Best, The Netherlands) and an 8-channel head coil. Func-
tional data were obtained in 180 scans per run using 30 transverse
slices covering the whole brain in oblique orientation. Slices were ac-
quired in an interleaved order, using a sensitivity-encoded (SENSE,
factor 1.8), single-shot, echo planar imaging (EPI) technique (echo
time = 35 ms, repetition time = 2000 ms, field of view = 220 × 220 mm,
voxel size: 2.75 × 2.75 × 4 mm, resliced: 1.72 × 1.72 × 4 mm, flip angle:
78°). SENSE imaging was applied to shorten readout trains in a single
shot in EPI, to reduce susceptibility artifacts, and to improve spatial res-
olution (Boujraf et al. 2009). Four dummy scans were acquired at the
beginning of each run and discarded in order to establish a steady state
in T1 relaxation for all functional scans.

Preprocessing
Data were analyzed using MATLAB 7.9 (Mathworks, Inc., Natick, MA,
USA) and SPM8 (Wellcome Department of Cognitive Neurology,
London, UK). For each subject, functional images were realigned, nor-
malized to the EPI template provided by the Montreal Neurological In-
stitute (MNI brain), resliced to 2 × 2 × 2 mm voxel size, and smoothed
using 8-mm full-width at half-maximum Gaussian kernel. An autore-
gressive model of the first order was used to account for serial corre-
lations. High-pass filtering with standard 128 s cutoff eliminated slow
signal drifts. The Anatomical Automatic Labeling Toolbox for SPM8
was used to identify activated regions (Tzourio-Mazoyer et al. 2002).

Regions of Interest Analysis
Before testing for fMRI signal changes related to cooperative hand
movements (i.e., dyn-coop vs. pro-sup), we first estimated the average
activation strength (i.e., parameter estimates) across the dyn-coop and
pro-sup tasks (F-contrast, P < 0. 05, family-wise error [FWE] corrected
for multiple comparisons) in ROIs known to be involved in bimanual
hand movements (Puttemans et al. 2005; Grefkes et al. 2008). The
spatial coordinates of the individuals ROIs were determined following
the definition of Grefkes et al. (2008): the M1 region has to be located
in the precentral gyrus and central sulcus near the hand knob (MNI co-
ordinates in this study: left M1: −34 −26 56 and right M1: 36 −26 56),
the PMC in the lateral precentral sulcus (MNI coordinates: left PMC:
−50 −2 44 and right PMC: 52 −2 46), the SMA in the dorsal medial wall
within the interhemispheric fissure (MNI coordinates: 0 −19 48), and
the S2 region in the upper bank of the Sylvian fissure (MNI coordi-
nates: left S2: −56 −16 14 and right S2: 54 −14 18). Subsequent ana-
lyses were performed for ROIs, placed in S1 and in the insular cortex.
For each subject, the time series of all ROIs were extracted in a sphere
region (radius = 4 mm).

fMRI Data Analysis
A standard hemodynamic response function was used for convolution
of the model regressors. First-level analyses were conducted using a
voxel-wise GLM, which reflects a flexible generalization of an ordin-
ary/simple linear regression (Friston et al. 1995). Each task was
entered as regressors into 4 separate GLMs: dyn-coop and pro-sup
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(n = 20), andnon-coop-1andnon-coop-2 (n = 13). Session-specificmotion
parameters were modeled as covariates of no interest. Second-level
random effect analyses were conducted using a full-factorial design. The
following 2 contrasts were estimated: “dyn-coop versus pro-sup” (n = 20)
and “dyn-coop versus average (pro-sup and non-coop-1/2)” (n = 13). All
fMRI results were shown on a cluster-corrected (Forman et al. 1995; Slot-
nick et al. 2003) voxel threshold of P < 0.001 (spatial extent: k≥ 42
voxels). The cluster size threshold for the selected P-values was estimated
using Monte Carlo simulations (http://afni.nimh.nih.gov/pub/dist/doc/
program_help/AlphaSim.html). The cluster threshold method was
applied to control for the overall type I error. Only gray matter-related
fMRI signal changes will be reported.

Psycho-Physiological Interactions and Functional Connectivity
PPI is a brain imaging method of estimating the functional coupling
between a brain region and the rest of the brain with relation to the
performance of a particular cognitive task (Friston et al. 1997). In this
study, the psychological vector was separately modeled for 2 types of
bimanual hand movements: (1) dyn-coop and (2) pro-sup. For
example, the PPI-specific GLM for the dyn-coop task contains 3 regres-
sors: The interaction term (blood oxygen level-dependent [BOLD]
response × psychological vector), main effect of BOLD activity from a
given ROI, and main effect of psychological vector (e.g., dyn-coop). To
extend the concept of factorial designs to PPI’s, the basic idea is to sub-
stitute (neural) activity from one cerebral region for one of the factors:

Y ¼ROI�b1þðB2�B1Þ�b2þ½ROI �ðB2�B1Þ��b3þG�b4þ1;

with ROI: functional ROI (substitues original factor A), β: beta weights
B1/B2: factor B (with 2 levels), and ɛ: error term. [ROI × (B2−−B1)] × β3
reflect the interaction term, and ROI × β1 and (B2−B1) * β2 reflect the
main effects. The following seeds were used for the PPI analysis: right
and left, S2, right and left M1, and right and left PMC, and SMA. The
analysis was computed for the contrast “dyn-coop task > pro-sup task”
and for the reversed contrast.

We used the SPM toolbox conn (v13i, http://www.nitrc.org/
projects/conn/) to perform the FC analysis. White matter, cerebrosp-
inal fluid, and the 6 motion parameters were used as covariates of no
interest. Only the white matter and cerebrospinal fluid signals were
removed to avoid any bias introduced by removing the global signal
(i.e., gray matter) (Behzadi et al. 2007; Murphy et al. 2009). This ap-
proach should “normalize” the distribution of voxel-to-voxel connec-
tivity values as effectively as including the global signal as a covariate
of no interest, but without the potential problems of the latter method.
Although we did not record respiration and cardiac responses, it has
been demonstrated that nonneuronal physiological noise (e.g., cardiac
and respiratory signal) can successfully be removed by the CompCor
algorithm (Behzadi et al. 2007) as implemented in the conn toolbox.
Bivariate correlations were calculated as a measure of strength of FC,
to examine cross-correlations of BOLD signal time series between
ROIs. For each individual, the fMRI time series were extracted for each
ROI using MarsBaR (Brett et al. 2002; http://marsbar.sourceforge.net/)
after the fMRI time series had been spatially smoothed, temporally fil-
tered (0.01–0.1 Hz), normalized (to the MNI template), and motion cor-
rected. The signal of a given ROI was then averaged for 4-mm diameter
spheres. The same ROIs as for the PPI analysis were used. Task-
specific (dyn-coop and pro-sup) statistical results were represented at
P≤ 0.05 (FWE-corrected for multiple comparisons).

Results

Electrophysiological Recordings
An opening movement cycle took a mean of 485 ms. The
movement onset of the left and right hands during the
dyn-coop task was analyzed using the changes in hand pos-
ition (angular rotation sensors) at both handles. According to
this analysis, both hands started almost simultaneously with
the dynamic opening torque exerted by the right-hand and the

left-hand compensatory torque (difference between right and
left hands: 18 ± 18 ms).

During the different tasks, reflex responses measured in prox-
imal and distal arm muscles following unilateral ulnar nerve
stimulation showed approximately the same behavior, that is, a
unilateral (ipsilateral) EMG response during the control tasks
and a bilateral response during the dyn-coop task. For further
analysis, only the forearm flexors and extensor muscles were in-
cluded.

Figure 2 shows an example of the EMG signal recordings
from the right extensor muscles and the biomechanical signals of
torque and position of both sides from one volunteer during the
performance of the dyn-coop (Fig. 2A) and stat-coop (Fig. 2B)
tasks. During the dynamic task, segmented EMG responses ap-
peared in the right extensor muscles following right and left
ulnar nerve stimulation, whereas in the nonstimulated move-
ments they did not. In the static task, a response was only dis-
cerned in the ipsilateral muscle.

In the dyn-coop task, the reflex EMG responses evoked by
the stimulation consisted mainly of suppressive responses on
both sides. These were further evaluated for their similarities
in terms of latency, duration, and amplitude (Fig. 3a,b). In con-
trast, during the stat-coop task, reflex responses appeared only
ipsilateral to the same stimulation (Fig. 3c).

Figure 3 shows the overall averages of the reflex EMG
responses in the right extensor and left flexor muscles to ipsilat-
eral (Fig. 3A) and contralateral (Fig. 3B) ulnar nerve stimulation
during dyn-coop movements (Fig. 3a,b). The mean background
EMG activity is shown as gray area. The RMS values of all reflex
responses (time window 50–200 ms) in the dyn-coop task were
significantly different from background EMG activity (stimu-
lation ipsilateral P < 0.01, contralateral P < 0.05). The same
difference was found after ipsilateral stimulation in the stat-coop
task (Fig. 3c; P < 0.05) and in the pro-supin task (Fig. 3d;
P < 0.005) but not following contralateral stimulation, where no
response could be detected.

In Figure 3, the stimulation artifact lasted for the first 17 ms
on both sides. The responses in the right extensor muscles to
right (ipsilateral) ulnar nerve stimulation (Fig. 3Aa) appeared
with an early response (ER) that had a latency of 25 ± 3.1 ms,
followed by a first suppressive response (N1) peaking at a
latency of 43 ± 6.0 ms after onset of right-side stimulation and a
first facilitative wave (P1) with a peak at 59 ± 7.2 ms. The peak
of the second suppressive wave (N2) was reached at 86 ± 10.1
ms and the following plateau-like activity (P2) was observed at
120 ± 20.3 ms. Following left (contralateral) ulnar nerve stimu-
lation (Fig. 3Ba), the EMG response onset in the right extensor
was observed at 61 ± 8.8 ms, the peak of the suppressive wave
(N2) occurred at a latency of 87 ± 7.7 ms, and the plateau-like
activity (P2) was reached again at 104 ± 8.7 ms. The grand
averages of late right extensor responses to ipsi- and contralat-
eral nerve stimulation were similar in their latencies, durations,
and amplitudes.

Figure 3 also shows the corresponding EMG responses in
the left flexor muscles following left and right ulnar nerve
stimulation (Fig. 3b). Following left (ipsilateral) ulnar nerve
stimulation (Fig. 3Ab), an ER (onset 24 ± 3.7 ms) was followed
by a suppressive peak (N1) with a latency of 48 ± 5.8 ms, a fa-
cilitative peak (P1) at 69 ± 10.8 ms, and a second suppressive
peak (N2) at 96 ± 18.4 ms. The plateau-like activity (P2) was
reached again at 121 ± 22.9 ms. Stimulation of the right (con-
tralateral) ulnar nerve (Fig. 3Bb) was followed by a suppressive
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EMG response in the left flexor muscle starting at 66 ± 8.5 ms
with a peak suppression (N2) at 88 ± 7.7 ms, followed by a
peak facilitation (P2) at 109 ± 5.1 ms.

The background activity and EMG response amplitudes were
about 3 times larger in the extensor than in the flexor muscles.
In addition, the response amplitudes in the extensor muscles
(suppressive peaks) were smaller following contralateral com-
pared with ipsilateral stimulations (not significant, P = 0.057).

Figure 3c,d shows the EMG responses in the right forearm
extensors following ipsilateral (Fig. 3A) and contralateral
(Fig. 3B) ulnar nerve stimulation during the control tasks: Static
(Fig. 3c) and pro-sup (Fig. 3d) tasks. In contrast to the responses
in the right-arm muscles during the dyn-coop task (Fig. 3Ba,b),
no distinct EMG responses could be detected in the right exten-
sor muscle when the left (contralateral) ulnar nerve was stimu-
lated (Fig. 3Bc,d). In the static task (Fig. 3c), the EMG responses
in the right extensor muscle following ipsilateral nerve stimu-
lation appeared with a suppressive peak (N1) at a latency of
47 ± 5.6 ms, followed by a facilitative peak (P1) at a latency of
66 ± 6.5 ms, a second suppressive peak (N2) at 96 ± 15.3 ms,
and a late facilitative peak (P2) at 141 ± 21.7 ms. Similar
responses appeared in the left flexor muscle following left ulnar
nerve stimulation (not shown).

Also in the pro-sup task (Fig. 3d), EMG responses were only
present in the muscles of the stimulated arm. The EMG responses
in the right extensor muscle following ipsilateral nerve stimulation
appeared with a suppressive peak (N1) at a latency of 52 ± 4.8

ms, followed by a facilitative peak (P1) at a latency of 73 ± 6.3 ms,
a second suppressive peak (N2) at 106 ± 12.7 ms, and a late facili-
tative peak (P2) at 148 ± 29.8 ms.

The response pattern (early and late reflex complexes; ER to
P2) to ipsilateral stimulation was similar in latency, duration,
and amplitude during the dyn-coop and the control tasks
(Fig. 3A). Only during the dyn-coop task, a late reflex complex
(N2 and P2) appeared also at the contralateral, nonstimulated
side (Fig. 3B), which again was similar in latency, duration,
and amplitude to the late ipsilateral reflex complex.

The level of background activity in the extensor muscles was
about 3 times larger (RMS values: 154–45 µV) in the dynamic
compared with the static condition. When the amplitude of the
EMG responses was compared with that of background EMG
(same time interval in nonstimulated movements), it amounted
to 65% in the dynamic and 60% in the static task. The difference
in the background activity is thought to be due to the fact that a
dynamic movement against a torque of 20% MaxT produces a
stronger muscle activation compared with the static/isometric
muscle contraction with a 20% MaxT.

fMRI Recordings
Figure 4A shows robust mean fMRI signal changes across the
dyn-coop and pro-sup tasks in the SMA, PMC, and M1 as well
as in the cerebellum and higher visual areas (including V5).
However, the parameter estimates (Fig. 4B) did not differ

Figure 2. EMG and biomechanical signals. Individual example of the dyn-coop and the stat-coop tasks. Biomechanical signals and right forearm extensor muscle EMG (average of
15 trials) from one subject. (A) Dynamic and (B) static (bimanual) tasks. The stimulated (left and right ulnar nerve) and nonstimulated conditions are displayed. In addition, the
torque (solid lines) and position (dotted lines) signals of the right (black) and left (gray) side are shown. Negative sign stands for flexion while positive sign stands for extension
torque. Note the 2 ordinate scales on the left side of every graph (EMG activity [µV] on the outside and position [°] on the inside) and one on the right side (torque [Nm]). Note also
the different amplitude calibrations for the EMG signals in A and B.
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between dyn-coop and pro-sup in these regions. The contrast
dyn-coop versus pro-sup elicited exclusively bilateral acti-
vation patterns in the S2 (Brodmann area, BA, 43) at a voxel
threshold of P < 0.001 (cluster-corrected, k≥ 42 voxels) as
shown in Figure 5A and Table 1A. Parameter estimates were
significantly higher for the dyn-coop than for the pro-sup con-
dition (Fig. 5A, right S2: P < 0.001 and left S2: P < 0.001). As
shown in Figure 5B and Table 1B, the contrast between

“dyn-coop versus average pro-sup and non-coop” still revealed
bilateral S2 activation at a voxel threshold of P < 0.001 (cluster-
corrected, k≥ 42 voxels), and a weaker activation of the left
insular cortex (BA 13), cerebellum (lobes 3–5), right posterior
thalamus, and bilateral S1 (BA 2/3). S1 activity was especially
strong if the dyn-coop task was compared with the non-coop-2
task (P < 0.0001, data not shown), that is, a task in which sub-
jects did not hold any device but performed out-phase hand

Figure 3. Cooperative hand movements: Electrophysiological recordings. Grand averages (n= 12 subjects) of the EMG responses in the right forearm extensor (a) and the left
flexor (b) during the “dynamic” cooperative “opening” task to ipsilateral (A) and contralateral (B) ulnar nerve stimulations. Grand averages (n=12 subjects) of the EMG responses in
the right extensors during the “static/isometric” opening task (c) and during the pro-supin task (d) to ipsilateral (A) and contralateral (B) ulnar nerve stimulation. Stimulations were
randomly released either on the right or left side at the beginning (∼15%) of the movement cycle. The stimulation artifact lasts over the first 17 ms. The gray area shows the level of
background activity. ERs, first negativity (N1), and first positivity (P1) appeared only after ipsilateral stimulations (a). Peak negativity (N2) and positivity (P2) occurred in all 4
conditions displayed. Note the different amplitude calibrations.
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movements. At a more liberal threshold (P < 0.005, cluster-
corrected) also in the contrast dyn-coop versus pro-sup,
additional activations to S2 were observed bilaterally in S1 (Sup-
plementary Fig. 1). Only the left insular cortex (MNI: −38 −14 12,
Table 1B, P = 0.01) but not its homologous counterpart (MNI: 38
−14 12) or literature-based insular cortex ROIs (Heuninckx et al.
2005; MNI: −36 24 −8 and −36 −2 6) showed stronger activity for
dyn-coop relative to all control conditions.

The age of the subjects was not correlated to the right S2
(r =−0.21, P = 0.37) or left S2 (r = 0.35, P = 0.13) activity for the
dyn-coop task (assessed by Pearsons’s correlations).

The PPI analysis for the between-task comparison showed
significant results only for the contrast dyn-coop task versus
pro-sup task (P < 0.001, cluster-corrected with k≥ 42), but not
vice versa (see Supplementary Table 1). A main finding was that
a preselected seed was never “connected” to its homologous
counterpart. In general, results were rather unspecific and did
not show a unique pattern within intra or interregional seeds. In
contrast, the FC analysis revealed that the 2 S2 ROIs were func-
tionally connected during the dyn-coop task only (t = 3.75). In
addition, the left M1 and right M1 ROIs show a functional con-
nection (t = 6.21). At this statistical threshold, no functional coup-
ling between any of the ROIs was observed for the pro-sup task.

Discussion

The aim of this study was to explore the neural control of coop-
erative hand movements by electrophysiological and fMRI

recordings. The main result was that only during the perform-
ance of a cooperative opening movement. EMG responses ap-
peared in the forearm muscles of both arms, independent of
which side was stimulated. Correspondingly, fMRI showed a
bilateral functional coupling of the S2 regions during the
dyn-coop task, but not in the control tasks. Although, in most bi-
manual tasks, an integrated control structure might be used. The
present study suggests relevant task-specific differences in the
neural control.

Task-Specific Neural Hand Coordination
In the present study, we observed a task-specific neural coup-
ling during dynamic cooperative hand movements. Previous
electrophysiological research in this field has focused mainly
on the execution of unilateral or separate bimanual move-
ments, (Donchin et al. 1998; Swinnen 2002; White et al. 2008).
A task-dependent amplitude modulation of unilateral EMG
responses in upper limb muscles to magnetic brain stimulation
(Datta et al. 1989) and to cutaneous nerve stimulation (Zehr
and Kido 2001) with larger amplitudes during a dynamic com-
pared with a static muscle contraction (Zehr and Kido 2001)
were described. Only ipsilateral EMG responses were also re-
corded in both control conditions investigated here.

This reflex behavior differs profoundly from that found
during cooperative hand movements and represents the novel
result of this study. Exclusively during the dynamic cooperative
hand movements, a distinct contralateral EMG response pattern
(N2–P2 complex) appeared in forearm muscles with

Figure 4. Cooperative and pro-/sup hand movements: fMRI recordings. The 2- and 3-dimensional illustrations in (A) show the mean activity across the contrast “dyn-coop and
pro-sup” task (P< 0.001, FWE-corrected, F-contrast). Robust activations were seen in the SMA, M1, and PMC regions as well as in the cerebellum and higher visual areas. The
parameter estimates (with standard deviations) shown in (B) were not different between the dyn-coop and pro-sup tasks.
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approximately the same latency (80 ms) as the late complex
(N2–P2) of the ipsilateral, stimulated side. Therefore, different
neural circuitries are suggested to be involved during coopera-
tive and noncooperative handmovements.

In the muscles ipsilateral to the nerve stimulation, the
response pattern was more complex, combining early (ER and

N1–P1 complex), similar to reflex responses elicited during
control tasks, and long-latency (N2–P2 complex) reflex com-
ponents present also on the contralateral, nonstimulated side
only during the dyn-coop task. The distribution of reflex
responses to a unilateral afferent volley reflects a task-specific,
functionally meaningful, neural coupling of upper limbs, that
is, the processing of an artificial input by (coupled) neural cir-
cuits. This coupling obviously depends on the performance
of cooperative hand movements (“opening a bottle”), as the
coupling did not occur when the task was mimicked in
the static (stat-coop) condition or during the pro-sup task.
The mostly suppressive action of the responses might reflect a
transient blockage of processing the natural afferent input.

It might be argued that the high level of background EMG in
the forearm extensor (compared with flexor) muscles (cf.
Fig. 3a) contributes to the bilateral N2–P2 responses. However,
this is rather unlikely as (1) the extensor background EMG
level was similar during the pro-sup control task (Fig. 3d), but
a response appeared only ipsilateral to the stimulation site and
(2) the same bilateral N2–P2 pattern was obtained in the left
flexors (Fig. 3b) during the dyn-coop task, although the back-
ground EMG level was low compared with the extensor activity
(cf. Fig. 3c).

Figure 5. Cooperative versus noncooperative hand movements: fMRI recordings. The 3-dimensional illustration in (A) shows bilateral S2 activation for the contrast dyn-coop versus
pro-sup (P< 0.05, cluster-corrected with k≥ 42). Additionally, in both hemispheres, parameter estimates for S2 were significantly higher for the dyn-coop than for the non-coop
tasks (**P< 0.001). (B) shows the bilateral S2 activations for the contrast dyn-coop versus pro-sup (labeled in red) and for the contrast dyn-coop versus non-coop (labeled in
green) on an axial slice. L: left hemisphere, R: right hemisphere.

Table 1
Areas of the brain showing significantly greater BOLD signal changes for the (A) contrast “dyn-coop
task > pro-sup task” (P< 0.001, cluster-corrected with k≥ 42) and (B) the contrast “dyn-coop
task > average pro-sup task and noncoop tasks’” (P< 0.001, cluster-corrected with k≥ 42)

Region Brodmann area MNI coordinates t-value

x y z

(A) Contrast “dyn-coop task > pro-sup task”
Left postcentral gyrus (S2) 43 −58 −16 14 4.25
Right postcentral gyrus (S2) 43 54 −16 14 4.19

(B) Contrast “dyn-coop task > average pro-sup task and noncoop tasks”
Left postcentral gyrus (S2) 43 −58 −16 14 3.78
Right postcentral gyrus (S2) 43 54 −16 14 5.03
Left insula 13 −38 −14 12 3.87
Right posterior thalamus 16 −22 −2 3.53
Cerebellum 0 −50 −4 4.77
Left postcentral gyrus (S1) 3 −46 −20 52 4.59
Right postcentral gyrus (S1) 2/3 50 −20 46 4.33
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Task-Specific Involvement of CNS Areas
We suggest that such a task-specific neural coupling represents
an operational rule, which occurs within the spinal cord, brain-
stem, and supraspinal circuitries. There is spinal decussation
and bilateral termination of cervical corticospinal projections in
the cervical cord of monkeys (Rosenzweig et al. 2009), which
could account for the bilateral long-latency response pattern
seen in the dyn-coop condition. Stimulation of reticulospinal
cells can also lead to bilateral response patterns (Drew et al.
1996; Brocard et al. 2010). Such a mechanism was assumed to
mediate bilateral arm muscle responses to unilateral leg nerve
stimulation during locomotion of stroke subjects (Kloter et al.
2011). Although locomotor function differs basically from coop-
erative hand movements, the underlying task-dependent neural
coupling of limbs might be achieved in a similar way. Neverthe-
less, it is not possible to conclude from the present experiments
whether either one or both mechanisms are involved.

One has to be aware that the electrophysiological and fMRI
recordings represent connected studies, which provide comp-
lementary information since both experimental parts exam-
ined cooperative hand movements. They can, however, not
directly be linked with each other. Thus, the fMRI study does
not allow direct conclusions to be drawn in relation to the elec-
trophysiological findings. Based on our fMRI findings, we
suggest that the pathways and brain areas involved in the gen-
eration of the bilateral reflex responses become reflected in the
bilateral activation of S2 during cooperative hand movements
(i.e., dyn-coop vs. pro-sup). Using a different set-up, this as-
sumption is supported by observations in humans (Disbrow
et al. 2001) and nonhuman primates (Whitsel et al. 1969) as S2
receives afferent inputs from receptor fields of both hands.

Earlier it was hypothesized that a single integrating center is
involved in the control of bimanual movements (Wiesendanger
and Miles 1982; Peters 1985; Jagacinski et al. 1988), and that
the connectivity between the homologous primary motor cor-
tices is mediated by the corpus callosum (Liuzzi et al. 2011).
The latter mechanism would be in line with the observation
that patients who undergo callosotomy are unable to perform
these tasks (Preilowski 1972).

However, our fMRI results do not provide evidence for a single
integrating center but for the existence of a brain region, that is,
S2 bilaterally, which is specifically involved in the coordination of
cooperative hand movements but not in the control tasks. If the
contrast dyn-coop versus pro-sup task was analyzed, one could
argue that we have not identified regions that are responsive to
cooperative hand movements as the observed activation differ-
ences could simply be due to different proprioceptive input to S2.
However, our results do not support this assumption, as bilateral
S2 activation was still present after subtraction of the non-coop
tasks, which involve both in-phase (non-coop-1 task) and out-
phase (non-coop-2 task) bimanual hand movements. Thus, S2
activation appears to be task-dependent and might be modulated
by an “additional/stronger coordinative effort” (Heuninckx et al.
2005; Wenderoth et al. 2005; Goble et al. 2010) during the
dyn-coop task. Therefore, the “task-specific” bilateral activation of
the S2 areas does not exclude an S2 activation in other bimanual
movement tasks not investigated here.

In addition, an S1 activation was found especially in the con-
trast “dyn-coop versus non-coop-2”, although it was weaker
than S2 activation. This S1 activation has to be due to coopera-
tive hand movements and not to out-phase wrist movements.

Hence, we would conclude that successful integration of active
cooperative hand movements (integration sensory information
of both body parts) is primarily achieved by S2 with an
additional involvement of S1.

It has been hypothesized that S2 plays a role in the human
mirror system (Avikainen et al. 2002), because an active sup-
pression of S2 occurred during action observation. Yet, this
finding is unlikely to explain our results as visual observation
of the hand was minimized during scanning. Furthermore, S2
seems to play an important role in proprioception (Lin et al.
2000). Although proprioception from the wrist movements
was similar for both the dyn-coop and the pro-sup tasks, the
shared bimanual afferent input during the dyn-coop task
might be meaningful for the S2 activation. It is known that S2
activity increases during attentive cutaneous tasks (e.g., Nelson
et al. 2004; Jung et al. 2012). It would thus seem reasonable
that the dyn-coop condition included greater attention to the
bimanual cutaneous information that signaled the activity of
the opposite limb during rotation of the device.

S2 is also suggested to be involved in the exchange and inte-
gration of information from the 2 sides of the body (Lin and
Forss 2002). After unilateral limb stimulation, S2 cortices of both
hemispheres are activated and thus, S2 is thought to have a role
in combining somatosensory information from the 2 sides of the
body to allow its interhemispheric unification (Hari et al. 1998),
which is in line with our fMRI results. In addition, the spatial
extent of fMRI activation in the S2 (and ventral parietal areas) in
humans is larger for bilateral hand stimulation than for unilateral
(Disbrow et al. 2001). This further supports our suggestion that
S2 is engaged and required in the interhemispheric processing
of afferent input during cooperative hand movements. The func-
tional connectivity analysis revealed that the left and right S2
areas (in addition to M1) were functionally connected only
for the dyn-coop condition. Thus, a stronger connectivity
between the right and the left S2 exists for the dyn-coop task
relative to the pro-sup task. This finding supports the idea of an
interaction and coupling between the 2 cortical areas involved
in the execution of the cooperative task.

There was no specific dyn-coop-related activation of the SMA,
(right) insular cortex (Heuninckx et al. 2005), or any other corti-
cal regions (e.g., M1 and PMC) (Grefkes et al. 2008) nor an
age-related increase in S2 activity within our subject sample
(Heuninckx et al. 2005; Goble et al. 2010), suggested to be
characteristic for other bimanual hand movements. The absence
of an age-by-task correlation is not surprising, as activations (in-
cluding S2) for coordinated bimanual hand movements do only
show an age-dependency for the elderly (subjects > 60 years;
Heuninckx et al. 2005; Goble et al. 2010), but not for young,
adults. However, the nonsubtracted fMRI data show robust acti-
vation of the SMA, PMC, and M1 in all experimental hand move-
ment tasks performed in this study, that is, these cortical areas
are obviously nonspecifically involved in all bimanual move-
ment tasks. Themain difference in the neural organization of co-
operative handmovements is the involvement of S2.

Consequences for Hand Rehabilitation
Task-specific training effects are well established on the basis
of both animal experiments (Edgerton et al. 1997; de Leon
et al. 1998a, 1998b) and studies in humans (for reviews, see
Dietz 2002, 2008). An established approach for hand rehabili-
tation after a stroke is “constraint-induced movement therapy”
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(Liepert et al. 1998; for reviews, see Taub et al. 1999; Liepert
2010; Nijland et al. 2011). Using this approach, the paretic
limb is trained exclusively and compensation or involvement
of the unaffected limb is avoided. According to observations
made here, the neural structure and interhemispheric infor-
mation transfer mediating cooperative movements should
additionally be trained in order to achieve an improved per-
formance in everyday tasks that require cooperative hand
movements.

Conclusion
On the basis of both reflex and fMRI analyses, we conclude that
combining and integrating somatosensory information from
dynamic cooperative hand movements is task specifically
mediated by S2. Consequently, the afferent volley produced by
unilateral nerve stimulation is thought to be processed by an
interaction of the S2 areas through the corpus callosum. The
similarity in latency of the N2–P2 complex of the reflex EMG
responses indicates a joint release from supraspinal centers to
the arm muscles of both sides. This together with the simul-
taneous start of bilateral hand movements to “open the bottle”
suggests a common release of executor signals to forearm exten-
sors and flexors. The present data provide evidence that bilateral
S2 areas are involved in such cooperative bimanual actions. It
remains for further studies to determine the exact pathways in-
volved in the generation of the bilateral reflexes described.

Supplementary Material
Supplementary can be found at: http://www.cercor.oxfordjournals.
org/
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