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The aim of this study was to determine the effects of tumour necrosis factor α (TNF), interleukin-1 α (IL-1α),

macrophage colony-stimulating factor (MCSF) and transforming growth factor β (TGFβ) on the secretion of

matrix metalloproteinases (MMP), human chorionic gonadotrophin (HCG) and fetal fibronectin (fFN) by

purified first trimester cytotrophoblastic cells (CTB) in vitro. CTB were obtained from legal abortions and

cultured in vitro in the presence or absence of the different cytokines. Secreted gelatinases were analysed in

the culture supernatants by zymography, by measurements of the total gelatinolytic activity and by enzyme

immunoassays. HCG and fFN were measured by commercially available immunoassays. TNF increased

the total gelatinolytic activity by increasing MMP-9 activity (P J 0.025–0.0177) but decreased MMP-2 activity

(P < 0.03) and immunoreactivity (P < 0.05), fFN (P < 0.02) and HCG (P < 0.01). IL-1α significantly increased the

secretion of fFN (P < 0.02), the activity (P < 0.02) and immunoreactivity (P < 0.05) of MMP-9 but had no effect

on the other parameters. MCSF increased MMP-9 immunoreactivity (P < 0.05) and moderately decreased

HCG. TGFβ inhibited total gelatinolytic activity, MMP-9 activity and immunoreactivity, but was without effect

on MMP-2 concentrations and activity. TGFβ decreased HCG (P < 0.041) and increased fFN (P < 0.042). Our

results indicate that TGFβ, TNF and IL-1α are important regulators of trophoblastic MMP secretion.
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Introduction

Implantation and placentation rely upon a fundamental bio-
logical process: trophoblastic invasion (Crosset al., 1994;
Bischof and Campana, 1996). The transiently invasive proper-
ties of trophoblastic cells are related to their capacity of
secreting proteolytic enzymes such as the metalloproteinases
(MMP) and the serine proteinases. Gelatinase B also called
matrix metalloproteinase-9 (MMP-9) is considered as the rate-
limiting factor in extracellular matrix remodelling that takes
place during trophoblastic invasion (Librachet al., 1991;
Shimonovitzet al., 1994; Bischofet al., 1995a). In contrast
to tumour invasion of a host tissue, trophoblastic invasion is
stringently controlled both in space (it is limited to the
endometrium and the proximal myometrium) and in time (it
ends by about midgestation). The factors responsible for these
important regulatory processes are unknown but in-vitro studies
point to endometrial cytokines and growth factors as possible
candidates. Graham and Lala (1991) reported that conditioned
media from first trimester human decidua suppresses invasion
of trophoblastic cells in the amnion invasion assay and that
this effect is blocked by antibodies to transforming growth
factor β (TGFβ) indicating that this cytokine could be a
decidual regulator of trophoblast invasion. Other cytokines,
e.g. leukaemia inhibitory factor (LIF) (Bischofet al., 1995b),
epidermal growth factor (EGF) (Basset al., 1994), interleukin-
1β (IL-1β) (Simón et al., 1994a) and insulin-like growth
factor binding protein-1 (Bischofet al., 1998) have also been

252 © European Society of Human Reproduction and Embryology

described as potential regulators of trophoblastic invasion (for
review, see Tabibzadeh and Babaknia 1995; Hulboyet al,
1997). There is no reason to suppose that there are no other
cytokines involved in this regulatory process. Indeed, tumour
necrosis factor (TNFα) is produced by endometrial cells (Hunt
et al., 1992) and regulates trophoblastic MMP-1 (Soet al.,
1992). Similarly, macrophage colony-stimulating factor (MCSF
or CSF-1) is produced by decidualized endometrial cells
(Azuma et al., 1990) and MCSF receptors have been found
on extravillous but not on villous cytotrophoblastic cells, thus
on the invasive trophoblast (Pampferet al., 1992; Jokhi
et al., 1993).

Therefore, we studied the potential regulatory role of some
of these cytokines (TGFβ, TNFα, IL-1α and MCSF) on the
secretion of gelatinases (MMP-2 and MMP-9) particularly
because MMP-9 is instrumental to trophoblast invasion
(Librachet al., 1991) and because the effects of these cytokines
on trophoblastic MMPs have not been investigated in primary
cultures of first trimester cytotrophoblastic cells.

Materials and methods

Reagents

Roswell Park Memorial Institute (RPMI) medium and Dulbecco’s
minimal essential medium (DMEM), gentamicin, amphoptericin-B,
L-glutamin, microplates Maxisorb F16 (Nunc), fetal calf serum
(FCS) and trypsin were from Life Technologies (Basel, Switzerland).
Penicillin was from Hoechst-Pharma, Zu¨rich, Switzerland, streptomy-
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cin from Grünenthal, Sto¨lberg, Germany. Phorbol-12-myristate-13-
acetate (PMA), lactalbumin hydrolysate, Brij 35, phenylmethylsul-
phonyl fluoride (PMSF), biotin amidocaproateN-Hydrosuccinimide
ester (activated biotin),Clostridium histolicum collagenase (EC
3.4.24.3, 330 IU/mg), HEPES, azide, Tween-20, bovine serum albu-
min, Trypan Blue and dimethylsulphoxide (DMSO) were all from
Sigma, Buchs, Switzerland. Gelatin–sepharose, concanavalin-A–
sepharose, Percoll and high molecular weight standards were from
Pharmacia Biotech (Du¨bendorf, Switzerland); Blotto Blocker in
phosphate-buffered saline (PBS) was from Pierce (Socochim,
Lausanne, Switzerland) whereas horseradish peroxidase (HRP) con-
jugated to avidin, HRP-conjugated rabbit immunoglobulins against
sheep immunoglobulins (RAS-PO), 1,2-phenylenediamine (OPD)
were all from Dako Diagnostics AG (Zug, Switzerland). Methyl-α-
D-mannopyrannoside, Triton X100 were from Fluka Chemika (Buchs,
Switzerland). Sheep anti-MMP-2 (PC 158) and sheep anti-MMP-9
(PC 163) polyclonal immunoglobulin (Ig)G were from The Binding
Site (Sodiag, Losone, Switzerland). Macrophage colony stimulating
factor (MCSF), human interleukin 1-α (IL-1α), transforming growth
factor β-1 (TGFβ), and tumour necrosis factorα (TNFα) were from
R&D systems, Bu¨hlmann Laboratories (Basel, Switzerland). The
magnetic particles coated with anti-CD45 were from Dynal (Milian,
Geneva, Switzerland).

Preparation of cytotrophoblastic cells (CTB) and culture

conditions

CTB were isolated, purified and cultured as previously described
(Bischof et al., 1991). Briefly, trophoblastic villi obtained from legal
abortions (6–12 weeks pregnancy) were digested by trypsin. CTB
were separated from blood cells and syncytia on a discontinuous
Percoll gradient and the contaminating leukocytes removed by
immunopurification with an antibody to CD45 coupled to magnetic
particles. These CTB were counted in a Neubauer cell in presence
of Trypan Blue and diluted to 106 cells/ml.

Cells (23105/wells) were cultured overnight in DMEM containing
2 mM L-glutamin, 4.2 mM magnesium sulphate, 2.5 mM HEPES,
1% gentamycin, 1% amphoptericin-B, 100µg /ml streptomycin and
100 IU/ml penicillin in presence of 10% FCS. The next morning
(day 0), medium was changed to serum-free DMEM and the cells
incubated in the presence or the absence of increasing concentrations of
TNFα (1–100 ng/ml), TGFβ (0.01–10 ng/ml), MCSF (0.1–100 ng/
ml) or IL-1α (0.01–10 ng/ml). Incubation was performed under a 5%
CO2 and 95% air atmosphere in a humid incubator at 37°C. Medium
was changed on day 2 and on day 4 and the culture was stopped on
day 4. The supernatants were divided into aliquots and stored at –
20°C until assayed. The cells were lysed with 200µl Triton X-100
(25% in water) and stored at –20°C for total cell protein measurements.
Each experiment was repeated at least three times with different CTB
preparations and duplicates of each culture condition were used
throughout the study.

Enzyme-linked immunosorbent assay (ELISA) for MMP-9

and MMP-2

In order to develop specific assays for MMP-2 and MMP-9 we
purified MMP-9 from supernatants of the monocytic U937 cell line
and produced a polyclonal anti-MMP-9 antiserum in rabbits (see
below). The MMP-9 ELISA uses this polyclonal as the capturing
antibody whereas the MMP-2 ELISA was constructed with a commer-
cially available polyclonal antibody (see below). The MMP-9 standard
was a pool of U937 cell supernatants calibrated against a supernatant
from THP-1 cells (Prof J.M.Dayer, Department of Immunology,
University of Geneva) whereas the MMP-2 standard was a pool of
supernatants from gingival fibroblasts (a generous gift from Prof
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P.Baehni, Department of Stomatology, University of Geneva)
calibrated against recombinant human MMP-2 (a gift from Prof
J.M.Foidart, Department of Obstetrics and Gynaecology, University
of Liege).

Culture conditions of cell lines

U937 cells (a generous gift from Prof J.M.Dayer, Department
of Immunology, University of Geneva) were grown in RPMI
medium supplemented with antibiotics, 2.5µg/ml amphoptericin-B,
0.1 mg/ml gentamicin, 2 mML-glutamin and 10% of a pool of normal
human serum (NHS). After centrifugation, the cells were resuspended
at a concentration of 13106 cells/ml in RPMI without NHS but with
20 ng/ml of PMA and 0.2% lactalbumin hydrolysate. After 48 h, the
cell suspension was centrifuged, Brij 35 and PMSF were added to the
supernatant at a final concentration of 0.05% and 2 mM respectively, to
avoid degradation of MMPs. The supernatants were kept frozen at
–80°C until purification. One pool of this medium was divided into
aliquots and stored at –20°C to be used as a standard for MMP-
9 ELISA.

Human gingival fibroblasts were grown in DMEM supplemented
with antibiotics, 2.5µg/ml amphoptericin-B, 0.1 mg/ml gentamicin
and 10% of fetal calf serum (FCS). The fibroblast conditioned medium
was obtained when confluent cells (~106cells/ml) were made quiescent
by alternated cycles of 48 h without FCS and 72 h with FCS.
Fibroblast conditioned media without FCS were pooled, supplemented
with 2 mM PMSF and 0.05% Brij 35 and was divided into aliquots
and stored at –20°C to be used as a standard for MMP-2 ELISA.

Purification of MMP-9

The purification procedure followed an already published protocol
(Ward et al., 1991). Pooled U937 conditioned medium (4.8 l) to
which 48 ml of 1 M Tris, pH 7.6 was added, was applied on a
gelatin–sepharose column (532.5 cm), equilibrated in Tris 10 mM,
NaCl 1 M, CaCl2 10 mM, 0.04% Brij 35, pH 7.6 (buffer A). The
column was thoroughly washed with buffer A and eluted with 10%
DMSO in buffer A. The presence of MMP-9 in the fractions was
tested by gelatin zymography (see below). Fractions containing MMP-
9 activity were pooled, dialysed against buffer A and applied to a
concanavalin–A sepharose column (2.539 cm), equilibrated in buffer
A. After washing, the column was eluted with 0.5 M methyl-α-D-
manno-pyrannoside in buffer A. MMP-9 containing fractions were
concentrated on a small gelatin–sepharose column (0.5310 cm). The
pooled MMP-9 fractions were dialysed against Tris 0.01 M, NaCl
0.1 M, CaCl2 10 mM, Brij 35 0.04%, divided into aliquots and stored
at –20°C.

Production of anti-MMP-9 polyclonal antibodies

Purified MMP-9 was dialysed against PBS, and ~40µg were injected
s.c. in two New Zealand rabbits (medical faculty animal house). A
second 20µg injection was performed 5 weeks later, and a third one
4 weeks after the second one. Titre was monitored by Ouchterlony’s
double-immunodiffusion. Sera presenting a titreù1/32 were pooled.
An IgG preparation was obtained by ammonium sulphate precipitation
of these pooled rabbit sera. The IgG concentration (9.6 mg/ml) was
estimated by measuring the OD at 280 nm.

Biotinylation of antibodies

Sheep anti-human MMP-2 (500µl, 13 mg/ml) was diluted 1:1 with
bicarbonate buffer (0.1 M, pH 8.4) and dialysed against this buffer
for 48 h at 4°C. Activated biotin, at a concentration of 10 mg/ml in
DMSO, was added (110µl) and incubated for 2 h at room temperature.
The preparation was then extensively dialysed against PBS containing
0.02% NaN3, and stored at 4°C.
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MMP-2 ELISA

Microplates (96-well) were coated overnight at 4°C with 100µl of
sheep anti-human MMP-2 (30µg/ml in Na-carbonate buffer, 50 mM,
pH 9.6). Unbound sites were blocked for 2 h at room temperature
with 250 µl of 10% Blotto in PBS containing 0.02 % NaN3. Plates
were then washed twice with PBS containing 0.1% Tween 20 (PBST,
250 µl/well) and once with PBST1 10% Blotto (PBSTB).

Samples and standards were diluted in PBS containing 10% Blotto
(PBSB), applied in duplicates (100µl/well) and incubated overnight
at room temperature. After incubation, the plates were washed as
previously described, and incubated with biotinylated anti-MMP-2
(100 µl/well) for 2 h at room temperature on a rotating platform.
Plates were then washed three times with PBST, and once with
PBSTB and reincubated for 30 min at 20°C with avidin–peroxidase
(1/4000 in PBSTB, 100µl/well).

After washing (four times) with PBST, the plates were incubated
in the dark for 10 min with OPD and H2O2 30% (10 mg and 10µl/
25 ml respectively in citrate-phosphate buffer 0.05 M, pH 5.0,
200 µl/well). The reaction was stopped by the addition of sulphuric
acid (3 M, 50µl/well ) and the absorbance measured at 492 nm in
an ELISA plate reader (Labsystem Multiscan; BioConcept, Allschwill,
Switzerland).

MMP-9 ELISA

Washing and incubation procedures are essentially the same as for
the MMP-2 ELISA. Our rabbit anti-human MMP-9 IgG preparation
was used for coating the plates (48µg/ml). The second antibody was
a commercially available sheep anti-MMP-9, it was diluted 1/2000
in PBSTB. Peroxidase-labelled rabbit anti-sheep antibodies (100µl/
well) were incubated for 1 h at room temperature. Detection was the
same as for MMP-2 ELISA.

The concentration of MMP-2 and MMP-9 were calculated by
comparison to the respective standard curves expressed as log OD
versus the log concentration of the MMPs. These calculations were
performed on a Power Macintosh 7100/66 computer using a regression
analysis from the StatView program (Abascus).

Gelatinolytic assays

Zymography was performed as previously described (Martelliet al.,
1993). Zymograms were scanned in an ‘Apple Onescanner’ and the
surface of the digestion bands measured by the NIH Image 1.60
program on the Power Macintosh 7100/66 computer. All zymograms
were evaluated using the same pre-set standards.

Quantitative estimation of total (MMP-21 MMP-9) gelatinolytic
activity was performed by measuring the degradation of heat-dena-
tured [3H]-collagen type IV using a method already reported by us
(Bischof et al, 1995c). The standard curve was built by using
collagenase fromClostridium histolyticumand ranged from 0.8 to
50 ng/ml (0.26–16.5 IU/ml).

Hormone and protein assays

Total human chorionic gonadotrophin (HCG1 free βHCG) was
measured in the supernatants by a microparticle enzyme immunoassay
with a sensitivity of 1 mIU/ml and a coefficient of variation of 3.6%
(Abbott, Abbott Park, IL, USA). Fetal fibronectin (fFN) was measured
by a commercially available enzyme immunoassay with a sensitivity
of 50 ng/ml and a coefficient of variation of 7.5% (Adeza Biochemical;
Sunnyvale, CA, USA). Total cell proteins were measured in the cell
lysate by the Bio-Rad protein assay according to the manufacture’s
instructions and using bovine serum albumin as the standard (Bio-
Rad, Munich, Germany)
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Statistical analysis

To evaluate the effects of the cytokines on the different trophoblastic
parameters, the individual values were transformed into values per
mg cell proteins and per day [(conc.day2/mg Prot)1 (conc.day4/mg
Prot)]/4 and expressed as a percentage of the respective controls
(CTB in absence of cytokines). All experiments were run in duplicates
and repeated with three different preparations of CTB. Statistical
analyses were performed by analysis of variance (ANOVA) using the
StatView 4.5 program on the Power Macintosh 7100/66 computer.

Results

TNF significantly increased (P5 0.0432–0.0011) the total gelat-
inolytic activity of CTB in a dose-dependent manner (Figure 1a).
MMP-9 activity was also significantly increased (P 5 0.025–
0.0177, Figure 1b), whereas its immunoreactivity remained
unchanged (Figure 1c). In contrast, TNF significantly decreased
(P 5 0.028 andP 5 0.026 for 50 and 100 ng/ml respectively)
MMP-2 activity and immunoreactivity (P 5 0.051 andP 5
0.061 for 10 and 100 ng/ml respectively, Figure 1d and 1e). The
concentration of HCG was decreased in a dose-dependent and
significant fashion (P 5 0.0094–0.0004) by TNF (Figure 1f),
whereas fFN was significantly inhibited but only by the highest
concentrations of TNF (P 5 0.0142 andP 5 0.0226 for 50 and
100 ng/ml respectively, Figure 1g).

IL-1α significantly increased MMP-9 activity (P 5 0.019–
0.006, 1.0–10.0 ng /ml, Figure 2b) and immunoreactivity (P 5
0.0097,P 5 0.049 for 3.0 and 10.0 ng/ml respectively, Figure
2c) as well as immunoreactive fFN (P 5 0.016,P 5 0.014 for
3.0 and 10 ng /ml respectively, Figure 2g). None of the other
parameters measured were statistically modified by this
cytokine.

MCSF was inactive on most trophoblastic parameters
measured except for an increased MMP-9 immunoreactivity
(P 5 0.019–0.018 for 1–100 ng/ml respectively, Figure 3c)
and for a significant inhibitory effect on HCG with the
highest concentrations used (P 5 0.012, P 5 0.023 for 50
and 100 ng/ml respectively, Figure 3f).

Figure 4 illustrates the effects of TGFβ. This cytokine
inhibited the total gelatinolytic activity (P 5 0.023–0.018, for
1.0–10 ng/ml, Figure 4a), the activity of MMP-9 (P 5 0.025–
0.043 for 3 and 10 ng/ml respectively, Figure 4b) and MMP-
9 immunoreactivity (P 5 0.027 toP 5 0.014 for 0.3 to 10 ng/
ml respectively, Figure 4c) but had no effect on MMP-2 levels
and activity (Figure 4d and e). In contrast, TGFβ significantly
decreased the concentration of HCG in dose-dependent manner
(P 5 0.041–0.001 for 0.1–10 ng/ml, Figure 4f). Only the
highest concentration of this cytokine (10 ng/ml) increased the
secretion of fFN significantly (P 5 0.042, Figure 4g).

Discussion

TNF, a potent apoptotic cytokine originally identified as a
product of activated macrophages is now known to be produced
by many types of cells including those in the female genital
tract (Hunt, 1993). Protein and TNF transcripts were identified
in villous and extravillous CTB (Kinget al., 1995), in
syncytiotrophoblast (Hayneset al., 1993) as well as in endo-
metrial large granular lymphocytes and CD 3 positive T cells
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Figure 1. Effects of tumour necrosis factor (TNF) on (A) total gelatinolytic activity, activity of (B) matrix metalloproteinase (MMP)-9 and
(C) MMP-2 and immunoreactivities of (D) MMP-9 and (E) MMP-2, and the concentration of (F) fetal fibronectin (fFN) and (G) human
chorionic gonadotrophin (HCG) of cytotrophoblastic cells (CTB) culturedin vitro. Mean1 SEM, n 5 6. Values are expressed as
mg/protein/day in percentage of controls (CTB in the absence of cytokines).

(Jokhi et al., 1994). Two types of receptors were described
for TNF and both are present in endometrial epithelial cells
(Tabibzadehet al., 1995) and choriocarcinoma cell lines (Yang
et al., 1993). Therefore, this cytokine seems well positioned
to play a regulatory role in trophoblast invasiveness. Despite
the fact that TNF receptors are secreted by CTB in the culture
medium (Knöfler et al., 1998), TNF doubles the gelatinolytic
activity of CTB. This effect seems to be due to an activation
of proMMP-9 into MMP-9 since the activity of MMP-9 is
increased by TNF but the levels of this gelatinase remain
unchanged. The increased gelatinolytic activity of CTB cannot
be attributed to MMP-2 since TNF decreases both the activity
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and the levels of MMP-2 in these cells. It is however
unclear if this TNF-induced proteolytic potential could favour
trophoblast invasivenessin vivo since this cytokine does not
increase CTB invasion in Matrigel (Basset al., 1994). The
inhibitory effect of TNF on HCG secretion observed here
confirms previous observations (Ohashiet al., 1992) which
clearly demonstrated that this inhibitory effect was not due to
TNF cytotoxicity. In contrast to these results, Liet al., (1992)
reported a stimulatory effect of TNF on HCG production using
an interleukin-6 (IL-6) and IL-6-receptor-dependent system.
This stimulatory effect was, however, observed when TNF
was incubated for only 3 h with CTB.
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Figure 2. Effects of interleukin-1α (IL-1α) on (A) total gelatinolytic activity; activities of (B) matrix metalloproteinase (MMP)-9 and (C)
MMP-2; immunoreactivities of (D) MMP-9 and (E) MMP-2; and the concentrations of (F) fetal fibronectin (fFN) and (G) human chorionic
gonadotrophin (HCG) of cytotrophoblastic cells (CTB) culturedin vitro. Mean1 SEM, n 5 6. Values are expressed as mg/protein/day in
percentage of controls (CTB in the absence of cytokines).

IL-1 consists of two distinct but related peptides (IL-1α
andβ). IL-1, a known product of monocytes and macrophages
is also produced by the tissues of the feto–maternal interface.
In mice, IL-1 is an important mediator of implantation (Simo´n
et al., 1994b). In the human, IL-1 is similarly distributed both
at the protein and mRNA level (Romeroet al, 1989; Kauma
et al., 1990; Simo´n et al., 1994a). Endometrial epithelial
cells and extravillous but not villous CTB have IL-1R-1.
Interestingly, both CTB and decidualized stromal cells produce
IL-1. IL-1 has been shown to stimulate the activity of MMP-
1, MMP-3 and TIMP in human fibroblasts (Unemoriet al.,
1991) and MMP-9 in CTB (Librachet al., 1994). The present
results confirm and extend this last observation since in our
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hands IL-1 not only increases the activity of MMP-9 but also
increases its immunoreactivity. We conclude that IL-1 increases
both the synthesis and the activation of pro-MMP-9, a conclu-
sion which is in line with the observation that IL-1 increases
the mRNA of MMP-9 in first trimester CTB (Shimonovitz
et al., 1996). Masuhiroet al. (1991) showed that IL-1α
stimulates the secretion of HCG in first trimester CTB, this
effect being dependent on trophoblastic IL-6 secretion and
IL-6 receptor mediated signal transduction. Although we are
using the same type of cells and similar concentrations of
IL-1, we do not see any stimulatory effect of IL-1 on HCG
secretion. This discrepancy could be due to the fact that
Masuhiro et al. (1991) observed a maximal stimulation of
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Figure 3. Effects of macrophage colony-stimulating factor (MCSF) on (A) total gelatinolytic activity; activities of (B) matrix
metalloproteinase (MMP)-9 and (C) MMP-2; immunoreactivities of (D) MMP-9 and (E) MMP-2; and the concentrations of (F) fetal
fibronectin (fFN) and (G) human chorionic gonadotrophin (HCG) of cytotrophoblastic cells (CTB) culturedin vitro. Mean1 SEM, n 5 6.
Values are expressed as mg/protein/day in percentage of controls (CTB in the absence of cytokines).

HCG release 3 h after they had given IL-1 whereas we
measured HCG only after 24 h of incubation. It is thus possible
that IL-1 stimulates the secretion rather than the synthesis of
HCG. The IL-1-induced trophoblastic fFN release observed
here has not been reported previously.

MCSF null mutant mice are osteopetrotic and have a
compromised reproductive potential (Pollardet al., 1991). It
is thought that MCSF, a product of macrophages, is an
important regulator of implantation in mice. In humans, MCSF
mRNA was shown to be present in decidua (Kaumaet al.,
1991), villous CTB but not in extravillous CTB (Kinget al.,
1995). In contrast, the MCSF receptor encoded by the proto-
oncogene c-fms is present in the CTB columns of anchoring
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villi (Jokhi et al., 1993) but not on villous CTB. In the present
study, MCSF had virtually no effect except for a moderate
stimulatory effect on immunoreactive MMP-9 and a slight
inhibitory effect on HCG. According to a recent publication
by Omigbodumet al. (1998), MCSF increases the trophoblastic
mRNA of fFN and its receptor, the integrinα5β1 at 24 and 72
h of exposure. In our hands, however MCSF had no effect at
the fFN protein level. The reasons for this are obscure at the
present time.

TGFβ is represented by five homodimeric polypeptides
which share 70–80% structural homology. TGFβ 1, 2 and 3
are produced by many mammalian cells. TGFβ protein and
mRNA have been localized in endometrial stromal, epithelial
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Figure 4. Effects of transforming growth factorβ (TGFβ) on (A) total gelatinolytic activity; activities of (B) matrix metalloproteinase
(MMP)-9 and (C) MMP-2; immunoreactivities of (D) MMP-9 and (E) MMP-2; and the concentrations of (F) fetal fibronectin (fFN) and (G)
human chorionic gonadotrophin (HCG) of cytotrophoblastic cells (CTB) culturedin vitro. Mean1 SEM, n 5 6. Values are expressed as
mg/protein/day in percentage of controls (CTB in the absence of cytokines).

and decidual cells, as well as in villous and extravillous CTB
and in syncytium (Grahamet al., 1992; Richardset al., 1993).
CTB have three types of TGFβ receptors with differing
affinities for TGFβ1 and TGFβ2 (Mitchell et al., 1992). In
CTB or in human corneal fibroblasts, TGFβ stimulates the
synthesis of matrix glycoproteins such as laminin, fibronectin
and collagen (Ohjiet al., 1993; Feinberget al., 1994). In human
fibroblasts, TGFβ increases MMP-2 and MMP-9 activity while
it decreases TIMP (Overallet al., 1991). This, however, is not
the case for CTB because the inhibitory effect that decidual
cell conditioned medium exerts on the invasive behaviour of
CTB seems to be due to TGFβ, since antibodies to this
cytokine counteract the effect of decidual cell supernatants
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(Graham and Lala 1991). TGFβ exerts this anti-invasive effect
by stimulating the TIMP secretion of CTB. Thus, TGFβ could
well be an endometrial signal which controls trophoblast
invasion during implantation and placentation. In the present
study, TGFβ inhibits the gelatinolytic activity of CTB. This
effect is attributable to a decrease in MMP-9 activity and
immunoreactivity since TGFβ has no effect on MMP-2 activity
and immunoreactivity. Despite the fact that TGFβ exerts
inhibitory properties on the synthesis and activation of MMP-
9 (an enzyme responsible for trophoblast invasion of Matrigel,
Librach et al., 1991; Bischofet al., 1995a), it does not inhibit
CTB invasion of Matrigel (Basset al., 1994). The inhibitory
effect that TGFβ exerts on HCG secretion is not a novel
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finding and confirms data of a previous study (Songet al.,
1996). Stimulation of fFN secretion as observed in the present
study has also been reported previously (Feinberget al., 1992).

Although our data indicate that TNF, IL-1 and TGFβ are
in-vitro regulators of MMP-9, a clear picture of the interactions
of these and other modulators is far from being understood.
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